
WHAT DOES BOYCE-CODD NORMAL FORM DO?+

Philip A. Bernstein

Nathan Goodman

Aiken Computation Laboratory
Harvard University

Cambridge, MA 02138

Abstract

Normalization research has concentrated on defining
normal forms for database schemas and developing
efficient algorithms for attaining these normal
forms. It has never been proved that normal forms
are good, i.e. that normal forms are beneficial to
database users. This paper considers one of the
earliest normal forms (Boyce Codd normal form
[Cod21) whose benefits are intuitively understood.

We formalize these benefits and attempt to prove
that the normal form attains them. Instead we
prove the opposite: Boyce-Codd normal fomn fails
to meet its goals except in trivia2 eases. This
counterintuitive result is a consequence of the
"universal relation assumption" upon which normal-
ization theory rests. Normalization theory will
remain an isolated theoretical area, divorced from
database practice, until this assumption is
circumvented.

1. Introduction

Normalization is a schema design process. The
input is a schema (i.e., database description)
that describes an application; the output is another
schema that describes the same application, but in
a "better" way. Normalization theory provides
mathematical tools for defining schemas, for
characterizing the application that a schema re-
presents, and for specifying the form a "good"
schema must satisfy. Most normalization research
has focused on defining good forms for schemas
(MoMnal forms) and developing efficient algorithms
for attaining these normal forms. However, normal-
ization theory does not provide tools for explaining
why normal forms are good. Presumably, normal forms
help database users in some way, but these benefits
have never been characterized within the formal
framework of normalization theory. This paper
attempts such a characterization for one particular
normal form, namely Boyce Codd normal form.

The benefits of Boyce Codd normal form (BCNF)
are well understood at an intuitive level. BCNF
and its precursor, third normal form (3NF), were
introduced by Codd to eliminate "anomalous" up-
date* behavior of relations. BCNF accomplishes
this by "placing independent relationships into
independent relations." (A more precise character-
ization appears later.) BCNF is widely recommended
in practice for this purpose [Date, Mar], and there
is little doubt that BCNF is a good normal form in
many practical situations.

This paper formalizes the intuitive benefits
of BCNF and attempts to prove that these benefits
are attained. The attempt fails. Instead we prove
that BCNF does not meet its goals, except in trivial
eases. This result is quite disturbing because it
contradicts BCNF's intuitive appeal and empirically
observed benefits. Either the theory is wrong, or
database practitioners are making a serious error
by using BCNF. Our opinion is that the theory is
at fault--that normalization theory, as currently
constituted, is inadequate to characterize the
practical use and benefits of normal forms. The
source of inadequacy can be traced to the "universal
relation assumption" upon which normalization theory
is based.

On the surface, this paper is an analysis of
Boyce Codd normal form. Cur deeper purpose is to
draw attention to a missing link in normalization
theory. For normalization theory to be well
grounded in the database problems it intends to
solve, it must be possible to use the theory to
prove the benefits of normal forms. Unfortunately,
it appears that normalization theory, as currently
formulated, cannot do this.. Until this missing
link is filled in, normalization theory will be
incapable of explaining what Boyce Codd normal
form does.

t This work was supported by the National Science
Foundation under Grant Number MCS-77-05314 and by
the Advanced Research Projects Agency of the
Department of Defense, Contract Number N00039-78-
G-0020.

w1534-7/80/0000-0245$00.75 0 1980 IEEE

*
The word "update" is used generically to denote
insertions, deletions, or replacements (i.e.,
modification) of tuples in a relation.

245

2. Terminology

2.1 Relations and Databases

In formalizing relational databases we distin-
guish the time-invariant description of a relation
VS. its contents at a particular moment. The
description of a relation is called a relation
schema and consists of a set of attributes, and a
set of functional dependencies. R= <ATTR,F>
denotes a relation schema R witk attributes ATTR,
and functional dependencies- F. Figure 2.1
illustrates a relation schema. The contents of a
relation is called a relation state, and may be
visualized as a table of data. Figure 2.2 illus-
trates a relation state.

Relation Schema:

R = <{E#, JC, D#, M#, CT), -
{E#+JC, D#, M#, CT;

D#+M#, CT:
M#+D#. CT}>

Description of Attributes:

E# employee number
JC job code
D# department number
M# employee number of manager
CT contract type

Figure 2.1. An Example Relation Schema.

Relation Schema: as defined in Fig. 2.

Relation: R

E# JC D# M# CT

1 a x 11 g
2 c x 11g
3 a y 12 n
4 b x 11 g
5 b ~12 n
6 c y 12 n
7 a z 13 n
8 c z 13 n

Figure 2.2. An Example Relation.

Notationally, states of relation schema R
are represented by R with possible superscript.
Elements of R (called tuples) are denoted r
with possible superscript. If Xc_ATTR, we use
r [xl to denote the projection of r on the
attributes in X, and R[Xl=tr[Xl IrER).

A database schema is a set of relation schemas
and is denoted g= {_Ri=<ATTRi,Fi>li= l,...,n).

A database state D for D is an assignment of
relation states to the relation schemas of D.
D(Eii) denotes the relation state assigned by D
to Ei, for i=l,...,n. If D and D' are both
database states for database schema D, we define

D<D' iff D(R.) CD' (Ri) for i=l,...,n; clearly,
I is a partiaiiorder.

2.2 Functional Dependencies

A functional dependency (abbr. FD) is a state-
ment of the form f:X+Y, where f is the name of
the FD, and X,Y are sets of attributes. f is
defined on relation schema R=<ATTR,F> if
X,YcATTR.
thatevery

We shall assume throughout this paper
fEF is defined on R. If f is

defined on R we interpret it as-a predicate on
states of ET f CR) is true if for all r,r'ER,
whenever r[Xl = r'[Xl, r[Yl = r' [Yl as well.

A relation state R of schema R=<ATTR,F>
is consistent if every fEF is truein R. For
example, the state depicted in Fig. 2.2 is con-
sistent. The set of all consistent states of R -
is denoted DOM(E).

Given that a set of FDs, F, holds in state R,
one can infer other FDs that must hold in R as
well. The set of all such FDs can be constructed
syntactically using a system of inference rules
[DC], see Figure 2.3. The set of all FDs derivable
from F using the inference rules of Fig. 2.3 is
called the closure of F and is denoted F+.

If Y C X then X'Y

If ZCW and X+Y then xw+yz -
If X'Y and Y+Z then X'Z

Figure 2.3. Inference Rules for
Functional Dependencies.

Within the confines of a single relation
schema, F+ is precisely the set of FDS implied by
F: i.e., fE F+ iff f holds in every state of
R in which F holds [Arm]. This fact is called
the coi??pZeteness property of FD-closure [BFH].

FDS also enjoy the uniqueness property within
a single relation schema, which states that syn-
tactically identical FDs are semantically equi-
valent as well [Bern].

2.3 The Universal Relation Assumption: Schema
Equivalence

Intuitively, two schemas are equivalent if
they represent the same external application. For
relation schemas this notion may be formalized in
terms of consistent states: relation schema
R=<ATTR,F> and E' =<ATTR',F'> are equivalent if
DOM@) = DOM@'). As a consequence of completeness
and uniqueness, DOM(R) = DOM(R') iff ATTR=ATTR'
and F+=F'+. Hence, -when normalizing R one can
substitute F' for F whenever F'+=Ff, since
the resulting schema <ATTR,F'> remains equivalent
to R. -

All normalization algorithms depend on this
fact. Bernstein [Bern], for example, exploits it

246

to substitute a "reduced" set of FDs for the ones
supplied by the user. Without this substitution,
many schemas cannot be normalized due to redun-
dancies in the way FDs are expressed in the
schema [Bern].

