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Abstract 

Formal database semantics has concentrated on 
dependency constraints, such as functional and 
multivalued dependencies, and on normal forms 
for relations. Unfortunately, much of this work 
has been inaccessible to researchers outside 
this field, due to the unfamiliar formalism in 
which the work is couched. In addition, the 
lack of a single set of definitions has confused 
the relationships among certain results. This 
paper is intended to serve the two-fold purpose 
of introducing the main issues and theorems of 
formal database semantics to the uninitiated, 
and to clarify the terminology of the field. 

1. INTRODUCTION 

1.1 Database Semantics 

A database is a collection of information about 
some enterprise in the world. The role of &tabase 
semrmtics is to ensure that stored information 
accurately represents the enterprise. Database. 
semantics studies the creation, maintenance, and 
interpretation of databases as models of external 
activities. A wide variety of database semantic 
tools exist, ranging from data type constraints, to 
integdty con&mints, to semantic modelling 
structures used in Artificial Intelligence [26,36,391. 

table whose columns are labelled-with attributes 
and whose rows depict tuples. Fig. 1 illustrates 
a relation in this way. The data manipulation 
operators used in this paper are projection and 
natural join. The projection of relation R(X) on 
attributes T is denoted R[Tl. If V=X-T, 
R[T] = i<t>l<t,v>ER(X)} , and is defined iff T 5 X. 
(If we visualize R as a table, R[TI is those columns 
of R labelled with elements of T.) The natural join 
of relations R and S is denoted R*S. Given R(X,Y) 
and S(Y,Z), where X,Y,Z are disjoint sets, R*S = 
(<x,y,z>l<x,y>ER and <y,z>Es). 

Functional and multivalued dependencies are 
predicates on relations. Intuitively, a functional 
dependency (abbr. FD) f:X-tY holds in R(X,Y,Z) iff 
each value of x in R is associated with exactly one 
value of Y (see Fig. 1). The truth-value of f can 
of course vary over time, since the contents of R 
can vary over time. A multivalued dependency 
(abbr. MVD) g:X*Y holds in R iff each X-value in 
R is associated with a set of Y-values in a way 
that does not depend on Z-values [see Fig. 1). FDs 
and WVDs are defined formally in the next section. 

FIGURE 1. A relation with functional and multi- 
valued dependencies 

This paper is concerned with a specif& type of 
database semantic tool, namely da& depada&eS-- 
both functional and multi-valued dependencies. This 
paper surveys the major results in this area. Our 
aim is to provide a unified framework for under- 
standing these results. 

Relation: RENTAL-UWITS 
Attributes: LANDLORD,ADDRESS,APT#,RENT,OCCUPANT,PETS 
Functional dependencies: 

ADDRFSS,APT#*RENT--Each unit has one rental 
OCCUPANT+ADDRESS;APT#--Every occupant lives 

in one unit 
Multivalued dependencies: 

LANDLORD~ADDRESS--Each landlord can own many 
buildings 

OCCuPANT*PETS --Each occupant may have 
several nets 

l-2 Database Models Tuples: 

Most work on,data dependencies uses the re- 
lathed data model, with which we assume reader 
familiarity at the level of [%I. Briefly, a re- 
lational database consists of a set of relations 
defined on certain attributes. RIX) is our notation 
for a relation named R defined on a set of attsi- 
butes x.1 The relation R(X) is.a set of m-fxptes-, 
where m=/Xl. A relation can be visualized as a 

LXNDLORD, ADDRESS, AeT#, RENT, OCCUPANT, PETS 

t This work was supported in part by the Mtional 
Science Foundation under Grant WCS-77435314. 

Wizard, Ox* x3, $ 50, Tinman, Oilcan 
Wizard, -9 $1‘ $ 50, Witch, Bat 
Wizard, OS, Xl, $ 50, Witch,,. Snake 
Wizard* OZ# 112, $ 75, Lion, &owe 
cod& 3 NF St, 111, $500, Beeri, Fish 
codd, 3 NF St, #I, $500, Bernstein, Dog 
Codd, 3 NF st, #l, $500, Bernstein, Rhino 
Codd, 3 NF St, t2, $600, Goodman, Cat 

%lore generally, the notation R(X,Y,Z,...) denotes 
relation R defined on XUYUZU... . _, 
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1.3 Description vs. Content 

The interplay between database description and 
database content is a major theme in database 
semantics. A database description is called a 
schema, and contains descriptions for each relation 
in the database. The description of a single re- 
lation is called a relation scheme and consists of 
the relation name, its attributes and a set of data 
dependencies. E:<T,r> denotes a relation scheme R 
with attributes T and dependencies I' (see Fig. 2): 
We sometimes use the notation R(T) when r is either - 
unknown or irrelevant. 

