
ChartOCR: Data Extraction from Charts Images via
a Deep Hybrid Framework

Junyu Luo*1, Zekun Li∗2, Jinpeng Wang3, and Chin-Yew Lin3

1Pennstate University, Pennsylvania, USA
2University of Southern California, Los Angeles, California, USA

3Microsoft Research, Beijing, China

Abstract

Chart images are commonly used for data visualization.
Automatically reading the chart values is a key step for
chart content understanding. Charts have a lot of variations
in style (e.g. bar chart, line chart, pie chart and etc.), which
makes pure rule-based data extraction methods difficult to
handle. However, it is also improper to directly apply end-
to-end deep learning solutions since these methods usually
deal with specific types of charts. In this paper, we propose
an unified method ChartOCR to extract data from various
types of charts. We show that by combining deep framework
and rule-based methods, we can achieve a satisfying gen-
eralization ability and obtain accurate and semantic-rich
intermediate results. Our method extracts the key points
that define the chart components. By adjusting the prior
rules, the framework can be applied to different chart types.
Experiments show that our method achieves state-of-the-
art performance with fast processing speed on two public
datasets. Besides, we also introduce and evaluate on a large
dataset ExcelChart400K for training deep models on chart
images. The code and the dataset are publicly available at
https://github.com/soap117/DeepRule.

1. Introduction

Chart images can be easily found in news, web pages,
company reports and scientific papers[24, 18, 10]. Auto-
matic analysis of these data can bring us huge benefits, in-
cluding scientific document processing, automatic risk as-
sessment based on financial reports, and reading experience
enhancement for visually impaired people. However, raw
numerical tables are lost when charts are published as im-
ages. These underlying data of charts can be easily decoded

* Contribution during internship at Microsoft.

Input: Image of Chart Output: Data Table

Category0 Category1 Category2 Category3 Category4

Series0 40.58 41.55 41.56 42.34 42.35

Series1 22.66 22.67 24.66 24.68 26.43

Series2 15.02 15.05 15.88 16.85 17.66

Figure 1: Example of data extraction from a chart image

by human, but not by machines [20]. Extracting the raw
data table from chart images (see Figure 1 for an example)
is the key step for understanding the chart content, which
would lead to better analysis of related documents. Recent
studies about question answering [12, 5, 13, 14] focusing
on querying chart images would also benefit from it.

Some methods [1, 2, 20, 21] have been proposed for
chart data extraction. These previous work heavily rely on
manually crafted features. The diversity of chart designs
and styles makes rule-based chart component extraction ap-
proaches difficult to scale. End-to-end solutions based on
deep neural networks are also employed to tackle this prob-
lem because of their better accuracy [17, 6, 3], but these
methods can not generalize well on all the chart types. For
example, a framework designed for the pie chart cannot be
applied to the line chart. Moreover, comparing to the heuris-
tic rule-based methods, deep end-to-end approaches usually
have no control of the intermediate results. Hence, a more
general and flexible approach is desired to comprehend var-
ious chart images to further enhance the document analysis.

In this paper, we propose an approach that tackles the
chart components detection problem with key point detec-
tion methods [15, 7, 16]. In this way, the chart data ex-
traction can be simplified as a uniform task regardless of
the styles of the chart images. Afterwards, an unified net-
work is used for underlying data extraction. We design
a deep hybrid framework that combines the advantages of

https://github.com/soap117/DeepRule


both deep and rule-based methods. As shown in Figure 2,
our method first run common information extraction to ob-
tain key points and chart type. Then, we apply type-specific
rules to construct the data components (e.g. bar compo-
nents, sector components) and data range. Finally, we trans-
form these components into structured data format (e.g. ta-
bles). It not only exploits the generalization ability of deep
methods, but also generates semantic rich intermediate re-
sults as in rule-based methods. When dealing with chart
images with new styles, we only need to enrich the training
data for key point detection network without changing other
parts of the framework. The experiments on three datasets
FQA, WebData and ExcelChart400K show that our method
has good performance on three major chart types, including
bar, pie and line charts.

The contribution of this work can be summarized as fol-
lows: (1) We propose CharOCR, a deep hybrid framework
that combines the advantages of deep-learning and rule-
based methods. ChartOCR achieves state-of-the-art perfor-
mance on chart data extraction task for all three major chart
types. (2) We also design new evaluation metrics for these
chart types. (3) We collect a fully annotated chart data set
with 400K Excel chart images to enable the training of deep
learning models.