However, completeness and uniqueness do not
hold in multi-relation databases
sider Figure 2.4. The schemas Y

enerally. Con-
D , D2, and D3

"contain" the same FDs--i.e., FlT=F5=F3+--yet
these three schemas differ qualitatively in re-
presentational capability. ~1 can only represent
universities in which professors and teaching
assistants must teach courses in their own depart-
ment; D2 permits teaching assistants to be drawn
from other departments, but not professors; and
D3 permits complete flexibility in the assignment
of teaching assistants and professors. These
schemas do not represent the same external appli-
cation, and hence are not equivalent, even though
they contain the same attributes and FDS.

$ = f.mm? = <{C~URSE,PROF,TA,DEPT~,
{COURSE+PROF; COURSE+TA;
COURSE+DEPT; PROF'DEPT;
TA+DEPT]>j

D2 = ITEACI~~ = <{C~URSE,PROF,TA}, -
{coURSE-+PR~F; couRs~-,~~}>,

FACULTY' = <{C~URSE,PR~F,DEPT),
{C~URSE+DEPT; PROF+DEPT)>,

STUDENTS' = <ITA,DEPT), {TA+DEPT)>}

D3 = {TEACH~ = <{C~URSE,PROF,TA),
IC~URSE-+PR~F; cOURSE+TA}>,

FACULTY3 = <{PROF,DEPT), IPR~F+DEPT}>,

sn.mN~s~ = <ITA,DEPT), {TA+DEPT)>,

CLASSES~ = <IcouRsE,DEPT), (COURSE-+DEPT~>}

Figure 2.4. Completeness and Uniqueness Do Not
Hold in Multi-Relation Databases.

This problem is quite serious. It means that
the definition of schema equivalence used to con-
struct a normalized schema g is not semantically
valid. To circumvent this problem the universal
relation asswnption is invoked.

Let g= {Ri=(ATTRi,Fi>li=l,...,n) be a data-

base schema and let D be a database state for D.
u satisfies the universal relation asswnption (0;
is UR-consistent) if there exists a relation state
U for schema v=(ATTR,@ SUCK that UIATTRiI=D(Ri)
for i=l,...,n. D is COnSiStsnt if it is UR-
consistent, and D(Ri)fDOM(Ri) for i=l,...,n.
DOM(D) denotes the set of all consistent states
of i-i -'

By requiring that database states satisfy the
UR-assumption, we can attain the desired notion of
schema equivalence. Any UR-consistent state D is
precisely representable by U=*$l D(Ri), Since

UIATTRiI =D()33) for i=l,...,n. Therefore DOMQ)

247

is precisely representable by the set REP(D) =
CUIgDEDOMQ), U= *;=l D(RiIl. Two schemas D and -
D’ represent the same external application, i.e.,
are equivalent under the UR-assumption if
REP(D').

REP(D) =
But REP(D) =DOM(U=<ATTR,F>) where

ATTR= (U;=l ATTRi) and F=(Uy=l Fi), and
n' REP(D') =DOM(U' =<ATTR',F'>) where ATTR'=(U.

n' - 1=1
ATTR;)

and F'= (Ui,l F;'. Consequently REP@) = REP@')

iff DOM(U) =DOM(U') iff ATTR=ATTR' + and F+=F',
which is precisely the notion of schema equivalence
required by normalization theory.

Finally we observe that the FDs that hold in
D(Ri) fo; every DEDOM(D) are F'[ATTRiI, not
simply Fi. We say that -D(RiI is FD-consistent
relative to g if every FD in F+[ATTRiI is
true in D(Ri).

2.4 Representation

A special case of schema equivalence arises
frequently in this paper. Let U=(ATTR,F> be a
(universal) relation schema, and-let
<ATTRi,Fi>li=l,...,n}.

D={Ri =
Using the te&nology of

[BBG], we say g RepB-represents g if

= ATTR and (U;=l Fi)+=F+.
q1 ATTRi)

Note that g RepZ-

represents g iff REP(D) =REP(g). Rep2 is
essentially the notion of schema equivalence used
in [Bern].

Given that g RepZ-represents g we define
mappings between their consistent states:

J:DOM(D)+DOM(c), where J:D*U=*T=l D(zi); and

P:DOM(U)+DOM@), where P:U*D, St. D($) = -
UIATTR~I for i=l ,...,n.

The following facts are well known:

(i) J and P are total functions.

(ii) J(P(U)) 2U.

(iii) P(J(D)) = D.

(iv) UCU' implies P(U) <P(U'). -
(v) D I D' iff J(D) EJ(D').

A stronger form of representation is used by some
authors [Codll, [Risl. DRepd-represents g if
g RepZ-represents c and for all UEDOM(U_I,
J(P(U11 =U. Repl-representation implies that
DOMQ) and DCM(Uj are isomorphic, with J and
P the respective-isomorphisms. Hence every con-
sistent state of u can be exactly reconstructed
from the corresponding state of g.

2.5 Boyce Codd Normal Form

Let R=<ATTR,F>, and let XC_ATTR+ X is
called a superkey of 5 if X-tATTREF . X is a
key of E if x is a superkey but does not properly
contain a superkey. An FD X*X' is called trivial

if X'CX, because it holds in every state of a
relation independent of F.

5 is in Boyce Co& Normal Form (abbr. BCNF)
if for all non-trivial FDs X+Y in F+, X is
a superkey. In extending this notion to database
schemas, we must be conscious of the UR-assumption.
We say that Ri=<ATTRi,Fi> is in BCNF if the

schema <ATTRi,F+[ATTRi]> is in BCNF, and D is -
in BCNF if each R. is. -1

3. Goals of Boyce Codd Normal Form

Third normal form and later Boyce Codd normal
form were introduced to eliminate anomalous update
behavior. Let us quote from [Cod11 the motivation
for these normal forms.

Looking at a sample instantaneous
tabulation of R (Figure 2.2) the un-
desirable properties of the R schema
become immediately apparent. -We observe,
for example, that, if the manager of
department y should change, more than
one tuple has to be updated. The actual
number of tuples to be updated can, and
usually will, change with time. A
similar remarkapplies if department x
is switched from government work (con-
tract type g) to non-government work
(contract type n).

Deletion of the tuple for an employee
has two possible consequences: deletion
of the corresponding department infor-
mation if his tuple is the sole one re-
maining just prior to deletion, and non-
deletion of the department information
otherwise.

Inserting an employee tuple has the complementary
problem: if the employee is the first member of a
department, we must simultaneously insert new M#
and CT information for that department; inserting
the second (third, etc.) employee into that depart-
ment has no such requirement.

Abstracting from the above discussion, we find
p- to be an undesirable schema because the precise
effects of a given update operation cannot be pre-
dicted simply by examining the schema. One must
examine the state of E to see the effects that a
given update produces. When all of the effects of
an update can be determined by examining the schema
alone, we say that the update is syntacticaZZy pre-
dietabLe (more precise definitions will appear
later).

In state R for example, replacing department
y's manager by another value implies updating a
(syntactically) unpredictable number of tuples.

Inserting an employee into (a new) department v
requires creating new department-related data,
while inserting an employee into (an existing)
department x does not have this effect.

In this section we formalize this motivation,
and prove that BCNF relation sckemas attain it. In
Sections 4 and 5 we will consider multi-relation
database schemas.

