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Abstract 

We decompose the problem of concurrency control 
into the sub-problems of read-write and write-write 
synchronization. We present a series of timestamp- 
based algorithms (called synchronization tech- 
niaues) that achieve read-write and/or write-write 
synchronization. And we show how to combine any 
read-write technique with any write-write technique 
to yield a complete concurrency control algorithm 
(called a method). Using this framework we 
describe 12 “principal” concurrency control methods 
in detail. Each principal method can be modified 
by refinements described in the paper, leading to 
more than 50 distinct concurrency control 
rithms. 

algo- 

1. Introduction 

In this paper we present a framework for the design 
and analysis of concurrency control algorithms for 
distributed database management systems (DDBMS). 
This framework permits us to describe a large 
number of concurrency control algorithms in concise 
terms and guides us in the discovery of new algo- 
rithms. Using this framework we describe 12 “prin- 
cipal” concurrency control algorithms in detail and 
show how these principal algorithms can be refined 
to yield more than 50 distinct algorithms. These 
algorithms subsume about half of the literature on 
DDBKS concurrency control [BG1,21; in addition 
these algorithms extend the state-of-the-art in 
DDBMS concurrency control, because most of them are 
new. 
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We begin by defining in (Section 2) a standard 
terminology for describing DDBMS concurrency con- 
trol algorithms and a standard model of the DDBMS 
environment. Using this terminology and model as a 
foundation, we decompose the problem of concurrency 
control into the sub-problems of read-write and 
write-write synchronization (in Section 3). In 
Section 4 we present a series of timestamp-based 
algorithms (called synchronization techniaues) that 
achieve read-write and/or write-write synchroniza- 
tion. Finally in Section 5 we show how each read- 
write technique can be integrated with each write- 
write technique to form a complete and correct con- 
currency control algorithm. 

This work is part of a larger study of concurrency 
control [BG2] that considers locking-based synchro- 
nization techniques in addition to timestamp-based 
ones. 

2. Transaction Processing Kodel 

To understand how a concurrency control algorithm 
operates, one must understand how the algorithm 
fits into an overall DDBMS. In this section we 
present a simple model of a DDBMS, emphasizing how 
the DDBMS processes transactions. 

2.1 Preliminary Definitions 

A distributed database management system (DDBKS) is 
a collection of sites interconnected by a network. 
Each site is a computer running one or both of the 
following software modules : a transaction manager 
(TM) or a data manager (DII). Briefly, TMs super- 
vise user interactions with the DDBHS while DMs 
manage the actual database. A network is a 
computer-to-computer communication system. The 
network is assumed to be perfectly reliable -- if 
site A sends a message to site B, site B is gueran- 
teed to receive the message without error. In ad- 
dition, we assume that between any pair of sites 
the network delivers messages in the order they 
were sent. 

From a user’s perspective, a database consists of a 
collection of logical data items, denoted X,Y,Z,... 
We leave the granularity of logical data items un- 
specified. In practice, logical data items may be 
files, records, etc. A lonical database staLe is 
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an assignment of values to the logical data items 
comprising a database. Each logical data item may 
be stored at any DM in the system or redundantly at 
several DMs. A stored copy of a logical data item 
is called a stored data item; xl ,..., xm denote 

the stored copies of logical data item X. When no 
confusion is possible we use the term data item for 
stored data item. A stored database state is an 
assignment of values to the stored data items of a 
database. 

Users interact with the DDBMS by executing w- 
actions. Transactions may be on-line queries ex- 
pressed in a self-contained query language; appli- 
cation programs written in a general-purpose pro- 
gramming language; etc. The concurrency control 
algorithms we study pay no attention to the COILIT)U- 
tations performed by transactions. Instead these 
algorithms make all of their decisions based on the 
data items a transaction reads and writes, and so 
the detailed form of transactions is unimportant in 
our analysis. However we do assume that trans- 
actions represent complete and correct computa- 
tions; i.e. each transaction if executed alone on 
an initially consistent database would terminate, 
output correct results, and leave the database con- 
sistent. The logical readset (resp. writeset) of a 
transaction is the set of logical data items the 
transaction reads (resp. writes). Stored readsets 
and stored writesets are defined analogously. Two 
transactions are said to conflict if the stored 
readset or writeset of one intersects the stored 
writeset of the other. 

The correctness of a concurrency control algorithm 
is defined relative to user expectations regarding 
transaction execution. There are two correctness 
criteria. (1) Users expect that each transaction 
submitted to the system will eventually be execut- 
ed. And (2) users expect the computation performed 
by each transaction to be the same whether it exe- 
cutes alone in a dedicated system or in parallel 
with other transactions in a multiprogrammed 
system; the attainment of this expectation is the 
principal issue in concurrency control. 

2.2 DDBMS Architecture 

A DDBMS contains four components (see fig. 2.1): 
transactions, TMs, DNs, and data. Transactions 
communicate with TKs, TEs communicate with DMs, and 
DNs manage the data. (Tks do not communicate with 
other TMs, nor do DMs communicate with other DMs.) 
The interface between transactions and TMs is the 
external interface of the DDBMS; the interface 
between TMs and DMs is its internal interface. 

TMs supervise transactions. Each transaction exe- 
cuted in the DDBMS is supervised by a single TM, 
meaning that the transaction issues all of its da- 
tabase operations to that TM. Any distributed com- 
putation that is needed to execute the transaction 
is managed by the TM. Therefore, each transaction 
believes the system consists of a single TM and 
multiple DIr!s. 

Four operations are defined at the external inter- 
face. Let X be any logical data item. READ(X) 

returns the value of X in the current logical data- 
base state. WRITECX, new-value) creates a new 
logical database state in which X has the specified 
new value. Since transactions are assumed to rep- 
resent complete computations, we use BEGIN and END 
operations to bracket transaction executions. 

DMs manage the stored database, functioning essen- 
tially as back-end database processors. In re- 
sponse to commands from transactions, TMs issue 
commands to DMs specifying stored data items to be 
read or written. The details of the TM-DM inter- 
face constitute the core of our transaction pro- 
cessing model and are discussed in Sections 2.3 and 
2.4. Section 2.3 describes the TM-DM interaction 
in a centralized database environment. Section 2.4 
extends the discussion to a distributed database 
setting. 

2.3 Centralized Transaction Processing Model 

A centralized DBMS consists of one TM and one DM 
executing at the same site. A transaction, T, ac- 
cesses the DBMS by issuing BEGIN, READ, WRITE, and 
END operations, which are processed as follows. 

BEGIN : The TM initializes a private workspace for 
T. The private workspace functions as a temporary 
buffer for values that T writes into the database, 
and as a cache for values that T reads from the da- 
tabase. 

Figure 2.1 

transaction 

. 

. 

transaction 

transaction 

. 

transaction 

transaction 
0 
. 

transaction 

DDBMS System Architecture 

286 



READ(X): The T:i looks for a copy of X in T’s pri- 
vate workspace. If the copy exists, its value is 
returned to T. Otherwise the TM issues a command 
to the DIG asking it to retrieve a stored copy of X 
from the database. This operation is denoted dm- 
read(x). The value retrieved by the D?: is given to 
T and put into T’s private workspace. 

WKITE(X, new-value 1 : The Tl.1 again checks the pri- 
vate workspace. If the workspace has a copy of X, 
its value is updated to new-value; otherwise a 
copy of X with that value is created in the work- 
space. The new value of X is not stored in the da- 
tabase at this time. 

END: The TN issues an operation denoted dm-write(x) 
for each logical data item X updated by T. Each 
dm-write(x) requests that the DtI update the value 
of X in the stored database to the value of X in 
T’s local workspace. When all dm-writes are pro- 
cessed, T is finished executing, and its private 
workspace is discarded. 

