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Abstract 

Normalization research has concentrated on defining 
normal forms for database schemas and developing 
efficient algorithms for attaining these normal 
forms. It has never been proved that normal forms 
are good, i.e. that normal forms are beneficial to 
database users. This paper considers one of the 
earliest normal forms (Boyce Codd normal form 
[Cod21) whose benefits are intuitively understood. 

We formalize these benefits and attempt to prove 
that the normal form attains them. Instead we 
prove the opposite: Boyce-Codd normal fomn fails 
to meet its goals except in trivia2 eases. This 
counterintuitive result is a consequence of the 
"universal relation assumption" upon which normal- 
ization theory rests. Normalization theory will 
remain an isolated theoretical area, divorced from 
database practice, until this assumption is 
circumvented. 

1. Introduction 

Normalization is a schema design process. The 
input is a schema (i.e., database description) 
that describes an application; the output is another 
schema that describes the same application, but in 
a "better" way. Normalization theory provides 
mathematical tools for defining schemas, for 
characterizing the application that a schema re- 
presents, and for specifying the form a "good" 
schema must satisfy. Most normalization research 
has focused on defining good forms for schemas 
(MoMnal forms) and developing efficient algorithms 
for attaining these normal forms. However, normal- 
ization theory does not provide tools for explaining 
why normal forms are good. Presumably, normal forms 
help database users in some way, but these benefits 
have never been characterized within the formal 
framework of normalization theory. This paper 
attempts such a characterization for one particular 
normal form, namely Boyce Codd normal form. 

The benefits of Boyce Codd normal form (BCNF) 
are well understood at an intuitive level. BCNF 
and its precursor, third normal form (3NF), were 
introduced by Codd to eliminate "anomalous" up- 
date* behavior of relations. BCNF accomplishes 
this by "placing independent relationships into 
independent relations." (A more precise character- 
ization appears later.) BCNF is widely recommended 
in practice for this purpose [Date, Mar], and there 
is little doubt that BCNF is a good normal form in 
many practical situations. 

This paper formalizes the intuitive benefits 
of BCNF and attempts to prove that these benefits 
are attained. The attempt fails. Instead we prove 
that BCNF does not meet its goals, except in trivial 
eases. This result is quite disturbing because it 
contradicts BCNF's intuitive appeal and empirically 
observed benefits. Either the theory is wrong, or 
database practitioners are making a serious error 
by using BCNF. Our opinion is that the theory is 
at fault--that normalization theory, as currently 
constituted, is inadequate to characterize the 
practical use and benefits of normal forms. The 
source of inadequacy can be traced to the "universal 
relation assumption" upon which normalization theory 
is based. 

On the surface, this paper is an analysis of 
Boyce Codd normal form. Cur deeper purpose is to 
draw attention to a missing link in normalization 
theory. For normalization theory to be well 
grounded in the database problems it intends to 
solve, it must be possible to use the theory to 
prove the benefits of normal forms. Unfortunately, 
it appears that normalization theory, as currently 
formulated, cannot do this.. Until this missing 
link is filled in, normalization theory will be 
incapable of explaining what Boyce Codd normal 
form does. 

t This work was supported by the National Science 
Foundation under Grant Number MCS-77-05314 and by 
the Advanced Research Projects Agency of the 
Department of Defense, Contract Number N00039-78- 
G-0020. 
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* 
The word "update" is used generically to denote 
insertions, deletions, or replacements (i.e., 
modification) of tuples in a relation. 
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2. Terminology 

2.1 Relations and Databases 

In formalizing relational databases we distin- 
guish the time-invariant description of a relation 
VS. its contents at a particular moment. The 
description of a relation is called a relation 
schema and consists of a set of attributes, and a 
set of functional dependencies. R= <ATTR,F> 
denotes a relation schema R witk attributes ATTR, 
and functional dependencies- F. Figure 2.1 
illustrates a relation schema. The contents of a 
relation is called a relation state, and may be 
visualized as a table of data. Figure 2.2 illus- 
trates a relation state. 

Relation Schema: 

R = <{E#, JC, D#, M#, CT), - 
{E#+JC, D#, M#, CT; 

D#+M#, CT: 
M#+D#. CT}> 

Description of Attributes: 

E# employee number 
JC job code 
D# department number 
M# employee number of manager 
CT contract type 

Figure 2.1. An Example Relation Schema. 

Relation Schema: as defined in Fig. 2. 

Relation: R 

E# JC D# M# CT 

1 a x 11 g 
2 c x 11g 
3 a y 12 n 
4 b x 11 g 
5 b ~12 n 
6 c y 12 n 
7 a z 13 n 
8 c z 13 n 

Figure 2.2. An Example Relation. 

Notationally, states of relation schema R 
are represented by R with possible superscript. 
Elements of R (called tuples) are denoted r 
with possible superscript. If Xc_ATTR, we use 
r [xl to denote the projection of r on the 
attributes in X, and R[Xl=tr[Xl IrER). 

A database schema is a set of relation schemas 
and is denoted g= {_Ri=<ATTRi,Fi>li= l,...,n). 

A database state D for D is an assignment of 
relation states to the relation schemas of D. 
D(Eii) denotes the relation state assigned by D 
to Ei, for i=l,...,n. If D and D' are both 
database states for database schema D, we define 

D<D' iff D(R.) CD' (Ri) for i=l,...,n; clearly, 
I is a partiaiiorder. 

2.2 Functional Dependencies 

A functional dependency (abbr. FD) is a state- 
ment of the form f:X+Y, where f is the name of 
the FD, and X,Y are sets of attributes. f is 
defined on relation schema R=<ATTR,F> if 
X,YcATTR. 
thatevery 

We shall assume throughout this paper 
fEF is defined on R. If f is 

defined on R we interpret it as-a predicate on 
states of ET f CR) is true if for all r,r'ER, 
whenever r[Xl = r'[Xl, r[Yl = r' [Yl as well. 

A relation state R of schema R=<ATTR,F> 
is consistent if every fEF is truein R. For 
example, the state depicted in Fig. 2.2 is con- 
sistent. The set of all consistent states of R - 
is denoted DOM(E). 

Given that a set of FDs, F, holds in state R, 
one can infer other FDs that must hold in R as 
well. The set of all such FDs can be constructed 
syntactically using a system of inference rules 
[DC], see Figure 2.3. The set of all FDs derivable 
from F using the inference rules of Fig. 2.3 is 
called the closure of F and is denoted F+. 

If Y C X then X'Y 

If ZCW and X+Y then xw+yz - 
If X'Y and Y+Z then X'Z 

Figure 2.3. Inference Rules for 
Functional Dependencies. 

Within the confines of a single relation 
schema, F+ is precisely the set of FDS implied by 
F: i.e., fE F+ iff f holds in every state of 
R in which F holds [Arm]. This fact is called 
the coi??pZeteness property of FD-closure [BFH]. 

FDS also enjoy the uniqueness property within 
a single relation schema, which states that syn- 
tactically identical FDs are semantically equi- 
valent as well [Bern]. 

2.3 The Universal Relation Assumption: Schema 
Equivalence 

Intuitively, two schemas are equivalent if 
they represent the same external application. For 
relation schemas this notion may be formalized in 
terms of consistent states: relation schema 
R=<ATTR,F> and E' =<ATTR',F'> are equivalent if 
DOM@) = DOM@'). As a consequence of completeness 
and uniqueness, DOM(R) = DOM(R') iff ATTR=ATTR' 
and F+=F'+. Hence, -when normalizing R one can 
substitute F' for F whenever F'+=Ff, since 
the resulting schema <ATTR,F'> remains equivalent 
to R. - 

All normalization algorithms depend on this 
fact. Bernstein [Bern], for example, exploits it 
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to substitute a "reduced" set of FDs for the ones 
supplied by the user. Without this substitution, 
many schemas cannot be normalized due to redun- 
dancies in the way FDs are expressed in the 
schema [Bern]. 