3.1 Update Operations

Since the goal of normalization is to improve
update behavior, our first step is to define update
operations.

Let R=ZATTR,F> be a schema. - The update
operations we define on R are + (insertion),
- (deletion), and & (replacement).

If REDOM@), then

+(R,r) = RU {r), if consistent
R , otherwise

-(R,r) = R-{r)

if consistent
, otherwise.

3.2 Insertion and Deletion Anomalies

Intuitively, R exhibits an insertion anomaly
if for some states R and tuples r, the operation
+ (R,r) affects one collection of FDs, while for
c-her states and tuples the insertion affects a
different collection of FDs. The goal of normal-
ization (with respect to insertions) is to eliminate
such anomalies.

In formalizing this notion a technical problem
surfaces. If R=@, the insertion of any tuple
must affect every FD, while if R#@, the insertion
of any tuple already in R does not affect any FD.
Consequently, every schema exhibits insertion ano-
malies in this trivial sense (unless ATTR=@). A
similar problem arises with deletions: if R={r},
the deletion of r must affect every FD, while
for any R, the deletion of a tuple not in R cannot
affect any FD.

A second problem arises with respect to trivial
FDs. Since every attribute functionally determines
itself, the "collection of FD?." affected by an up-
date will in general vary by these trivial FDs at
least. We therefore choose to discard trivial FDs
in this context.

Formally, we say that +(R,r) affects f:X+Y
if R[XUYl# (+(R,r)) [XUYI, and we define

Affect(+g) = {fEF+lf is non-trivial, and for some

R#@, and some r, +(R,r)
affects f1

NoAffect(+FJ) = {fE F+(f is non-trivial, and for some
R#@, and some r, +ULr) #R,

yet +(R,r) does not affect f}

R is free of insertion m20VZaZieS iff Affect(+R) n
soAffect ~$5. The definition of deletion an%
alies is similar and appears in Figure 3.1.

248

Affect(-g) = {fEF+lf is non-trivial, and for some
R and r, R#Ir}, yet -(R,r)
affects f1.

NoAffect ={fEF+(f is non-trivial, and for some
R and r, Rf {r} and -(R,r) #R,
yet -(R,r) does not affect f).

R is free of dSlSi%On anOf&iSS iff -
Affect(-E) nNoAffect(-g) =@.

Figure 3.1. Definition of Deletion Anomaly.

It is conjectured in [Cod21 that BCNF schemas
are the only ones that can avoid insertion and
deletion anomalies. Now that we have formalized
these anomalies, we can prove this conjecture true.

Theorem 1. (i) g is free of insertion anwrh
aties-is in BCNF. -

(ii) R iS free Of dSl&iGn CVUQr!aZ&?S iff 5
is in BCNF.-

Proof. (i) Affect(+R) = {non-trivial FDs in
F+} whether or not R is-in BCNF. So it suffices
to prove that NoAffect =@ iff E is in BCNF. -

if: Let f:X+Y be any non-trivial FD in F+.
We wiz construct an insertion that affects f. By
definition of BCNF, X is a superkey. Hence, all
tuples in any consistent state of R have differ-
ent X-projections. Let R' be any-consistent
state containing two or more tuples; such a state
must exist for any R, e.g., the state
I<1,...,1>,<2,..., 2>T is such a state. Let
rcR', and let R=R' -{r}. R#@, +(R,r) =R'#R,
yet +(R,r) affects f. Consequently
NoAffect =pI as desired.

only if: We prove that if R is not in BCNF,
then NoAffect(+l+i)#@. If E is not in BCNF,
then there exists a non-trivial FD f:X+Y in F+
for which X is not a superkey. We will construct
an insertion that does not affect f.

Let R' be any consistent state containing
two (or more) tuples r and r' such that
r[Xl =r'tXl. Such a state must exist by the com-
pleteness of Ff: since X+ATTR$?F+, there must
exist a state R' in which F+ holds, but
X+ATTR does not hold [Theorem 3, BFHI; for
X+ATTR not to hold in R', distinct tuples r
and r' must be present in R' with r[X) =r'[Xl.

Let R=R'-{r). R#@, +(R,r)=R'#R, yet
+(R,r) does not affect f. Hnece, NoAffect #PI,
as desired.

(ii) The result for deletions follows by
similar proof. 0

3.3 Replacement Anomalies

Replacement anomalies are concerned with non-
predictability of a different nature- The replace-
ment depicted in the Introduction to Section 3
sought to change the manager of department y*

leaving all other values unchanged. This replace-
ment was judged to be anomalous because an unpre-
dictable nwnber of tuples might have to be replaced
to achieve this effect. If we scrutinize this
motivation, however, difficulties emerge.

The operation used in the example is not a
single-tuple replacement of the type defined in
Section 3.1. Instead, it attempts to modify a set
of tuples that satisfy a boolean qualification,
"D# = y" in this case. Arbitrarily.many tuples may
satisfy an arbitrary qualification. So, nonpre-
dictability of this sort can hardly be called
"anomalous*'. Apparently, Codd did not have such
general operations in mind.

The operation that seems to be intended is the
following. Let R=<ATTR,F>. let REDCM(EJ), and
let .f: X+Y be a non-trivial FD in F+. For any
value x, and for each r in (rERlr[X] =x1 the
user may replace r(Y) with a new value. The
replacement has predictabze size if
XII Il.

I{rERIr[X]=
R is free of rSpkrCSmSnt anO?&iSS if for

all non-tFivia1 f: X+Y in F+, all REDOM(R),
and all x, the replacement has predictable size.

Theorem 2. E is free of replacement anomalies
zff E is ;n BCNF.

Proof. All replacements have predictable size
iff for all non-trivial f: X+Y in F+, X is a
superkey. 0

It is not apparent to us that multi-tuple re-
placements of this type warrant special consider-
ation in the schema design process. Replacement
anomalies will not be studied further in this
paper.

4. Update Operations Under UR-Assumption

In the following two sections we attempt to
extend Theorem 1 to multi-relation database
schemas. This attempt will fail, because of the
UR-assumption. Instead, we shall prove that BCNF
database schemas are not free of insertion and
deletion anomalies except in trivial cases.

4.1 Problems in Preserving UR-Consistency

Recall the example of Section 3. R is not in
BCNF and therefore exhibits update anomglies; the
remedy recommended in [Cod11 is to decompose R
into two relation schemas, Rl and R2, which-are
in BCNF (see Fig. 4.1). No&e that the database
schema D= (R1,R2} Rep4-represents 3 therefore
g and E have equivalent representational power,
provided the database system only permits UR-
consistent states of g to occur.

This leaves us the problem of designing update
operations that preserve UR-consistency. For
example, to insert <v, 14, n> into F2, a tuple
r1 with rlID#] =v must be inserted into Rl.
Similarly, to delete (x, 11, g> from 52, all
tuples rl in R1 with rlID#] =x must be

249

deleted too. In these two cases, the requirement
of UR-consistency dictates a "natural" semantics
for the update. However, in other cases, the
choice of a reasonable semantics is less con-
strained.

For example, suppose we want to insert
<9, d, v> into R~. One way to preserve UR-
consistency is to insert <9, d, v> into Rl and
<V, null, null> into R2, where "null" denotes a
blank or uncommitted value that is distinguishable
from "real" values , such as 11. To adopt this
interpretation, we must develop a complete
semantics for update operations when null values
are present. We attempted such a development (see
Appendix I) but discovered that for each semantics
that we tried, certain bizarre behavior was forced
by the UR-assumption. For now, we are defeated in
taking this route.