The DBMS may restart T any time before a dm-write 
has been processed. The effect of restarting T is 
to obliterate its private workspace and to re- 
execute T from the beginning. As we will see, many 
concurrency control algorithms use transaction re- 
starts as a tactic for attaining correct execu- 
tions. However, once a single dm-write has been 
processed, T cannot be restarted. This is because 
each dm-write permanently installs an update into 
the database, and we cannot permit the database to 
reflect partial effects of transactions. 

A DBWS can fail in many ways and a detailed treat- 
ment of reliability issues is beyond the scope of 
this paper. However, a reliability problem called 
atomic commitment has a major impact on concurrency 
control. Consider a transaction T that updates 
data items x,y,z,... and suppose the DBMS fails 
while processing T’s END. If this occurs, some of 
T’s updates may have been installed in the stored 
database while others have not, and the database 
may contain incorrect information (see fig. 2.2). 
To avoid this problem, the DBNS must ensure that 
& of a transaction’s dm-writes are processed or 
none are. 

The “standard” way to implement atomic commitment 
involves a procedure called two-phase commit [LS, 
Gray].* Again suppose T is updating x,y,z,... 
When T issues its END, the first phase of two-phase 
commit begins. During this phase the DM copies the 
values of x,y,z,... from T’s private workspace onto 
secure storage. If the DBMS fails during the first 
phase, no harm is done, since none of T’s updates 
have yet been applied to the stored database. 
During the second phase, the DBMS copies the values 
of x,y,z,... into the stored database. If the DBMS 
fails during the second phase, the database may 
contain incorrect information. However since the 
values of x,y,z,... are stored on secure storage, 
this inconsistency can be rectified when the system 
recovers : the recovery procedure reads the values 
of XYY,ZY... from secure storage and resumes the 
commitment activity. 

Figure 2.2 The Need for Atomic Commitment 

*Consider a database of banking information 

*Suppose Acme Corp. 's savings account has 
$2,000,000 and its checking account has $500,000. 
And suppose the DBMS fails while processing the 
following transaction. 

T: Move $l,OOO,OOO from savings to checking 

*In the absence of atomic commitment, the follow- 
ing incorrect execution could occur. 

Execution of T 

READ savings s $2,000,000 
READ checking C 500,000 

Subtract $l,OOO,OOO from savings 
Add $l,OOO,OOO to checking 

s $1,000,000 
c 1,500,000 

WRITE savings 

Database 

s $2,000,000 
C 500,000 

$1,000,000 
500,000 

------SYSTEM CRASHES------ 

WRITE checking --- never executed 

To model two-phase commit, it is convenient to add 
a third TM-DM operation, pre-commit, which in- 
structs the DM to copy a data item from the private 
workspace to secure storage. 

2.4 Distributed Transaction Processing Model 

Our model of transaction processing in a distrib- 
uted environment differs from the centralized case 
in two areas: how private workspaces are handled, 
and the implementation of two-phase commit. 

Private WorksDaces in a DDBMS 

In a centralized DBMS we assumed that private work- 
spaces were part of the TM. We also assumed that 
data could freely move between a transaction and 
its workspace, and between a workspace and the DM. 
These assumptions are not appropriate in a DDBMS 
because TMs and DMs may run at different sites and 
the movement of data between a TM and a DM can be 
expensive. To reduce this cost, many DDBMSs employ 
query outimization procedures which regulate (and 
hopefully reduce) the flow of data between sites. 
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For example, in SDD-1 the private workspace for 
transaction T is distributed across all sites at 
which T accesses data [GBWRRI. The details of how 
T reads and writes data in these workspaces is a 
query optimization problem, and has no direct ef- 
fect on concurrency control. Consequently, we fac- 
tor this issue out of our model for distributed 
transaction processing. 

In detail, our model of distributed transaction ex- 
ecution is as follows. 

1. 

2. 

3. 

4. 

When transaction T issues its BEGIN opera- 
tion, T’s TM creates a private workspace for 
T. The location and organization of this 
workspace is left unspecified. 
When T issues a READ(X) operation, the TM 
checks T’s private workspace to see if a 
copy of X is present. If so, the value of 
that copy is made available to T. Otherwise 
the TM selects some stored copy of X, say 
xi, and issues dm-read(xi) to the DM at 

which xi is stored. The DM responds by re- 

trieving the stored value of xi from the da- 

tabase, placing this value in the private 
workspace. The TM then returns this value 
to T. 
When T issues a WRITECX, new-value) opera- 
tion, the value of X in T’s private work- 
space is updated to new-value, assuming the 
workspace contains a copy of X. Otherwise, 
a copy of X with the new value is created in 
the workspace. 
When T issues its END operation, two-phase 
commit begins. For each X updated by T, and 
for each stored copy xi of X, the TM issues 

a pre-commit(xi) to the DK that stores xi. 

The DM responds by copying the value of X 
from T’s private workspace onto secure 
storage internal to the DM. After all pre- 
commits are processed, the TM issues dm- 
writes for all copies of all logical data 
items updated by T. A DM responds to dm- 
write(xi) by copying the value of xi from 

secure storage into the stored database. 
After all dm-writes are installed, T’s exe- 
cution is finished. 

Two-Phase Commit in a DDBMS 

The problem of atomic commitment is aggravated in a 
DDBKS by the possibility of one site falling while 
the remainder of the system continues to operate. 
Suppose T is updating X,Y,Z,*.. stored at DMx, 

DM , Dkls,... (resp.) and suppose T’s TM fails 

afzer issuing the dm-write(x), but before issuing 
the dm-writes for y,z,... At this point, the data- 
base contains incorrect information as illustrated 
in fig. 2.2. In a centralized DBMS, this phenomen- 
on is not harmful because no transaction can access 
the database until the TM recovers from the 
failure. However, in a DDBMS, other TMs remain op- 

erational, and the incorrect database can be ac- 

cessed from these TMS. 

To avoid this problem, each D11 that receives a pre- 
commit must be able to determine which other DMs 
are involved in the commitment activity. (This in- 
formation could be a parameter to the pre-commit 
operation, stored in a private workspace, etc.) If 
T’s TM fails before issuing all dm-writes, the DMs 
whose dm-writes were not issued can recognize the 
situation and consult the other DMs involved in the 
commitment. If m DM received a dm-write, the re- 
maining ones act as if they had also received the 
command. Thus, if any DM applies an update to the 
database, they all do (see also, (HS21). 

3. Decomposition of Concurrency Control Problem 

In this section we review concurrency control 
theory with two objectives: to define “correct ex- 
ecutions” in precise terms, and to decompose the 
concurrency control problem into more tractable 
sub-problems. 

3 .I Serializability 

Let E denote an execution of transactions Tl, . . . . 

Tn’ Eis a serial execution if no transactions 

ever execute concurrently in E; i.e., each trans- 
action is executed to completion before the next 
one begins. Every serial execution is defined to 
be correct, because the properties of transactions 
(see Section 2.1) imply that a serial execution 
terminates properly and preserves database consis- 
tency . An execution is serializable if it is com- 
putationally equivalent to a serial execution, that 
is, if it produces the same output and has the same 
effect on the database as some serial execution. 
Since serial executions are correct and every seri- 
alizable execution is equivalent to a serial one, 
every serializable execution is also correct. The 
goal of database concurrency control is to ensure 
that all executions are serializable. 

The only operations that access the stored database 
are dm-read and dm-write. Hence, insofar as seri- 
alizability is concerned, it is sufficient to model 
an execution of transactions b 

B 
the execution of 

dm-reads and dm-writes at t e various DMs of the 
DDBMS . In this spirit, we formally model an execu- 
tion of transactions by a set of logs, one log per 
DM . Each log indicates the order in which dm-reads 
and dm-writes are processed at one DM (see fig. 
3.1). 

