
TIMESTAMP-BASED ALGORITHMS FOR CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEMS*

Philip A. Bernstein**
Nathan Goodman**

Computer Corporation of America
and Harvard University

Abstract

We decompose the problem of concurrency control
into the sub-problems of read-write and write-write
synchronization. We present a series of timestamp-
based algorithms (called synchronization tech-
niaues) that achieve read-write and/or write-write
synchronization. And we show how to combine any
read-write technique with any write-write technique
to yield a complete concurrency control algorithm
(called a method). Using this framework we
describe 12 “principal” concurrency control methods
in detail. Each principal method can be modified
by refinements described in the paper, leading to
more than 50 distinct concurrency control
rithms.

algo-

1. Introduction

In this paper we present a framework for the design
and analysis of concurrency control algorithms for
distributed database management systems (DDBMS).
This framework permits us to describe a large
number of concurrency control algorithms in concise
terms and guides us in the discovery of new algo-
rithms. Using this framework we describe 12 “prin-
cipal” concurrency control algorithms in detail and
show how these principal algorithms can be refined
to yield more than 50 distinct algorithms. These
algorithms subsume about half of the literature on
DDBKS concurrency control [BG1,21; in addition
these algorithms extend the state-of-the-art in
DDBMS concurrency control, because most of them are
new.

* This work was supported by Rome Air Development
Center under contract no. F30602-79-C-0191. The
views expressed are those of the authors and do not
necessarily represent the opinion of Rome Air De-
velopment Center or the U.S. Government.

** Author’s address: Aiken Computation Laboratory,
Harvard University, Cambridge, HA 02138.

c”l534-7/80/0000-0285$00.75 @ 1980 IEEE

We begin by defining in (Section 2) a standard
terminology for describing DDBMS concurrency con-
trol algorithms and a standard model of the DDBMS
environment. Using this terminology and model as a
foundation, we decompose the problem of concurrency
control into the sub-problems of read-write and
write-write synchronization (in Section 3). In
Section 4 we present a series of timestamp-based
algorithms (called synchronization techniaues) that
achieve read-write and/or write-write synchroniza-
tion. Finally in Section 5 we show how each read-
write technique can be integrated with each write-
write technique to form a complete and correct con-
currency control algorithm.

This work is part of a larger study of concurrency
control [BG2] that considers locking-based synchro-
nization techniques in addition to timestamp-based
ones.

2. Transaction Processing Kodel

To understand how a concurrency control algorithm
operates, one must understand how the algorithm
fits into an overall DDBMS. In this section we
present a simple model of a DDBMS, emphasizing how
the DDBMS processes transactions.

2.1 Preliminary Definitions

A distributed database management system (DDBKS) is
a collection of sites interconnected by a network.
Each site is a computer running one or both of the
following software modules : a transaction manager
(TM) or a data manager (DII). Briefly, TMs super-
vise user interactions with the DDBHS while DMs
manage the actual database. A network is a
computer-to-computer communication system. The
network is assumed to be perfectly reliable -- if
site A sends a message to site B, site B is gueran-
teed to receive the message without error. In ad-
dition, we assume that between any pair of sites
the network delivers messages in the order they
were sent.

From a user’s perspective, a database consists of a
collection of logical data items, denoted X,Y,Z,...
We leave the granularity of logical data items un-
specified. In practice, logical data items may be
files, records, etc. A lonical database staLe is

285

an assignment of values to the logical data items
comprising a database. Each logical data item may
be stored at any DM in the system or redundantly at
several DMs. A stored copy of a logical data item
is called a stored data item; xl ,..., xm denote

the stored copies of logical data item X. When no
confusion is possible we use the term data item for
stored data item. A stored database state is an
assignment of values to the stored data items of a
database.

Users interact with the DDBMS by executing w-
actions. Transactions may be on-line queries ex-
pressed in a self-contained query language; appli-
cation programs written in a general-purpose pro-
gramming language; etc. The concurrency control
algorithms we study pay no attention to the COILIT)U-
tations performed by transactions. Instead these
algorithms make all of their decisions based on the
data items a transaction reads and writes, and so
the detailed form of transactions is unimportant in
our analysis. However we do assume that trans-
actions represent complete and correct computa-
tions; i.e. each transaction if executed alone on
an initially consistent database would terminate,
output correct results, and leave the database con-
sistent. The logical readset (resp. writeset) of a
transaction is the set of logical data items the
transaction reads (resp. writes). Stored readsets
and stored writesets are defined analogously. Two
transactions are said to conflict if the stored
readset or writeset of one intersects the stored
writeset of the other.

The correctness of a concurrency control algorithm
is defined relative to user expectations regarding
transaction execution. There are two correctness
criteria. (1) Users expect that each transaction
submitted to the system will eventually be execut-
ed. And (2) users expect the computation performed
by each transaction to be the same whether it exe-
cutes alone in a dedicated system or in parallel
with other transactions in a multiprogrammed
system; the attainment of this expectation is the
principal issue in concurrency control.

2.2 DDBMS Architecture

A DDBMS contains four components (see fig. 2.1):
transactions, TMs, DNs, and data. Transactions
communicate with TKs, TEs communicate with DMs, and
DNs manage the data. (Tks do not communicate with
other TMs, nor do DMs communicate with other DMs.)
The interface between transactions and TMs is the
external interface of the DDBMS; the interface
between TMs and DMs is its internal interface.

TMs supervise transactions. Each transaction exe-
cuted in the DDBMS is supervised by a single TM,
meaning that the transaction issues all of its da-
tabase operations to that TM. Any distributed com-
putation that is needed to execute the transaction
is managed by the TM. Therefore, each transaction
believes the system consists of a single TM and
multiple DIr!s.

Four operations are defined at the external inter-
face. Let X be any logical data item. READ(X)

returns the value of X in the current logical data-
base state. WRITECX, new-value) creates a new
logical database state in which X has the specified
new value. Since transactions are assumed to rep-
resent complete computations, we use BEGIN and END
operations to bracket transaction executions.

DMs manage the stored database, functioning essen-
tially as back-end database processors. In re-
sponse to commands from transactions, TMs issue
commands to DMs specifying stored data items to be
read or written. The details of the TM-DM inter-
face constitute the core of our transaction pro-
cessing model and are discussed in Sections 2.3 and
2.4. Section 2.3 describes the TM-DM interaction
in a centralized database environment. Section 2.4
extends the discussion to a distributed database
setting.

2.3 Centralized Transaction Processing Model

A centralized DBMS consists of one TM and one DM
executing at the same site. A transaction, T, ac-
cesses the DBMS by issuing BEGIN, READ, WRITE, and
END operations, which are processed as follows.

BEGIN : The TM initializes a private workspace for
T. The private workspace functions as a temporary
buffer for values that T writes into the database,
and as a cache for values that T reads from the da-
tabase.

Figure 2.1

transaction

.

.

transaction

transaction

.

transaction

transaction
0
.

transaction

DDBMS System Architecture

286

READ(X): The T:i looks for a copy of X in T’s pri-
vate workspace. If the copy exists, its value is
returned to T. Otherwise the TM issues a command
to the DIG asking it to retrieve a stored copy of X
from the database. This operation is denoted dm-
read(x). The value retrieved by the D?: is given to
T and put into T’s private workspace.

WKITE(X, new-value 1 : The Tl.1 again checks the pri-
vate workspace. If the workspace has a copy of X,
its value is updated to new-value; otherwise a
copy of X with that value is created in the work-
space. The new value of X is not stored in the da-
tabase at this time.

END: The TN issues an operation denoted dm-write(x)
for each logical data item X updated by T. Each
dm-write(x) requests that the DtI update the value
of X in the stored database to the value of X in
T’s local workspace. When all dm-writes are pro-
cessed, T is finished executing, and its private
workspace is discarded.

The DBMS may restart T any time before a dm-write
has been processed. The effect of restarting T is
to obliterate its private workspace and to re-
execute T from the beginning. As we will see, many
concurrency control algorithms use transaction re-
starts as a tactic for attaining correct execu-
tions. However, once a single dm-write has been
processed, T cannot be restarted. This is because
each dm-write permanently installs an update into
the database, and we cannot permit the database to
reflect partial effects of transactions.