The choices that remain are to use D# values
already in R2 or to invent new ones. Consider
the first choice. To insert (9, d, v> into _R~,
we can preserve UR-consistency by also replacing
G, 11, g> by <v, 11, g> in R2, and replacing
each instance of 'x' in Rl by 'v'. There are
several problems with this semantics. First, the
choice of <x, 11, g> as the victim to be replaced
was arbitrary; <y, 12, n> or <z, 13, n> would
have worked as well. Second, the interpretation
fails when R2 is empty, because there are no
tuples in R2 to replace. Third, although we have
not inserted new D# values, we have produced new
PeZationships both in Rl and R2 that were not
part of the insertion request. Finally, this
approach effectively asserts that the tuple being
inserted is "more reliable" than data already in
the database, since we have chosen to modify
existing relationships instead of rejecting the
insertion as an integrity violation. For these
reasons we have rejected this "replacement" approach
to insertion semantics.

The only remaining choice is to insert a
"real" valued tuple into R2, such as <v, 14, g>.
This approach, like the preceding one, arbitrarily
selects values to be placed into the database, and
produces a relationship that was not part of the
insertion request. However, it has desirable
properties not shared by the replacement interpre-
tation. First, it succeeds even when R2 is
empty. Second, the effect on Rl of "insert
(9, d, v> into El" is to insert that tuple into
that relation, and to make no other changes to Rl.
Third, an insertion never has the effect of deleting
a value or relationship; this is consonant with the
intuitive understanding that an insertion creates
data and does not destroy it. For these reasons,
we have selected this interpretation of insertion
in the UR-environment.

In Section 4.2 we formalize this semantics and
generalize it to deletions and replacements. Basic
properties of these operations are investigated in
Appendix II.

4.2 Update Operations that Preserve UR-Consistency

Let D= {P,l ,...,%I be a database schema.
The update-operations defined on 2 are named
+Eit -Ri# and 'Ri for i=l,...,n. (We include
the schema name, _Ri, as part of the operation name
for notational clarity.) If DEDOM@), then

+R. (D,r.
-3. I.

-Ei (D,ri

mi (D,ri I

denotes insertion of ri into D(Ri),

denotes deletion of r.
1 from D(si),

r;) denotes replacement of ri by r;
in D(Ri).

As indicated in Section 4.1, each operation may
have to update other relations to preserve UR-
consistency: to formalize the semantics of these
operations we must also specify these other effects.
As we have illustrated there is no unique, "natural"
semantics. Instead we choose to base the semantics
of these operations on properties that we judge to
be desirable for update operations in general.
These properties are closely related to the correct-
ness criteria for "view updates" postulated in [DB].
We state the properties for insertions; the defini-
tions for deletions and replacements are analogous.

Property l--Consistency

The result of an update operation must be a
consistent state.

Property I--Exact Performance

Given +Ei(D,ri), let Ri=+(D(Ri),ri). State
D' maCtZy perfOPmS +I& (D,ri) if D' (Ri) = R;.

Property 3--Intent Performance

State D' pePfOmS the i?ltQnt of +Ri(D,ri)
if D' can be obtained from D by applying in-
sertion operations to individual relations. (This
property is stated more precisely in Appendix II.)

If D' satisfies Properties l-3 for an update
operation, we say that D' perfoms that update.
In general, many states may perform an update. Our
final property provides a metric choosing certain
of these states over others.

Property 4--Nonextraneous Performance

Suppose D' performs +l7i(D,ri) and let R,
be a sequence of insertions that maps D into D'.
Since every operation in 5l+ (except for the one
that inserts ri into Ri) causes a change to the
database not specified by the user, all unnecessary
operations should be eliminated. D' nonertra-
neousZy pePfOms +Ri(D,ri) if (a) D' performs
the insertion, and (b) for all subsets* 0; of
n t' "i either maps D into D', or it maps D

*
Technically, we mean "projection" here. In Appen-
dix II, however, we demonstrate that R+ can be
treated as a set with no loss of generality; with
this understanding, the word "subset" is correct.

250

into a state that does not perform the insertion.
(A more precise statement is given in Appendix II.)

The SetR~tiCS of +Ri, -Fit and IRi can HOW

be defined. Let DEDOM@). +Ri(D,ri) =u?z~ state
that nonextraneously performs +Ri (D,ri) a -3 and
& Ri have analogous definitions.. In general,
+Ri (Dtri) and &FLi (D,ritrj) have many possible
meanings and we treat these operations as non-
deterministic functions. By contrast, -zi (D.ri)
is uniquely specified by this definition, a fact
we prove in Appendix II.

.Database Schema:

g= $=<{E#,JC,D#},{E#+JC,D#}>,

R2=<{D#,M#,CT},{D#'M#,CT;M#'D#,CT}>)

Database:

E# JC D#

lax
2 c x
3 a Y

l-----l 4 b x
R1 = 5 b y 8 R2 =

6 c Y
7 a 2
8 c z

9 and 52 f\l of Fig.
are in BCNF and g Rep4-represents

2.1. -

Figure 4.1. A Normalized Database Schema.

5. BCNF Does Very Little

Having developed an update semantics that
preserves UR-consistency, we are ready to study
normalization in this context. There are two
issues: (1) characterizing database schemas that
avoid insertion and deletion anomalies: and
(2) the schema design question--characterizing
relation schemas U for which there exists a data-
base schema g that represents g, yet avoids in-
sertion and deletion anomalies.

5.1 Database Schemas that Avoid Anomalies

Throughout this section let D= {Rl,...,s},
and U=(ATTR,F>, such that g Rep2-represents
u -- I? D is to avoid update anomalies it is
necessary for D to be in BCNF: otherwise the
"internal effe&" of updates would exhibit anon-
alies as proved in Section 3. However, we shall
prove that BCNF is not sufficient to prevent anom-
alies caused by the "external effects" of these
operations.

The definitions of insertion and deletion
anomalies require technical changes in the UR-
environment. First, the definitions of Affect and
NoAffect given in Section 3 quantify over all

COnSiStent states of a schema, but it is technically
better to quantify over reachabZe states only; in
light of Theorem II.1 (see Apendix II), though,
this distinction has no impact. Second, since we
may assume that D is in BCNF, we may interpret
Affect and NoAffect as sets of relation s&emus
instead of FDs: e.g., for any Ri, R. ED,
Ej EAffect(+Ei) iff every non-trivia '-1 FE in

F'[ATTRjI EAffect(+fji), because all external effects
of +Ri are themselves insertions. Figure 5,l
presents the definitions of Affect, NoAffect, and
anomalies as used in this section.

Affect(+zR) = (Ej EDI

NoAffect = CRj ECj

Affect(-Ri) = {Ej EDI

NoAffect(-Ri) = iEj EDI

for some D other than the
empty state, for some tuple
ri, and for some meaning,
+Ri(D,ri) affects

Rj'

for some D other than the
empty state, for some tuple
ri, and for some meaning,
+Ei(D,ri) #D, yet +Ri(D,ri)
does not affect Rj}

for some D and ri, D(Ei)#
(r.1, yet -Ri(D,ri) affects
R. j
-1

for some D and ri, D(Ri)#
tril, ad -Ri (Dtri) #D,
yet -Ei (D, ri) does not
affect Rjl.

D is free of insertion anomalies iff for all
Ri E 2, Affect(+Ri) n NoAffect =!a

D is free of deZetion anomaZies iff for all
_RiQ, Affect(-Ei) n NoAffect(-_Ri) =pI

Figure 5.1. Definitions of Anomalies for UR
Environment.