2. Related Work
2.1. Rule-based Methods

The feature-based methods [4, 8, 20, 23] have been the
mainstream for solving chart element extraction problem.
They use color continuous searching and edge extraction to
find the raw components. Afterwards, predefined rules are
applied to eliminate the wrong candidates. However, those
methods highly rely on hand-crafted rules and pre-defined
features. They are efficient for the data with certain styles,
but they can not generalize well on various types. For ex-
ample, a rule designed for extracting vertically aligned bars
can not be used to find horizontally aligned bars. Meth-
ods like ChartSense[11] try to solve this problem by adding
user interaction and ask users to correct the mistakes during
the process. Although adding user input can achieve better
performance, it also increases the time cost significantly.

2.2. Deep Neural Networks

Some works try to solve the chart data extraction prob-
lem with deep neural networks. For Bar Chart, [6, 17] adopt
the idea of general object detection to detect the bar com-
ponents by treating each bar as an object. For pie Chart,
Liu[17] proposes to use the recurrent network and feature
rotation mechanism to extract the data. Despite of the great
improvement of time efficiency, the deep neural networks
are highly restrained to a certain chart type as well. The
bounding box detection on bar charts can not be adapted to

other chart types like line charts. In the meanwhile, inter-
mediate result like the data range and plot area information
cannot be learned with deep methods.

2.3. Keypoint-based Object Detection

Keypoint-based idea has been adopted in many compli-
cated object detection tasks like pose detection[19], face
detection[25] and general object detection[15, 7]. Instead
of generating the bounding boxes directly, key point meth-
ods output the semantically important key points of the tar-
get components. For example, in pose detection, the key
points are the critical joints of the human body. In face de-
tection, they are the landmark points of the ear, eyes, lip,
nose, and mouth. In the chart understanding task, compar-
ing to directly detecting the object bounding boxes, the key
points based methods are more flexible for the detection of
various chart objects. There is no need to design specific
networks for each chart object (e.g. bars, lines and sectors)
anymore. Instead, we only extract the keypoints that de-
fines the object. Although the chart objects vary in shape,
they are highly structured. This enables us to reconstruct the
chart components based on only key points. After the ex-
traction of key points, some task specific rules are applied
to group the key points to form complete objects.

3. Our Method
As shown in Figure 2, the framework can be divided

into three major parts: common information extraction, data
range extraction and type specific detection. The common
information extraction includes the key point detection and
the chart type classification. Data range extraction deter-
mines the range of the numerical values in the plot area.
Type specific detection uses the type-dependent rules to ob-
tain the data components (e.g. sectors for pie chart) of each
type of chart. Finally by combing the data components and
the data range, we can obtain the numerical chart values.

3.1. Common Information Extraction

Key Point Detection In this step, we extract key points of
chart components independent of the chart style. With the
universal key point detection model, we no longer need to
train separate object detection modules for different charts.
For chart images with unseen style, we only need to fine-
tune the existing key point detection model by adding more
samples that reflect the new chart style.

The key points are defined slightly differently depending
on the chart type. For the bar chart, the key points are the
top-left and bottom-right corner of each separate bar. For
the line chart, the key points are the pivot points on the line.
For the pie chart, the key points are the center points plus
the intersection points on the arc that segment the chart into
multiple sectors. As shown in Figure 3, we adopt a modified
version of CornerNet[15] with Hourglass Net[19] backbone



Figure 2: ChartOCR framework outline. There are three major steps: common information extraction, data range extraction
and type specific chart object detection. Common information extraction aims to detect the keypoints and the chart type.
Data range extraction infers the range of the data that the chart represents. Type specific detection focuses on extracting
the chart objects (eg. bars, lines and etc).

Figure 3: Common information extraction network. We use
a hourglass network to provide pixel-level probability map
of the keypoint locations. Corner pooling layer is applied
on the penultimate layer of keypoint detection branch to in-
crease the receptive field on along the horizontal and verti-
cal direction. (Best viewed in color)

for key point proposal. The output for key point detection
network is a probability map that highlights the pixels in
key point locations. The probability map has 3 channels
to predict the locations of top-left, bottom-right and back-
ground. The size of the output probability map is the same
as input image. The penultimate layer of key point detec-
tion network is a corner pooling layer adopted from the
CornerNet[15]. Corner pooling layer performs max-pool
on the horizontal and vertical direction respectively, which
helps the convolutional layers to better localize key point
locations. We follow the same setting of CornerNet[15] and
define the loss functions as the summation of probability
map loss and the smooth L1 loss for keypoint coordinates.