FIGURE 2. Formal notation for a relation scheme 
based on Figure 1. 

RENTAL-UNITS = 
<{LAND~~,ADDRESS,APT#,RENT,OCCUPANT,PETS'), 

IADDRZSS,APT# +RR~JT; 
OCCUPAWT + ADDRRSS,APT#; 
LAwDIORD++ADDRRSS; 
oCCUPAWT++PRTS1> 

The contents of a relation is called the state 
or extensia of the corresponding scheme, and is 
a set of tuples as stated above. R(T) denotes an 
extension of R=<T,r>. If R(T) satisfies all 
dependencies Tn r, it is called an in8tance of 5 
(notationally, R denotes an instance of R). A 
re&ztiona~ database for a schema is a coilection of 
instances, one for each relation scheme in the 
schema. 

In summary, schema and scheme are syntactic 
objects; database and relation refer to database 
content. The distinction between schema-related 
and content-related concepts is often subtle yet 
important, and we keep it sharp in this paper. 

1.4 The Universal Relation Assumption 

Most work on data dependencies assumes that 
all relations in a database are projections of a 
single relation. Formally, suppose Rl(Tl), 
R2(T2),...r R,(T,] is a database of interest, and 

let T = Ulcicn Ti. It is assumed that a tm&ersaZ 

rekd~n U?Tj exists, such that Ri = U[Ti] for 
l<iQ. 

- - This "universal relation assumption" is a 
controversial issue in the field. On the one hand, 
it has formal advantages: it permits us to specify 
ralations solely in terms of their attributes; also 
it supports the PD and HVD M~m888 rule which 
state8 that syntactically identical dependancies 
are semantically equivalent. On the other hand, 
many practical applications do not naturally con- 
form tothe assumption; to force these applications 
into the, universal relation mold places an added 
burdenon the database administrator, and can 
obscure desired relationships in the database. 
The reader.should note that all results in this 
paper make the universal relation assumption, and 
in some casesthey do not extend to alternative 
Frameworks. 

1.5 Topics 

Formal work in database semantics falls roughly 
into the areas of SChema ds8M and data manipu~@'L 

We limit our attention to the first area, though 
some of the work we cover has application in the 
second area also. The problem of schema design is: 
Given an initial schema, find an equivalent one 
that is better in some respect. As we will see, 
different definitions of "equivalent" and "better" 
lead to startlingly different results. 

The paper is organized as follows. Section 2 
formally defines data dependencies and reviews 
their basic properties. Section 3 states the 
schema design problem more precisely. Then 
Sections 4, 5 and 6 examine several definitions of 
schema "equivalence" and several criteria for one 
schema to be "better" than another. Section 7 ties 
these ideas together by looking at specific schema 
design methods. We conclude with an historical 
look at our field and predications for its future. 

2. DATA DEPENDENCIES 

2.1 Definition and Basic Properties 

An FD is a statement of the form F:X+Y, where 
X and Y are sets of attributes. f is defGaed for a 
relation R(T) or a relation scheme R(T) if X and Y 
are subsets of T. If f is defined for R, then f is 
a predicate on R's state; f is Valid in R iff every 
two tuples of R that have the same X-value also 
have the same Y-value. From the definition we see 
that f's validity depends only on the values 
assigned to X and Y. We say that FDs enjoy the 
projectivity and inverse projectivity properties: 
For sets X,Y C_ T' C_ T, X+Y is valid in R(T) iff it 
is valid in R[T']. 

An MVD is a statement of the form g:X*Y. g 
is defined for R(T) or R(T) if X and Y are subsets 
of T. Let Z==T-(XUY). For a Z-value, z, we 
define Y,,= 
yxz = yxz 

, fo~~;i~iz:~!. su~hi~$l~d i;; :ff 
I 

are nonempty. This ieiinition implieythat g7g 
validity depends on values assigned to Z, not just 
XandY. If g is valid in R(T), then it is valid 
in all projections of R(T); the converse, however, 
does not hold. MVDs thus enjoy the projectivity 
property but not inverse projectivity. 