An execution modelled by a set of logs is serial if 
(1) for each 1 og, and for each pair of traaons 
Ti and T. whose operations appear in the log, 

3 
either all of Ti’s operations precede all of T.‘s 

3 
operations, or vice versa; and (2) for each pair of 
transactions, Ti and T., if Ti’s operations precede 

3 
Tj’s operations in one log, then Ti’s operations 

precede T. 
3 

‘s operations in every log in which oper- 
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Figure 3.1 Modelling Executions as Logs 

Transactions Database 

T1: BEGIN; 
READ(X); WRITE(Y); END A x1 

y1 

Figure 3.2 Serial and Non-Serial Logs 

T2: BEGIN; 
READ(Y); WRITE(Z): END 

T : 
3 

BEGIN; 
READ(Z); WRITE(X); END 

B y2 

s2 

C 
=3 

One possible execution of TI, T2, and T3 is rep- 

resented by the following logs. (Note: ri[xl 

denotes the operation dm-read(x) issued by Ti; 

w&x] has the analogous meaning) 

Log for DM A: r,[x,l wl[yll r2[Y11 w3[x11 

Log for DM B: WJY,l w2[s21 

Log for DM C: w2[z31 r3[z31 

ations from both Ti and Tj appear (see fig. 3.2). 

Intuitively, (1) says that at each DM no two trans- 
actions are interleaved, and (2) says that trans- 
actions execute in the same order at all Ms. 

Two operations conflict if they operate on the same 
data item and one of the operations is a dm-write. 
The order in which operations execute is computa- 
tionally signif icant iff the operations conflict. 
To illustrate the notion of conflict, consider a 
data item x and transactions Ti and Tj. If Ti 

issues dm-read(x) and T. issues dm-write(x), the 
J 

value read by Ti will (in general) differ depending 

on whether the dm-read precedes or follows the dm- 
write. Similarly, if both transactions issue dm- 
write(x) operations, the final value of x depends 
on which dm-write happens last. Those conflict 
situations are called read-write conflicts and 
write-write conflicts respectively. 

The notion of conflict helps characterize the equi- 
valence of executions. Let El and E2 be two execu- 

tions, modelled by logs {Ll,l,..., Ll,n) and 

$J,..’ Lg,,L where L. 
l,j 

models the execution at 

Dtlj for Ei’ 
El and E2 are comnutationallv eqUiVal- 

& if [PBR, Papadimitrioul: for each j, l<j<n, 

Ll,j 
and L2j contain the same set of dm-reads and 

dm-writes and each pair of conflicting operations 

The execution modelled in figure 3.1 is serial. 
Condition (1) holds since each log is itself 
serial -- i.e., there is no interleaving of opera- 
tions from different transactions. Condition (2) 
holds since at DM A, Tl precedes T2 precedes T 

3 
; 

at DM B, T1 precedes T * and at DM C, T 2' 2 precedes 

T3. 

The following execution is not serial; it satis- 
fies (1) but not (2). 

DM A: rl[xll w,[Y,l r2[Y21 w3[x11 

DM B: w2[z21 w1[y21 

DM C: w,[z,l r3[z31 

The following execution is also not serial; it 
doesn't satisfy (1) or (2); 

DM A: rl[xll r2[y21 w,[x,l q[~,l 

DM B: w21s21 w1[y21 

DM C: w,[z,l r3[z31 

appears in the same relative order in both logs. 
Intuitively, computational equivalence must hold in 
this case because (1) each dm-read operation reads 
data item values that were produced by the same dm- 
writes in both executions; and (2) the final dm- 
write on each data item is the same in both execu- 
tions. Condition(l) ensures that each transaction 
reads the same input in both executions (and there- 
fore performs the same computation). Combined with 
(21, it ensures that both executions leave the da- 
tabase in the same final state. 

We can now characterize serializable executions 
precisely. 

Theorem 1 [PBR, Papadimitriou, SLR] Let x={T1,..., 

Tn) be a set of transactions and let E be an execu- 

tion of these transactions modelled by logs 
{L1,. . . , Ln}. E is serializable if there exists a 

total ordering of g such that for each pair of con- 
flicting operations 0 

i 
and Oj from distinct trans- 

actions Ti ad Tj (resp.), Oi precedes Oj in a log 

iff Ti precedes T. 
J 

in the total ordering. 

The total order hypothesized in Tlneorem 1 is called 
a serialization order. A serialization order indi- 
cates a serial execution of the transactions 1 that 
is computationally equivalent to the original exe- 
cution E. Thus, if the transactions had executed 

serially in the hypothesized order, the computation 

289 



performed by the transactions would have been iden- 
tical to the computation represented by E. 

To attain serializability, the DDBKS must guarantee 
that all executions satisfy the condition of 
Theorem 1. Those conditions require that conflict- 
ing dm-reads and dm-writes be processed in certain 
relative orders. Concurrency control is the activ- 
ity of controlling the relative order of conflict- 
ing operations; an algorithm to perform such con- 
trol is called a synchronization technique. so, to 
be correct, a DBNS must incorporate synchronization 
techniques that guarantee the conditions of Theorem 
1. 

3.2 A Paradigm for Concurrency Control 

In Theorem 1, read-write and write-write conflicts 
are treated together under the general notion of 
conflict . However, we can decompose the concept of 
serializability by distinguishing these two types 
of conflict. Let E be an execution modelled by a 
set of logs. I!e define three binary relations on 
transactions in E, denoted ->rw, --)wr, and ->ww. 
For each pair of transactions, Ti and T. 

3 

1. Ti ->rw Tj iff in some log of E, Ti reads 

some data item into which Tj subsequently 

writes; 
2. Ti ->wr Tj iff in some log of E, Ti writes 

into some data item that Tj subsequently 

reads ; 
3. Ti ->ww Tj iff in some log of E, Ti writes 

into some data item into which T. subse- 
J 

quently writes. 

Rotationally, we use ->rwr = (->rw U --)wr) and -> = 
(->rwr U ->ww). 

Intuitively, -> (with any subscript) means “in any 
serialization must precede”. For example, T. ->rw 

1 
Tj means ” Ti in any serialization must precede T.“. 

This interpretation follows from Theorem 1: If ‘Ti 

reads x before T. writes into x, then the hypothet- 
3 

ical serialization in Theorem 1 must have Ti pre- 

ceding T.. 
J 

Every conflict between operations in E is repre- 
sented b 
restate T eorem 1 in terms of ->. t 

an -> relationship. Therefore,+we can 
According to 

Theorem 1, E is serializable if there is a total 
order of transactions that is consistent with the 
order of all conflicts. In terms of ->, this means 
that E is serializable if there is a total order of 
transactions that is consistent with ->. This 
latter condition holds iff -> is acyclic ( A rela- 
tion, ->, is acyclic if there is no sequence il -, 

i2, i2 -> i3,..., in-l -> in such that il = in. 1 

In addition, we can decompose -> into its compo- 
nent s, ->rwr and ->ww, and restate the theorem in 
terms of these components. 

Theorem 2 Let ->rwr and ->ww be associated with 
execution E. Then E is serializable if (a) ->rwr 
and ->ww are acyclic, and (b) there is a total or- 
dering of the transactions consistent both with all 
->rwr and all ->ww relationships. 

Theorem 2 emphasizes a point overlooked in Theorem 
1: read-write and write-write conflicts interact 
only insofar as there must be a total ordering of 
the transactions consistent with both types of con- 
flicts. This suggests that read-write and write- 
write conflicts can, to some extent, be synchron- 
ized independently. We can use one technique to 
guarantee an acyclic ->rwr relation (which amounts 
to read-write svnchronization) and a different 
technique to guarantee an acyclic ->ww relation 
(write-write svnchronization). However, Theorem 2 
says that having both ->rwr and ->ww acyclic is not 
enough. There must also be one serial order con- 
sistent with & -> relations. This serial order 
is the cement that binds together the read-write 
and write-write synchronization techniques. 