However, completeness and uniqueness do not 
hold in multi-relation databases 
sider Figure 2.4. The schemas Y 

enerally. Con- 
D , D2, and D3 

"contain" the same FDs--i.e., FlT=F5=F3+--yet 
these three schemas differ qualitatively in re- 
presentational capability. ~1 can only represent 
universities in which professors and teaching 
assistants must teach courses in their own depart- 
ment; D2 permits teaching assistants to be drawn 
from other departments, but not professors; and 
D3 permits complete flexibility in the assignment 
of teaching assistants and professors. These 
schemas do not represent the same external appli- 
cation, and hence are not equivalent, even though 
they contain the same attributes and FDS. 

$ = f.mm? = <{C~URSE,PROF,TA,DEPT~, 
{COURSE+PROF; COURSE+TA; 
COURSE+DEPT; PROF'DEPT; 
TA+DEPT]>j 

D2 = ITEACI~~ = <{C~URSE,PROF,TA}, - 
{coURSE-+PR~F; couRs~-,~~}>, 

FACULTY' = <{C~URSE,PR~F,DEPT), 
{C~URSE+DEPT; PROF+DEPT)>, 

STUDENTS' = <ITA,DEPT), {TA+DEPT)>} 

D3 = {TEACH~ = <{C~URSE,PROF,TA), 
IC~URSE-+PR~F; cOURSE+TA}>, 

FACULTY3 = <{PROF,DEPT), IPR~F+DEPT}>, 

sn.mN~s~ = <ITA,DEPT), {TA+DEPT)>, 

CLASSES~ = <IcouRsE,DEPT), (COURSE-+DEPT~>} 

Figure 2.4. Completeness and Uniqueness Do Not 
Hold in Multi-Relation Databases. 

This problem is quite serious. It means that 
the definition of schema equivalence used to con- 
struct a normalized schema g is not semantically 
valid. To circumvent this problem the universal 
relation asswnption is invoked. 

Let g= {Ri=(ATTRi,Fi>li=l,...,n) be a data- 

base schema and let D be a database state for D. 
u satisfies the universal relation asswnption (0; 
is UR-consistent) if there exists a relation state 
U for schema v=(ATTR,@ SUCK that UIATTRiI=D(Ri) 
for i=l,...,n. D is COnSiStsnt if it is UR- 
consistent, and D(Ri)fDOM(Ri) for i=l,...,n. 
DOM(D) denotes the set of all consistent states 
of i-i -' 

By requiring that database states satisfy the 
UR-assumption, we can attain the desired notion of 
schema equivalence. Any UR-consistent state D is 
precisely representable by U=*$l D(Ri), Since 

UIATTRiI =D()33) for i=l,...,n. Therefore DOMQ) 
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is precisely representable by the set REP(D) = 
CUIgDEDOMQ), U= *;=l D(RiIl. Two schemas D and - 
D’ represent the same external application, i.e., 
are equivalent under the UR-assumption if 
REP(D'). 

REP(D) = 
But REP(D) =DOM(U=<ATTR,F>) where 

ATTR= (U;=l ATTRi) and F=(Uy=l Fi), and 
n' REP(D') =DOM(U' =<ATTR',F'>) where ATTR'=(U. 

n' - 1=1 
ATTR;) 

and F'= (Ui,l F;'. Consequently REP@) = REP@') 

iff DOM(U) =DOM(U') iff ATTR=ATTR' + and F+=F', 
which is precisely the notion of schema equivalence 
required by normalization theory. 

Finally we observe that the FDs that hold in 
D(Ri) fo; every DEDOM(D) are F'[ATTRiI, not 
simply Fi. We say that -D(RiI is FD-consistent 
relative to g if every FD in F+[ATTRiI is 
true in D(Ri). 

2.4 Representation 

A special case of schema equivalence arises 
frequently in this paper. Let U=(ATTR,F> be a 
(universal) relation schema, and-let 
<ATTRi,Fi>li=l,...,n}. 

D={Ri = 
Using the te&nology of 

[BBG], we say g RepB-represents g if 

= ATTR and (U;=l Fi)+=F+. 
q1 ATTRi) 

Note that g RepZ- 

represents g iff REP(D) =REP(g). Rep2 is 
essentially the notion of schema equivalence used 
in [Bern]. 

Given that g RepZ-represents g we define 
mappings between their consistent states: 

J:DOM(D)+DOM(c), where J:D*U=*T=l D(zi); and 

P:DOM(U)+DOM@), where P:U*D, St. D($) = - 
UIATTR~I for i=l ,...,n. 

The following facts are well known: 

(i) J and P are total functions. 

(ii) J(P(U)) 2U. 

(iii) P(J(D)) = D. 

(iv) UCU' implies P(U) <P(U'). - 
(v) D I D' iff J(D) EJ(D'). 

A stronger form of representation is used by some 
authors [Codll, [Risl. DRepd-represents g if 
g RepZ-represents c and for all UEDOM(U_I, 
J(P(U11 =U. Repl-representation implies that 
DOMQ) and DCM(Uj are isomorphic, with J and 
P the respective-isomorphisms. Hence every con- 
sistent state of u can be exactly reconstructed 
from the corresponding state of g. 

2.5 Boyce Codd Normal Form 

Let R=<ATTR,F>, and let XC_ATTR+ X is 
called a superkey of 5 if X-tATTREF . X is a 
key of E if x is a superkey but does not properly 
contain a superkey. An FD X*X' is called trivial 



if X'CX, because it holds in every state of a 
relation independent of F. 

5 is in Boyce Co& Normal Form (abbr. BCNF) 
if for all non-trivial FDs X+Y in F+, X is 
a superkey. In extending this notion to database 
schemas, we must be conscious of the UR-assumption. 
We say that Ri=<ATTRi,Fi> is in BCNF if the 

schema <ATTRi,F+[ATTRi]> is in BCNF, and D is - 
in BCNF if each R. is. -1 

3. Goals of Boyce Codd Normal Form 

Third normal form and later Boyce Codd normal 
form were introduced to eliminate anomalous update 
behavior. Let us quote from [Cod11 the motivation 
for these normal forms. 

Looking at a sample instantaneous 
tabulation of R (Figure 2.2) the un- 
desirable properties of the R schema 
become immediately apparent. -We observe, 
for example, that, if the manager of 
department y should change, more than 
one tuple has to be updated. The actual 
number of tuples to be updated can, and 
usually will, change with time. A 
similar remarkapplies if department x 
is switched from government work (con- 
tract type g) to non-government work 
(contract type n). 

Deletion of the tuple for an employee 
has two possible consequences: deletion 
of the corresponding department infor- 
mation if his tuple is the sole one re- 
maining just prior to deletion, and non- 
deletion of the department information 
otherwise. 

Inserting an employee tuple has the complementary 
problem: if the employee is the first member of a 
department, we must simultaneously insert new M# 
and CT information for that department; inserting 
the second (third, etc.) employee into that depart- 
ment has no such requirement. 