The PD X+Y states that a unique Y-value is 
associated with,each X-value: the MVD X-Y States 
that a unigue seb of Y-values is associated with 
each X-value. So essentially, an FD is just an MVD 
plus a functionality condition. 

2.2 Inierence Rules fur Dependencies 

Given a set of dependencies in a relation, it 
is often possible to deduce other dependencies that 
also hold in that relation. Consider once again 
the relation in Fig. 1. By examining its contents 
we see that OCCUPAWT+RENT and LANDIDRD+AFK@ESS 
hold, although,n&ither is expressly,stated. This 
is not coincidental; these two PDs are logical con- 
sequences of t$e given set of FDs and MVDs. 

Given a schema R=<T,m, and a dependency g, 
r irt@ies g in l? if g holds in every instance of IL 
NDte that a dap&ndenoy p' may hold in 8Osl8 instances 
of A without being implied by I'. For example, 
ADDRESS+LARIXDRD holds in Fig. 1 although it is 
not implied by -th8 given dependencies. 



It is possible to tell whether g is implied by 
r using systems of inference rules [3,6]. Inference 
rules permit us to derive new dependencies implied 
by a given set. A system of inference rules is 
canpzete if (a) every g derivable from r is in 
fact implied by I', and (b) every g implied by r is 
derivable using the rules. Fig. 3 shows three 
complete systems of inference rules for FDs and 
NVDS. The FD-rules are complete when FDs only are 
considered. The MVD-rules are complete for MVDs. 
When FDs and MVDs are considered, all three systems 
are needed for completeness. Fig. 3 also presents 
other rules that are useful, though not needed. 

as follows: 
1. Initialize 2:=X. (Since X+X by FD1.) 
2. If U+V is in r and UsZ, then.set Z:=Z+V. 
3. Repeat step 2 until more attributes can be 

added to Z. 
A straightforward implementation yields an O(n2) 
time algorithm 171; linear time implementation of 
this algorithm is described in [5]. 

For MVDs the best known membership algorithm 
requires O(n4) time [41. 

FIGURE 3. Inference rules for FDs and MVDs [3,61 

FD-rules: 

FDl (reflexivity): If YQ( then X+Y. 

FD2 (augmentation): If g and X+Y then XWYZ. 

FD3 (transitivity): If X+Y and Y+Z then X+Z. 

Other useful rutes: 
FD4 (pseudo- 

transitivity): If X+Y and YW+Z then XW+Z. 
FD5 (union): If X+Y and X+Z then X+YZ. 

FD6 (decomposition): If X-+YZ then X+Y and X+Z. 

A coveting of r is any set f such that f;+= r+. 
P is nmaredindant if no proper subset of it is a 
covering. One can obtain a nonredundant covering 
of r as follows. A dependency gEr is redundant 
iff g E (r-IgIl+. For each gEr the above test is 
performed using the membership algorithm, and g 
is removed from r if it is found to be redundant. 

2.5 Inherently Difficult Dependency Problems 

We list here two inherently difficult depen- 
dency problems. Other such problems are presented 
in [5,281. 

m-rules: 

Key Finding: Given a set of FDs F over attri- 
butes U, a relation scheme R(X) where XC_U, and a 
subset of R's keys, determine whether R has any 
other keys. This problem is NP-complete [5] (i.e., 
probably requires exponential time [2]). 

MVDO(complementation):Let X+Y+Z=U and Ym; then 
X*Y iff Xctz. 

MVDl(reflexivity): If Ys then X+*Y. 

MVD2(augmentation): If g and X++Y then XW++YZ. 

MVD3(transitivity): If X-Y and Y+tz then X-HZ-Y. 

Other useful rules: 
MVD4(pseudo- If X*Y and ywttz then 

transitivity): XW-WZ-YW. 
MVD5 (union) : If X+-+Y and Xttz then X*YZ. 
MVD6(decomposition): If X+-W and X*2 then 

x*YllZ, x-Y-2, X+-a-Y. 