A DBWS can fail in many ways and a detailed treat-
ment of reliability issues is beyond the scope of
this paper. However, a reliability problem called
atomic commitment has a major impact on concurrency
control. Consider a transaction T that updates
data items x,y,z,... and suppose the DBMS fails
while processing T’s END. If this occurs, some of
T’s updates may have been installed in the stored
database while others have not, and the database
may contain incorrect information (see fig. 2.2).
To avoid this problem, the DBNS must ensure that
& of a transaction’s dm-writes are processed or
none are.

The “standard” way to implement atomic commitment
involves a procedure called two-phase commit [LS,
Gray].* Again suppose T is updating x,y,z,...
When T issues its END, the first phase of two-phase
commit begins. During this phase the DM copies the
values of x,y,z,... from T’s private workspace onto
secure storage. If the DBMS fails during the first
phase, no harm is done, since none of T’s updates
have yet been applied to the stored database.
During the second phase, the DBMS copies the values
of x,y,z,... into the stored database. If the DBMS
fails during the second phase, the database may
contain incorrect information. However since the
values of x,y,z,... are stored on secure storage,
this inconsistency can be rectified when the system
recovers : the recovery procedure reads the values
of XYY,ZY... from secure storage and resumes the
commitment activity.

Figure 2.2 The Need for Atomic Commitment

*Consider a database of banking information

*Suppose Acme Corp. 's savings account has
$2,000,000 and its checking account has $500,000.
And suppose the DBMS fails while processing the
following transaction.

T: Move $l,OOO,OOO from savings to checking

*In the absence of atomic commitment, the follow-
ing incorrect execution could occur.

Execution of T

READ savings s $2,000,000
READ checking C 500,000

Subtract $l,OOO,OOO from savings
Add $l,OOO,OOO to checking

s $1,000,000
c 1,500,000

WRITE savings

Database

s $2,000,000
C 500,000

$1,000,000
500,000

------SYSTEM CRASHES------

WRITE checking --- never executed

To model two-phase commit, it is convenient to add
a third TM-DM operation, pre-commit, which in-
structs the DM to copy a data item from the private
workspace to secure storage.

2.4 Distributed Transaction Processing Model

Our model of transaction processing in a distrib-
uted environment differs from the centralized case
in two areas: how private workspaces are handled,
and the implementation of two-phase commit.

Private WorksDaces in a DDBMS

In a centralized DBMS we assumed that private work-
spaces were part of the TM. We also assumed that
data could freely move between a transaction and
its workspace, and between a workspace and the DM.
These assumptions are not appropriate in a DDBMS
because TMs and DMs may run at different sites and
the movement of data between a TM and a DM can be
expensive. To reduce this cost, many DDBMSs employ
query outimization procedures which regulate (and
hopefully reduce) the flow of data between sites.

287

For example, in SDD-1 the private workspace for
transaction T is distributed across all sites at
which T accesses data [GBWRRI. The details of how
T reads and writes data in these workspaces is a
query optimization problem, and has no direct ef-
fect on concurrency control. Consequently, we fac-
tor this issue out of our model for distributed
transaction processing.

In detail, our model of distributed transaction ex-
ecution is as follows.

1.

2.

3.

4.

When transaction T issues its BEGIN opera-
tion, T’s TM creates a private workspace for
T. The location and organization of this
workspace is left unspecified.
When T issues a READ(X) operation, the TM
checks T’s private workspace to see if a
copy of X is present. If so, the value of
that copy is made available to T. Otherwise
the TM selects some stored copy of X, say
xi, and issues dm-read(xi) to the DM at

which xi is stored. The DM responds by re-

trieving the stored value of xi from the da-

tabase, placing this value in the private
workspace. The TM then returns this value
to T.
When T issues a WRITECX, new-value) opera-
tion, the value of X in T’s private work-
space is updated to new-value, assuming the
workspace contains a copy of X. Otherwise,
a copy of X with the new value is created in
the workspace.
When T issues its END operation, two-phase
commit begins. For each X updated by T, and
for each stored copy xi of X, the TM issues

a pre-commit(xi) to the DK that stores xi.

The DM responds by copying the value of X
from T’s private workspace onto secure
storage internal to the DM. After all pre-
commits are processed, the TM issues dm-
writes for all copies of all logical data
items updated by T. A DM responds to dm-
write(xi) by copying the value of xi from

secure storage into the stored database.
After all dm-writes are installed, T’s exe-
cution is finished.

Two-Phase Commit in a DDBMS

The problem of atomic commitment is aggravated in a
DDBKS by the possibility of one site falling while
the remainder of the system continues to operate.
Suppose T is updating X,Y,Z,*.. stored at DMx,

DM , Dkls,... (resp.) and suppose T’s TM fails

afzer issuing the dm-write(x), but before issuing
the dm-writes for y,z,... At this point, the data-
base contains incorrect information as illustrated
in fig. 2.2. In a centralized DBMS, this phenomen-
on is not harmful because no transaction can access
the database until the TM recovers from the
failure. However, in a DDBMS, other TMs remain op-

erational, and the incorrect database can be ac-

cessed from these TMS.

To avoid this problem, each D11 that receives a pre-
commit must be able to determine which other DMs
are involved in the commitment activity. (This in-
formation could be a parameter to the pre-commit
operation, stored in a private workspace, etc.) If
T’s TM fails before issuing all dm-writes, the DMs
whose dm-writes were not issued can recognize the
situation and consult the other DMs involved in the
commitment. If m DM received a dm-write, the re-
maining ones act as if they had also received the
command. Thus, if any DM applies an update to the
database, they all do (see also, (HS21).

3. Decomposition of Concurrency Control Problem

In this section we review concurrency control
theory with two objectives: to define “correct ex-
ecutions” in precise terms, and to decompose the
concurrency control problem into more tractable
sub-problems.

3 .I Serializability

Let E denote an execution of transactions Tl,

Tn’ Eis a serial execution if no transactions

ever execute concurrently in E; i.e., each trans-
action is executed to completion before the next
one begins. Every serial execution is defined to
be correct, because the properties of transactions
(see Section 2.1) imply that a serial execution
terminates properly and preserves database consis-
tency . An execution is serializable if it is com-
putationally equivalent to a serial execution, that
is, if it produces the same output and has the same
effect on the database as some serial execution.
Since serial executions are correct and every seri-
alizable execution is equivalent to a serial one,
every serializable execution is also correct. The
goal of database concurrency control is to ensure
that all executions are serializable.

The only operations that access the stored database
are dm-read and dm-write. Hence, insofar as seri-
alizability is concerned, it is sufficient to model
an execution of transactions b

B
the execution of

dm-reads and dm-writes at t e various DMs of the
DDBMS . In this spirit, we formally model an execu-
tion of transactions by a set of logs, one log per
DM . Each log indicates the order in which dm-reads
and dm-writes are processed at one DM (see fig.
3.1).

An execution modelled by a set of logs is serial if
(1) for each 1 og, and for each pair of traaons
Ti and T. whose operations appear in the log,

3
either all of Ti’s operations precede all of T.‘s

3
operations, or vice versa; and (2) for each pair of
transactions, Ti and T., if Ti’s operations precede

3
Tj’s operations in one log, then Ti’s operations

precede T.
3

‘s operations in every log in which oper-

288

Figure 3.1 Modelling Executions as Logs

Transactions Database

T1: BEGIN;
READ(X); WRITE(Y); END A x1

y1

Figure 3.2 Serial and Non-Serial Logs

T2: BEGIN;
READ(Y); WRITE(Z): END

T :
3

BEGIN;
READ(Z); WRITE(X); END

B y2

s2

C
=3

One possible execution of TI, T2, and T3 is rep-

resented by the following logs. (Note: ri[xl

denotes the operation dm-read(x) issued by Ti;

w&x] has the analogous meaning)

Log for DM A: r,[x,l wl[yll r2[Y11 w3[x11

Log for DM B: WJY,l w2[s21

Log for DM C: w2[z31 r3[z31

ations from both Ti and Tj appear (see fig. 3.2).