A graphic representation of D helps
characterize the effects of insertions. Let G(c)
be an undirected graph whose Vertex set equals g,
and whose e&e set contains (Rip Rj) iff
ATTRinATTRj 10.

1. Lemma (i) Affect(+R.) =tR.EDlR. and R.
are connected by a path in c&)).-' - -I -1

(ii) NoAffect(+Ri) = {zj EgjATTRj +ATTRiEF+}.

Proof. See Appendix 11.4. 0

Lemma 2. (i) Affect(-Ri) =Affect(+R?)

(ii) NoAffect(-Ri) =NoAffeCt(+Ri) .

Proof. See Appendix II.4.

251

Combining these results we obtain a precise
characterization of database schemas that are free
of insertion and deletion anomalies under the UR-
assumption.

Theorem 3. D is free of insertion anomalies
(or equivalently ;teletion anomalies) iff D is in
BCNF, and J@OP all Ri, Rj, if ATTRin ATTRj #@
then ATTRi+ATTRjEF' and ATTRj~ATTRiEF'.

The conditions placed on D by this result
are quite restrictive; for example, the normal-
ized schema suggested in Figure 4.1 does not
satisfy them, nor for that matter do most of the
normalized schemas commonly illustrated in the
literature. This bodes poorly for the schema
design aspect of normalization.

5.2 Attainability of Normalized Schemas

The remaining issue is one of schema design.
Let U=<ATTR,F> be any relation schema; we prove
that -U can be normalized into a schema D that
is free of insertion and deletion anomalies iff
U is "almost" in BCNF itself. -

A database schema Dp= {Dpi =<ATTRpi,Fpi>I

i=l,... ,n] is said to partition U if Dp
Rep2-represents 2 and ATTRpinAT?Rpj =p for
i#j.

Theorem 4. There exists a database schema D
that Repa-represents U yet is free of insertion-
azd deletion anomalies-iff there exists a BCNF
database schema g, that partitions U. -

Proof. if: If DP exists, it Rep2-represents
2 anGisf?& the conditions of Theorem 3.

only if: Let Pl....,P, be the connected
components of G(D), and let @kl ,...,&,,) be
the schemas in component Pk. The schemas in each
component are "equivalent" in the se+nse that
VI&,F$~ in Pk, ATTqci+ATTRkj EF and

ATT
k

+ATTQEF+. Also each schema is in BCNF.

Therefore, if we merge all schemas in Pk into one

schema R "5c Tc
-pk

= < Uizl ATTQ r Uizl Fki >, :pk is in

BCNF also. The database schema Ep= {Epklk=l,...,m}

is thus a BCNF schema which partitions U. 0

Figure 5.2 illustrates two typical relation
schemas that are BCNF-partitionable, and database
schemas that Rep2-represent them while satisfying
the conditions of Theorem 3. In both cases the
database schemas do not Rep4-represent the original
schema.

If Rep4-representation is required, U can be
"normalized" if and only if it already is-in BCNF?

Corollary to Theorem 4. There ex"~ts a data-
base schema D that Rep4-represents U yet is
free of &se&on and deletion arzomal'zes iff g
is ‘zn BCNF.

(a) u = <{E#,D#,M#,PR~J},IE#'D#;M#~PRoJ}>

g = IR~=<{E#,D#},{E#~D#}>,

R2=<{M#,PROJ},{M#+PROJ}>}

(b) g = <(:SUPPLIER,PART,CITY},{SUPPLIER-+CITY~>

D = {_Rl=<{SU~PLIE~,CI~~l,{~UP~~I~~+~~~~}> -
R2=<IPARTM I>1

Figure 5.2. Schemas That Can Be Normalized.

Proof. If c is in BCNF there is nothing to
prove. To prove the converse, observe that if D -
Rep4-represents 2, the J operator must denote a
lossless join [ABUI, hence G(D) must be a
connected graph. If we merge all relation schemas
as in the proof of Theorem 4, the result is a BCNF
relation schema R= <ATTR,F'> where F'+=F+.
Hence U=(ATTR,F> is in BCNF as well. 0

6. Conclusion

BCNF was invented to prevent anomalous side
effects of relational updates. The question we
have asked is, "does BCNF attain this goal?" We
have given two conflicting answers: (1) In the
context of a single relation schema, BCNF is
successful. But (2) in a multirelation database
schema, BCNF fails.

In spite of (2), we believe BCNF to be an
important schema design goal.

The failure of BCNF in the multirelation con-
text is caused by the universal relation assumption.
The UR-assumption is adopted in normalization
theory to formalize notions of FD completeness and
uniqueness, and schema equivalence. Recent work
on normal forms, e.g., fourth and fifth normal forms
Dwl,21,, leans even more heavily upon the UR-
assumption; these normal forms cannot even be
defined without the UR-assumption. Recent work on
schema equivalence [BMSU] depends strongly on this
assumption as well.

Yet update operations are clumsy to define
when the UR-assumption is present, and behave quite
badly. In addition to the problems noted in this
paper, the UR-assumption introduces complexity
problems as well, since testing whether an insertion
preserves the UR-assumption is NP-complete [HLYI.
Apparently, the UR-assumption is incompatible with
databases that are updated.

At present, normalization theory is an iso-
lated theoretical area divorced from database
practicr+. This separation will persist until
normalization theory is made adequate to prove the
~benefits of normal forms,

252

APPENDIX I

Pitfalls in Null-Value Update Semantics

Let us return to the example database of
Section 4.1. The schema is

g = {R~=<IE#,JC,D#},IE#+JC,D#~>,

R2=<{D#,M#,CT},{D#+M#,CT;M#+D#,CT)>}

and the database state is

D:Rl=

E# -
1
2
3

4‘
5
6
7
8

-
JC -
a
c
a
b
b
c
a
c!

-

D# -
X

X

Y
X

Y
Y
z
z

I R2 =

If the user says to insert <9,d,v> into El, the
most plausible way to preserve UR-consi.stency is
to simultaneously insert <v,null,null> into R2.
~11 other interpretations, we saw in 4.1, share
the dubious property of inventing data values
and/or relationships among data values in the
database.

In this appendix we explore the consequences
of using null values to preserve UR-consistency.

I.1 The Second-Insertion Problem

The database state that results from the pre-
ceding insertion is

E# 1 JC (D#
1

R; = ; ;; z

z 13 n
V null nul

, I I

Suppose the user now says to insert <v,14,g> into

R2- We cannot simply add <v,14,g> to Ri, because
the resulting relation state would be inconsistent:
the FD D#+M#, CT would be violated. To over-
come this inconsistency, the natural interpretation
is to replace .<v,null,null> by <v,14,g>. The
rationale for this interpretation is that <v,14,g>
signifies "more complete" information than
<v,null,null>, hence this new tuple makes the old
old one obsolete.

Applying this rationale to another case, con-
sider the insertion of the same tuple in the state

since <v,14,g> is "more complete" than <null,
nuli, g> the correct action apparently is to re-
place <null,null,g> by <v,14,g>.
consistency is violated, since

But then UR-2

no longer "matches up"
<9,d,null> 2in Rl

with any tuple in R2, and
further correction is needed. The correction would
seem to be the replacement of <9,d,null> by
<9,d,v>. The resulting state is

I I I I 1 I I I

D3 asserts that employee 9 works in department
'v' , but this relationship is in no sense implied
by the user level insertion operation. The data-
base system has invented a relationship between
employee 9 and department 'v', which is precisely
the problem we thought null values would prevent!