Abstracting from the above discussion, we find 
p- to be an undesirable schema because the precise 
effects of a given update operation cannot be pre- 
dicted simply by examining the schema. One must 
examine the state of E to see the effects that a 
given update produces. When all of the effects of 
an update can be determined by examining the schema 
alone, we say that the update is syntacticaZZy pre- 
dietabLe (more precise definitions will appear 
later). 

In state R for example, replacing department 
y's manager by another value implies updating a 
(syntactically) unpredictable number of tuples. 

Inserting an employee into (a new) department v 
requires creating new department-related data, 
while inserting an employee into (an existing) 
department x does not have this effect. 

In this section we formalize this motivation, 
and prove that BCNF relation sckemas attain it. In 
Sections 4 and 5 we will consider multi-relation 
database schemas. 

3.1 Update Operations 

Since the goal of normalization is to improve 
update behavior, our first step is to define update 
operations. 

Let R=ZATTR,F> be a schema. - The update 
operations we define on R are + (insertion), 
- (deletion), and & (replacement). 

If REDOM@), then 

+(R,r) = RU {r), if consistent 
R , otherwise 

-(R,r) = R-{r) 

if consistent 
, otherwise. 

3.2 Insertion and Deletion Anomalies 

Intuitively, R exhibits an insertion anomaly 
if for some states R and tuples r, the operation 
+ (R,r) affects one collection of FDs, while for 
c-her states and tuples the insertion affects a 
different collection of FDs. The goal of normal- 
ization (with respect to insertions) is to eliminate 
such anomalies. 

In formalizing this notion a technical problem 
surfaces. If R=@, the insertion of any tuple 
must affect every FD, while if R#@, the insertion 
of any tuple already in R does not affect any FD. 
Consequently, every schema exhibits insertion ano- 
malies in this trivial sense (unless ATTR=@). A 
similar problem arises with deletions: if R={r}, 
the deletion of r must affect every FD, while 
for any R, the deletion of a tuple not in R cannot 
affect any FD. 

A second problem arises with respect to trivial 
FDs. Since every attribute functionally determines 
itself, the "collection of FD?." affected by an up- 
date will in general vary by these trivial FDs at 
least. We therefore choose to discard trivial FDs 
in this context. 

Formally, we say that +(R,r) affects f:X+Y 
if R[XUYl# (+(R,r)) [XUYI, and we define 

Affect(+g) = {fEF+lf is non-trivial, and for some 

R#@, and some r, +(R,r) 
affects f1 

NoAffect(+FJ) = {fE F+(f is non-trivial, and for some 
R#@, and some r, +ULr) #R, 

yet +(R,r) does not affect f} 

R is free of insertion m20VZaZieS iff Affect(+R) n 
soAffect ~$5. The definition of deletion an% 
alies is similar and appears in Figure 3.1. 
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Affect(-g) = {fEF+lf is non-trivial, and for some 
R and r, R#Ir}, yet -(R,r) 
affects f1. 

NoAffect ={fEF+(f is non-trivial, and for some 
R and r, Rf {r} and -(R,r) #R, 
yet -(R,r) does not affect f). 

R is free of dSlSi%On anOf&iSS iff - 
Affect(-E) nNoAffect(-g) =@. 

Figure 3.1. Definition of Deletion Anomaly. 

It is conjectured in [Cod21 that BCNF schemas 
are the only ones that can avoid insertion and 
deletion anomalies. Now that we have formalized 
these anomalies, we can prove this conjecture true. 

Theorem 1. (i) g is free of insertion anwrh 
aties-is in BCNF. - 

(ii) R iS free Of dSl&iGn CVUQr!aZ&?S iff 5 
is in BCNF.- 

Proof. (i) Affect(+R) = {non-trivial FDs in 
F+} whether or not R is-in BCNF. So it suffices 
to prove that NoAffect =@ iff E is in BCNF. - 

if: Let f:X+Y be any non-trivial FD in F+. 
We wiz construct an insertion that affects f. By 
definition of BCNF, X is a superkey. Hence, all 
tuples in any consistent state of R have differ- 
ent X-projections. Let R' be any-consistent 
state containing two or more tuples; such a state 
must exist for any R, e.g., the state 
I<1,...,1>,<2,..., 2>T is such a state. Let 
rcR', and let R=R' -{r}. R#@, +(R,r) =R'#R, 
yet +(R,r) affects f. Consequently 
NoAffect =pI as desired. 

only if: We prove that if R is not in BCNF, 
then NoAffect(+l+i)#@. If E is not in BCNF, 
then there exists a non-trivial FD f:X+Y in F+ 
for which X is not a superkey. We will construct 
an insertion that does not affect f. 

Let R' be any consistent state containing 
two (or more) tuples r and r' such that 
r[Xl =r'tXl. Such a state must exist by the com- 
pleteness of Ff: since X+ATTR$?F+, there must 
exist a state R' in which F+ holds, but 
X+ATTR does not hold [Theorem 3, BFHI; for 
X+ATTR not to hold in R', distinct tuples r 
and r' must be present in R' with r[X) =r'[Xl. 

Let R=R'-{r). R#@, +(R,r)=R'#R, yet 
+(R,r) does not affect f. Hnece, NoAffect #PI, 
as desired. 

(ii) The result for deletions follows by 
similar proof. 0 

3.3 Replacement Anomalies 

Replacement anomalies are concerned with non- 
predictability of a different nature- The replace- 
ment depicted in the Introduction to Section 3 
sought to change the manager of department y* 

leaving all other values unchanged. This replace- 
ment was judged to be anomalous because an unpre- 
dictable nwnber of tuples might have to be replaced 
to achieve this effect. If we scrutinize this 
motivation, however, difficulties emerge. 

The operation used in the example is not a 
single-tuple replacement of the type defined in 
Section 3.1. Instead, it attempts to modify a set 
of tuples that satisfy a boolean qualification, 
"D# = y" in this case. Arbitrarily.many tuples may 
satisfy an arbitrary qualification. So, nonpre- 
dictability of this sort can hardly be called 
"anomalous*'. Apparently, Codd did not have such 
general operations in mind. 

The operation that seems to be intended is the 
following. Let R=<ATTR,F>. let REDCM(EJ), and 
let .f: X+Y be a non-trivial FD in F+. For any 
value x, and for each r in (rERlr[X] =x1 the 
user may replace r(Y) with a new value. The 
replacement has predictabze size if 
XII Il. 

I{rERIr[X]= 
R is free of rSpkrCSmSnt anO?&iSS if for 

all non-tFivia1 f: X+Y in F+, all REDOM(R), 
and all x, the replacement has predictable size. 

Theorem 2. E is free of replacement anomalies 
zff E is ;n BCNF. 

Proof. All replacements have predictable size 
iff for all non-trivial f: X+Y in F+, X is a 
superkey. 0 

It is not apparent to us that multi-tuple re- 
placements of this type warrant special consider- 
ation in the schema design process. Replacement 
anomalies will not be studied further in this 
paper. 

4. Update Operations Under UR-Assumption 

In the following two sections we attempt to 
extend Theorem 1 to multi-relation database 
schemas. This attempt will fail, because of the 
UR-assumption. Instead, we shall prove that BCNF 
database schemas are not free of insertion and 
deletion anomalies except in trivial cases. 

4.1 Problems in Preserving UR-Consistency 

Recall the example of Section 3. R is not in 
BCNF and therefore exhibits update anomglies; the 
remedy recommended in [Cod11 is to decompose R 
into two relation schemas, Rl and R2, which-are 
in BCNF (see Fig. 4.1). No&e that the database 
schema D= (R1,R2} Rep4-represents 3 therefore 
g and E have equivalent representational power, 
provided the database system only permits UR- 
consistent states of g to occur. 