Intuitively, (1) says that at each DM no two trans-
actions are interleaved, and (2) says that trans-
actions execute in the same order at all Ms.

Two operations conflict if they operate on the same
data item and one of the operations is a dm-write.
The order in which operations execute is computa-
tionally signif icant iff the operations conflict.
To illustrate the notion of conflict, consider a
data item x and transactions Ti and Tj. If Ti

issues dm-read(x) and T. issues dm-write(x), the
J

value read by Ti will (in general) differ depending

on whether the dm-read precedes or follows the dm-
write. Similarly, if both transactions issue dm-
write(x) operations, the final value of x depends
on which dm-write happens last. Those conflict
situations are called read-write conflicts and
write-write conflicts respectively.

The notion of conflict helps characterize the equi-
valence of executions. Let El and E2 be two execu-

tions, modelled by logs {Ll,l,..., Ll,n) and

$J,..’ Lg,,L where L.
l,j

models the execution at

Dtlj for Ei’
El and E2 are comnutationallv eqUiVal-

& if [PBR, Papadimitrioul: for each j, l<j<n,

Ll,j
and L2j contain the same set of dm-reads and

dm-writes and each pair of conflicting operations

The execution modelled in figure 3.1 is serial.
Condition (1) holds since each log is itself
serial -- i.e., there is no interleaving of opera-
tions from different transactions. Condition (2)
holds since at DM A, Tl precedes T2 precedes T

3
;

at DM B, T1 precedes T * and at DM C, T 2' 2 precedes

T3.

The following execution is not serial; it satis-
fies (1) but not (2).

DM A: rl[xll w,[Y,l r2[Y21 w3[x11

DM B: w2[z21 w1[y21

DM C: w,[z,l r3[z31

The following execution is also not serial; it
doesn't satisfy (1) or (2);

DM A: rl[xll r2[y21 w,[x,l q[~,l

DM B: w21s21 w1[y21

DM C: w,[z,l r3[z31

appears in the same relative order in both logs.
Intuitively, computational equivalence must hold in
this case because (1) each dm-read operation reads
data item values that were produced by the same dm-
writes in both executions; and (2) the final dm-
write on each data item is the same in both execu-
tions. Condition(l) ensures that each transaction
reads the same input in both executions (and there-
fore performs the same computation). Combined with
(21, it ensures that both executions leave the da-
tabase in the same final state.

We can now characterize serializable executions
precisely.

Theorem 1 [PBR, Papadimitriou, SLR] Let x={T1,...,

Tn) be a set of transactions and let E be an execu-

tion of these transactions modelled by logs
{L1,. . . , Ln}. E is serializable if there exists a

total ordering of g such that for each pair of con-
flicting operations 0

i
and Oj from distinct trans-

actions Ti ad Tj (resp.), Oi precedes Oj in a log

iff Ti precedes T.
J

in the total ordering.

The total order hypothesized in Tlneorem 1 is called
a serialization order. A serialization order indi-
cates a serial execution of the transactions 1 that
is computationally equivalent to the original exe-
cution E. Thus, if the transactions had executed

serially in the hypothesized order, the computation

289

performed by the transactions would have been iden-
tical to the computation represented by E.

To attain serializability, the DDBKS must guarantee
that all executions satisfy the condition of
Theorem 1. Those conditions require that conflict-
ing dm-reads and dm-writes be processed in certain
relative orders. Concurrency control is the activ-
ity of controlling the relative order of conflict-
ing operations; an algorithm to perform such con-
trol is called a synchronization technique. so, to
be correct, a DBNS must incorporate synchronization
techniques that guarantee the conditions of Theorem
1.

3.2 A Paradigm for Concurrency Control

In Theorem 1, read-write and write-write conflicts
are treated together under the general notion of
conflict . However, we can decompose the concept of
serializability by distinguishing these two types
of conflict. Let E be an execution modelled by a
set of logs. I!e define three binary relations on
transactions in E, denoted ->rw, --)wr, and ->ww.
For each pair of transactions, Ti and T.

3

1. Ti ->rw Tj iff in some log of E, Ti reads

some data item into which Tj subsequently

writes;
2. Ti ->wr Tj iff in some log of E, Ti writes

into some data item that Tj subsequently

reads ;
3. Ti ->ww Tj iff in some log of E, Ti writes

into some data item into which T. subse-
J

quently writes.

Rotationally, we use ->rwr = (->rw U --)wr) and -> =
(->rwr U ->ww).

Intuitively, -> (with any subscript) means “in any
serialization must precede”. For example, T. ->rw

1
Tj means ” Ti in any serialization must precede T.“.

This interpretation follows from Theorem 1: If ‘Ti

reads x before T. writes into x, then the hypothet-
3

ical serialization in Theorem 1 must have Ti pre-

ceding T..
J

Every conflict between operations in E is repre-
sented b
restate T eorem 1 in terms of ->. t

an -> relationship. Therefore,+we can
According to

Theorem 1, E is serializable if there is a total
order of transactions that is consistent with the
order of all conflicts. In terms of ->, this means
that E is serializable if there is a total order of
transactions that is consistent with ->. This
latter condition holds iff -> is acyclic (A rela-
tion, ->, is acyclic if there is no sequence il -,

i2, i2 -> i3,..., in-l -> in such that il = in. 1

In addition, we can decompose -> into its compo-
nent s, ->rwr and ->ww, and restate the theorem in
terms of these components.

Theorem 2 Let ->rwr and ->ww be associated with
execution E. Then E is serializable if (a) ->rwr
and ->ww are acyclic, and (b) there is a total or-
dering of the transactions consistent both with all
->rwr and all ->ww relationships.

Theorem 2 emphasizes a point overlooked in Theorem
1: read-write and write-write conflicts interact
only insofar as there must be a total ordering of
the transactions consistent with both types of con-
flicts. This suggests that read-write and write-
write conflicts can, to some extent, be synchron-
ized independently. We can use one technique to
guarantee an acyclic ->rwr relation (which amounts
to read-write svnchronization) and a different
technique to guarantee an acyclic ->ww relation
(write-write svnchronization). However, Theorem 2
says that having both ->rwr and ->ww acyclic is not
enough. There must also be one serial order con-
sistent with & -> relations. This serial order
is the cement that binds together the read-write
and write-write synchronization techniques.

Decomposing the serializability problem into the
problems of read-write and write-write synchroniza-
tion is the cornerstone of our paradigm for concur-
rency control. In Section 4 we describe algorithms
that accomplish read-write (rw) and/or write-write
(wwl synchronization, and in Section 5 we show how
to combine rw and ww synchronization algorithms
into correct concurrency control algorithms. It
will be important hereafter to distinguish algo-
rithms that attain rw and/or ww synchronization
from algorithms that solve the entire distributed
concurrency control problem. We shall use SJg-
chronization technique for the former type of algo-
rithm, and concurrency control method for the
latter.

4. Timestamp Ordering (T/O) Techniques

4.1 Specification

Timestamp ordering (T/O) is a technique whereby a
serialization order is selected a priori and trans-

.action execution is forced to obey this order.
When a transaction begins, its TM creates a unique
timestamp for it by reading the local clock time
and appending a unique TM identifier to the low
order bit. The TM also agrees not to assign
another timestamp until the next clock tick. Thus
timestamps assigned by different TMs differ in
their low order bits while timestamps assigned by
the same TM differ in their high order bits, and SO

all timestamps are unique system-wide. (Kotice
that this algorithm does not require that clocks at
different sites be synchronized.)

The TM attaches the timestamp to all dm-read and
dm-write operations issued on behalf of the trans-
action. DMs are required to process conflicting op-
erations in timestamp order. The definition of
conflicting ouerations depends on the type of syn-

290

chronization being perforted. For rw synchroniza-
tion, two operations conflict iff both operate on
the same data item and one is a dm-read r;ni the
other is a dm-write. For ww sync’hronization, two
operations conflict iff both operate on the same
data item and both are dm-writes.