This problem is not caused by the use of null
values per se; it is caused by the interpretation
of insertion operations as replacements when null
values are present. The alternative, of course, is
to treat insertions as insertions whether or not
nulls are present. However, this interpretation
begs the issue, because it assigns the same seman-
tics to null values as real ones.

I.2 What Do Deletions Mean?

Let us return to state D and consider
possible meanings of the delete operation. Suppose
the user says to delete <z,13,n> from R~. Two
plausible meanings for this are

1. replace <z,13,n> by <z,null,null>;

2. delete <z,13,n> from R2 and delete
employee in department 'z' from Rl.

Meaning (1) is the inverse of the insertion seman-
tics suggested in 1.1. The rationale for this
interpretation is that deletions are too drastic
for the system to undertake automatically--the data-
base system should never delete more data than the
user specifies. Meaning (1) supports this reasoning
while meaning (2) deletes far more data than the
user specified.

But consider what happens if we add relation
schemas

R3 = <(CT,VP},CCT+VP)>

and

R4 = <{PRoJ,M#~,~PR~J-+M#~>

to the database with states

253

If we adopt meaning (1) now, the deletion of
<z,13,n> has no effect whatever! Given this
semantics, the following procedure is required for
a user to actually remove <z,13,n> from the data-
base:

1. delete <p3,13> from R4, and delete
every employee from El with D#='z'.
The resulting state is

E# 1 JC (D# D# 1 M# 1 CT

CT1 VP
,

2. delete <2,13,ti from 22; to implement
this deletion the database sysfem must
delete ltiull,null,z> from Rl, ?,13,n>
from R2, and (nu11,13> from R4. While
in a strict sense this implementation
deletes more data than the user specified,
we judge these extra deletions to be
acceptable since all unspecified data
values are nulls.

As an exercise the reader may devise a similar
procedure for the follo+ng case:

2 = {R~=<{A,B},{A-+B}>, ~~=<{B,cl,{B+c}>,
?3=<k,A),tC+A}>

D: Rl =

operation: delete <al,bl> from El.

I.3 Another Interpretation of Delete

Let us return to the original schema 2 and
its original state

D: R2 =

Another plausible meaning of "delete <z,13,n>
from RzO is

Replace <z,13,n> by <null,null,null> in

R2, and replace the department of every
department 'z' employee by 'null' in Rl.

The resulting state is

This interpretation eliminates the problems noted
in 1.2, but its interaction with the insertion
semantics of I.1 is strange. Suppose the user says
to insert <v,14,g> into R2. Since <v,14,g> is
"more complete" than <null;null,null>, the effect
(according to I-l), is to replace <null,null,null>

by <v,14,g>. This replacement violates UR-con-
sistency, however, and the correctivelaction is to
replace every 'null' department in
This yields

Rl by 'v'.

D2:R2
1

2 R2 =

Observe that the deletion of <z,13,n> and the
insertion of <v,14,q> have been coupZed into a
replacement, whether or not this was intended!

I.4 Minimizing the Use of Null Values--A Problem

Additional difficulties surround the question
of how many nulls should be inserted when correcting
UR violations. Let us aqument schema D with
relation schema R -3 = <{cT,vP},{cT+vP}~. And con-
sider the state

E# JC D#
D1:R1=,hl a x

19dv'
1 R2 =

CT [VP

1 v (null 1 null1

If the user says to insert <lO,d,u> into I71
either of the following interpretations is possible:

1. insert <lO,d,u> into Rl
11

and

<u,null',null> into R2; or

1 2: insert <lO,d,u> into Rl, <u,null',null'>

into I 1
R2, and <null',null'> into R3.

The advantage of (1) is that the number of relations
affected is minimized. Since null values have no
intrinsic value this seems a worthwhile goal. The
state corresponding to (1) is

254

Suppose the user subsequently determines that de-
partment 'v' has vice-president 'AGNEW'. TO
place this fact in the database, the usual pro-
cedure is

I. Find the
R3

tuple that describes depart-
ment v's vice-president. I.e.,

(i) restrict R2 by D#= 'v'

(ii) joint the result of (i) with R3
(iii) project OntO ATTR 3 = {CT,VP}.

II. Replace the VP-projection of all tUpleS

found in (I) by 'AGNEW'.

2
Applying this procedure to D , we obtain

D3.R3
'1

D# 1 M# 1 CT
I

This state asserts, erroneously, that AGNEW is vice-
president of department 'u'.

To avoid this error, the retrieval step (part
I) of the procedure must be cognizant of null join
values and must insert new null values as it goes.
It would certainly be simpler for the insert
operator to insert these extra nulls in the first
place.

I.5 Maximizing the Use of Null Values--A Problem

On the other hand there are cases where maxi-
mizing the use of null values is also wrong. Let
us add the following relation schemas to D:

Rq = <{A#,D#},{A#+D#}>,
and

%
= <IE#,A#I,I}> I

where A# denotes an account (in the financial
sense), iJ4 tells which accounts are used by each
department, and R5 identifies which employees may

post expenses against which accounts. The FD
A#+D# is present in R4 because the "chart of
accounts" normally mirrors the organizational
hierarchy; R5 has no FDs because each employee may
generally charge to multiple accounts and vice versa.

Consider the state

E# JC D#

D1 R1= 1 a x 1
:1/

'r8 c z-f
,...,R =

4

L

and suppose two new employees are hired into depart-
ment '2' with job-codes 'd'. If we adopt the
policy suggested in I.4 of inserting unique null
values whenever a null value is needed, the resul-
ting state is

D2: R2=
1 ,R

2
5

IE#

11
= 1 8

4
9 null

10 a5 I null'
1 i

The values of 4
2

and R5 are bizarre--it is
highly unlikely that the hiring of every new employee
would require the establishment of a new account.
However, the alternative of letting all new hires
share one null account number suffers the problems
described in I.4 and is wrong, tto.

I.6 Conclusion

Null values are an escape clause from the UR-
assumption; they attempt to circumvent UR-consistency
in cases where it seems most unrealistic. Since the
UR-assumption is central to currently developed
database theories, it is not surprising that attempts
to circumvent it are so troublesome.

APPENDIX II

Properties of Updates Under UR-Assumption

II.1 Update Maps

Properties 3 and 4 of Section 4.2 are defined
in terms of sequences of updates operating on in-
dividual relations. This section formalizes this
concept, refining it into the notion of "update
map".

in insertion command is an ordered pair
W = <+_Rj,rj> and is interpreted as a function on
FD-consistent database states.

255

W(D) = D' such that (ii) there exists a deletion map from D to
D' iff D 2 D'; and D$i) , for i#j

D'$) =

+(D(R.) ,rj), for
-3

i=j.

A sequence of insertion commands, R+=<W1,...,Wk>
is interpreted as the composition of wl,...,wk.
0, is minimal in state D if for all projections
a;-, n;(D) #Q+(D). It is a fact that if R, is
minimal in state D, every permutation of it is
minimal too, and all map D into the same state.
Conversely, if two sequences are both minimal and
both map D into D', they are permutations of
each other. Moreover, a minimal sequence of in-
sertion commands cannot include duplicate elements.
Therefore we can unambiguously consider such
sequences to be sets. An insertion map is such a
set. Deletion maps are defined analogously.