This leaves us the problem of designing update 
operations that preserve UR-consistency. For 
example, to insert <v, 14, n> into F2, a tuple 
r1 with rlID#] =v must be inserted into Rl. 
Similarly, to delete (x, 11, g> from 52, all 
tuples rl in R1 with rlID#] =x must be 
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deleted too. In these two cases, the requirement 
of UR-consistency dictates a "natural" semantics 
for the update. However, in other cases, the 
choice of a reasonable semantics is less con- 
strained. 

For example, suppose we want to insert 
<9, d, v> into R~. One way to preserve UR- 
consistency is to insert <9, d, v> into Rl and 
<V, null, null> into R2, where "null" denotes a 
blank or uncommitted value that is distinguishable 
from "real" values , such as 11. To adopt this 
interpretation, we must develop a complete 
semantics for update operations when null values 
are present. We attempted such a development (see 
Appendix I) but discovered that for each semantics 
that we tried, certain bizarre behavior was forced 
by the UR-assumption. For now, we are defeated in 
taking this route. 

The choices that remain are to use D# values 
already in R2 or to invent new ones. Consider 
the first choice. To insert (9, d, v> into _R~, 
we can preserve UR-consistency by also replacing 
G, 11, g> by <v, 11, g> in R2, and replacing 
each instance of 'x' in Rl by 'v'. There are 
several problems with this semantics. First, the 
choice of <x, 11, g> as the victim to be replaced 
was arbitrary; <y, 12, n> or <z, 13, n> would 
have worked as well. Second, the interpretation 
fails when R2 is empty, because there are no 
tuples in R2 to replace. Third, although we have 
not inserted new D# values, we have produced new 
PeZationships both in Rl and R2 that were not 
part of the insertion request. Finally, this 
approach effectively asserts that the tuple being 
inserted is "more reliable" than data already in 
the database, since we have chosen to modify 
existing relationships instead of rejecting the 
insertion as an integrity violation. For these 
reasons we have rejected this "replacement" approach 
to insertion semantics. 

The only remaining choice is to insert a 
"real" valued tuple into R2, such as <v, 14, g>. 
This approach, like the preceding one, arbitrarily 
selects values to be placed into the database, and 
produces a relationship that was not part of the 
insertion request. However, it has desirable 
properties not shared by the replacement interpre- 
tation. First, it succeeds even when R2 is 
empty. Second, the effect on Rl of "insert 
(9, d, v> into El" is to insert that tuple into 
that relation, and to make no other changes to Rl. 
Third, an insertion never has the effect of deleting 
a value or relationship; this is consonant with the 
intuitive understanding that an insertion creates 
data and does not destroy it. For these reasons, 
we have selected this interpretation of insertion 
in the UR-environment. 

In Section 4.2 we formalize this semantics and 
generalize it to deletions and replacements. Basic 
properties of these operations are investigated in 
Appendix II. 

4.2 Update Operations that Preserve UR-Consistency 

Let D= {P,l ,...,%I be a database schema. 
The update-operations defined on 2 are named 
+Eit -Ri# and 'Ri for i=l,...,n. (We include 
the schema name, _Ri, as part of the operation name 
for notational clarity.) If DEDOM@), then 

+R. (D,r. 
-3. I. 

-Ei (D,ri 

mi (D,ri I 

denotes insertion of ri into D(Ri), 

denotes deletion of r. 
1 from D(si), 

r;) denotes replacement of ri by r; 
in D(Ri). 

As indicated in Section 4.1, each operation may 
have to update other relations to preserve UR- 
consistency: to formalize the semantics of these 
operations we must also specify these other effects. 
As we have illustrated there is no unique, "natural" 
semantics. Instead we choose to base the semantics 
of these operations on properties that we judge to 
be desirable for update operations in general. 
These properties are closely related to the correct- 
ness criteria for "view updates" postulated in [DB]. 
We state the properties for insertions; the defini- 
tions for deletions and replacements are analogous. 

Property l--Consistency 

The result of an update operation must be a 
consistent state. 

Property I--Exact Performance 

Given +Ei(D,ri), let Ri=+(D(Ri),ri). State 
D' maCtZy perfOPmS +I& (D,ri) if D' (Ri) = R;. 

Property 3--Intent Performance 

State D' pePfOmS the i?ltQnt of +Ri(D,ri) 
if D' can be obtained from D by applying in- 
sertion operations to individual relations. (This 
property is stated more precisely in Appendix II.) 

If D' satisfies Properties l-3 for an update 
operation, we say that D' perfoms that update. 
In general, many states may perform an update. Our 
final property provides a metric choosing certain 
of these states over others. 

Property 4--Nonextraneous Performance 

Suppose D' performs +l7i(D,ri) and let R, 
be a sequence of insertions that maps D into D'. 
Since every operation in 5l+ (except for the one 
that inserts ri into Ri) causes a change to the 
database not specified by the user, all unnecessary 
operations should be eliminated. D' nonertra- 
neousZy pePfOms +Ri(D,ri) if (a) D' performs 
the insertion, and (b) for all subsets* 0; of 
n t' "i either maps D into D', or it maps D 

* 
Technically, we mean "projection" here. In Appen- 
dix II, however, we demonstrate that R+ can be 
treated as a set with no loss of generality; with 
this understanding, the word "subset" is correct. 
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into a state that does not perform the insertion. 
(A more precise statement is given in Appendix II.) 

The SetR~tiCS of +Ri, -Fit and IRi can HOW 

be defined. Let DEDOM@). +Ri(D,ri) =u?z~ state 
that nonextraneously performs +Ri (D,ri) a -3 and 
& Ri have analogous definitions.. In general, 
+Ri (Dtri) and &FLi (D,ritrj) have many possible 
meanings and we treat these operations as non- 
deterministic functions. By contrast, -zi (D.ri) 
is uniquely specified by this definition, a fact 
we prove in Appendix II. 

.Database Schema: 

g= $=<{E#,JC,D#},{E#+JC,D#}>, 

R2=<{D#,M#,CT},{D#'M#,CT;M#'D#,CT}>) 

Database: 

E# JC D# 

lax 
2 c x 
3 a Y 

l-----l 4 b x 
R1 = 5 b y 8 R2 = 

6 c Y 
7 a 2 
8 c z 

9 and 52 f\l of Fig. 
are in BCNF and g Rep4-represents 

2.1. - 

Figure 4.1. A Normalized Database Schema. 

5. BCNF Does Very Little 

Having developed an update semantics that 
preserves UR-consistency, we are ready to study 
normalization in this context. There are two 
issues: (1) characterizing database schemas that 
avoid insertion and deletion anomalies: and 
(2) the schema design question--characterizing 
relation schemas U for which there exists a data- 
base schema g that represents g, yet avoids in- 
sertion and deletion anomalies. 

5.1 Database Schemas that Avoid Anomalies 

Throughout this section let D= {Rl,...,s}, 
and U=(ATTR,F>, such that g Rep2-represents 
u -- I? D is to avoid update anomalies it is 
necessary for D to be in BCNF: otherwise the 
"internal effe&" of updates would exhibit anon- 
alies as proved in Section 3. However, we shall 
prove that BCNF is not sufficient to prevent anom- 
alies caused by the "external effects" of these 
operations. 