It is easy to prove that T/O attains an acyclic
->rm (resp. -->ww) relation when used for rw (resp.
~7) synchronization. Since ezch DI’ processes con-
flicting operations in timestamp order, each edge
of the ->rwr (resp. ->ww) relation is in timestamp
order. Gence, all paths in the relation are in
timestamp order and, since all transactions have
unio ue timestamps, no cycles are possible. In ad-
dition, the timestamp order is a valid serializa-
tion order.

4.2 basic Implementation

An implementation of T/O amounts to building a m
scheduler, a software module that receives dn-read
and dn-write operations and outputs these opera-
tions according to the T/O specification. In prac-
tice, pre-commits must also be processed through
the T/O scheduler for two-phase commit to operate
properly. In Sections 4.1-4.S we describe T/O im-
plementations without considering the impact of
two-phase commit. Section 4.9 considers two-phase
commitnent issues.

The basic T/O implementation distributes the sche-
dulers along with the database. Consider the T/O
scheduler at some particular INi. For each data
item x stored at the Dll, the scheduler keeps track
Of the largest timestamp of any dm-read (resp. dm-
write) that has operated on x. This timestamp is
denoted R-timestamp(x)(resp. II-timestamp(x

For rw synchronization the basic T/O scheduler o
crates as follows. To process a dm-read(x), tK,
scheduler compares the timestamp of the dm-read to
V-timestamp(If the former timestamp is larger,
the scheduler outputs the dm-read and updates R-
tinestamp to the maximum of (a) the old R-
timestamp(or (b) the timestamp of the dm-read.
If the timestamp of the dm-read is smaller than W-
timestamp(the dm-read is rejected and the issu-
ing transaction is aborted. Similarly, to process
a dm-write(x), the scheduler compares the timestamp
of the dm-write to R-timestamp(If the former
timestamp is lar*;er , the dm-write is output and P-
timestamp is updcted to the maximum of (a) the
old C-timestamp(or (b) the timestamp of the dm-
write. Otherwise, the dm-write is rejected and the
transaction is aborted.

For ww synchronization, the T/O scheduler operates
as follows. To process a dm-write(x), scheduler
compares the tinestamp of the dm-write to the B-
timestamp(If the dm-write has a larger time-
stamp, the dm-write is output and I+timestamp is

set equal to the timestamp of the dm-write. Other-
wise, the dm-write is rejected and the transaction
is aborted.

When a transaction is aborted, it is assigned a
larger timestamp by its TM and is restarted. This

restart policy can lead to a cyclic restart situa-
tion, meaning that some transaction can be continu-
ally restarted without ever f i.nishing. Cyclic re-
start can ‘be avoided by assigning an especially
large timestamp to the transaction, thereby reduc-
ing the probability of a subsequent restart. Other
restart policies are discussed in later sections.

This implementation of T/O requires a substantial
amount of storage for maintaining timestamps.
Techniques for reducing this storage requirement
are discussed in Section 4.E.

4.3 The Thomas Krite Rule

For w synchronization the basic T/O scheduler can
be optimized using an observation of [Thomas 1,21.
suppose the timestamp of a dm-write(x) is smaller
than W-timestamp(Instead of rejecting the dn-
write (and restarting the issuing transaction) ”
can simply ignore the dm-write. We call this the
Thomas \lrite Rule (TTnlF.1.

Intuitively, blR only applies to a dm-write that
tries to put obsolete information into the data-
base. The rule guarantees that the effect of ap-
plying a set of dm-writes to x is identical to what
would have happened had the dm-writes been applied
in timestamp order.

4.4 Multi-Version T/O

For rv synchronization the basic T/C scheduler can
be improved by using the multi-version data item
concept of [Reed]. For each data item x we main-
tain a set of R-timestamps, and a set of <w-
timestamp, value> pairs (called versios. The R-
timestamps of x record the timestamps of all dm-
reads that have ever read x; the versions record
the timestamps of all dm-writes that have ever
written into x, along with the values written.

Using multi-versions, one can achieve rw synchroni-
zation without ever rejecting dm-reads. Consider a
dm-read(x) with timestamp TS. To process this op-
eration, we simply read the version(x) with largest
timestamp less than TS; see fig. 4.la. However,
dm-writes can still be rejected. Consider a dm-
write(x) with timestamp TSl, and let TS2* be the

smallest W-timestamp greater than TSi see fig.

4.lb. If any R-timestamp lies between TSl and

TS2 then the dm-write is rejected. If no R-

timestanp.lies in that range, then the scheduler
outputs the dm-write; this causes a new version of
x to be created with timestamp TS 1’

To prove the correctness of this technique, con-
sider 2 dm-read(x) with timestamp TSl that is pro-

cessed “out of order”; i.e., suppose the dm-
read(x) has timestamp TS1 yet it is processed after

some dm-write(x) with a larger timestamp Tsp. The

dm-read ignores all versions(x) with timestamps

291

Figure 4.1 Multi-version Reading and Writing

a) Let us represent the versions of a data item x
on a "time line"

values v1 V2 V3
I 1 I I

W-timestamps 5 10 20

v n-l 'n 1 I b
92 100

To process a dm-read(x) with timestamp 95, find
the biggest W-time& less than 95; in this
case 92. That is the version you read. So
this case, the value read by the dm-read is

in
V n-l'

b) Let us represent the R-timestsmps of x
similarly

R-timestamps ' ' I I I
57 15 92 95

b

values v1 v2 v3

c W-timestamps 5 10 20 100

To process a dm-write(x) with timestamp 93, we
create a new version of x with that timestamps.

R-timestamps -5 ; 1; I I
92 95

*

values 5 v2 p ' -1 ' 'n
t
I I I

92 I
I

I l
I

W-timestamps 5 10 20 93 100

However, this new version "invalidates" the
dm-read Of part (a), because if the dm-read had
arrived after the dm-write, it would have read
value V instead of V
reject the dm-write. n-l' Therefore, we must

larger than TSl; thus, the value read by the dm-

read equals the value it would have read had it
been processed “in order”. NOW consider a dm-
write(x) that is processed “out of order”. I.e.,
suppose the dm-write is processed after some dm-
read with a larger timestamp TS2. Since the dm-

write was not rejected, there must exist a yer-
sion(x) with timestamp TSl such that TSl < TSl <

TS2. Again the effect is identical to that Of a

timestamp ordered execution. Q.E.D.

tiotice that the multi-version concept achieves ww
synchronization “automatically”; insofar as ww syn-
chronization is concerned, multi-versions are an
embellished implementation of TWR.

It is usually not possible to keep all versions
forever, so a technique for forgetting (i.e., de-
leting) versions is needed (see Section 4.8).

4.5 Conservative T/O

Conservative timestamn ordering is a technique for
eliminating restarts during T/O scheduling [BP,
BSR, IIV, RNTR, 6X1 , SP;21. When a scheduler re-
ceives an operation 0 that might cause a future re-
start, the scheduler delays 0 until it is certain
that no future restarts are possible.

Imagine that each T/O scheduler has a set of input
queues, one R-aueue and one W-queue per TM. Each
R-queue (resp. W-queu) is a FIFO channel
transmitting dm-reads P resp. dm-writes) from onef%
to one scheduler. In addition, each TM is required
to place operations into any given queue in time-
stamp order.

This structure can be used for rw synchronization
as follows. Suppose scheduler S. receives a dm-

read(x) with timestamp TS.

read “too early“,

If Sj oitputs this dm-

subsequent dm-writes may have to
be rejected. S. can avoid this possibility by

J
scanning its W-queues and only outputting the dm-
read if (a) every W-queue is non-empty, and (b) the
first dm-write on each W-queue has timestamp great-
er than TS. This guarantees that S. will not out-

J
put the dm-read until it has processed every dm-
write with timestamp less than TS that Sj will m

receive. To avoid the rejection of dm-reads, S.
3

can use multi-version T/O, or it can delay the pro-
cessing of dm-writes until it is has processed all
dm-reads with smaller timestamps using an algorithm
similar to the above.

For ww synchronization, the scheduler need only
wait until every W-queue is nonempty and then out-
put the dm-write with smallest timestamp. If con-
servative T/O is used for both rw and ww synchroni-
zation, the scheduler waits until every queue is
nonempty and then outputs the operation with small-
est timestamp.