Decomposing the serializability problem into the 
problems of read-write and write-write synchroniza- 
tion is the cornerstone of our paradigm for concur- 
rency control. In Section 4 we describe algorithms 
that accomplish read-write (rw) and/or write-write 
(wwl synchronization, and in Section 5 we show how 
to combine rw and ww synchronization algorithms 
into correct concurrency control algorithms. It 
will be important hereafter to distinguish algo- 
rithms that attain rw and/or ww synchronization 
from algorithms that solve the entire distributed 
concurrency control problem. We shall use SJg- 
chronization technique for the former type of algo- 
rithm, and concurrency control method for the 
latter. 

4. Timestamp Ordering (T/O) Techniques 

4.1 Specification 

Timestamp ordering (T/O) is a technique whereby a 
serialization order is selected a priori and trans- 

.action execution is forced to obey this order. 
When a transaction begins, its TM creates a unique 
timestamp for it by reading the local clock time 
and appending a unique TM identifier to the low 
order bit. The TM also agrees not to assign 
another timestamp until the next clock tick. Thus 
timestamps assigned by different TMs differ in 
their low order bits while timestamps assigned by 
the same TM differ in their high order bits, and SO 

all timestamps are unique system-wide. (Kotice 
that this algorithm does not require that clocks at 
different sites be synchronized.) 

The TM attaches the timestamp to all dm-read and 
dm-write operations issued on behalf of the trans- 
action. DMs are required to process conflicting op- 
erations in timestamp order. The definition of 
conflicting ouerations depends on the type of syn- 
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chronization being perforted. For rw synchroniza- 
tion, two operations conflict iff both operate on 
the same data item and one is a dm-read r;ni the 
other is a dm-write. For ww sync’hronization, two 
operations conflict iff both operate on the same 
data item and both are dm-writes. 

It is easy to prove that T/O attains an acyclic 
->rm (resp. -->ww) relation when used for rw (resp. 
~7) synchronization. Since ezch DI’ processes con- 
flicting operations in timestamp order, each edge 
of the ->rwr (resp. ->ww) relation is in timestamp 
order. Gence, all paths in the relation are in 
timestamp order and, since all transactions have 
unio ue timestamps, no cycles are possible. In ad- 
dition, the timestamp order is a valid serializa- 
tion order. 

4.2 basic Implementation 

An implementation of T/O amounts to building a m 
scheduler, a software module that receives dn-read 
and dn-write operations and outputs these opera- 
tions according to the T/O specification. In prac- 
tice, pre-commits must also be processed through 
the T/O scheduler for two-phase commit to operate 
properly. In Sections 4.1-4.S we describe T/O im- 
plementations without considering the impact of 
two-phase commit. Section 4.9 considers two-phase 
commitnent issues. 

The basic T/O implementation distributes the sche- 
dulers along with the database. Consider the T/O 
scheduler at some particular INi. For each data 
item x stored at the Dll, the scheduler keeps track 
Of the largest timestamp of any dm-read (resp. dm- 
write) that has operated on x. This timestamp is 
denoted R-timestamp(x)(resp. II-timestamp(x 

For rw synchronization the basic T/O scheduler o 
crates as follows. To process a dm-read(x), tK, 
scheduler compares the timestamp of the dm-read to 
V-timestamp( If the former timestamp is larger, 
the scheduler outputs the dm-read and updates R- 
tinestamp to the maximum of (a) the old R- 
timestamp( or (b) the timestamp of the dm-read. 
If the timestamp of the dm-read is smaller than W- 
timestamp( the dm-read is rejected and the issu- 
ing transaction is aborted. Similarly, to process 
a dm-write(x), the scheduler compares the timestamp 
of the dm-write to R-timestamp( If the former 
timestamp is lar*;er , the dm-write is output and P- 
timestamp is updcted to the maximum of (a) the 
old C-timestamp( or (b) the timestamp of the dm- 
write. Otherwise, the dm-write is rejected and the 
transaction is aborted. 

For ww synchronization, the T/O scheduler operates 
as follows. To process a dm-write(x), scheduler 
compares the tinestamp of the dm-write to the B- 
timestamp( If the dm-write has a larger time- 
stamp, the dm-write is output and I+timestamp is 

set equal to the timestamp of the dm-write. Other- 
wise, the dm-write is rejected and the transaction 
is aborted. 

When a transaction is aborted, it is assigned a 
larger timestamp by its TM and is restarted. This 

restart policy can lead to a cyclic restart situa- 
tion, meaning that some transaction can be continu- 
ally restarted without ever f i.nishing. Cyclic re- 
start can ‘be avoided by assigning an especially 
large timestamp to the transaction, thereby reduc- 
ing the probability of a subsequent restart. Other 
restart policies are discussed in later sections. 

This implementation of T/O requires a substantial 
amount of storage for maintaining timestamps. 
Techniques for reducing this storage requirement 
are discussed in Section 4.E. 

4.3 The Thomas Krite Rule 

For w synchronization the basic T/O scheduler can 
be optimized using an observation of [Thomas 1,21. 
suppose the timestamp of a dm-write(x) is smaller 
than W-timestamp( Instead of rejecting the dn- 
write (and restarting the issuing transaction) ” 
can simply ignore the dm-write. We call this the 
Thomas \lrite Rule (TTnlF.1. 

Intuitively, blR only applies to a dm-write that 
tries to put obsolete information into the data- 
base. The rule guarantees that the effect of ap- 
plying a set of dm-writes to x is identical to what 
would have happened had the dm-writes been applied 
in timestamp order. 

4.4 Multi-Version T/O 

For rv synchronization the basic T/C scheduler can 
be improved by using the multi-version data item 
concept of [Reed]. For each data item x we main- 
tain a set of R-timestamps, and a set of <w- 
timestamp, value> pairs (called versios. The R- 
timestamps of x record the timestamps of all dm- 
reads that have ever read x; the versions record 
the timestamps of all dm-writes that have ever 
written into x, along with the values written. 

Using multi-versions, one can achieve rw synchroni- 
zation without ever rejecting dm-reads. Consider a 
dm-read(x) with timestamp TS. To process this op- 
eration, we simply read the version(x) with largest 
timestamp less than TS; see fig. 4.la. However, 
dm-writes can still be rejected. Consider a dm- 
write(x) with timestamp TSl, and let TS2* be the 

smallest W-timestamp greater than TSi see fig. 

4.lb. If any R-timestamp lies between TSl and 

TS2 then the dm-write is rejected. If no R- 

timestanp.lies in that range, then the scheduler 
outputs the dm-write; this causes a new version of 
x to be created with timestamp TS 1’ 

To prove the correctness of this technique, con- 
sider 2 dm-read(x) with timestamp TSl that is pro- 

cessed “out of order”; i.e., suppose the dm- 
read(x) has timestamp TS1 yet it is processed after 

some dm-write(x) with a larger timestamp Tsp. The 

dm-read ignores all versions(x) with timestamps 
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Figure 4.1 Multi-version Reading and Writing 

a) Let us represent the versions of a data item x 
on a "time line" 

values v1 V2 V3 
I 1 I I 

W-timestamps 5 10 20 

v n-l 'n 1 I b 
92 100 

To process a dm-read(x) with timestamp 95, find 
the biggest W-time&amp less than 95; in this 
case 92. That is the version you read. So 
this case, the value read by the dm-read is 

in 
V n-l' 

b) Let us represent the R-timestsmps of x 
similarly 

R-timestamps ' ' I I I 
57 15 92 95 

b 

values v1 v2 v3 

c W-timestamps 5 10 20 100 

To process a dm-write(x) with timestamp 93, we 
create a new version of x with that timestamps. 