The definitions of insertion and deletion 
anomalies require technical changes in the UR- 
environment. First, the definitions of Affect and 
NoAffect given in Section 3 quantify over all 

COnSiStent states of a schema, but it is technically 
better to quantify over reachabZe states only; in 
light of Theorem II.1 (see Apendix II), though, 
this distinction has no impact. Second, since we 
may assume that D is in BCNF, we may interpret 
Affect and NoAffect as sets of relation s&emus 
instead of FDs: e.g., for any Ri, R. ED, 
Ej EAffect(+Ei) iff every non-trivia '-1 FE in 

F'[ATTRjI EAffect(+fji), because all external effects 
of +Ri are themselves insertions. Figure 5,l 
presents the definitions of Affect, NoAffect, and 
anomalies as used in this section. 

Affect(+zR) = (Ej EDI 

NoAffect = CRj ECj 

Affect(-Ri) = {Ej EDI 

NoAffect(-Ri) = iEj EDI 

for some D other than the 
empty state, for some tuple 
ri, and for some meaning, 
+Ri(D,ri) affects 

Rj' 

for some D other than the 
empty state, for some tuple 
ri, and for some meaning, 
+Ei(D,ri) #D, yet +Ri(D,ri) 
does not affect Rj} 

for some D and ri, D(Ei)# 
(r.1, yet -Ri(D,ri) affects 
R. j 
-1 

for some D and ri, D(Ri)# 
tril, ad -Ri (Dtri) #D, 
yet -Ei (D, ri) does not 
affect Rjl. 

D is free of insertion anomalies iff for all 
Ri E 2, Affect(+Ri) n NoAffect =!a 

D is free of deZetion anomaZies iff for all 
_RiQ, Affect(-Ei) n NoAffect(-_Ri) =pI 

Figure 5.1. Definitions of Anomalies for UR 
Environment. 

A graphic representation of D helps 
characterize the effects of insertions. Let G(c) 
be an undirected graph whose Vertex set equals g, 
and whose e&e set contains (Rip Rj) iff 
ATTRinATTRj 10. 

1. Lemma (i) Affect(+R.) =tR.EDlR. and R. 
are connected by a path in c&)).-' - -I -1 

(ii) NoAffect(+Ri) = {zj EgjATTRj +ATTRiEF+}. 

Proof. See Appendix 11.4. 0 

Lemma 2. (i) Affect(-Ri) =Affect(+R?) 

(ii) NoAffect(-Ri) =NoAffeCt(+Ri) . 

Proof. See Appendix II.4. 
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Combining these results we obtain a precise 
characterization of database schemas that are free 
of insertion and deletion anomalies under the UR- 
assumption. 

Theorem 3. D is free of insertion anomalies 
(or equivalently ;teletion anomalies) iff D is in 
BCNF, and J@OP all Ri, Rj, if ATTRin ATTRj #@ 
then ATTRi+ATTRjEF' and ATTRj~ATTRiEF'. 

The conditions placed on D by this result 
are quite restrictive; for example, the normal- 
ized schema suggested in Figure 4.1 does not 
satisfy them, nor for that matter do most of the 
normalized schemas commonly illustrated in the 
literature. This bodes poorly for the schema 
design aspect of normalization. 

5.2 Attainability of Normalized Schemas 

The remaining issue is one of schema design. 
Let U=<ATTR,F> be any relation schema; we prove 
that -U can be normalized into a schema D that 
is free of insertion and deletion anomalies iff 
U is "almost" in BCNF itself. - 

A database schema Dp= {Dpi =<ATTRpi,Fpi>I 

i=l,... ,n] is said to partition U if Dp 
Rep2-represents 2 and ATTRpinAT?Rpj =p for 
i#j. 

Theorem 4. There exists a database schema D 
that Repa-represents U yet is free of insertion- 
azd deletion anomalies-iff there exists a BCNF 
database schema g, that partitions U. - 

Proof. if: If DP exists, it Rep2-represents 
2 anGisf?& the conditions of Theorem 3. 

only if: Let Pl....,P, be the connected 
components of G(D), and let @kl ,...,&,,) be 
the schemas in component Pk. The schemas in each 
component are "equivalent" in the se+nse that 
VI&,F$~ in Pk, ATTqci+ATTRkj EF and 

ATT 
k 

+ATTQEF+. Also each schema is in BCNF. 

Therefore, if we merge all schemas in Pk into one 

schema R "5c Tc 
-pk 

= < Uizl ATTQ r Uizl Fki >, :pk is in 

BCNF also. The database schema Ep= {Epklk=l,...,m} 

is thus a BCNF schema which partitions U. 0 

Figure 5.2 illustrates two typical relation 
schemas that are BCNF-partitionable, and database 
schemas that Rep2-represent them while satisfying 
the conditions of Theorem 3. In both cases the 
database schemas do not Rep4-represent the original 
schema. 

If Rep4-representation is required, U can be 
"normalized" if and only if it already is-in BCNF? 

Corollary to Theorem 4. There ex"~ts a data- 
base schema D that Rep4-represents U yet is 
free of &se&on and deletion arzomal'zes iff g 
is ‘zn BCNF. 

(a) u = <{E#,D#,M#,PR~J},IE#'D#;M#~PRoJ}> 

g = IR~=<{E#,D#},{E#~D#}>, 

R2=<{M#,PROJ},{M#+PROJ}>} 

(b) g = <(:SUPPLIER,PART,CITY},{SUPPLIER-+CITY~> 

D = {_Rl=<{SU~PLIE~,CI~~l,{~UP~~I~~+~~~~}> - 
R2=<IPARTM I>1 

Figure 5.2. Schemas That Can Be Normalized. 

Proof. If c is in BCNF there is nothing to 
prove. To prove the converse, observe that if D - 
Rep4-represents 2, the J operator must denote a 
lossless join [ABUI, hence G(D) must be a 
connected graph. If we merge all relation schemas 
as in the proof of Theorem 4, the result is a BCNF 
relation schema R= <ATTR,F'> where F'+=F+. 
Hence U=(ATTR,F> is in BCNF as well. 0 

6. Conclusion 

BCNF was invented to prevent anomalous side 
effects of relational updates. The question we 
have asked is, "does BCNF attain this goal?" We 
have given two conflicting answers: (1) In the 
context of a single relation schema, BCNF is 
successful. But (2) in a multirelation database 
schema, BCNF fails. 

In spite of (2), we believe BCNF to be an 
important schema design goal. 

The failure of BCNF in the multirelation con- 
text is caused by the universal relation assumption. 
The UR-assumption is adopted in normalization 
theory to formalize notions of FD completeness and 
uniqueness, and schema equivalence. Recent work 
on normal forms, e.g., fourth and fifth normal forms 
Dwl,21,, leans even more heavily upon the UR- 
assumption; these normal forms cannot even be 
defined without the UR-assumption. Recent work on 
schema equivalence [BMSU] depends strongly on this 
assumption as well. 

Yet update operations are clumsy to define 
when the UR-assumption is present, and behave quite 
badly. In addition to the problems noted in this 
paper, the UR-assumption introduces complexity 
problems as well, since testing whether an insertion 
preserves the UR-assumption is NP-complete [HLYI. 
Apparently, the UR-assumption is incompatible with 
databases that are updated. 

At present, normalization theory is an iso- 
lated theoretical area divorced from database 
practicr+. This separation will persist until 
normalization theory is made adequate to prove the 
~benefits of normal forms, 
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APPENDIX I 

Pitfalls in Null-Value Update Semantics 

Let us return to the example database of 
Section 4.1. The schema is 

g = {R~=<IE#,JC,D#},IE#+JC,D#~>, 

R2=<{D#,M#,CT},{D#+M#,CT;M#+D#,CT)>} 

and the database state is 

D:Rl= 

E# - 
1 
2 
3 

4‘ 
5 
6 
7 
8 

- 
JC - 
a 
c 
a 
b 
b 
c 
a 
c! 