The above implementation of conservative T/O suf-
fers three major problems. First, the implementa-
tion does not guarantee termination -- if some TM
never sends an operation to some scheduler, the
scheduler will “get stuck” due to the empty queue
and will never output any operations. Second, the
implementation requires that all TMs communicate
regularly with all schedulers -- this is infeasible
in large networks. Third, the implementation is
overly conservative -- e.g., the combined rw and ww
algorithm processes all operations in timestamn
order, not merely conflicting operation. The first
two problems are addressed below. The third is
considered in Section 4.6.

Guaranteeinp. Termination -- Null operations

To guarantee termination, we require that TMs per-
iodically send timestamped null-operations to each
scheduler, in the absence of any “real” traffic. A
null-operation is a dm-read or dm-write that does
not reference a data item. When TMi sends a null-.

dm-read (resp. null-dm-write) with timestamp TS to

292

scheduler S.
J’

this signifies that TMi will not send

Sj any more dm-reads (resp. dm-writes) with time-

stamps smaller than TS. Thus, any scheduling deci-
sion requiring that S ; receive all dm-reads (resp.

dm-writes) from TPli tinestamped less

made after that null-dm-read (resp.
is received. An impatient scheduler
TK for a null-operation by sending
operation to it.

midinc: Unneccssarv Communication

than TS can be

null-dm-write)
can prompt a
a reauest-null

To avoid unnecessary communication between TMs and
schedulers, null-operations with very large time-
stamps can be used. In extreme cases, TMi can send

Sj a null-operation with infinite timestamp, signi-

fying that TLli does not intend to communicate with

Sj until further notice. Of course, when T&Ii needs

to send a “real” operation to S., some mechanism is
J

required to retract the infinite timestamp and re-
place it by a finite one.

4.6 Conservative T/O with Transaction Classes

Another technique for reducing communication is
transaction classes [BKGIJI. Here, we assume that
the rcadsct and writeset of every transaction is
known in advance. This information is used to
group transactions into predefined classes. Class
definitions help support a less conservative sche-
duling policy.

A transaction class is defined by a readset and
writeset (see fig. 4.2). Transaction T is a member

Figure 4.2 Transaction Classes

aA class is defined by a readset and a writeset.
E.g.,

Cl: readset = {x,) , writeset = (y,,y,)

C2: readset = (x1,y2) , writeset = {y 1’ 2’ 2’23) y z

C3: readset = {y,, z,} , writeset = (x 1’ 2+3) z

*A transaction is a member of a class if its read-
set is a subset of the class readset and its
writeset is a subset of the class writeset. E.g.,

Tl: readset = {x,} , writeset = Iyl, y2 1

T2: readset = {y2} , writeset = {z2, 23)

T3: readset = {z,} , Writes& = Ix,)

*T 1 is a member of Cl and C2

.T2 is a member of C2 and C
3

l T
3

is a member of C
3

of class C iff T’s readset is a subset of C’s read-
set, and T’s writeset is a subset of C’s writeset.
(Classes need not be disjoint.) Class definitions
are not expected to change frequently during normal
operation of the system. Changing a class defini-
tion is akin to changing the database schema and
requires mechanisms beyond the scope of this paper.
We assume that class definitions are stored in
static tables which are available at any site re-
quiring them.

Classes are associated with Ttls. Every transaction
that executes at a TM must be a member of a class
associated with the TX. If a transaction is sub-
mitted to a TM at which this property does not
hold, the transaction is forwarded to another TM
that has an appropriate class. Ic’e assume that
every class is associated with exactly one TM, and
conversely, every TM is associated with exactly one
class. We use Ci to denote the class associated

with TM i. This notation simplifies our discussion,

but does not constrain system operation in any way.
For example, to execute transactions that are
members of class C

1 at two TMs, we define another

class c2 with the same readset and writeset as C 1
and associate C 1 with one TM and C2 with the other.

On the other hand, to execute transactions that are
members of two classes at one site, we multi-
program two TMs at the same site.

Transaction classes are exploited by conservative
T/O schedulers as follows. Consider rw synchroni-
zation and suppose scheduler S. wants to output a
dm-read(x) with timestamp TS. &stead of waiting
for dm-writes with smaller timestamp from all TMs,
Sj need only wait for dm-writes from those TMs

vhose class writeset contains x. Similarly, to
process a &n-write(x) with timestamp TS, Sj need

only wait for dm-reads with smaller timestamp from
those TKs whose class readset contains x. Thus,
the level of concurrency in the system is in-
creased. ww synchronization proceeds analogously.

This technique also reduces communication require-
ments, since a TM need only communicate with a
scheduler if its class readset or writeset contains
data items protected by the scheduler.

4.7 Conservative T/O with Conflict Graph Analysis

Conflict graph analvsis is a technique for further
improving the performance of conservative T/O with
classes. A conflict Eraoh is an undirected graph
that summarizes potential conflicts between trans-
actions in different classes. For eack class Ci

the graph contains two nodes, denoted ri and wi,

which intuitively represent the readset and vrite-
set of C. 1’ The edges of the graph are defined as

follows (see fig. 4.3). (i) For

there is a vertical edEe between

For each pair of classes Ci and C j

293

is a horizontal edge between w. and w. iff the
1 J

writeset of C. 1 intersects the writeset of C..

(iii) For each pair of classes Ci and C j (with i+:)

there is a diagonal edge between ri and w. iff the
3

readset of Ci intersects the writeset of C..
J

Intuitively, a horizontal edge indicates that a
scheduler Sk may be forced to delay dm-writes for

purposes of ww synchronization. Suppose classes Ci

and C.
J

are connected by a horizontal edge (i.e.,

there is an edge between wi and wj). Then the

class writesets intersect and so, if Sk receives a

dm-write from Ci, Sk must delay the dm-write until

sk receives all dm-writes with smaller timestamps

from C..
J

Similarly, a diagonal edge indicates that

Sk may need to delay operations for rw synchroniza-

tion.

Conflict graph analysis improves the situation by
identifying inter-class conflicts that never cause
non-serializable behavior. This corresponds to
identifying horizontal and diagonal edges that do
not require synchronization. In particular, sche-
dulers need only synchronize dm-writes from C. and 1
Cj if either (1) the edge (wi, w.) is embedded in a

& of the conflict graph; or i 2) portions of the
intersection of Ci’s writeset and C.‘s writeset are

stored at two or more DMs[BSI. Thai is, if condi-
tions (1) and (2) do not hold, a scheduler S

k
need

not process dm-writes from Ci and C.
J

in timestamp

order. Similarly, dm-reads from Ci and dm-writes

from Ci need only be processed in timestamp order
J

if either (‘) the edge (‘i, w) is embedded in a :
.I

cycle of the conflict graph; or (2) portions of the
intersection of Ci’s readset and Cj’s writeset are

stored at two or more DKs[BSJ.

Since classes are defined statically, conflict
graph analysis is also performed statically. The
output of this analysis is a table indicating which
horizontal and vertical edges require synchroniza-
tion and which do not. This information, like
class definitions, is distributed in advance to all
schedulers that require it.

Conservative T/O with conflict graph analysis has
been implemented in the SDD-1 DDBMS [BSRI. In
principle, conflict graph analysis can be applied
to other synchronization techniques to improve
their performance as well. Theoretical aspects of
this integration are examined in [BSWI, but many
details remain to be worked out.

4.8 Timestamp Management

A common criticism of T/O schedulers is that too
much memory is needed to store timestamps. This
problem can be overcome by “forgetting” old time-
stamps.

Timestamps are used in basic T/O to reject opera-
tions that “arrive late”, e.g., to reject a dm-
read(x) with timestamp TSl that arrives after a dm-

write(x) with timestamp TS2 > TS1. In principle,

TSI and TS2 can differ by an arbitrary amount, but

in practice these timestamps are unlikely to differ
by more than a few minutes. Consequently we may
store timestamps in small tables which are periodi-
cally purged.