R-timestamps -5 ; 1; I I 
92 95 

* 

values 5 v2 p ' -1 ' 'n 
t 
I I I 

92 I 
I 

I l 
I 

W-timestamps 5 10 20 93 100 

However, this new version "invalidates" the 
dm-read Of part (a), because if the dm-read had 
arrived after the dm-write, it would have read 
value V instead of V 
reject the dm-write. n-l' Therefore, we must 

larger than TSl; thus, the value read by the dm- 

read equals the value it would have read had it 
been processed “in order”. NOW consider a dm- 
write(x) that is processed “out of order”. I.e., 
suppose the dm-write is processed after some dm- 
read with a larger timestamp TS2. Since the dm- 

write was not rejected, there must exist a yer- 
sion(x) with timestamp TSl such that TSl < TSl < 

TS2. Again the effect is identical to that Of a 

timestamp ordered execution. Q.E.D. 

tiotice that the multi-version concept achieves ww 
synchronization “automatically”; insofar as ww syn- 
chronization is concerned, multi-versions are an 
embellished implementation of TWR. 

It is usually not possible to keep all versions 
forever, so a technique for forgetting (i.e., de- 
leting) versions is needed (see Section 4.8). 

4.5 Conservative T/O 

Conservative timestamn ordering is a technique for 
eliminating restarts during T/O scheduling [BP, 
BSR, IIV, RNTR, 6X1 , SP;21. When a scheduler re- 
ceives an operation 0 that might cause a future re- 
start, the scheduler delays 0 until it is certain 
that no future restarts are possible. 

Imagine that each T/O scheduler has a set of input 
queues, one R-aueue and one W-queue per TM. Each 
R-queue (resp. W-queu ) is a FIFO channel 
transmitting dm-reads P resp. dm-writes) from onef% 
to one scheduler. In addition, each TM is required 
to place operations into any given queue in time- 
stamp order. 

This structure can be used for rw synchronization 
as follows. Suppose scheduler S. receives a dm- 

read(x) with timestamp TS. 

read “too early“, 

If Sj oitputs this dm- 

subsequent dm-writes may have to 
be rejected. S. can avoid this possibility by 

J 
scanning its W-queues and only outputting the dm- 
read if (a) every W-queue is non-empty, and (b) the 
first dm-write on each W-queue has timestamp great- 
er than TS. This guarantees that S. will not out- 

J 
put the dm-read until it has processed every dm- 
write with timestamp less than TS that Sj will m 

receive. To avoid the rejection of dm-reads, S. 
3 

can use multi-version T/O, or it can delay the pro- 
cessing of dm-writes until it is has processed all 
dm-reads with smaller timestamps using an algorithm 
similar to the above. 

For ww synchronization, the scheduler need only 
wait until every W-queue is nonempty and then out- 
put the dm-write with smallest timestamp. If con- 
servative T/O is used for both rw and ww synchroni- 
zation, the scheduler waits until every queue is 
nonempty and then outputs the operation with small- 
est timestamp. 

The above implementation of conservative T/O suf- 
fers three major problems. First, the implementa- 
tion does not guarantee termination -- if some TM 
never sends an operation to some scheduler, the 
scheduler will “get stuck” due to the empty queue 
and will never output any operations. Second, the 
implementation requires that all TMs communicate 
regularly with all schedulers -- this is infeasible 
in large networks. Third, the implementation is 
overly conservative -- e.g., the combined rw and ww 
algorithm processes all operations in timestamn 
order, not merely conflicting operation. The first 
two problems are addressed below. The third is 
considered in Section 4.6. 

Guaranteeinp. Termination -- Null operations 

To guarantee termination, we require that TMs per- 
iodically send timestamped null-operations to each 
scheduler, in the absence of any “real” traffic. A 
null-operation is a dm-read or dm-write that does 
not reference a data item. When TMi sends a null-. 

dm-read (resp. null-dm-write) with timestamp TS to 
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scheduler S. 
J’ 

this signifies that TMi will not send 

Sj any more dm-reads (resp. dm-writes) with time- 

stamps smaller than TS. Thus, any scheduling deci- 
sion requiring that S ; receive all dm-reads (resp. 

dm-writes) from TPli tinestamped less 

made after that null-dm-read (resp. 
is received. An impatient scheduler 
TK for a null-operation by sending 
operation to it. 

midinc: Unneccssarv Communication 

than TS can be 

null-dm-write) 
can prompt a 
a reauest-null 

To avoid unnecessary communication between TMs and 
schedulers, null-operations with very large time- 
stamps can be used. In extreme cases, TMi can send 

Sj a null-operation with infinite timestamp, signi- 

fying that TLli does not intend to communicate with 

Sj until further notice. Of course, when T&Ii needs 

to send a “real” operation to S., some mechanism is 
J 

required to retract the infinite timestamp and re- 
place it by a finite one. 

4.6 Conservative T/O with Transaction Classes 

Another technique for reducing communication is 
transaction classes [BKGIJI. Here, we assume that 
the rcadsct and writeset of every transaction is 
known in advance. This information is used to 
group transactions into predefined classes. Class 
definitions help support a less conservative sche- 
duling policy. 

A transaction class is defined by a readset and 
writeset (see fig. 4.2). Transaction T is a member 

Figure 4.2 Transaction Classes 

aA class is defined by a readset and a writeset. 
E.g., 

Cl: readset = {x,) , writeset = (y,,y,) 

C2: readset = (x1,y2) , writeset = {y 1’ 2’ 2’23) y z 

C3: readset = {y,, z,} , writeset = (x 1’ 2+3) z 

*A transaction is a member of a class if its read- 
set is a subset of the class readset and its 
writeset is a subset of the class writeset. E.g., 

Tl: readset = {x,} , writeset = Iyl, y2 1 

T2: readset = {y2} , writeset = {z2, 23) 

T3: readset = {z,} , Writes& = Ix,) 

*T 1 is a member of Cl and C2 

.T2 is a member of C2 and C 
3 

l T 
3 

is a member of C 
3 

of class C iff T’s readset is a subset of C’s read- 
set, and T’s writeset is a subset of C’s writeset. 
(Classes need not be disjoint.) Class definitions 
are not expected to change frequently during normal 
operation of the system. Changing a class defini- 
tion is akin to changing the database schema and 
requires mechanisms beyond the scope of this paper. 
We assume that class definitions are stored in 
static tables which are available at any site re- 
quiring them. 

Classes are associated with Ttls. Every transaction 
that executes at a TM must be a member of a class 
associated with the TX. If a transaction is sub- 
mitted to a TM at which this property does not 
hold, the transaction is forwarded to another TM 
that has an appropriate class. Ic’e assume that 
every class is associated with exactly one TM, and 
conversely, every TM is associated with exactly one 
class. We use Ci to denote the class associated 

with TM i. This notation simplifies our discussion, 

but does not constrain system operation in any way. 
For example, to execute transactions that are 
members of class C 

1 at two TMs, we define another 

class c2 with the same readset and writeset as C 1 
and associate C 1 with one TM and C2 with the other. 

On the other hand, to execute transactions that are 
members of two classes at one site, we multi- 
program two TMs at the same site. 

Transaction classes are exploited by conservative 
T/O schedulers as follows. Consider rw synchroni- 
zation and suppose scheduler S. wants to output a 
dm-read(x) with timestamp TS. &stead of waiting 
for dm-writes with smaller timestamp from all TMs, 
Sj need only wait for dm-writes from those TMs 

vhose class writeset contains x. Similarly, to 
process a &n-write(x) with timestamp TS, Sj need 

only wait for dm-reads with smaller timestamp from 
those TKs whose class readset contains x. Thus, 
the level of concurrency in the system is in- 
creased. ww synchronization proceeds analogously. 

This technique also reduces communication require- 
ments, since a TM need only communicate with a 
scheduler if its class readset or writeset contains 
data items protected by the scheduler. 

4.7 Conservative T/O with Conflict Graph Analysis 

Conflict graph analvsis is a technique for further 
improving the performance of conservative T/O with 
classes. A conflict Eraoh is an undirected graph 
that summarizes potential conflicts between trans- 
actions in different classes. For eack class Ci 

the graph contains two nodes, denoted ri and wi, 

which intuitively represent the readset and vrite- 
set of C. 1’ The edges of the graph are defined as 

follows (see fig. 4.3). (i) For 

there is a vertical edEe between 

For each pair of classes Ci and C j 

293 



is a horizontal edge between w. and w. iff the 
1 J 

writeset of C. 1 intersects the writeset of C.. 