- 

D# - 
X 

X 

Y 
X 

Y 
Y 
z 
z 

I R2 = 

If the user says to insert <9,d,v> into El, the 
most plausible way to preserve UR-consi.stency is 
to simultaneously insert <v,null,null> into R2. 
~11 other interpretations, we saw in 4.1, share 
the dubious property of inventing data values 
and/or relationships among data values in the 
database. 

In this appendix we explore the consequences 
of using null values to preserve UR-consistency. 

I.1 The Second-Insertion Problem 

The database state that results from the pre- 
ceding insertion is 

E# 1 JC ( D# 
1 

R; = ; ;; z 

z 13 n 
V null nul 

, I I 

Suppose the user now says to insert <v,14,g> into 

R2- We cannot simply add <v,14,g> to Ri, because 
the resulting relation state would be inconsistent: 
the FD D#+M#, CT would be violated. To over- 
come this inconsistency, the natural interpretation 
is to replace .<v,null,null> by <v,14,g>. The 
rationale for this interpretation is that <v,14,g> 
signifies "more complete" information than 
<v,null,null>, hence this new tuple makes the old 
old one obsolete. 

Applying this rationale to another case, con- 
sider the insertion of the same tuple in the state 

since <v,14,g> is "more complete" than <null, 
nuli, g> the correct action apparently is to re- 
place <null,null,g> by <v,14,g>. 
consistency is violated, since 

But then UR-2 

no longer "matches up" 
<9,d,null> 2in Rl 

with any tuple in R2, and 
further correction is needed. The correction would 
seem to be the replacement of <9,d,null> by 
<9,d,v>. The resulting state is 

I I I I 1 I I I 

D3 asserts that employee 9 works in department 
'v' , but this relationship is in no sense implied 
by the user level insertion operation. The data- 
base system has invented a relationship between 
employee 9 and department 'v', which is precisely 
the problem we thought null values would prevent! 

This problem is not caused by the use of null 
values per se; it is caused by the interpretation 
of insertion operations as replacements when null 
values are present. The alternative, of course, is 
to treat insertions as insertions whether or not 
nulls are present. However, this interpretation 
begs the issue, because it assigns the same seman- 
tics to null values as real ones. 

I.2 What Do Deletions Mean? 

Let us return to state D and consider 
possible meanings of the delete operation. Suppose 
the user says to delete <z,13,n> from R~. Two 
plausible meanings for this are 

1. replace <z,13,n> by <z,null,null>; 

2. delete <z,13,n> from R2 and delete 
employee in department 'z' from Rl. 

Meaning (1) is the inverse of the insertion seman- 
tics suggested in 1.1. The rationale for this 
interpretation is that deletions are too drastic 
for the system to undertake automatically--the data- 
base system should never delete more data than the 
user specifies. Meaning (1) supports this reasoning 
while meaning (2) deletes far more data than the 
user specified. 

But consider what happens if we add relation 
schemas 

R3 = <(CT,VP},CCT+VP)> 

and 

R4 = <{PRoJ,M#~,~PR~J-+M#~> 

to the database with states 
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If we adopt meaning (1) now, the deletion of 
<z,13,n> has no effect whatever! Given this 
semantics, the following procedure is required for 
a user to actually remove <z,13,n> from the data- 
base: 

1. delete <p3,13> from R4, and delete 
every employee from El with D#='z'. 
The resulting state is 

E# 1 JC ( D# D# 1 M# 1 CT 

CT1 VP 
, 

2. delete <2,13,ti from 22; to implement 
this deletion the database sysfem must 
delete ltiull,null,z> from Rl, ?,13,n> 
from R2, and (nu11,13> from R4. While 
in a strict sense this implementation 
deletes more data than the user specified, 
we judge these extra deletions to be 
acceptable since all unspecified data 
values are nulls. 

As an exercise the reader may devise a similar 
procedure for the follo+ng case: 

2 = {R~=<{A,B},{A-+B}>, ~~=<{B,cl,{B+c}>, 
?3=<k,A),tC+A}> 

D: Rl = 

operation: delete <al,bl> from El. 

I.3 Another Interpretation of Delete 

Let us return to the original schema 2 and 
its original state 

D: R2 = 

Another plausible meaning of "delete <z,13,n> 
from RzO is 

Replace <z,13,n> by <null,null,null> in 

R2, and replace the department of every 
department 'z' employee by 'null' in Rl. 

The resulting state is 

This interpretation eliminates the problems noted 
in 1.2, but its interaction with the insertion 
semantics of I.1 is strange. Suppose the user says 
to insert <v,14,g> into R2. Since <v,14,g> is 
"more complete" than <null;null,null>, the effect 
(according to I-l), is to replace <null,null,null> 

by <v,14,g>. This replacement violates UR-con- 
sistency, however, and the correctivelaction is to 
replace every 'null' department in 
This yields 

Rl by 'v'. 

D2:R2 
1 

2 R2 = 

Observe that the deletion of <z,13,n> and the 
insertion of <v,14,q> have been coupZed into a 
replacement, whether or not this was intended! 

I.4 Minimizing the Use of Null Values--A Problem 

Additional difficulties surround the question 
of how many nulls should be inserted when correcting 
UR violations. Let us aqument schema D with 
relation schema R -3 = <{cT,vP},{cT+vP}~. And con- 
sider the state 

E# JC D# 
D1:R1=,hl a x 

19dv' 
1 R2 = 

CT [ VP 

1 v ( null 1 null1 

If the user says to insert <lO,d,u> into I71 
either of the following interpretations is possible: 

1. insert <lO,d,u> into Rl 
11 

and 

<u,null',null> into R2; or 

1 2: insert <lO,d,u> into Rl, <u,null',null'> 

into I 1 
R2, and <null',null'> into R3. 

The advantage of (1) is that the number of relations 
affected is minimized. Since null values have no 
intrinsic value this seems a worthwhile goal. The 
state corresponding to (1) is 

254 



Suppose the user subsequently determines that de- 
partment 'v' has vice-president 'AGNEW'. TO 
place this fact in the database, the usual pro- 
cedure is 

I. Find the 
R3 

tuple that describes depart- 
ment v's vice-president. I.e., 

(i) restrict R2 by D#= 'v' 

(ii) joint the result of (i) with R3 
(iii) project OntO ATTR 3 = {CT,VP}. 

II. Replace the VP-projection of all tUpleS 

found in (I) by 'AGNEW'. 

2 
Applying this procedure to D , we obtain 

D3.R3 
'1 

D# 1 M# 1 CT 
I 

This state asserts, erroneously, that AGNEW is vice- 
president of department 'u'. 

To avoid this error, the retrieval step (part 
I) of the procedure must be cognizant of null join 
values and must insert new null values as it goes. 
It would certainly be simpler for the insert 
operator to insert these extra nulls in the first 
place. 

I.5 Maximizing the Use of Null Values--A Problem 

On the other hand there are cases where maxi- 
mizing the use of null values is also wrong. Let 
us add the following relation schemas to D: 

Rq = <{A#,D#},{A#+D#}>, 
and 

% 
= <IE#,A#I,I}> I 

where A# denotes an account (in the financial 
sense), iJ4 tells which accounts are used by each 
department, and R5 identifies which employees may 

post expenses against which accounts. The FD 
A#+D# is present in R4 because the "chart of 
accounts" normally mirrors the organizational 
hierarchy; R5 has no FDs because each employee may 
generally charge to multiple accounts and vice versa. 