R-timestamps are stored in the R-table with entries
of the form <x, R-timestamps; for any data item x,
there is at most one entry. In addition, there is
a variable, R-min which tells the maximum value of
any timestam-; has been purged from the table.
To find R-timestamp(a scheduler searches the
R-table for an <x, TS> entry. If such an entry is
found, TS = R-timestamp(otherwise, R-
timestamp < R-min and to err on the side of
safety, the scheduler assumes R-timestamp = R-

Figure 4.3 Conflict Graph

Define Cl, C2, c3 as in figure 4.2

Cl readset = {xl> l=~y2>z31

Clwriteset = {y,, y2 1 C2 writeset = {y,, y2, z2, z,} C3 writeset = Ix,, z2, 233

294

min. To update R-timestamp(the scheduler modi-
fies the <x, TS> entry, if one exists; otherwise,
a new entry is created and added to the table.
When the R-table is full, the scheduler selects an
appropriate value for R-min and deletes all entries
from the table with smaller tinestamp. W-
tinestamps are managed similarly; analogous tech-
niques can be devised for multi-version databases.

Ilaintaining timestamps for conservative T/O is even
cheaper, since conservative T/O only requires time-
;~;;;;~v~ner~tions, not timestamped data. If con-

T 0 is used for rw svnchronization, the
R-timestamps of data items are rendered useless and
may be discarded. If conservative T/O is used for
both rw and ww synchronization, I!-timestamps can be
eliminated too.

4.9 Integrating Two-Phase Commit into T/O

It is necessary to integrate two-phase commit into
the T/O implementations described above to ensure
atomic commitment of updates (see Section 2). This
is done by timestamping pre-commits and modifying
the T/C implementations to accept or reject pre-
commits instead of dm-writes. If a scheduler re-
jects a pre-commit, the issuing transaction is
aborted. However, if a scheduler accepts a pre-
commit, it must accept the corresponding dm-write
no matter when that operation arrives. To make
this guarantee, the scheduler may be forced to
u conflicting operations that arrive before the
dm-write.

Integratinp Two-Phase Commit Into Basic T/O

Consider a pre-commit(x) with timestamp TS. Let P
denote this operation and let W denote the corres-
ponding dm-write. Assume that basic T/O is used
for rw synchronization. P can be accepted by a
scheduler iff TS > R-timestamp(i.e., P is ac-
cepted iff the scheduler can still output W. Once
the scheduler accepts P, it must guarantee that TS
will remain greater than R-timestamp until W is
received. To make this guarantee, the scheduler
refuses to output any dm-read(x) with timestamp
greater than TS, until W is received. All such dm-
reads that arrive before W are placed on a waiting
queue.

For ww synchronization, P is accepted by the sche-
duler iff TS > W-timestamp(Once the scheduler
accepts P, it agrees not to output any dm-write(x)
with timestamp greater than TS until it receives W.
All such dm-writes that arrive before H are placed
on a waiting queue as above.

Integrating Two-Phase Commit Into Thomas Write Rule

TWR applies only to ww synchronization and elimin-
ates the possibility of rejecting dm-writes for
purposes of ww synchronization. Hence there is no
need to incorporate two-phase commit into the ww
synchronization algorithm. Pre-commits must still
be sent to all sites being updated, but the pre-

commits need not be processed by the ww scheduler.

Integrating Two-Phase Commit Into Multi-Version T/O

Like TWR, multi-versions eliminate the need for
two-phase commit insofar as ww synchronization is
concerned. However, two-phase commit remains as
issue for rw synchronization.

Let P be a pre-commit(x) with timestamp TSl and let

W be the corresponding dm-write. When P arrives at
a scheduler,
applied:

the scheduling rule of Section 4.4 is
let TS2 be the smallest W-timestamp >

TSl ; if any R-timestamp lies between TSl and

TS2, P is rejected, otherwise P .is accepted. If

the scheduler accepts P, it agrees not to output
any dir-read(x) with timestamp between TSl and TS2

until W is received. As before, all such dm-reads
that arrive before W are placed on a waiting queue.

Intenratina Two-Phase Commit Into Conservative T/O

Two-phase commit need not be tightly integrated
into conservative T/O, because dm-writes are never
rejected. However, scheduling delay can be reduced
by transmitting pre-commits via W-queues. For
example, suppose conservative T/O is used for rw
synchronization, and suppose scheduler S. wants to

J
output a dm-read(x) with timestamp TS.

‘j need
only delay this dm-read until each W-queue contains
a pre-commit with, @mestamp greater than TS; it
need not’ wait for ‘the corresponding dm-writes.
(However I the dm-read may have to wait for some dm-
writes with smaller timestamp; i.e., if Sj has ac-

cepted a pre-commit(x) with timestamp TS’ < TS, the
dm-read cannot be output until the dm-write(x) with
timestamp TS ’ is received.)

4.10 Heuristics for Reducing Restarts

This section describes three heuristics for reduc-
ing the cost or probability of restarts for non-
conservative T/O implementations.

Predeclaration of Readsets and Writesets

To reduce the cost of restarts, transactions should
issue their dm-reads and pre-commits as early as
possible. The extreme version of this heuristic
calls for transactions to predeclare their readsets
and writesets, so that dm-reads and pre-commits are
issued for the entire readset and writeset before a
transaction begins its main execution. If no oper-
ation is rejected, the transaction is guaranteed to
execute with no danger of restart.

Delavina of Ooerations

To reduce the probability of restart, a scheduler
can a the processing of operations to wait for
“earlier” operations (i.e., ones with smaller time-
stamps) to arrive. This heuristic is essentially a
compromise between conservative and non-
conservative T/O, and trades response time for a

295

reduction in
delay can be tuz%?ztop e

robability The amount of
imize thls’trade-off.

Reading Old Versions

The performance of multi-version TJO can be
improved by ,permitting aueries (i.e., read-only
transactions) to read old versions of data items.
Recall that in multi-version T/O, dm-read opera-
tions are never rejected but may cause
pre-commits to be rejected. (E.g.,

subsequent
once dm-read(x)

with timestamp TS is processed, a subsequent pre-
commit(x) with timestamp TS’, where TS’ < TS, may
be rejected.) To reduce the probability of reject-
ing a pre-commit, we may assign old (i.e. small)
timestamps to queries. Of course, this also causes
the query to read older data. Thus, this technique
entails a compromise between system performance and
timeliness of data. Little is known about this
tradeoff in general, but a good compromise should
of ten be achievable. For example, if queries are
assigned timestamps that are five minutes old, we
would expect few queries to interfere with updates.
And in many applications, five minute old data is
perfectly acceptable.

As a fringe benefit, this technique also improves
the response time for queries by reducing the prob-
ability that a query’s dm-reads will be blocked by
pre-commits.

5. Integrated TJO Concurrency Control Methods

The synchronization techniques of Section 4 can be
integrated to form twelve principal T/O concurrencv
-methods:

2 rw techniaue ww technique

8
9

10
11
12

basic T/O basic T/O
basic T/O Thomas Write Rule (TWR)
basic T/O multi-version T/O
basic T/O conservative T/O
multi-version TJO basic TJO
multi-version T/O TWR
multi-version T/O multi-version T/O
multi-version T/O conservative T/O
conservative T/O basic T/O
conservative T/O IWR
conservative T/O multi-version T/O
conservative T/O conservative T/O

Each TJO methoo that incorporates a non-
conservative comnonent can be further refined by
including (1) techniques for forpetting timestamps
(see Section 4.8) and (2) heuristics for reducing
restarts (see Section 4.10). Each method that in-
corporates a conservative component may also incor-
porate classes (see Section 4.6) and conflict graph
analysis (see Section 4.7). Thus, these 12 princi-
pal methods produce over 50 distinct methods. In
;$is.sectiop we describe the twelve principal meth-

s in detail.

5.1 Using Basic T/O for rw Synchronization

Wethods l-4 use basic TJO for rw synchronization.
Each stored data item e.g. xi, has an R-timestamp

and a W-timestamp. Let T be a transaction with
timestamp TS. To read xi, T issues a dm-read(xi)

with timestamp TS; this dm-read is accented iff TS
> W-timestamp(To write xi, T issues a pre-

commit(xi) with timestamp TS; this pre-commit is

accented iff (a) TS > R-timestamp (xi), and (b) a

condition determined by the ww synchronization
technique is also satisfied.