(iii) For each pair of classes Ci and C j (with i+:) 

there is a diagonal edge between ri and w. iff the 
3 

readset of Ci intersects the writeset of C.. 
J 

Intuitively, a horizontal edge indicates that a 
scheduler Sk may be forced to delay dm-writes for 

purposes of ww synchronization. Suppose classes Ci 

and C. 
J 

are connected by a horizontal edge (i.e., 

there is an edge between wi and wj). Then the 

class writesets intersect and so, if Sk receives a 

dm-write from Ci, Sk must delay the dm-write until 

sk receives all dm-writes with smaller timestamps 

from C.. 
J 

Similarly, a diagonal edge indicates that 

Sk may need to delay operations for rw synchroniza- 

tion. 

Conflict graph analysis improves the situation by 
identifying inter-class conflicts that never cause 
non-serializable behavior. This corresponds to 
identifying horizontal and diagonal edges that do 
not require synchronization. In particular, sche- 
dulers need only synchronize dm-writes from C. and 1 
Cj if either (1) the edge (wi, w.) is embedded in a 

& of the conflict graph; or i 2) portions of the 
intersection of Ci’s writeset and C.‘s writeset are 

stored at two or more DMs[BSI. Thai is, if condi- 
tions (1) and (2) do not hold, a scheduler S 

k 
need 

not process dm-writes from Ci and C. 
J 

in timestamp 

order. Similarly, dm-reads from Ci and dm-writes 

from Ci need only be processed in timestamp order 
J 

if either (‘) the edge (‘i, w ) is embedded in a : 
.I 

cycle of the conflict graph; or (2) portions of the 
intersection of Ci’s readset and Cj’s writeset are 

stored at two or more DKs[BSJ. 

Since classes are defined statically, conflict 
graph analysis is also performed statically. The 
output of this analysis is a table indicating which 
horizontal and vertical edges require synchroniza- 
tion and which do not. This information, like 
class definitions, is distributed in advance to all 
schedulers that require it. 

Conservative T/O with conflict graph analysis has 
been implemented in the SDD-1 DDBMS [BSRI. In 
principle, conflict graph analysis can be applied 
to other synchronization techniques to improve 
their performance as well. Theoretical aspects of 
this integration are examined in [BSWI, but many 
details remain to be worked out. 

4.8 Timestamp Management 

A common criticism of T/O schedulers is that too 
much memory is needed to store timestamps. This 
problem can be overcome by “forgetting” old time- 
stamps. 

Timestamps are used in basic T/O to reject opera- 
tions that “arrive late”, e.g., to reject a dm- 
read(x) with timestamp TSl that arrives after a dm- 

write(x) with timestamp TS2 > TS1. In principle, 

TSI and TS2 can differ by an arbitrary amount, but 

in practice these timestamps are unlikely to differ 
by more than a few minutes. Consequently we may 
store timestamps in small tables which are periodi- 
cally purged. 

R-timestamps are stored in the R-table with entries 
of the form <x, R-timestamps; for any data item x, 
there is at most one entry. In addition, there is 
a variable, R-min which tells the maximum value of 
any timestam-; has been purged from the table. 
To find R-timestamp( a scheduler searches the 
R-table for an <x, TS> entry. If such an entry is 
found, TS = R-timestamp( otherwise, R- 
timestamp < R-min and to err on the side of 
safety, the scheduler assumes R-timestamp = R- 

Figure 4.3 Conflict Graph 

Define Cl, C2, c3 as in figure 4.2 

Cl readset = {xl> l=~y2>z31 

Clwriteset = {y,, y2 1 C2 writeset = {y,, y2, z2, z,} C3 writeset = Ix,, z2, 233 
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min. To update R-timestamp( the scheduler modi- 
fies the <x, TS> entry, if one exists; otherwise, 
a new entry is created and added to the table. 
When the R-table is full, the scheduler selects an 
appropriate value for R-min and deletes all entries 
from the table with smaller tinestamp. W- 
tinestamps are managed similarly; analogous tech- 
niques can be devised for multi-version databases. 

Ilaintaining timestamps for conservative T/O is even 
cheaper, since conservative T/O only requires time- 
;~;;;;~v~ner~tions, not timestamped data. If con- 

T 0 is used for rw svnchronization, the 
R-timestamps of data items are rendered useless and 
may be discarded. If conservative T/O is used for 
both rw and ww synchronization, I!-timestamps can be 
eliminated too. 

4.9 Integrating Two-Phase Commit into T/O 

It is necessary to integrate two-phase commit into 
the T/O implementations described above to ensure 
atomic commitment of updates (see Section 2). This 
is done by timestamping pre-commits and modifying 
the T/C implementations to accept or reject pre- 
commits instead of dm-writes. If a scheduler re- 
jects a pre-commit, the issuing transaction is 
aborted. However, if a scheduler accepts a pre- 
commit, it must accept the corresponding dm-write 
no matter when that operation arrives. To make 
this guarantee, the scheduler may be forced to 
u conflicting operations that arrive before the 
dm-write. 

Integratinp Two-Phase Commit Into Basic T/O 

Consider a pre-commit(x) with timestamp TS. Let P 
denote this operation and let W denote the corres- 
ponding dm-write. Assume that basic T/O is used 
for rw synchronization. P can be accepted by a 
scheduler iff TS > R-timestamp( i.e., P is ac- 
cepted iff the scheduler can still output W. Once 
the scheduler accepts P, it must guarantee that TS 
will remain greater than R-timestamp until W is 
received. To make this guarantee, the scheduler 
refuses to output any dm-read(x) with timestamp 
greater than TS, until W is received. All such dm- 
reads that arrive before W are placed on a waiting 
queue. 

For ww synchronization, P is accepted by the sche- 
duler iff TS > W-timestamp( Once the scheduler 
accepts P, it agrees not to output any dm-write(x) 
with timestamp greater than TS until it receives W. 
All such dm-writes that arrive before H are placed 
on a waiting queue as above. 

Integrating Two-Phase Commit Into Thomas Write Rule 

TWR applies only to ww synchronization and elimin- 
ates the possibility of rejecting dm-writes for 
purposes of ww synchronization. Hence there is no 
need to incorporate two-phase commit into the ww 
synchronization algorithm. Pre-commits must still 
be sent to all sites being updated, but the pre- 

commits need not be processed by the ww scheduler. 

Integrating Two-Phase Commit Into Multi-Version T/O 

Like TWR, multi-versions eliminate the need for 
two-phase commit insofar as ww synchronization is 
concerned. However, two-phase commit remains as 
issue for rw synchronization. 

Let P be a pre-commit(x) with timestamp TSl and let 

W be the corresponding dm-write. When P arrives at 
a scheduler, 
applied: 

the scheduling rule of Section 4.4 is 
let TS2 be the smallest W-timestamp > 

TSl ; if any R-timestamp lies between TSl and 

TS2, P is rejected, otherwise P .is accepted. If 

the scheduler accepts P, it agrees not to output 
any dir-read(x) with timestamp between TSl and TS2 

until W is received. As before, all such dm-reads 
that arrive before W are placed on a waiting queue. 

Intenratina Two-Phase Commit Into Conservative T/O 

Two-phase commit need not be tightly integrated 
into conservative T/O, because dm-writes are never 
rejected. However, scheduling delay can be reduced 
by transmitting pre-commits via W-queues. For 
example, suppose conservative T/O is used for rw 
synchronization, and suppose scheduler S. wants to 

J 
output a dm-read(x) with timestamp TS. 