Consider the state 

E# JC D# 

D1 R1= 1 a x 1 
:1/ 

'r8 c z-f 
,...,R = 

4 

L 

and suppose two new employees are hired into depart- 
ment '2' with job-codes 'd'. If we adopt the 
policy suggested in I.4 of inserting unique null 
values whenever a null value is needed, the resul- 
ting state is 

D2: R2= 
1 ,R 

2 
5 

IE# 

11 
= 1 8 

4 
9 null 

10 a5 I null' 
1 i 

The values of 4 
2 

and R5 are bizarre--it is 
highly unlikely that the hiring of every new employee 
would require the establishment of a new account. 
However, the alternative of letting all new hires 
share one null account number suffers the problems 
described in I.4 and is wrong, tto. 

I.6 Conclusion 

Null values are an escape clause from the UR- 
assumption; they attempt to circumvent UR-consistency 
in cases where it seems most unrealistic. Since the 
UR-assumption is central to currently developed 
database theories, it is not surprising that attempts 
to circumvent it are so troublesome. 

APPENDIX II 

Properties of Updates Under UR-Assumption 

II.1 Update Maps 

Properties 3 and 4 of Section 4.2 are defined 
in terms of sequences of updates operating on in- 
dividual relations. This section formalizes this 
concept, refining it into the notion of "update 
map". 

in insertion command is an ordered pair 
W = <+_Rj,rj> and is interpreted as a function on 
FD-consistent database states. 
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W(D) = D' such that (ii) there exists a deletion map from D to 
D' iff D 2 D'; and D$i) , for i#j 

D'$) = 

+(D(R.) ,rj), for 
-3 

i=j. 

A sequence of insertion commands, R+=<W1,...,Wk> 
is interpreted as the composition of wl,...,wk. 
0, is minimal in state D if for all projections 
a;-, n;(D) #Q+(D). It is a fact that if R, is 
minimal in state D, every permutation of it is 
minimal too, and all map D into the same state. 
Conversely, if two sequences are both minimal and 
both map D into D', they are permutations of 
each other. Moreover, a minimal sequence of in- 
sertion commands cannot include duplicate elements. 
Therefore we can unambiguously consider such 
sequences to be sets. An insertion map is such a 
set. Deletion maps are defined analogously. 

Replacement maps require different treatment 
because the order of replacements can affect the 
result even in a minimal sequence [BG]. Let R 
and R, be sets of deletion and insertion commands 
respectively, and let 

Q& 

R, = <R-,R+>. We interpret 
as the composition of fi followed by R,; 

"& is defined in state D Eff fi is a deletion 
map in state D and fl, an insertion map in state 
0 CD). We define a partial order over pairs of 
Gis form: <Q;,";> I <a-,Q> if both 0: 5 R 
and Sl; C_ R,. R, is a replacement mup in state D 
if (a) R, is defined in state D, and (b) for 
all OLCQG either R;(D) is not defined or 
R&(D) #R,(D). 

Properties 3 and 4 can now be restated. 

Property 3--Intent Performance 

State D' perfoMns the intent of +Ri(D,ri) 
if there exists an insertion map from D to 
D'. The definitions for -_Ri and &Ei are 
analogous. 

Property 4--Nonextraneous Performance 

D' none3traneou~sy performs +Ri (D,ri) if 
(a) D' performs +Ei(D,ri), and (b) for 
all 52; ;; R,, where n, is the insertion 
map from D to D', R;(D) does not perform 
+Ri (D,ri) e The definition for yRi is ana- 
logous; for &Ri, change '3' in part (b) 
to ' '. 

$ 

The following facts about update maps are used 
later. Let D and D' be FD-konsistent states. 

(i) there exists an insertion map from D 
to D' iff DID'; 

(iii) there exists a replacement map from D 
to D' always. 

II.2 Reachability 

A database state is reackabZe.if it can be 
attained by applying a sequence of update operations 
to an initially empty database state. Reachability 
is complementary to consistency. By assumption, the 
consistent states of a schema are the states that 
represent meaningful configurations of information. 
We require that update operations preserve con- 
sistency to ensure that if state D occurs, D 
represents a meaningful situation. Conversely, it 
is desirable that if D represents a meaningful 
situation (i.e., is consistent), then D can occur. 
This property is called reachability. In a single 
relation using the update operations defined in 3.1, 
reachability is obviously achieved; in this section 
we prove that reachability is aiso achieved in a 
database using the operations defined in 4.2. 

Let D, D' EDOM(D). D' is reachabZe from D 
if there exists a sequence of update operations (as 
defined in 4.2) that maps D into D'. 

LEMMA 11.1. Let DEDOM(D), UEP-l(D), ~.nd 
u'=+(u,u). Then D' = P(u') 7s reachable from D. 

Proof. Let R, be the insertion map from D 
to D'; n 
j= 1 f 

= {<+R.,r.>]r,=u[ATTRjlA,rjBRj, for 
,...,n . Obse&e'tha? R + contains at most 

one element per relation schema. We shall prove 
that whenever R+ has this form and R,(D) is 
consistent; R+(D) is reachable from D. The 
proof is by induction on Ifi+I. 

Basis: If (R+( =@, the result holds trivially. 

Induction: Assume R+(D) is reachable whenever 

a+ contains at most one command per relation 
schema, (R+I <N, and R+(D) is consistent; prove 
that R+(D) remains reachable when /i-2+/ = N. 

Let Wj =<+Rj,rj> be any element of R+. We 
claim that R+(D) performs +Rj (D,rj): (1) R+(D) 
is consistent; (2) 51+(D) exactly performs the 
insertion, because wj is the only element of R+ 
that operates on Rj; and (3) R+(D) performs the 
intent by definition. Hence, there exists "j C_ n+ 
such that Dj =aj (D) nonextraneously performs 
+Rj (Dtrj); 
"; = R,-Rj; 

moreover Rj #PI since wj E Q.. Let 
R;(Dj)=R+(D) =D' and Id <N, hence 

s1; satisfies the induction hypothesis. Therefore 
D* =R;(Dj) is reachable from D' by induction 
hypothesis, while Dj is reach ai le from D by 
construction. This proves that D' is reachable 
from D as desired. 0 

THEOREM II.l. Let g be any database schema. 
Every DE DOM(D) is readw.bZe from the empty state. 

Proof. Let D' be any consistent state of D 
and let IJ'EP-l(~*). We shall prove that D' is- 
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reachable from the empty state, by induction on 
-IuI' I. 

Basis: If IV'\=@, there is nothing to prove. 

Induction: Assume D' is reachable from the 
empty state when (U'( <N; prove that D' is 
reachable when IU'I =N. 

Let U=U'-{u} for any UEU', and let 
D= P(U). D is reachable from the empty state by 
induction hypothesis, while D'=P(U') is reach- 
able from D by Lemma 11.1. Thus D' is reach- 
able from the empty state as desired. 0 

II.3 Totality and Uniqueness 

An update semantics is total if it specifies 
a meaning,for every operation applied to every 
possible configuration of arguments. A related 
issue is uniqueness: a semantics is unique if it 
specifies a single meaning for each operation 
whenever that operation is defined. 

The example of Section 4.1 suggests that 
insertions are not uniquely specified in the UR- 
environment, and one would suspect that replace- 
ments are not unique either. In [BG] we de- 
monstrate that this is the case. What is more 
surprising is that these operations are not total. 