Method 1 -- Basic T/O for ww synchronization. The
pre-commit is accepted iff TS > R-timestamp (xi)

and TS > W-timestamp (xi.)

Method 2 -- TWR for ww synchronization. The pre-
commit is accepted iff TS > the largest R-
timestamp(However, if the pre-commit is ac-

cepted and TS < the W-timestamp(the correspon-

ding dm-write has no effect on the database. This
method represents an optimization of Hethod 1 that
is apparently preferable in most situations.

Method 3 -- Multi-version T/O for ww synchroniza-
tion. The pre-commit is accepted iff TS > R-
timestamp(the W-timestamp is irrelevant. If

the pre-commit is accepted, the corresponding dm-
write creates a new version of ‘i’ While this

method appears to be a space-inefficient version of
Method 2, it can yield better performance by let-
ting queries read old versions of data items ; see
Section 4.10.

Method 4 -- Conservative T/O for ww synchroniza-
tion. Pre-commits are processed by each scheduler
in timestamp order. I.e., a scheduler S will not
process a pre-commit with timestamp TS until it has
processed all pre-commits with smaller timestamp.
When S processes a pre-commit(xi) with timestamp

TS, it accents the pre-commit iff TS > R-
timestamp(bt first glance this method appears

to be a time-inefficient version of Hethod 2. How-
ever, unlike Method 2, this method applies updates
to each DM in timestamp order. Consequently, the
database at each DN is always consistent between
updates, a property which may be useful for relia-
bility reasons.

5.2 Using Multi-version T/O for rw Synchronization

Methods 5-8 use multi-version T/O for rw synchroni-
zation. Let T be a transaction with timestamp TS.
To read xi, T issues a dm-readcx.) with timestamp
TS; this dm-read is alwavs acceited. TO write Xi,

T issues a pre-commit(xi) with timestamp TS; this

pre-commit is accented iff (a) there is no R-
timestamp that lies between TS and the smallest

296

W-timestamp larger than TS, and (b) a condition

determined by the ww synchronization technique is
also satisfied.

Method 5 -- Basic T/O for ww synchronization. For
basic T/O, condition (b) requires that TS be
greater-than the largest W-timestamp(So, for

Method 5, conditions (a) and (b) may be simplified:
The pre-commit is accepted iff TS > largest R-
timestamp and the largest W-timestamp(If

the pre-commit is accepted, the corresponding dm-
write creates a new version of x..

Method G -- TWR for ww synihroniaat ion. This
method is incorrect. TWR requires that a dm-
write(xi) with timestamp TS be ignored if TS < the

maximum W-timestamp(This may cause subsequent

dm-reads to read inconsistent data; see fig. 5.1.
(Kethod 6 is the only incorrect method we will en-
counter.)

Method 7 -- Multi-version T/O for ww synchroniza-
tion. This achieves the goals of TWR in conjunc-
tion with multi-version rw synchronization. The
pre-commit is accepted iff condition (a) holds. If
the pre-commit is accepted, the corresponding dm-
write creates a new version of x i. This method is

similar to the algorithms of [Reed, Montgomery].

Method 8 -- Conservative T/O for ww synchroniza-
tion. A scheduler S will not process a pre-commit
with timestamp TS until it has processed all pre-
commits with smaller timestamps, and none with
larger timestamps. This permits us to simplify the
condition for acceptance of a pre-commit: A pre-
commit(xi) with timestamp TS is accepted iff TS is

greater than the largest R-timestamp(

Systematic ForPetting of Old Version

In Methods 5 and 8, the versions of each data item
xi are created in timestamp order. That is, once a

version of xi has been created with timestamp TS,

no subsequent transaction can create a version with
a smaller timestamp. When this property holds, it
is possible to forvet (i.e., delete) old versions
such that we never delete a version needed by a
later transaction.

Let W-QaX(Xi) be the maximum kJ-timestamp and

W-min be the minimum value of W-max(xi) over all

data items xi. Observe that no pre-commit with

timestamp smaller than W-min can be accepted in the
future: since W-min < W-ISaX for all Xi) all
future update transactions with timestamps less
than W-min are guaranteed to be restarted. So, in-
sof at as update transactions are concerned, we can
safely forget all versions of every data item time-
stamped less than W-min. Queries are handled in
this framework by interpreting all dm-reads with
timestamps less than kJ-min as if they had time-
stamps equal to W-min.

Figure 5.1 Inconsistent Retrievals in Method 6

*Consider data items x and y with the following
versions

values 0 100
X I I l

W-timestsmps 0 100

values 0
Y l

W-timestsmps 0

*Now suppose T has timestamp 50 and writes x:=50,
y:50. Under Method 6, the update to x is ignored,
and the result is

values 0 100
L X I e

W-timestamps 0 100

values 0 50
Y , I I 6

W-timestamps 0 50

*Finally, suppose T' has timestamp 75 and reads x
and y. The values it will read are x=0, ~'50
which is incorrect. T' should read x=50, y=50.

Notice also that Wethods 5 and 8 only require that
the largest R-timestamp of each data item be
stored. Smaller R-timestamps may be forgotten at
once.

Systematic Reading of Old Versions

Methods 5 and 8 also support a systematic technique
for assigning old timestamps to queries (see
Section 4.10) so that (a) no dram-read issued by a
query will ever cause a pre-commit to be rejected;
and (b) the timestamp assigned to the query is the
largest one satisfying (a). This technique is sim-
ilar to the technique for systematic forgetting of
old versions.

Let Q be a query. The technique we describe re-
quires that Q’s readset be predeclared. Before Q
begins its main execution Q’s readset is examined;
for each xi in the readset, W-max(xi) is ascer-

tained. In addition, we calculate W-min = min{W-
max(xi is in Q’s readset). The timestamp as-

signed to Q is W-min - 1. The correctness of this
technique is shown in [BGZI.

5.3 Using Conservative T/O for rw Synchronization

The remaining T/O methods use conservative T/O for

297

rw synchronization. In these methods, a scheduler
S will not process a dm-read(xi) with timestamp TS

until it has processed all pre-commits with smaller
timestamps and none with larger timestamps. Sym-
metrically, S will not process a pre-commit(xi)

with timestamp TS until it has processed all dm-
reads with smaller timestamps and none with larger
timestamps. When S processes a pre-commit(xi) with

timestamp TS, its action depends on the ww tech-
nique.

Method 9 -- Basic T/O for ww synchronization. The
pre-commit is accepted iff TS > W-timestamp(

Method 10 -- TWR for ww synchronization. The pre-
commit is always accepted. However, if TS < W-
timestamp(the corresponding dm-write has no

effect on the database.

Method 10 is essentially the concurrency control of
SDD-1 [BSR]. In SDD-1, however, the method is re-
fined in several ways to reduce delay. First, SDD-
1 uses classes and conflict nraoh analysis and re-

L!
uires redeclaration of readsets, In addition,
DD-1 on y entorces the conservative scheduling

rule on dm-reads, meaning that dm-reads wait for
pre-commits, but pre-commits need not wait for all
dm-reads with smaller timestamps. Consequently, it
is possible for dm-reads to be rejected in SDD-1.
The SDD-1 designers accepted this possibility for
two reasons: (1) since readsets are predeclared,
all dm-reads are issued before the transaction be-
gins its main execution and the cost of rejecting a
dm-read is modest. (2) The probability that a dm-
read will be rejected can be reduced by assigning
large timestamps to transactions. Other techniques
for reducing restarts are described by [Lin].

Method 11 -- Multi-version T/O for ww synchroniza-
tion. The pre-commit is always accepted and the
corresponding dm-write always creates a new version
of xi. When multi-versions are used, the conserva-

tive rw technique can be optimized as follows: a
dm-read can never be rejected, and so there is no
reason to force pre-commits to wait for dm-reads.
(dm-reads must still wait for pre-commits to ensure
that pre-commits are never rejected.)

Nethod 12 -- Conservative T/O for ww synchroniza-
tion. Scheduler S will not process a pre-commit
with timestamp TS until it has processed all pre-
commits with smaller timestamps and none with
larger timestamps. Combined with conservative rw
synchronization, the effect is to process & oper-
ations in timestamp order. Method 12 has been re-
commended by [BP, HV, KN'IR, SMl, S&21.