Key Listing: Given F and 5 as above, list all 
keys of & This problem has exponential worst-case 
time since there are relation schemes with an ex- 
ponential number of keys 1401. 

3. THE SCHEMA DESIGN PROBLEM 

ED-MVD rules: 

2.4 Coverings 

II5 

FD-MVDl: If WY then X+W. 
FD-MvD2: If X-HZ and Y-+z', Z1~. and if Y and 

z are disjoint, then X+X'. 

Another usefu~ruk: 
FD-MVD3: If x++Yand XY+Z thenX+Z-Y. 

We now return to the problemof schema design. 
Our treatment considers one particular schema 
.design scenario. We assume that a schema S+ con- 
taining a single relation scheme is given. The 
problem is to design a schema SD that is equi- 
vaEent to ~4, but is better in some specified way. 
Let S$=(U=<T,r>) and SD=(~=<Ti,ri>li=l,...,n). 
In Our scenario SD contains "projections" of 2; 
i.e., each TiC_T and ri is 'inherited" from l'. For 
FDs, "inheritance" means ri is a covering of the 
FDs in f+ that are defined for &. For MUDS, the 
situation is wre complicated" and will not be 
elaborated here. En instance U,of U is represented 
in SD's database by fDrTi]li=l,...,3. 

We set of all dependencies derivable from r 
using a complete system of rules is called the 
c~sure of F, denoted r+. From the foregoing it 
should be clear #at l"+ is the exact set Of de- 
pendencies implied by F. 

our study of schema design can now-be con- 
sidered to be a study of the mapping between S 
and SD and between the set of instances Of S 
the sets of instances of SD‘. (P !lrLd 

4. THE PRINCIPLE OF REPRESENTATION 

2.3 The Membership Problem 
Given a set.of dependencies r and a dependency 

g, the membership problem is to tell whether gEI'+. 
For g:X+Y and r containing just PDs this problem 
is solved by determining the maximum set Z such 
that X+2isin r+. Then (by rules FDg and FDS, 
Fig.3), gEr+ iff YEZ. Z can be computed 

A clear requirement for schema SD to replace 
s,# iS that.% and se be FiVale?t; that is, SD 
must represent'the 8am@ znformatza as S . 
Different researchers formulate this @0n ept in 8 
different ways--ways that lead to startingly 
different conclusions. In the following, let 
si= {u=<T,r>) and SD= (lli=CTi,r~>ti~l,.;.,n). 



Definition Repl. SD represents the same in- 
formation as S4 if they contain the same attributes; 
that is, if un T =T. i=l i 

This definition is inadequate because it 
ignores relationships among attributes. By this 
definition, the schemas in Figs. 4 and 5 are egui- 
valent to the one in Fig. 2, even though they con- 
tain no data dependencies. 

FIGURE 4. 

51 = 

52 = 

E3 = 

FIGURE 5. 

A schema equivalent to one in Fig. 2 
under Def. Repl. 

SD = i$, s2, R3} 

Another schema equivalent to one in 
Fig. 2 under Repl. 

ahNDLoRD,ib 

<RENT, I}> 

<ADDRESS,{)> 

QPT#, iI> 

<OCCUPANT,{)> 

-PETS,{)> 

Definition Rep2. SD represents the same 
information as S # if they have the same attributes 
and the same data dependencies. 

When only FDs are involved, this definition 
can be made precise. The FDs of S$ are r+. The 
FDs of SD are (Uzxlri)+. SD represents S.4 if 

r+ = (U" 
r. 

i=lri)+, i.e., if (Un i=lri) is a covering of 

However, there is a problem with the defini- 
tion as stated. The inference rules in Sec. 2 are 
only defined with respect to dependencies in a 
single relation. since SD involves m&tip&? re- 
lations, it is not obvious that those inference 
rules can validly be applied to it. Suppose, 

SD represents S4 by the above definition. Yet SD 
does not even contain a relation scheme in which 
X+2 is defined: 

This problem is rectified by the "universal 
relation assumption" (Sec. 11 and the "inverse 
projectivity property of FDs" fSec. 21. Let Rl 
and R2 be instances of 3 and s; define 
R -12 

= <T. 
12 =T1UT2, r12 =riurp ana define 

R12= Rl"R2. From the inverse projectivity property 

it can be shown that R 12 is an instance of R -12 if 

Rl and R2 are.instances of 3 and 3. Thus the 

FD X*2 (which is in rf,) is valid in R 
12' More- 

over, by the universal relation assumption Rl and 

R2 are projections of U, as is R ,,tXZl. Conse- 

quently the user can obtain the "extension" of 
X+2 from SD, even though X+2 is not explicitly 
represented. In fact, all FD inference rules can 
be "simulated" by relational operators applied to 
relations containing the FDs. It follows that all 
FDs in F+ can be retrieved from SD if SD's schemes 
contain a covering of r. 