Chart Type Classification We add an additional convo-
lutional layer to the direct output of Hourglass Net and con-
volve the key point feature map into a smaller size e.g.
(32 × 32). Then we apply max-pooling on it to obtain a
one-dim vector. We then feed the intermediate feature vec-
tor to fully connected (FC) layers to predict the chart type

of the input image. The last FC layer of this branch has
softmax activation and this branch is trained with cross-
entropy loss. Let N be the number of samples in the batch,
C be the number of classes. yic is 1 if and only if ith sam-
ple belong to class c, and p is the prediction of probability
distribution. Then the loss can be written as

LCE(y,p) = −
1

N

N∑
i=1

C∑
c=1

yiclog(pic) (1)

3.2. Data Range Extraction

Data range extraction helps us to convert the detected key
points from image pixel space to the numerical readings.
The data range extraction applies to line and bar charts. For
pie chart, the summation of all the sectors should be 100%
by default, thus the data range extraction can be skipped.

We use Microsoft OCR API 1 to extract the text from
the image. The extracted text comes from legend, title and
axis-labels. For data range extraction, we need to identify
the numbers that are associated with y-axis only. To sepa-
rate out those y-axis labels, we assume that those numbers
are always on the left-hand side of the plot area. Thus we
only need to locate the plot area, then based on its position,
the y-axis labels can be filtered out easily. The plot area is
also defined by the top-left and bottom right corners, so we
could follow the similar routine as keypoint detection de-
scribed in 3.1 to locate the plot area. Once we have the plot
area location and the OCR result, we design the Data Range
Estimation algorithm 1 to get the data range of the chart.
In this algorithm, we first use the detected corner points to
identify the plot area, then find the recognized numbers that
are on the left-hand side of plot area, and finally use the
top and the bottom numbers to calculate the data range and
pixel range to map the points to the actual data value.

1Microsoft OCR API: https://dev.cognitive.azure.cn/docs/services/
5adf991815e1060e6355ad44/operations/587f2c6a154055056008f200



Algorithm 1 Data Range Estimation
Require: Plot Area Info: Top, Left,Bottom. OCR results R
Ensure: Yscale, Ymax, Ymin

1: Find the nearest candidate r ∈ R as rmax to point
(Left,Bottom)
where r.r < Left− 4 and r.text is number

2: Find the nearest candidate r ∈ R as rmin to point
(Left, Top)
where r.r < Left− 4 and r.text is number

3: rmin.num = number(rmin.text)
4: rmax.num = number(rmax.text)
5: Yscale = rmax.num−rmin.num

rmin.t−rmax.t

6: Ymin = rmin.num− Yscale(Bottom− rmin.t+rmin.b
2

)

7: Ymax = rmax.num+ Yscale(
rmax.t+rmax.b

2
− Top)

3.3. Type-specific Chart Object Detection

3.3.1 Bar Chart

In Section 3.1, we have extracted the top-left and bottom-
right key points from bar images using the key point detec-
tion network. In this step, we need to match all the top-left
key points to the corresponding bottom-right key points to
construct the bar objects. We binarize the key point prob-
ability map by threshold value s = 0.4. For each top left
point ptl, we find the closet bottom right point pbr and
group them together to obtain the bounding box. The dis-
tance measure is defined as a weighted distance on x-axis
distx(., .) and y-axis disty(., .):

dist(ptl, pbr) = γdistx(ptl, pbr) + νdisty(ptl, pbr) (2)

For vertical bar charts, we use γ > ν. For horizontal bars
ν > γ. In the case of vertical bar charts, to find the cor-
responding bottom-right key point, we only search for the
right side of the plot area for each top-left key point.

3.3.2 Pie Chart

To get the location of the pie center and arc points, we use
the same key point detection network as decribed in Section
3.1. We replace the corner pooling layer by center pooling
layer from [7] to capture the 360-degree neighborhood in-
formation. We filter the key points prediction probability
map by threshold s = 0.3 to get binarized heat map.

