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Abstract

Most standard deep learning models do not perform logical rule-based reasoning
like human and are hard to understand. We present a novel neural architecture,
Tensor Product Reasoner (TP-Reasoner), for learning inference rules represented
with a structured representation. In TP-Reasoner, we aim to integrate symbolic
inference and deep learning: we utilize the ability of Tensor Product Representa-
tion in a neural model for learning and reasoning inference rules, which extracts
intermediate representations of logical rules from a knowledge base reasoning
task. TP-Reasoner achieves comparable results with baseline models. Analysis of
learned inference rules in TP-Reasoner shows the interpretability of logical compo-
sition via a strong neuro-symbolic representation, a novel model expressivity, and
an explicit tensor product expressions.

1 Introduction

When people perform inference based on their knowledge, they infer new facts using the existing
facts via inference rules. Many researchers have used structured representations to model reasoning
process and inference rules. A lot of evidence has shown that relational structured representations are
important for human cognition, e.g., (Goldin-Meadow and Gentner, 2003; Forbus et al., 2017; Crouse
et al., 2018; Chen and Forbus, 2018; Chen et al., 2019; Lee et al., 2019). Recently, many researchers
use deep learning models to perform knowledge base reasoning and have achieved impressive results.
However, most existing deep learning models do not explicitly represent human-like inference process
and these models lack interpretability. In this paper, we propose a novel neural architecture, TP-
Reasoner, for presenting knowledge base reasoning and inference. Given a set of relational facts
in knowledge base, models are required to infer new facts. To model inference process, existing
facts in the knowledge base are regarded as the antecedents and the inferred facts are regarded
as consequences. TP-Reasoner represents relational facts using Tensor Product Representation
(TPR) (Smolensky, 1990) and the inputs for this model are TPR of antecedents. TP-Reasoner has
many reasoning heads and each head performs TPR ‘binding’ and TPR ‘unbinding’ operations
to apply an inference rule on antecedents and generates a new fact represented as TPR. Outputs
from TP-Reasoner also conformed the form of TPR, which contains the existing relational facts
(antecedents) in knowledge base and inferred facts (consequences). By employing TPRs, the model
achieves comparable performance and increases the interpretability, i.e., the learned inference rules
can be explained. Our contributions in this paper are as follows. (i) We present a new TP-Reasoner
model, which performs reasoning on relational facts in a knowledge base and infers new facts. To our
knowledge, this is the first neural model which uses Tensor Product Representation to explicitly model
human-like reasoning process. (ii) Comparable results on Kinship dataset show that TP-Reasoner
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has reasonable reasoning ability. (iii) Analysis of reasoning heads in TP-Reasoner provides strong
interpretability to understand learned inference rules.

2 Related Work

Rule learning with neural models is a popular task in research area. Many works have achieved
impressive results. For example, Yang et al. (2017); Manhaeve et al. (2018); Raedt (2017); Evans
and Grefenstette (2018); Zhang et al. (2019); Ho et al. (2018); Weber et al. (2019) regard this
problem as learning embedding for rules. For example, Wang et al. (2014) uses an Iterative Structural
Gradient algorithm that alternates gradient-based search for parameters of a probabilistic model. Yang
et al. (2017) reduces the rule learning problem to algebraic operations on neural-embedding-based
representations of a given knowledge base. In our TP-Reasoner model, each inference rule is described
with TPR structures. Relations in each rule are modeled as embedding vectors instead of a matrix
operator as in Yang et al. (2017). TPR is a promising technique for encoding symbolic structural
information and modeling symbolic reasoning in vector space. TPR ‘binding’ and ‘unbinding’
operations have been used in natural-language tasks(Palangi et al., 2018; Huang et al., 2018, 2019;
Kezhen et al., 2020). Some researchers also use TPRs for modeling deductive reasoning processes
both on a rule-based model and deep learning models in vector space (Lee et al., 2016; Smolensky
et al., 2016; Schlag and Schmidhuber, 2018). However, none of these previous models utilizes TPR
‘binding’ and ‘unbinding’ to learn inference rules with differentiable learning, as done in our model.