6. Conclusion

We have presented a framework for DDBMS concurrency
control and have used that framework to describe a
number of DDBMS concurrency control methods. The

framework has two main parts: (1) a model of dis-
tributed transaction execution, in which trans-
actions execute by issuing dm-read, pre-commit, and
dm-write operations; and (2) a decomposition of the
concurrency control problem into the sub-problems
of rw and ww synchronization.

We presented several timestamp-based synch roniza-
tion techniques for solving each sub-problem. Four
of these techniques were deemed to be "principal":
basic T/O, the Thomas Write Rule, multi-version
T/O, and conservative T/O. These techniques vary
substantially in their behavior but are united by a
common underlying objective: each technique seeks
to execute conflicting operations in timestamp
order, or in some equivalent order. Basic T/O
achieves this objective by reiecting operations
that are received out of timestamp order. The
Thomas Write Rule ignores operations that are
received out of timestamp order. (This technique is
only suitable for ww synchronization.) Multi-
version T/O retains multiple "versions" of data
items to permit many operations that are received
out of order to be executed as if they had been
received in order. And conservative T/O delays op-
erations that are received out of order to permit
all operations with smaller timestamps to be pro-
cessed first.

Finally we showed how to integrate any principal rw
technique with any principal ww technique to yield
a principal concurrency control method. Twelve
principal methods can be constructed in this way.
Each principal method can be refined by several
non-principal techniques so that more than 50 dis-
tinct concurrency control algorithms can be built
using the framework and material of this paper.

Most of the principal methods we describe are new
algorithms. These are Methods l-4 (which use basic
TIO for rw synchronization); Methods 5 and 8
(multi-version T/O for rw, with basic T/O or con-
servative T/O for ww); and Methods 9 and 11 (con-
servative T/O for rw, with basic T/O or multi-
version T/O for ww). Of the remaining methods,
Method 6 (multi-version T/O with TWR) is an incor-
rect method; Method 7 (multi-version T/O for rw and
ww) is similar but not identical to the algorithms
of [Montgomery, Reed]; Method 10 (conservative T/O
with TWR) is essentially the SDD-1 concurrency con-
trol algorithm [BSR]; and Wethod 12 (conservative
T/O for rw and ww) is essentially the algorithm re-
commended by [BP, HV, KWTH, Sl11,21.

A major issue we have not addressed concerns the
performance of these algorithms. This issue is ad-
dresssed aualitativelv in IBG21. However, little
quantitative performance analysis has been reported
in the literature and this remains a topic for
future research.

* The term "two-phase comnit" is commonly used to
denote the distributed version of this procedure.
However, since the centralized and distributed
versions are identical in structure, we use "two-
phase commit" to describe both.

* TS equals infinity if TS
W-tiZestamp(x). 1 is the largest

298

References

[BGlJ

LnG2.1

[BP]

[BSI

[BSRI

[SW1

Bernstein, P.A., and Goodman, M., 'lhp-
proaches to Concurrency Control in Distrib-
uted Databases", Proc. 1979 National Com-
puter Conf., June 1979.

Bernstein, P.A., and Goodman, 1;. , "Funda-
mental Algorithms for Concurrency Control
in Distributed Database Systems", Tech.
Rep., Computer Corp. of Am., Feb. 19GO.

Badal, D.Z.; and Popek, G.J. "A Proposal
for Distributed Concurrency Control for
Partially Redundant Distributed Data Ease
System," Proc. 3rd Berkeley Workshon on
Distributed Data lknagement and Commuter
Networks, 197&, pp. 273-2ES.

Bernstein P.A. and Shipman D.W., "The Cor-
rectness of Concurrency Control Mechanisms
in a System for Distributed Databases (SDD-
l)", ACM Trans. on Database Svs., Vol. 5,
110. 1, March 13EO.

Bernstein P., Shipman D., and Rothnie J.,
"Concurrency Control in a System for Cis-
tributed Databases (SDD-l)", ACM Trans. on
Database Svst., Vol. 5, No. 1, March 19SO.

Bernstein, P. A., Shipman D. W. and Won&,
w. s., "Formal Aspects of Serializability
in Database Concurrency Control", IEEE
Trans. on Software Engineering, Vol. SE-5,
No. 3, May 1979.

[GBWCE 1
Goodman, N., P.A. Bernstein, E. Wong, C.L.
Reeve, and J.B. Rothnie, "Query Processing
in SDD-l", Tech. Rep. 79-06, Computer
Corp. of Am., Oct. 1979

[Gray 1
Gray, J. N. Notes on Database Operating
Systems, unpublished lecture notes. IBM
San Jose Research Laboratory, San Jose,
Calif., 1977.

[IIS

[HVI

Hammer, M. M. and Shipman, D. W., "An Over-
view of Reliability Mechanisms for a Dis-
tributed Data Base System", Proc. 1977
COMPCOlJ. IEEE, N.Y.

Hammer, M.M., and Shipman, D.V., "Reliabil-
ity Mechanisms for SDD-I", Tech. Rep. 79-
05, Computer Corp. of Am., July 1979.

I KRTHI

[LSI

[Linl

Copies", Proc. First International Conf. on
Distributed Comnutinc. Systems, IEEE, N.Y.,
pp. 625-631.

Kaneko, A., Y.Nishihara, K. Tsuruoka, and
1:. Hattori, "Logical Clock Synchronization
Method for Duplicated Database Control",
Proc. First International Conf. on Distrib-
uted Computinc. Svstems, IEEE, N.Y., Oct.
1979, pp. 601-611.

Lampson, B. and Sturgis, II., "Crash Becov-
ery in a Distributed Data Storage System",
Tech. ReF., Computer Science Lab., Xerox
Palo Alto Research Center, 1976.

Lin, W. K., "Concurrency Control in a Mul-
tiple Copy Distributed Data Base System",
Proc. 4th Berkeley Nork. on Distributed
Data Management & Computer Networks, August
1979.

[Nontgomeryl
Montgomery, \!.A., "Robust Concurrency Con-
trol for a Distributed Information System",
Ph.D. dissertation, Laboratory for Computer
Science, MIT, Dec. 1978.

[PBRI
Papadimitriou, C. H., Bernstein, P. A. and
Rothnie, J. B., Jr., "Some Computational
Problems Related to Database Concurrency
Control," Proc. Conf. on Theoretical Con-
puter Science, Waterloo, Ontario, August
1977.

[Papadimitrioul
Papadimitriou, C. H., "Serializability of
Concurrent Updates", J. of the ACM, Vol.
26, No. 4, Oct. 1979, pp. 631-653.

[Reed]

1 SMl 1

[SM21

[SLRI

Reed, D.P., Namine and Svnchronization in a
Decentralized Computer Svstem, Ph.D. The-
sis, M.I.T. Department of Electrical Engi-
neering, Sept. 1978.

Shapiro, R.M. and Millstein, R.E., "Relia-
bility and Fault Recovery in Distributed
Processing", Oceans '77 Conference Record,
Vol. II, Los Angeles, 1977.

Shapiro, R.M. and Millstein, R.E., NSW Re-
liabilitv Plan, Mass. Computer Associates,
Tech. Rep. 7701-1411, June 1977.

Stearns, R.E., Lewis, P.M. 11 and
Rosenkrantz, D.J., "Concurrency Controls
for Database Systems", Proc. 17th SWP. on
Found. of Computer Science, IEEE, 1976, pp.
19-32.

Herman, D. and J.P. Verjus, "An Algorithm
for Maintaining the Consistencyof Multiple

299

[Thomas11
Thomas, R.H., "A Solution to the Concur-
rency Control Problem for Multiple Copy Da-
tabases", Proc. 1978 COMPCOM Conference.,
IEEE, N.Y.

[Thomas21
Thomas, R.H., "A Kajority Consensous Ap-
proach to Concurrency Control for Multiple
Copy Databases", ACM Trans. on Database
m, Vol. 4, No. 2, June 1979, pp. 180-
203.

300