Consider the database of Figure 11.1, and 
the insertion +Rl(D,<a3,bl,c2>). We shall prove 
that no state Di exists that performs this in- 
sertion, and thus the insertion has no meaning. 
Suppose such a D' does exist and let U'EP-l(D'). 
Since R~U {<a3,bl,c2>} is FD-consistent D' (R1) 
must have this value, and U' must include the 
following three tuples: 

ul: <al bl cl dl> 
u2: <a2 b2 c2 d2> 
u3: <a3 bl c2 dx>, where dx is a variable. 

Since ulIB1 =u3(Bl, the FD B+D implies dx= 
'dl*; but since uZ[C] =u3[C], C+D implies 
dx= 'd2'. Contradiction! Thus the given insertion 
is undefined. 

D = {El = <{A,B,C),{A'BC)>, 

R2 = <{B,D},{B+D)>, 

R3 = <{C,D).IC-+D1>) 

D = {R - -1 = <{A,B,C},CBC'A}>, 

R2 = <{A,D,E),{A'D,DE->A}>, 

R3 = <IB,E},IB-tE}>, 

R4 = <{C,DI,{C-+DI>I 
A B C 

D:R 1 = al bl cl 
a2 b2 c2 

-,R2=pi,R3=m 

Figure 11.1. Insertion is Not Total 

D:Rl=B\, R2=mi, R3=m 

Consider the database of Figure 11.2, and the 
replacement. &Rl(D,<al,bl,c2>,<a2,bl,c2,). This 
operation is defined if and only if a consistent D' 
exists in which 
{<a2,bl,c2>]. 

D'(R1) = (Rl- {<al,bl,c2>}) U 
We shall prove that no such state 

exists. Suppose D' does exist, and let 
U'EP-l(D'). U' must include the following three 
tuples: 

ul: (al bl cl dxl exl>, where dxl, exl 
are variables 

u2: <al b2 c2 dx2 ex2>, where dx2, ex2 
are variables 

u3: <a2 bl c2 dx3 ex3>, where dx3, ex3 
are variables. 

Since ul[A] =u2[A], A+D implies dxl=dx2; 
since. u2[C] =u3[C], C+D implies dx2=dx3; and 
since ul[B] =u3[B], B+E implies exl= ex3. But 
this means that ul[DE] =u3(DE], and so DE+A 
implies 'al'= 'a2'. Contradiction! 

Deletion operations, on the other hand, are 
totally and uniquely specified. 

THEOREM 11.2. -Ri (Dnri) is defined and has 
a unique value for every DEDOM(g) and t?.&? ri. 

Proof. Let U=J(D), U'=U-{UEUlU[ATTRi] 
= ri), and D'=P(U'). We claim that D' performs 
-Ri(D,ri): (1) it is consistent; (2) it exactly 
performs the deletion since D'(Ri) =U'[ATTRiI = 
U[ATTRiI - {ri}=D(Ri) - {ri}=-(D(Ri),ri); and 
(3) it performs the intent of the deletion since 
U'EU implies P(U')IP(U) =D. This establishes 
that -Ri (D,ri) is defined. 

To prove uniqueness, observe that by construc- 
tion, U' is the unique subset of u for which 
U'[ATTRi] =U[ATTRi] - {ri}. Let D" be any State 
that performs -Ri(D,ri), and let U"= J(D"). To 
satisfy the intent of the deletion D"ID hence 
U"cU, while to exactly perform the deletion, 
D"&) = -(Ri,ri), hence U"[ATTRiI = U[ATTRi] - {ri}. 
But U' is the unique subset of U whose ATTRi 
projection has that value. Therefore J(D") = U" = 
U'=J(D'), and since J is one-one, D"=D'. Thus 
D' is the unique state that performs -Ri(D,ri). o 

Replacements have greater felxibility in their 
external effects. Nonetheless, replacements are 
not defined in all cases. 

I I I I 

Figure 11.2. Replacement Is Not Total. 
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II.4 Proofs of Lemmas 1 and 2 

LEMMA 1. (i) Affect(+Ri) = I_Rj EDj_Ri and fcj 
are COYZYZeCted by U path in G(D). - 

(ii) NoAffect(+Ri) = {Rj6glATTRj+ATTRieF+]. 

Proof. (i) We first prove that if Ri and 

Rj are not connected, Rj gAffect(+$). Let D 
be any non-empty consistent state, and consider an 
arbitrary (defined) insertion, +Ri (D,r) . Let D' 
be any meaning of that insertion, let R, be the 
insertion map from D to D', and let 
fii = {<+Rk,rk>EfiIRi and zk are connected). 
Observe chat Ri(D) performs the given insertion, 
and R.cR 
since iRT 

consequently R. =a,.. R. BAffect(+Ri) 
cf&tains no comma,: of the-3form <+zj,rj> 

by constiuction. 

We now prove that if Ri and are con- 
nected, Rj EAffect(+R.). 

-Rj 

consistent state, and -1 
Let D be any non-empty 

et u be a "thoroughly 
distinct" tuple relative to D, meaning that for 
all AEATTR, uIA1 e J(D)tA]. 
U[ATTRjI>(Ri,Rj are connected]. 

Let R+= {<+Rj, 
R+(D) performs 

the insertion +Ri(D,U[ATTRi]) and affects every 

Rj connected to Fir while for all fl'cfi. R'(D) 
does not perform the insertion. 

(ii) If ATTRj-+ATTRiEF', every +Ri (D,ri) 
that has any effect must certainly affect R,; 
otherwise J(+Ri(D,ri)) would be inconsist&?t. 
This establishes that NoAffect(+gi) 5 {Rj 6 
D(ATTRj~ATTRiBF"}. 

TO prove inclusion in the opposite direction, 
suppose ATTRj 'ATTRiBF+. We will construct an 
insertion that does not affect Rj- By the 
completeness property of FDs, there exists a con- 
sistent state U' in which ATTR' +ATTRi does 
not hold. For this FD not to ho1 A , U' must con- 
tain distinct tuples u and u' such that 
U[ATTRj] =U'[ATTRj], yet U[ATTRi] fU'[ATTRiI. Let 
U=U'-{u), let D=P(U), and consider the insertion 
+l?i(D,U[ATTRiI)- This insertion has an effect and 
P(U') performs it. Thus there exists a state that 
nonextraneously performs the insertion such that 
D<D' <P(U'). Since U(ATTRjI 
construction, it follows that and 
so the insertion does not affect as claimed. q 

LEMMA 2. (i) Affect(-Ri) =Affect(+Ri) 

(ii) NoAffect(-Ri) =NoAffect(+R+). 

Proof. Observe that 
whenever +Ei(D,ri) #D. 

-R. (+R.(D,r.),ri) =D 
Thisies&blishes 

Affect(-Ri) ?Affect(+Ri) and NoAffect(-58) 2, 
Affect(-Ri). 

To prove inclusion in the opposite direction, 
let -Ri (D,ri) be any deletion that has an effect, 
and let D' =-R, (3 r.) Observe that for all 
uEJ(D) -J(D'), -i P;JiD') U {U)) is a meaning of 
+Ri(D,ri). Hence any Rj affected by the deletion 
is also affected by one of these meanings of the 
insertion, establishing Affect(-l?i) C_ Affect(+Ri). 
Conversely, any Ej not affected by the deletion 

is also not affected by these meanings for the 
insert-on, establishing NoAffect(-Ri) 5 
NoAffect(+Ri). 0 
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