3 TP-Reasoner

3.1 Structured Representations using TPRs

The Tensor Product Representation (TPR) of a symbolic structure S is determined by (i) decomposing
S into a set of structural roles {ri}, which are respectively bound to the fillers {fi}; (ii) embedding
all roles in a role vector space Rdr , and all fillers in a filler vector space Rdf , and (iii) embedding S
as the tensor in Rdr ⊗ Rdf (or equivalently the matrix in Rdr×df ):

T =
∑
i

fi ⊗ ri =
∑
i

fir
>
i (1)

For example, adopting linear positional roles, the string ABC has TPR TABC = a⊗ r1 + b⊗ r2 + c⊗ r3,
where a is the vector embedding A, r1 is the vector embedding R1, etc.

When the role vectors {ri} are linearly independent, there is a set of dual or unbinding vectors {uj}
defined by the property that r>i uj = δij , from which it follows that any role rk can be unbound from
T to give its filler fk simply by computing T uk. For example, TABCu2 = b. When the role vectors
are orthonormal, ui = ri.

In a knowledge base, facts are written as binary relational tuples (rel, subj, obj) where subj, obj
indicate the subject and object of a relation rel. Suppose that rel, subj, obj are embedded as vectors
r, s, o. This relational tuple can be regarded as the filler subj bound to a complex role r̃ = (rel, obj);
r̃ is itself a structure in which the inner filler obj is bound to an inner role rel. Then r̃ is embedded as
the vector r̃ = o⊗ r; therefore the triple as a whole is embedded as s⊗ r̃ = s⊗ (o⊗ r). The tensor
product is associative, so we can omit parentheses, and to align with the ordering (rel, subj, obj) we
can reorder the factors and use the equivalent tensor r ⊗ s⊗ o. Given a knowledge base with m facts
{(reli, subji, obji)}mi=1, and vector embeddings ri, si, oi for reli, subji, obji, the TPR for the entire
knowledge base is:

H =

m∑
i=1

ri ⊗ si ⊗ oi (2)

Let the unbinding vectors for ri, si, oi be r′i, s
′
i, o
′
i. These can be used to recover individual elements

and pairs of elements from the knowledge base via the tensor inner product; for example:

r′i · H ≡ H ·1 r′i = Σj:rj=risj ⊗ oj where [H ·1 r′i]βγ ≡ Σα[H]αβγ [r′i]α; then (3)

s′i · Σj:rj=risj ⊗ oj = Σj:sj=si∧rj=rioj (4)
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Figure 1: Overview of TP-Reasoner. Rule: (r1, ?s, ?x) ∧ (r2, ?x, ?o) ⇒ (rnew, ?s, ?o) when
β1 = 1 = β2, α = 0; βk = 0 reverses the arguments of rk; α = 1 eliminates the r2 condition.

Eq. 3 provides the TPR for the set of pairs resulting from the query (reli, ?s, ?o), and Eq. 4 gives
the TPR for the set of entities resulting from (reli, subji, ?o). When the embedding vectors are
orthonormal, the result of the query (ri, ?s, ?x) ∧ (rk, ?x, ?o) is the product of the results of the
sub-queries, considered as matrices:[

Σj:rj=risjo
>
j

][
Σl:rl=rkslo

>
l

]
=Σj,l:rj=ri∧rl=rksj(oj ·sl)o>l =Σj,l:rj=ri∧rl=rk∧oj=slsjo

>
l (5)

In next section, we will describe how the TP-Reasoner model uses the structured representations to
learn and apply inference rules.

3.2 Model Architecture

TP-Reasoner architecture has k reasoning heads. These heads aim to learn inference rules for
knowledge base reasoning using TPR binding and unbinding operations. Given a knowledge base
with nf facts, nr relations and ne entities, TP-Reasoner uses a relation embedding layer and an entity
embedding layer to convert the relations, subjects and objects of all facts to embedding vectors firstly.
Using the TPR binding operation from Eq.2, these facts are encoded as a TPR Hi. The reasoning
head j of TP-Reasoner takes Hi as input and applies inference rules on Hi to generate the TPR of
inferred facts Hjinfer. As each reasoning head learns different rules, each head generates a TPR of
inferred facts. The TPR of inferred facts from all heads and TPR of antecedents are summed together
to generate the output TPR Hi+1 as following:

Hi+1 = Hi +

k∑
j=1

Hj
infer (6)

TP-Reasoner can perform multi-step inference by passing the output TPR Hi+1 back to the model
again. Figure 1 shows an overview of this model.