For each sector element, the key point detection network
extracts the center point pv and arc point parc. When group-
ing the key points to form the sectors, we consider two
cases: (1) tight pie chart where all the sectors are laying
together to form one circle (oval) (2) exploded pie chart
where one or more sectors are separated from each other.
Previous works [6][23] can process the pie charts in the first
case but fail to deal with the charts in the second case. In
this work, we design a algorithm SECTOR COMBINING 2

Algorithm 2 Sector Combining

Require: center points {pv}, arc points {parc}
Ensure: sectors defined by edge points [pv, pbarc, p

e
arc]

1: if length({pv}) == 1 then
2: for parc ∈ {parc} do
3: find the nearest p∗arc ∈ {parc} in clockwise order
4: new sector = [pv, parc, p

∗
arc]

5: end for
6: else
7: r∗, t = Pie Radius Estimation({pv}, {parc})
8: for pv ∈ {pv} do
9: for parc ∈ {parc} do

10: find the nearest p∗arc ∈ {parc} in clock wise
order

11: if dis(pv,parc)−r∗

r∗ < t and dis(pv,p
∗
arc)−r∗

r∗ < t
then

12: new sector = [pv, parc, p
∗
arc]

13: end if
14: end for
15: end for
16: end if

to find the key points in each sectors for both cases. For the
first case, we only need to sort the arc points in clock-wise
order and calculate the portion of each sector. For the sec-
ond case, we include the pie radius estimation step where
we find the optimal radius that can link all center and arc
points. The center and arc points has 1:N mapping, mean-
ingly, one or more sectors can be attached with one cen-
ter point. We check if the distance between a center point
and the candidate arc points is within some threshold. If
yes, then this pair belongs to the same sector, otherwise not.
(Details of the pie radius estimation can be found in the sup-
plemental material.)

3.3.3 Line Chart

The key point detection network predicts the locations of
pivot points on the line. In order to group the key points ac-
cording to the lines that they belong to, we attach a convo-
lutional layer in the key point extraction branch (after conv1
in Figure 3) as the embedding layer. We enforce the feature
embeddings of points in the same line to be as close as pos-
sible, and the embeddings from different lines to be as far as
possible. We define the embedding loss function following
the practice of [15]:

ekm =
1

N

∑
i

eki ,where {eki } belong to a same line k (3)

losspull =
1

K

∑
k

1

N

∑
i

(eki − ekm)2 (4)



losspush =
1

C2
K

∑
i

∑
j>i

max((1− |eim − ejm|), 0) (5)

lossembedding = losspull + losspush (6)

The total loss of key point detection network for line chart is
defined as losspoint′ = losspoint+λ · lossembedding where
losspoint is the summation of the probability map loss and
smooth L1 loss described in Section 3.1. We use λ =0.1 in
experiments.

To form lines given key points, we adopt the hierarchi-
cal clustering strategy to group the embedding of the key
points with the classical union-find algorithm. (The details
of this algorithm can be found in the supplemental mate-
rial.) In this way, each cluster contains points that belong to
the same line. However, some points may be belong to two
(or more) lines and they are usually treated as outliers in
the clustering algorithm. We call these points intersection
points and propose the QUERY network to predict which
lines they should be assigned to. For each pair, let (xs, ys)
denote the location of intersection point s, and e = (xe, ye)
denote the closest point from s that has been assigned to a
cluster. We sample K points equidistantly on the line s− e.
The location of sample points are calculated using follow-
ing equations:

pk = (xs + (k − 1)dx, ys + (k − 1)dy) (7)

dx =
xe − xs

k
, dy =

ye − ys
k

(8)

where k means the kth sample point. Since the sample point
locations are float numbers instead of integers, we use linear
interpolation to obtain the feature of the sample point. Then
we can use the QUERY network to take theK sample points
as input and classify if point s and e should belong to the
same line.

4. Data Set
FQA [6] This dataset contains 100 synthetic images for bar
chart, pie chart and line chart. However the variation on
chart style not large.

WebData [6] This dataset has the same size as FQA. The
images are crawled from the web, and the variation in chart
style is much larger than FQA.