‘j need 
only delay this dm-read until each W-queue contains 
a pre-commit with, @mestamp greater than TS; it 
need not’ wait for ‘the corresponding dm-writes. 
(However I the dm-read may have to wait for some dm- 
writes with smaller timestamp; i.e., if Sj has ac- 

cepted a pre-commit(x) with timestamp TS’ < TS, the 
dm-read cannot be output until the dm-write(x) with 
timestamp TS ’ is received.) 

4.10 Heuristics for Reducing Restarts 

This section describes three heuristics for reduc- 
ing the cost or probability of restarts for non- 
conservative T/O implementations. 

Predeclaration of Readsets and Writesets 

To reduce the cost of restarts, transactions should 
issue their dm-reads and pre-commits as early as 
possible. The extreme version of this heuristic 
calls for transactions to predeclare their readsets 
and writesets, so that dm-reads and pre-commits are 
issued for the entire readset and writeset before a 
transaction begins its main execution. If no oper- 
ation is rejected, the transaction is guaranteed to 
execute with no danger of restart. 

Delavina of Ooerations 

To reduce the probability of restart, a scheduler 
can a the processing of operations to wait for 
“earlier” operations (i.e., ones with smaller time- 
stamps) to arrive. This heuristic is essentially a 
compromise between conservative and non- 
conservative T/O, and trades response time for a 
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reduction in 
delay can be tuz%?ztop e 

robability The amount of 
imize thls’trade-off. 

Reading Old Versions 

The performance of multi-version TJO can be 
improved by ,permitting aueries (i.e., read-only 
transactions) to read old versions of data items. 
Recall that in multi-version T/O, dm-read opera- 
tions are never rejected but may cause 
pre-commits to be rejected. (E.g., 

subsequent 
once dm-read(x) 

with timestamp TS is processed, a subsequent pre- 
commit(x) with timestamp TS’, where TS’ < TS, may 
be rejected.) To reduce the probability of reject- 
ing a pre-commit, we may assign old (i.e. small) 
timestamps to queries. Of course, this also causes 
the query to read older data. Thus, this technique 
entails a compromise between system performance and 
timeliness of data. Little is known about this 
tradeoff in general, but a good compromise should 
of ten be achievable. For example, if queries are 
assigned timestamps that are five minutes old, we 
would expect few queries to interfere with updates. 
And in many applications, five minute old data is 
perfectly acceptable. 

As a fringe benefit, this technique also improves 
the response time for queries by reducing the prob- 
ability that a query’s dm-reads will be blocked by 
pre-commits. 

5. Integrated TJO Concurrency Control Methods 

The synchronization techniques of Section 4 can be 
integrated to form twelve principal T/O concurrencv 
-methods: 

2 rw techniaue ww technique 

8 
9 

10 
11 
12 

basic T/O basic T/O 
basic T/O Thomas Write Rule (TWR) 
basic T/O multi-version T/O 
basic T/O conservative T/O 
multi-version TJO basic TJO 
multi-version T/O TWR 
multi-version T/O multi-version T/O 
multi-version T/O conservative T/O 
conservative T/O basic T/O 
conservative T/O IWR 
conservative T/O multi-version T/O 
conservative T/O conservative T/O 

Each TJO methoo that incorporates a non- 
conservative comnonent can be further refined by 
including (1) techniques for forpetting timestamps 
(see Section 4.8) and (2) heuristics for reducing 
restarts (see Section 4.10). Each method that in- 
corporates a conservative component may also incor- 
porate classes (see Section 4.6) and conflict graph 
analysis (see Section 4.7). Thus, these 12 princi- 
pal methods produce over 50 distinct methods. In 
;$is.sectiop we describe the twelve principal meth- 

s in detail. 

5.1 Using Basic T/O for rw Synchronization 

Wethods l-4 use basic TJO for rw synchronization. 
Each stored data item e.g. xi, has an R-timestamp 

and a W-timestamp. Let T be a transaction with 
timestamp TS. To read xi, T issues a dm-read(xi) 

with timestamp TS; this dm-read is accented iff TS 
> W-timestamp( To write xi, T issues a pre- 

commit(xi) with timestamp TS; this pre-commit is 

accented iff (a) TS > R-timestamp (xi), and (b) a 

condition determined by the ww synchronization 
technique is also satisfied. 

Method 1 -- Basic T/O for ww synchronization. The 
pre-commit is accepted iff TS > R-timestamp (xi) 

and TS > W-timestamp (xi.) 

Method 2 -- TWR for ww synchronization. The pre- 
commit is accepted iff TS > the largest R- 
timestamp( However, if the pre-commit is ac- 

cepted and TS < the W-timestamp( the correspon- 

ding dm-write has no effect on the database. This 
method represents an optimization of Hethod 1 that 
is apparently preferable in most situations. 

Method 3 -- Multi-version T/O for ww synchroniza- 
tion. The pre-commit is accepted iff TS > R- 
timestamp( the W-timestamp is irrelevant. If 

the pre-commit is accepted, the corresponding dm- 
write creates a new version of ‘i’ While this 

method appears to be a space-inefficient version of 
Method 2, it can yield better performance by let- 
ting queries read old versions of data items ; see 
Section 4.10. 

Method 4 -- Conservative T/O for ww synchroniza- 
tion. Pre-commits are processed by each scheduler 
in timestamp order. I.e., a scheduler S will not 
process a pre-commit with timestamp TS until it has 
processed all pre-commits with smaller timestamp. 
When S processes a pre-commit(xi) with timestamp 

TS, it accents the pre-commit iff TS > R- 
timestamp( bt first glance this method appears 

to be a time-inefficient version of Hethod 2. How- 
ever, unlike Method 2, this method applies updates 
to each DM in timestamp order. Consequently, the 
database at each DN is always consistent between 
updates, a property which may be useful for relia- 
bility reasons. 

5.2 Using Multi-version T/O for rw Synchronization 

Methods 5-8 use multi-version T/O for rw synchroni- 
zation. Let T be a transaction with timestamp TS. 
To read xi, T issues a dm-readcx.) with timestamp 
TS; this dm-read is alwavs acceited. TO write Xi, 

T issues a pre-commit(xi) with timestamp TS; this 

pre-commit is accented iff (a) there is no R- 
timestamp that lies between TS and the smallest 
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W-timestamp larger than TS, and (b) a condition 

determined by the ww synchronization technique is 
also satisfied. 

Method 5 -- Basic T/O for ww synchronization. For 
basic T/O, condition (b) requires that TS be 
greater-than the largest W-timestamp( So, for 

Method 5, conditions (a) and (b) may be simplified: 
The pre-commit is accepted iff TS > largest R- 
timestamp and the largest W-timestamp( If 

the pre-commit is accepted, the corresponding dm- 
write creates a new version of x.. 

Method G -- TWR for ww synihroniaat ion. This 
method is incorrect. TWR requires that a dm- 
write(xi) with timestamp TS be ignored if TS < the 

maximum W-timestamp( This may cause subsequent 

dm-reads to read inconsistent data; see fig. 5.1. 
(Kethod 6 is the only incorrect method we will en- 
counter. ) 

Method 7 -- Multi-version T/O for ww synchroniza- 
tion. This achieves the goals of TWR in conjunc- 
tion with multi-version rw synchronization. The 
pre-commit is accepted iff condition (a) holds. If 
the pre-commit is accepted, the corresponding dm- 
write creates a new version of x i. This method is 

similar to the algorithms of [Reed, Montgomery]. 

Method 8 -- Conservative T/O for ww synchroniza- 
tion. A scheduler S will not process a pre-commit 
with timestamp TS until it has processed all pre- 
commits with smaller timestamps, and none with 
larger timestamps. This permits us to simplify the 
condition for acceptance of a pre-commit: A pre- 
commit(xi) with timestamp TS is accepted iff TS is 

greater than the largest R-timestamp( 

Systematic ForPetting of Old Version 

In Methods 5 and 8, the versions of each data item 
xi are created in timestamp order. That is, once a 

version of xi has been created with timestamp TS, 

no subsequent transaction can create a version with 
a smaller timestamp. When this property holds, it 
is possible to forvet (i.e., delete) old versions 
such that we never delete a version needed by a 
later transaction. 