MVDs, on the other hand, do not possess the 
inverse projectivity property, and definition Rep2 
is not easily generalized to them. More research 
is needed to formulate a suitable generalization 
of Rep2 for MVDs. 

Definition Rep3. SD represents the same in- 
formation as S,$ if they have the same attributes 
and the databases of SD contain the same data as 
the databases of S+. 

In contrast to Rep2, this definition stresses 
the data component of equivalence. Two schemas 
are equivalent under Rep3 if at all times their 
databases contain the same information, albeit in 
different formats. 

The definition is formalized by the concept of 
ZossZess join [l]. Suppose U(T) is an instance of 
U and the corresponding set of instances of SD is 
TRi(Ti)=U[Ti]Ii=l,...,n). To answer a query in- 
volving, say, all attributes of T, we must re- 
construct U from fRiJ via the join operator. If 
U=Rl*...*Rn, then U can be precisely reconstructed 
from its projections. If, however, UtR,...*Rn, 
the join contains tuples that are not in U, and 
ERi) is not a faithful representation. This 
phenomenon is called a bossy join and is 
illustrated in Fig. 6. 

FIGURE 6. An Example of a lossy join. 

Let S 
4 

= {RENTAL-UNITS) defined in Fig. 2, with 
instance of Fig. 1. 

Let SD= {LAND-APT#,APT#-RENT,PERS~N-PETS~ 

LAND-APT# = <bhNDLoRD,hPT#l,il> 
APT#-RENT = <{APT#,REW~,~b 
PERSON-PETS = &CCUPANT,PETS,ADDRESS}, 

~OCCUPANT-~ADDRESS;OCCUPANT-HPETS}> 

Instances corresponding to Fig. 1 are 

LAND-AFT# (LANDLORD,hFT#) hF'T#-RENT fAPT#,RENT) 

Wizard, $1 #3, s 50 
Wizard, tl #l, $ 50 

Wizard, 12 #2, $ 75 
- Codd, #l Cl, $500 

coda, #2 #2, $600 

LAND-APT#*hPT#-RENT = 

Attributes: LhNDLOitD, APT++, RENT 

Tu$,es: wizard, #3* $ 50 
Wizard, Rl, $ 50 
Wizard, #l. $500 
Wizard, #2, $ 75 
Wizard, P2, $600 
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FIGURE 6 continued 

Attributes: LANDLORD, APT#, RENT 

Tuples: Codd, #l, $ 50 
Codd, #l, $500 
Codd, #2, $ 75 
Codd, #2, $600 

Note that each LANDLORD is associated with RENTS 
charged by the other. 

Formally we say that SD has the Zoss&?ss join 
property if for each instance U of g, 

n 
U = * UITil. 

i=l 

When only pairs of relations are considered, we 
have the following results. 

by a unique database of SD. Rep2 says that every 
database of SD satisfies the same dependencies as 
So, and hence represents a legal database of S . 
Together, Rep2 and Rep3 imply Repl. 4 

If only FDs are given, Rep4 is identical to 
the notion of independent components 1311, and the 
following is proved: 

Let u=<T,F>, z$= <Tl,Fl> and s2=<T2,F2>. 

{R,,R,) are independent components of g iff 

(a; (zlUF2)+ = F+, and (b) F+ contains Tl flT2+Tl 

or T1 nT2+T2 [311. 