Replacement maps require different treatment
because the order of replacements can affect the
result even in a minimal sequence [BG]. Let R
and R, be sets of deletion and insertion commands
respectively, and let

Q&

R, = <R-,R+>. We interpret
as the composition of fi followed by R,;

"& is defined in state D Eff fi is a deletion
map in state D and fl, an insertion map in state
0 CD). We define a partial order over pairs of
Gis form: <Q;,";> I <a-,Q> if both 0: 5 R
and Sl; C_ R,. R, is a replacement mup in state D
if (a) R, is defined in state D, and (b) for
all OLCQG either R;(D) is not defined or
R&(D) #R,(D).

Properties 3 and 4 can now be restated.

Property 3--Intent Performance

State D' perfoMns the intent of +Ri(D,ri)
if there exists an insertion map from D to
D'. The definitions for -_Ri and &Ei are
analogous.

Property 4--Nonextraneous Performance

D' none3traneou~sy performs +Ri (D,ri) if
(a) D' performs +Ei(D,ri), and (b) for
all 52; ;; R,, where n, is the insertion
map from D to D', R;(D) does not perform
+Ri (D,ri) e The definition for yRi is ana-
logous; for &Ri, change '3' in part (b)
to ' '.

$

The following facts about update maps are used
later. Let D and D' be FD-konsistent states.

(i) there exists an insertion map from D
to D' iff DID';

(iii) there exists a replacement map from D
to D' always.

II.2 Reachability

A database state is reackabZe.if it can be
attained by applying a sequence of update operations
to an initially empty database state. Reachability
is complementary to consistency. By assumption, the
consistent states of a schema are the states that
represent meaningful configurations of information.
We require that update operations preserve con-
sistency to ensure that if state D occurs, D
represents a meaningful situation. Conversely, it
is desirable that if D represents a meaningful
situation (i.e., is consistent), then D can occur.
This property is called reachability. In a single
relation using the update operations defined in 3.1,
reachability is obviously achieved; in this section
we prove that reachability is aiso achieved in a
database using the operations defined in 4.2.

Let D, D' EDOM(D). D' is reachabZe from D
if there exists a sequence of update operations (as
defined in 4.2) that maps D into D'.

LEMMA 11.1. Let DEDOM(D), UEP-l(D), ~.nd
u'=+(u,u). Then D' = P(u') 7s reachable from D.

Proof. Let R, be the insertion map from D
to D'; n
j= 1 f

= {<+R.,r.>]r,=u[ATTRjlA,rjBRj, for
,...,n . Obse&e'tha? R + contains at most

one element per relation schema. We shall prove
that whenever R+ has this form and R,(D) is
consistent; R+(D) is reachable from D. The
proof is by induction on Ifi+I.

Basis: If (R+(=@, the result holds trivially.

Induction: Assume R+(D) is reachable whenever

a+ contains at most one command per relation
schema, (R+I <N, and R+(D) is consistent; prove
that R+(D) remains reachable when /i-2+/ = N.

Let Wj =<+Rj,rj> be any element of R+. We
claim that R+(D) performs +Rj (D,rj): (1) R+(D)
is consistent; (2) 51+(D) exactly performs the
insertion, because wj is the only element of R+
that operates on Rj; and (3) R+(D) performs the
intent by definition. Hence, there exists "j C_ n+
such that Dj =aj (D) nonextraneously performs
+Rj (Dtrj);
"; = R,-Rj;

moreover Rj #PI since wj E Q.. Let
R;(Dj)=R+(D) =D' and Id <N, hence

s1; satisfies the induction hypothesis. Therefore
D* =R;(Dj) is reachable from D' by induction
hypothesis, while Dj is reach ai le from D by
construction. This proves that D' is reachable
from D as desired. 0

THEOREM II.l. Let g be any database schema.
Every DE DOM(D) is readw.bZe from the empty state.

Proof. Let D' be any consistent state of D
and let IJ'EP-l(~*). We shall prove that D' is-

256

reachable from the empty state, by induction on
-IuI' I.

Basis: If IV'\=@, there is nothing to prove.

Induction: Assume D' is reachable from the
empty state when (U'(<N; prove that D' is
reachable when IU'I =N.

Let U=U'-{u} for any UEU', and let
D= P(U). D is reachable from the empty state by
induction hypothesis, while D'=P(U') is reach-
able from D by Lemma 11.1. Thus D' is reach-
able from the empty state as desired. 0

II.3 Totality and Uniqueness

An update semantics is total if it specifies
a meaning,for every operation applied to every
possible configuration of arguments. A related
issue is uniqueness: a semantics is unique if it
specifies a single meaning for each operation
whenever that operation is defined.

The example of Section 4.1 suggests that
insertions are not uniquely specified in the UR-
environment, and one would suspect that replace-
ments are not unique either. In [BG] we de-
monstrate that this is the case. What is more
surprising is that these operations are not total.

Consider the database of Figure 11.1, and
the insertion +Rl(D,<a3,bl,c2>). We shall prove
that no state Di exists that performs this in-
sertion, and thus the insertion has no meaning.
Suppose such a D' does exist and let U'EP-l(D').
Since R~U {<a3,bl,c2>} is FD-consistent D' (R1)
must have this value, and U' must include the
following three tuples:

ul: <al bl cl dl>
u2: <a2 b2 c2 d2>
u3: <a3 bl c2 dx>, where dx is a variable.

Since ulIB1 =u3(Bl, the FD B+D implies dx=
'dl*; but since uZ[C] =u3[C], C+D implies
dx= 'd2'. Contradiction! Thus the given insertion
is undefined.

D = {El = <{A,B,C),{A'BC)>,

R2 = <{B,D},{B+D)>,

R3 = <{C,D).IC-+D1>)

D = {R - -1 = <{A,B,C},CBC'A}>,

R2 = <{A,D,E),{A'D,DE->A}>,

R3 = <IB,E},IB-tE}>,

R4 = <{C,DI,{C-+DI>I
A B C

D:R 1 = al bl cl
a2 b2 c2

-,R2=pi,R3=m

Figure 11.1. Insertion is Not Total

D:Rl=B\, R2=mi, R3=m

Consider the database of Figure 11.2, and the
replacement. &Rl(D,<al,bl,c2>,<a2,bl,c2,). This
operation is defined if and only if a consistent D'
exists in which
{<a2,bl,c2>].

D'(R1) = (Rl- {<al,bl,c2>}) U
We shall prove that no such state

exists. Suppose D' does exist, and let
U'EP-l(D'). U' must include the following three
tuples:

ul: (al bl cl dxl exl>, where dxl, exl
are variables

u2: <al b2 c2 dx2 ex2>, where dx2, ex2
are variables

u3: <a2 bl c2 dx3 ex3>, where dx3, ex3
are variables.

Since ul[A] =u2[A], A+D implies dxl=dx2;
since. u2[C] =u3[C], C+D implies dx2=dx3; and
since ul[B] =u3[B], B+E implies exl= ex3. But
this means that ul[DE] =u3(DE], and so DE+A
implies 'al'= 'a2'. Contradiction!

Deletion operations, on the other hand, are
totally and uniquely specified.

THEOREM 11.2. -Ri (Dnri) is defined and has
a unique value for every DEDOM(g) and t?.&? ri.

Proof. Let U=J(D), U'=U-{UEUlU[ATTRi]
= ri), and D'=P(U'). We claim that D' performs
-Ri(D,ri): (1) it is consistent; (2) it exactly
performs the deletion since D'(Ri) =U'[ATTRiI =
U[ATTRiI - {ri}=D(Ri) - {ri}=-(D(Ri),ri); and
(3) it performs the intent of the deletion since
U'EU implies P(U')IP(U) =D. This establishes
that -Ri (D,ri) is defined.