Let W-QaX(Xi) be the maximum kJ-timestamp and 

W-min be the minimum value of W-max(xi) over all 

data items xi. Observe that no pre-commit with 

timestamp smaller than W-min can be accepted in the 
future: since W-min < W-ISaX for all Xi) all 
future update transactions with timestamps less 
than W-min are guaranteed to be restarted. So, in- 
sof at as update transactions are concerned, we can 
safely forget all versions of every data item time- 
stamped less than W-min. Queries are handled in 
this framework by interpreting all dm-reads with 
timestamps less than kJ-min as if they had time- 
stamps equal to W-min. 

Figure 5.1 Inconsistent Retrievals in Method 6 

*Consider data items x and y with the following 
versions 

values 0 100 
X I I l 

W-timestsmps 0 100 

values 0 
Y l 

W-timestsmps 0 

*Now suppose T has timestamp 50 and writes x:=50, 
y:50. Under Method 6, the update to x is ignored, 
and the result is 

values 0 100 
L X I e 

W-timestamps 0 100 

values 0 50 
Y , I I 6 

W-timestamps 0 50 

*Finally, suppose T' has timestamp 75 and reads x 
and y. The values it will read are x=0, ~'50 
which is incorrect. T' should read x=50, y=50. 

Notice also that Wethods 5 and 8 only require that 
the largest R-timestamp of each data item be 
stored. Smaller R-timestamps may be forgotten at 
once. 

Systematic Reading of Old Versions 

Methods 5 and 8 also support a systematic technique 
for assigning old timestamps to queries (see 
Section 4.10) so that (a) no dram-read issued by a 
query will ever cause a pre-commit to be rejected; 
and (b) the timestamp assigned to the query is the 
largest one satisfying (a). This technique is sim- 
ilar to the technique for systematic forgetting of 
old versions. 

Let Q be a query. The technique we describe re- 
quires that Q’s readset be predeclared. Before Q 
begins its main execution Q’s readset is examined; 
for each xi in the readset, W-max(xi) is ascer- 

tained. In addition, we calculate W-min = min{W- 
max( xi is in Q’s readset). The timestamp as- 

signed to Q is W-min - 1. The correctness of this 
technique is shown in [BGZI. 

5.3 Using Conservative T/O for rw Synchronization 

The remaining T/O methods use conservative T/O for 
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rw synchronization. In these methods, a scheduler 
S will not process a dm-read(xi) with timestamp TS 

until it has processed all pre-commits with smaller 
timestamps and none with larger timestamps. Sym- 
metrically, S will not process a pre-commit(xi) 

with timestamp TS until it has processed all dm- 
reads with smaller timestamps and none with larger 
timestamps. When S processes a pre-commit(xi) with 

timestamp TS, its action depends on the ww tech- 
nique. 

Method 9 -- Basic T/O for ww synchronization. The 
pre-commit is accepted iff TS > W-timestamp( 

Method 10 -- TWR for ww synchronization. The pre- 
commit is always accepted. However, if TS < W- 
timestamp( the corresponding dm-write has no 

effect on the database. 

Method 10 is essentially the concurrency control of 
SDD-1 [BSR]. In SDD-1, however, the method is re- 
fined in several ways to reduce delay. First, SDD- 
1 uses classes and conflict nraoh analysis and re- 

L! 
uires redeclaration of readsets, In addition, 
DD-1 on y entorces the conservative scheduling 

rule on dm-reads, meaning that dm-reads wait for 
pre-commits, but pre-commits need not wait for all 
dm-reads with smaller timestamps. Consequently, it 
is possible for dm-reads to be rejected in SDD-1. 
The SDD-1 designers accepted this possibility for 
two reasons: (1) since readsets are predeclared, 
all dm-reads are issued before the transaction be- 
gins its main execution and the cost of rejecting a 
dm-read is modest. (2) The probability that a dm- 
read will be rejected can be reduced by assigning 
large timestamps to transactions. Other techniques 
for reducing restarts are described by [Lin]. 

Method 11 -- Multi-version T/O for ww synchroniza- 
tion. The pre-commit is always accepted and the 
corresponding dm-write always creates a new version 
of xi. When multi-versions are used, the conserva- 

tive rw technique can be optimized as follows: a 
dm-read can never be rejected, and so there is no 
reason to force pre-commits to wait for dm-reads. 
(dm-reads must still wait for pre-commits to ensure 
that pre-commits are never rejected.) 

Nethod 12 -- Conservative T/O for ww synchroniza- 
tion. Scheduler S will not process a pre-commit 
with timestamp TS until it has processed all pre- 
commits with smaller timestamps and none with 
larger timestamps. Combined with conservative rw 
synchronization, the effect is to process & oper- 
ations in timestamp order. Method 12 has been re- 
commended by [BP, HV, KN'IR, SMl, S&21. 

6. Conclusion 

We have presented a framework for DDBMS concurrency 
control and have used that framework to describe a 
number of DDBMS concurrency control methods. The 

framework has two main parts: (1) a model of dis- 
tributed transaction execution, in which trans- 
actions execute by issuing dm-read, pre-commit, and 
dm-write operations; and (2) a decomposition of the 
concurrency control problem into the sub-problems 
of rw and ww synchronization. 

We presented several timestamp-based synch roniza- 
tion techniques for solving each sub-problem. Four 
of these techniques were deemed to be "principal": 
basic T/O, the Thomas Write Rule, multi-version 
T/O, and conservative T/O. These techniques vary 
substantially in their behavior but are united by a 
common underlying objective: each technique seeks 
to execute conflicting operations in timestamp 
order, or in some equivalent order. Basic T/O 
achieves this objective by reiecting operations 
that are received out of timestamp order. The 
Thomas Write Rule ignores operations that are 
received out of timestamp order. (This technique is 
only suitable for ww synchronization.) Multi- 
version T/O retains multiple "versions" of data 
items to permit many operations that are received 
out of order to be executed as if they had been 
received in order. And conservative T/O delays op- 
erations that are received out of order to permit 
all operations with smaller timestamps to be pro- 
cessed first. 

Finally we showed how to integrate any principal rw 
technique with any principal ww technique to yield 
a principal concurrency control method. Twelve 
principal methods can be constructed in this way. 
Each principal method can be refined by several 
non-principal techniques so that more than 50 dis- 
tinct concurrency control algorithms can be built 
using the framework and material of this paper. 

Most of the principal methods we describe are new 
algorithms. These are Methods l-4 (which use basic 
TIO for rw synchronization); Methods 5 and 8 
(multi-version T/O for rw, with basic T/O or con- 
servative T/O for ww); and Methods 9 and 11 (con- 
servative T/O for rw, with basic T/O or multi- 
version T/O for ww). Of the remaining methods, 
Method 6 (multi-version T/O with TWR) is an incor- 
rect method; Method 7 (multi-version T/O for rw and 
ww) is similar but not identical to the algorithms 
of [Montgomery, Reed]; Method 10 (conservative T/O 
with TWR) is essentially the SDD-1 concurrency con- 
trol algorithm [BSR]; and Wethod 12 (conservative 
T/O for rw and ww) is essentially the algorithm re- 
commended by [BP, HV, KWTH, Sl11,21. 

A major issue we have not addressed concerns the 
performance of these algorithms. This issue is ad- 
dresssed aualitativelv in IBG21. However, little 
quantitative performance analysis has been reported 
in the literature and this remains a topic for 
future research. 

* The term "two-phase comnit" is commonly used to 
denote the distributed version of this procedure. 
However, since the centralized and distributed 
versions are identical in structure, we use "two- 
phase commit" to describe both. 

* TS equals infinity if TS 
W-tiZestamp(x). 1 is the largest 
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