ExcelChart400K Deep neural networks easily overfit on
small datasets like FQA and WebData, thus we collect a
large-scale dataset that contains 386,966 chart images by
crawling public Excel sheets from the web. We first capture
the chart image with Excel APIs, then extract the underlying
data values of the chart. (To protect privacy, we have con-
ducted data anonymization by overwriting texts in the charts
with random characters.) The collected dataset not only

(a) Bar chart (b) Pie chart

(c) Line chart (d) Common chart components

Figure 4: Example chart images from ExcelChart400K with
annotated ground-truth positions of chart components. a)
the bounding box of each bar for bar chart; b) the key point
positions of each sector for pie chart; c) the data points of
each line for line chart; d) the bounding boxes of chart com-
ponents (only the position of plot area is used in this paper).

Table 1: ExcelChart400K dataset statistics

Type train val test
Bar 173,249 6,935 6,970
Line 116,745 3,073 3,072
Pie 73,075 1,924 1,923

provides the bounding boxes locations for the chart compo-
nents but also the numerical readings of the charts. Figure 4
shows some samples and the annotations from this dataset.
Table 1 summaries the statistics of our dataset. Compared
with previous chart data sets used in[6, 23, 12, 17], this
dataset has a wider range of variations in type and style.
Moreover, they are authentic images used in real-world sce-
narios instead of synthesized from data-generation.

5. Training Details
In the design of the keypoint detection network, for all

three types of chart images, we use the same backbone
network- HourGlass Net with 104 layers. During training,
we use Adam optimizer with learning rate 2.5e-4 and de-
crease the learning rate to 2.5e-5 for the last 5,000 batches.
Batch size is set to be 27. α = 2, β = 4. Soft-NMS is
applied to merge key points from the heat map. All ex-
periments are conducted in the same environment with 4
Tesla P100 GPUs. For training details of different type of
charts please refer to the supplemental material. A vali-



dation set contained in ExcelChart400K is used to set the
hyper-parameters. We use the early-stopping strategy for
the model training.

6. Evaluation Metric

In previous works, researchers usually borrow evaluation
metrics from other domains, e.g., object detection or infor-
mation retrieval. Those methods do not take into account
the specialty of chart data. In this paper, we propose three
evaluation metrics for three chart types.

6.1. Bar Chart

For bar chart inputs, our goal is to match the bounding
box p = [xp, yp, wp, hp] to the ground truth bounding box
g = [xg, yg, wg, hg]. First, we define a custom distance
function for pairwise-wise point comparisons:

D(p, g) = min(1, ‖xp − xg
wg

‖+ ‖yp − yg
hg

‖+ ‖hp − hg
hg

‖)

(9)

Here we only consider the differences between x, y, h be-
cause w is not related to chart reading. Then we compute
the pairwise cost matrix C, where Cn,m = D(pn, gm).
Then we can find the minimum total cost by taking it as
the job-assignment problem:

cost = min
X

K∑
i

K∑
j

Ci,jXi,j (10)

Then the score can be defined as score = 1 − cost/K,
whereK = max(N,M). X ∈ {0, 1} is a binary assignment
matrix since each point will only be assigned once.

6.2. Line Chart

Since a line defines a sequence of continuous data, we
treat it as a continuous similarity problem. Let P =
[(x1, y1), ..., (xN , yN )] be the predicted point set and G =
[(u1, v1), ..., (uM , vM )] be the ground-truth set. We define
the average error rate between the ground-truth point set G
to the predicted point set P using precision and recall

Prec(P,G) = Rec(G,P ) (11)

Rec(P,G) =

∑M
i=1(1− Err(vi, ui, P )) ∗ Intv(i, G)

uM − u1
(12)

F1 = 2 · Prec ·Rec(Prec+Rec) (13)

where Err(vi, ui, P ) defines error rate of matching point
(ui, vi) for point set P . Intv(i, G) defines the ratio of the

ith point in final score. More specifically,

Err(vi, ui, P ) = min(1, ‖vi − I(P, ui)
vi

‖) (14)

Intv(i, G) =


ui+1−ui

2 for i = 1
ui−ui−1

2 for i =M
ui+1−ui−1

2 for 1 < i < M

(15)

Here I(P, ui) is a linear interpolation function that com-
putes the value of line P at the point ui. TheErr(vi, ui, P )
ranges from 0 to 1. The Intv(i, G) ratio will arise if the gap
gets bigger between two points as described in Eq. (15). If
there are multiple lines in one chart, we will enumerate the
combinations to find the best match score.