To prove uniqueness, observe that by construc-
tion, U' is the unique subset of u for which
U'[ATTRi] =U[ATTRi] - {ri}. Let D" be any State
that performs -Ri(D,ri), and let U"= J(D"). To
satisfy the intent of the deletion D"ID hence
U"cU, while to exactly perform the deletion,
D"&) = -(Ri,ri), hence U"[ATTRiI = U[ATTRi] - {ri}.
But U' is the unique subset of U whose ATTRi
projection has that value. Therefore J(D") = U" =
U'=J(D'), and since J is one-one, D"=D'. Thus
D' is the unique state that performs -Ri(D,ri). o

Replacements have greater felxibility in their
external effects. Nonetheless, replacements are
not defined in all cases.

I I I I

Figure 11.2. Replacement Is Not Total.

257

II.4 Proofs of Lemmas 1 and 2

LEMMA 1. (i) Affect(+Ri) = I_Rj EDj_Ri and fcj
are COYZYZeCted by U path in G(D). -

(ii) NoAffect(+Ri) = {Rj6glATTRj+ATTRieF+].

Proof. (i) We first prove that if Ri and

Rj are not connected, Rj gAffect(+$). Let D
be any non-empty consistent state, and consider an
arbitrary (defined) insertion, +Ri (D,r) . Let D'
be any meaning of that insertion, let R, be the
insertion map from D to D', and let
fii = {<+Rk,rk>EfiIRi and zk are connected).
Observe chat Ri(D) performs the given insertion,
and R.cR
since iRT

consequently R. =a,.. R. BAffect(+Ri)
cf&tains no comma,: of the-3form <+zj,rj>

by constiuction.

We now prove that if Ri and are con-
nected, Rj EAffect(+R.).

-Rj

consistent state, and -1
Let D be any non-empty

et u be a "thoroughly
distinct" tuple relative to D, meaning that for
all AEATTR, uIA1 e J(D)tA].
U[ATTRjI>(Ri,Rj are connected].

Let R+= {<+Rj,
R+(D) performs

the insertion +Ri(D,U[ATTRi]) and affects every

Rj connected to Fir while for all fl'cfi. R'(D)
does not perform the insertion.

(ii) If ATTRj-+ATTRiEF', every +Ri (D,ri)
that has any effect must certainly affect R,;
otherwise J(+Ri(D,ri)) would be inconsist&?t.
This establishes that NoAffect(+gi) 5 {Rj 6
D(ATTRj~ATTRiBF"}.

TO prove inclusion in the opposite direction,
suppose ATTRj 'ATTRiBF+. We will construct an
insertion that does not affect Rj- By the
completeness property of FDs, there exists a con-
sistent state U' in which ATTR' +ATTRi does
not hold. For this FD not to ho1 A , U' must con-
tain distinct tuples u and u' such that
U[ATTRj] =U'[ATTRj], yet U[ATTRi] fU'[ATTRiI. Let
U=U'-{u), let D=P(U), and consider the insertion
+l?i(D,U[ATTRiI)- This insertion has an effect and
P(U') performs it. Thus there exists a state that
nonextraneously performs the insertion such that
D<D' <P(U'). Since U(ATTRjI
construction, it follows that and
so the insertion does not affect as claimed. q

LEMMA 2. (i) Affect(-Ri) =Affect(+Ri)

(ii) NoAffect(-Ri) =NoAffect(+R+).

Proof. Observe that
whenever +Ei(D,ri) #D.

-R. (+R.(D,r.),ri) =D
Thisies&blishes

Affect(-Ri) ?Affect(+Ri) and NoAffect(-58) 2,
Affect(-Ri).

To prove inclusion in the opposite direction,
let -Ri (D,ri) be any deletion that has an effect,
and let D' =-R, (3 r.) Observe that for all
uEJ(D) -J(D'), -i P;JiD') U {U)) is a meaning of
+Ri(D,ri). Hence any Rj affected by the deletion
is also affected by one of these meanings of the
insertion, establishing Affect(-l?i) C_ Affect(+Ri).
Conversely, any Ej not affected by the deletion

is also not affected by these meanings for the
insert-on, establishing NoAffect(-Ri) 5
NoAffect(+Ri). 0

1-W

P-1

[Arm]

[BBGI

[BFHI

[Bern]

[BGI

[BMSU]

[Cod11

[Cod21

[Date]

DBI

[DC]

References

A.V. Aho, C. Beeri, and J.D. Ullman, "The
Theory of Joins in Relational Databases,"
ACM Trans. on Database Syst., 4,3 (Sept.,
1979), 297-314.

M.A. Arbib, and E.G. Manes, Arrows, Structures,
and Functors--The Categorical Imperative,
Academic Press, New York, 1975.

W.W. Armstrong, "Dependency Structures of
Database Relationships," PPOC. IFIP 74
(19741, 580-583.

C. Beeri, P.A. Bernstein, and N. Goodman,
"A Sophisticate's Introduction to Database
Normalization Theory," Proc. 4th Int'Z Conf.
on Very Large Databases (1978), 113-124.

C. Beeri, R. Fagin, and J.H. Howard, "A Com-
plete Axiomatization for Functional and
Multivalued Dependencies ,II &OC. ACM SIGMOD
Conf. (Aug. 1977), 47-61.

P.A. Bernstein, "Synthesizing Third Normal
Form Relations from Functional Dependencies,"
ACM Trans. on Database Sys., 4 (Dec. 1976),
277-298.

P.A. Bernstein, and N. Goodman, "What Does
Boyce-Codd Normal Form Do?" Tech. Rept.
07-79, Center for Research in Computing
Technology, Harvard University (May 1979).

C. Beeri, A. Mendelzon, Y. Sagiv, and J.D.
Ullman, "Equivalence of Relational Database
Schemes," Proc. ACM Symp. on Theory of
Computing (May 1979).

E.F. Codd, "Further Normalization of the
Data Base Rela&onal Models," in Data Bare
Systems (R. Rustin, ed.), Prentice-Hall,
Englewood Cliffs, N.J. (1972), 33-64.

E.F. Codd, "Recent Investigations in Rela-
tional Data Base Systems," Proc. IFIP 74
(1974), 1017-1021.

C.J. Date, Introduction to Database Systems,

Addison-Wesley, Reading, MA (1977).

U, Dayal, and P.A. Bernstein, "The Updata-
bility of Relational Views," PPOC. 4th Ii'lt'Z
Conf. on Very Large Databases (1978).

C. Delobel, and R.C. Casey, "Decomposition
of a Data Base and the Theory of Boolean
Switching Functions," IBM J. Of Res. and
Dev., 17, 5 (Sept. 1972), 370-386.

258

[Fag11 R. Fagin, "Multivalued Dependencies and a
New Normal Form for Relational Databases,"
ACM Trans. on Database Systems, 2, 3 (Sept.
1977), 262-278.

Fag21 R. Fagin, "Normal Forms and Relational
Database Operators," *OC. ACM SIGMOD
conf. (May 1979).

[HLYI P. Honeyman, R.E. Ladner, and M. Yannakakis,
"Testing the Universal Instance Assumption,"
Inf. Proc. Letters, 10, 1 (Feb. 12, 1980),
14-19.

[Marl J. Martin, Computer Database Organization,
Prentice Hall, Englewood Cliffs, NJ (1975).

[Ris] J. Rissanen, "Independent Components of
Relations, II ACM Trans. on Database Sys.,
2, 4 (Dec. 1977), 317-325.

259