Each reasoning head of TP-Reasoner has m unbinding relation vectors and a relation binding vector
rnew. The inner product between Hi and each unbinding relation vector r′x of relation relx is
computed as:

Tx = Hi · r′x = sx ⊗ ox (7)

As all relation binding and unbinding vectors are independent with each other, if there are facts with
the relation relx, the inner product between Hi and r′x can unbind the tensor product Tx of objects and
subjects that hold this relation. With the unbinding operation, reasoning heads match the antecedents
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of inference rules. To learn the order of the object and subject, we use a coefficient β between 0 and 1
to determine whether the rule needs to switch the order of object and subject. If the order is changed,
the transpose of Tx is used, i.e. βTx + (1− β)T>x . With m unbinding relation vectors, the head can
learn inference rules with length m. For each unbound Tx, we use matrix multiplication between
them to run logic chaining inference. As entity embedding vectors are independent with each other,
intermediate entities are canceled, e.g. (rel1, Entity0, Entity1) ∧ (rel2, Entity1, Entity2) ∧ ... ∧
(relk, Entityk−1, Entityk)⇒ (relk+1, Entity0, Entityk). Finally, the new relation binding vector
rnew binds the pair of entities after chaining inference to generate the TPR of a new fact. Specifically,
in our implementation, we use a coefficient α to control whether the number of conditions in this
inference rule is 1 or 2. Figure 1 presents an example with 2 unbinding vectors. The first head in
the figure describes the rule (r1, ?s, ?x) ∧ (r2, ?x, ?o)⇒ (rnew, ?s, ?o) when β1 = 1 = β2, α = 0.
This process is as follows:

Hinfer = rnew ⊗ (α(β1T1 + (1− β1)T>
1 ) + (1− α)(β2T2 + (1− β2)T>

2 )) (8)
We sum the TPRs of inferred facts from each reasoning head and the original Hi to generate the
output Hi+1. The output of current inference step is passed to the next step recursively. All inference
steps share the same set of reasoning heads.

To simplify the implementation, binding and unbinding vectors of relations and entities are one-
hot vectors. Thus, each head is only trained to learn to choose relations and coefficients for rule
antecedents and consequent. During training, we use the mini-batch ADAM with batch size 8 and the
learning rate initially set to 0.001. The number of training epochs is 200. TP-Reasoner outputs the
new TPR after reasoning and inference. Given a testing fact, the unbinding vectors of two ground
truth elements from the relation, object and subject in a tuple are used to unbind the other element
from Hn, the output from TP-Reasoner at the n recursive step. following the Eq. 3–4. We sum the
Cross-Entropy loss on each unbound vector. Also, we add a regularization term in the loss to push the
trained parameters in each reasoning head to softly one-hot so the inference rule can be interpreted.

4 Experiments

Figure 2: Results on Kinship dataset.

We conduct experiments on statistical relational
learning task to test the reasoning ability of TP-
Reasoner. Given a knowledge base, models are re-
quired to perform reasoning from the knowledge base,
then to infer new facts. The goal is to retrieve a
ranked list of entities for ?e based on a given query
(rel, entity1, ?e) from the inferred facts. The desired
answer should be ranked as high as possible. We test
TP-Reasoner on Kinship dataset which has 104 en-
tities, 25 relations and 9587 facts. Following Yang
et al. (2017), we randomly split the datasets into facts,
train, test data with ratio 6:2:1. The evaluation metric
is Hits@10. Figure 2 shows the experiment results

that we compared TP-Reasoner with two rule-learning baselines, Iterative Structural Gradient (ISG)
(Wang et al., 2014) and Neural LP (Yang et al., 2017). For all models, the rule length is picked as
2 and we use 200 reasoning heads in the model. From the results, TP-Reasoner can achieves the
competitive performance as Neural LP model. After training, the inference rules can be analyzed
from each head. In each head, trained the unbinding vectors have the information for antecedents for
the learned rule in the head. The new relation binding vector shows the consequent of the rule. By
exploring these trained parameters, we can understand the inference rules learned in these heads. For
example, in head 160, the learned rule is (Rel16, ?a, ?b) ∧ (Rel15, ?c, ?b)⇒ (Rel21, ?a, ?c), and
in head 176, the learned rule is (Rel8, ?a, ?b) ∧ (Rel11, ?c, ?b)⇒ (Rel7, ?a, ?c).

5 Conclusion and Future Work

In this paper, we propose a novel TP-Reasoner model to learn inference rules and perform reasoning.
This model is tested on Kinship dataset. Experiments and analysis show that TP-Reasoner is promising
for learning inference rules and performing interpretability reasoning on knowledge base. We will
test this model on more larger datasets and construct more types of inference rules in future.
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