6.3. Pie Chart

Both the data values and the ordering are important
for pie chart reading. For Pie Chart images we consider
the data extraction as a sequence matching problem. Let
P = [x1, ..., xN ] be the predicted data sequence in clock-
wise order and G = [y1, ..., yM ] be the ground-truth data
sequence. Then the matching score(N,M) can be defined
as:

score(i, j) = max(score(i− 1, j), score(i− 1, j),

score(i− 1, j − 1) + 1− ‖xi − yj
yj

‖)
(16)

score =
score(N,M)

M
(17)

Where ∀i score(i, 0) = 0, ∀j score(0, j) = 0. The score
is obtained through dynamic programming.

7. Experiment
7.1. Baseline Methods

We compare our method with three types of methods:
rule-based methods, deep-learning-based methods and off-
the-shelf commercial product. For rule-based methods, Re-
vision[23] is a model capable for data extraction of bar chart
and pie chart. For deep-learning-based methods, we report
the performance of Vis [6] on the public datasets and Ex-
celChart400K dataset. We also implement ResNet+Faster-
RCNN which is an enhanced version of [6, 17] with Faster-
RCNN [22] using ResNet [9] backbone for bar chart extrac-
tion, and Rotation RNN [17] for pie chart extraction. In
addition, we report performance on ResNet+RNN, a fully
end-to-end deep RNN approach as a strong baseline. In this
model, after the deep feature extraction network, RNN is
directly applied to output the desired data in the sorted or-
der. For commercial product, we use Think Cell2 which is
capable for bar chart data extraction. We can only access it

2https://www.think-cell.com/



Table 2: Quantitative results on ExcelChart400K with pro-
posed evaluation metrics in Section 6 (the higher the better)

Methods Bar Pie Line
ChartOCR (Ours) 0.919 0.918 0.962
ChartOCR (Ours) + GT Point 0.989 0.996 0.991
ResNet+Faster-RCNN [17, 6] 0.802 - -
Revision [23] 0.582 0.838 -
ResNet+RotationRNN [17] - 0.797 -
ResNet+RNN 0.000 0.411 0.644

through the graphical interface for each example, hence we
only show qualitative comparison for it by visualizing input
images and predicted results.

7.2. Quantitative Analysis

We report the quantitative results on ExcelChart400K
with the proposed evaluation metrics in Section 6.

In Table 2, our method has the highest scores in all
three types of charts. For bar chart, compared with
ResNet+Faster-RCNN, our method achieves nearly 14.5%
improvement. The improvement is majorly due to the ac-
curate detection of key point positions. As shown in Figure
5, the ChartOCR is more accurate in defining the bars via
key points compared with traditional object detection ap-
proaches. For pie chart, our model outperforms Revision
by over 9.5% which is due to the generalization ability of
deep key point method. As shown in Figure 7, in the case
of detached sectors, key point method can still work well
while rule-based method cannot. For ablation study, we also
perform an experiment where key point detection results are
replaced by the ground-truth key point locations. (See Char-
tOCR (Ours) + GT Point entry in Table 2). This result can
be seen as the upper-bound of our ChartOCR model with the
key point based approach. We can see that the performance
of bar and pie charts reading has been improved to a nearly
perfect score, which means that our rule-based module is
exceptionally reliable. For line chart, our method improves
around 50% compared with the ResNet+RNN baseline.

We also follow the experiment setting3 of Vis[6] and re-
port the Mean Error Rate in Table 3. For ablation study, we
use the ground-truth label information to replace the OCR
result, reported as GT OCR. Since WebData does not have
ground-truth OCR results available, we only compared the
methods with and without GT for the FQA dataset. Com-
pared with Vis, ChartOCR shows significant improvement
on line and pie type charts. It is because that in Vis, the de-
tection of pie and line components is still based on pure
rule-based approach. Ground-truth OCR also greatly re-
duces the error for FQA data set for bar charts, which in-

3The comparison is based on reported results in the paper

Table 3: Comparison on the public datasets: FQA and Web-
Data. (∗ numbers are taken from the original paper)

FQA Mean Error ↓ Bar Pie Line
ChartOCR(Ours) + GT OCR 0.093 0.038 0.496
ChartOCR(Ours) 0.185 0.038 0.484
Vis [6] 0.330∗ 1.010∗ 2.580∗

Revision[23] 0.500 0.120 -

WebData Mean Error ↓ Bar Pie Line
ChartOCR(Ours) 0.285 0.439 0.740
Vis [6] 0.450∗ 0.810∗ 2.070∗

Revision [23] 2.230 0.570 -

(a) Revision (b) ThinkCell (c) ChartOCR (ours)

(d) ResNet+Faster-RCNN (e) ChartOCR (ours)

(f) ThinkCell (g) ChartOCR (ours)

Figure 5: Comparison of the methods on bar charts. First
row: stacked bar charts; Second row: clustered bar charts;
Third row: tight clustered bar charts.

dicates that the major error for bar data extraction is caused
by poor OCR performance on this dataset.

7.3. Qualitative Analysis

In this section, we compare our method with state-of-the-
art methods and show the performance for different type of
chart images by visualizing the predicted results.
Bar Chart Cases: In Figure 5, compared with rule-based
methods, ChartOCR is more stable on different types of bar



Ground Truth: 0.30 0.31 0.03 0.06 0.06 0.13 0.08 0.03
ChartOCR: 0.30 0.31 0.02 0.06 0.06 0.13 0.08 0.03
Revision: 0.02 0.03 0.38 0.03 0.05 0.41 0.06 0.02
RotationRNN: 0.30 0.31 0.02 0.06 0.06 0.13 0.08 0.03

Figure 6: Both ChartOCR and RotationRNN perform rea-
sonably well for this image, but the Revision method does
not work well due to the black background. (Underlines
indicate un-matched results from ground-truth)

Ground Truth: 0.06 0.94
ChartOCR: 0.06 0.94
Revision: 0.07 0.00 0.90 0.89
RotationRNN: 0.03 0.94 0.02 0.01

Figure 7: For pie charts that contain detached sectors, only
ChartOCR has satisfying performance. (Underlines indi-
cate un-matched results from ground-truth)

charts. Rule-based method is not good at extracting stacked
elements as shown in Figure 5 (a)(b) and it can be disturbed
by the text content. Compared with ResNet+Faster-RCNN
in (d), ChartOCR is better at detecting the borders. Figure 5
(b) and (f) show that the commercial product ThinkCell also
suffer from the poor generalization problem. In (f) it fails
to detect the actual bar components and mistakenly treat the
background ruler line as targets.
Pie Chart Cases: Since not every method provides the re-
sult for sector extraction4, here we compare the final numer-
ical output in Figure 6 and 7. In the case of rare background
color or detached sector, ChartOCR can still make precise
prediction while other methods are severely disrupted.
Line Chart Cases: In this section we only show our results
due to the lack of comparable automatic extraction meth-
ods. For simple cases such as the first row of Figure 8,
ChartOCR gives pretty good result. For hard examples in
the second row, the performance is not very satisfying. The
reason is that the QUERY network can not deal with compli-
cated situations where multiple line segments are entangled.

7.3.1 Efficiency Analysis

In terms of the time efficiency of each methods, we show
the running time in Table 4 which includes the comparison

4RotationRNN directly output the percentage of each sector.

Figure 8: Detection result for line charts. First row: easy
samples. Second row: hard samples. Green lines are the
predicted lines and red dots are the extracted key points.

Table 4: Average Running Time

Methods Bar Pie Line
ChartOCR 0.206s 0.193s 0.507s
ResNet+Faster-RCNN 0.120s - -
Revision 20.032s 5.423s -
ResNet+RotationRNN - 0.421s -

with both the deep learning methods and rule-based meth-
ods. As we can see deep methods show a great advantage
in time efficiency. For line type ChartOCR takes twice the
time of other types, because we added an additional QUERY
network as mentioned in Section 3.3.3. The QUERY net-
work does not share parameters with the keypoint detection
network. In situations where time efficiency is highly de-
manded, we can merge these two networks into one single
common backbone to reduce the processing time.

8. Conclusion

In this paper we proposed ChartOCR network for pre-
cise data value extraction on chart images by combining the
rule-based methods and deep neural network based meth-
ods. We also introduced a novel benchmark dataset Ex-
celChart400K that comes with detailed annotations for the
chart components. This dataset lays a stepping stone for
further research on chart understanding. Our experiments
on multiple datasets show that ChartOCR has better perfor-
mance than both pure rule-based and traditional deep end-
to-end methods. Compared with deep models, our chart ex-
tractor can be easily generalized for different type of charts
such as bar, line and pie charts. Compared with rule-based
methods, our approach has much higher precision. For fu-
ture work, we will expand this work for more chart types.
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