Comparison of Definitions. Fig. 5 illustrated 
a schema equivalent to the schema of Fig. 2 by Rep1 
but not by Rep2, Rep3, or Repl. Fig. J differenti- 
ates between Rep2 and Rep3. Fig. J(a) is similar 
to an example in [16, p. 1651. SD is equivalent to 
S,+, under Rep3 but not Rep2; it would be considered 
algood design by [16,231, but not by [Jl. In Fig. 
J(b), SD is equivalent to S+ by Rep2 but not by 
Rep3; it would be approved by [Jl, but not [23,3Jl. 
These differences of opinion are examined further 
in later sections. 

FACT 1: If U=<T,F> (that is, only FDs are 
given) then for sets Tl,T2 such that TlUT2 = T, 

{El(Tl), s2((T2)) has the lossless join property 

iff either TlnT2-+Tl or TlnT2+T is in r+[331. 2 

FACT 2: For U=<T,r> and for Tl,T2 as above, 
{El(Tl), s2(T2)) has the lossless join property 

iff Tl flT2++Tl (and, by rule MVDO, TlnT2++T2) is 

in I'+ [231. 

FIGURE 7. Situations where Rep2 differs from Rep3. 

s+= IDWELLER=<{ADDRESS,APT#,OCCUPANT), 
{ADDRESS,APT#+OCCUPANT; 
OCCUPANT~ADDRESS;OCCUPANT~APT#)>) 

These facts are stated as properties of uni- 
versally quantified sets of instances; i.e., the 
conditions of Facts 1 Ei 2 hold iff all instances 
of the given schemas have lossless joins. It is 
possible, though, for the conditions not to hold, 
yet for specific instances to have lossless joins, 
nonetheless. Facts 1 & 2 can be adapted for 
specific instances as follows. 

sD= IADD-occ=<IADDRESS,~CCUPAET~, 
&CUPAET+ADDRESS~>; 

APT-occ <{APT#,occUPANT},{OCCUPANT'APT#)>} 

SD does not Rep2-represent S 
f4 

. 

%- 

SD Rep3-represents 

S+= (RENTAL=<{LANDLORD,ADDRESS,APT#,OCCUPANT}, 
(LANDLORD*ADDRESS; 
ADDRESS,APT#+OCCUPANT; 

FACT 1': Given U=<T,r>, and Tl,T2 as above. OCCUPANT~+DRESS;OCCUP~~APT#}>} 
- 

I L 

T1”T2+T 1 
or T1nT2 . - L-.#>- 1- . . 

An instance U=U[T.]*U[T-I if (but ?Wi! only if) 

An instance U=U[Tll*U[T21 iff Tl llT2*Tl (and by 

MVDS T1nT2++T2) holds in U. 

5 T 
2 110ux5 In U. 

FACT 2': Given E=<T,r>, and Tl,T2 as above. 

SD= (OWNER = 

SD RepZ-represents S 

<{LANDLOPD,ADDRESS~, 
~LAEDLORD+ADDRESS~>; 

. 
s . (4 

SD does not Rep3-represents 

+ 

DWELLER=<{ADDRESS,APT#,OCCUPANT), 
~ADDRESS,APT#+OCCUPAET; 
OCCUPANT~ADDRESS;OCCUP~~APT#)>) 

When more than pairs of relations are con- 
sidered, the situation is more complex. An algo- 
rithm for deciding the lossless join property in 
general is presented in [l]. The algorithm re- 
quires polynomial time for FDs but may require 
exponential time for MVDs. Another interesting 
result is thatforall n>2 there are sets of n 
relation schemes that have the lossless join 
property, for which no proper subset has this 
property. 

5. TEE PRINCIPLE OF SEPARATION 

The next question is to understand how SD can 
be "better than" S,#,. One way is for "independent 
relationships"to be represented by SD in indepen- 
dent relation schemes. To illustrate this point, 
let S+ be the RENTAL-UNITS scheme of Figs. 1 & 2, 
and suppose we want to add a new LANDLORD to the 
database. This can only be done if values for 

Definition Rep4. SD represents the same 
information as S,$ iff there exists a one-to-one 
mapping between the databases of S 
of s 0 

and databases 

D' 

other attributes are given, too. The new LANDLORD 
must be associated with an ADDRESS; the ADDRESS 
must be associated with an APT#; the ADDRRs,APT# 
pair requires a RENT and an OCCUPANT; and the 
OCCUPANT needs PETS. So to add a new LANDLORD, S, 
forces us to add information that is at most Y 

Rep4 combines definitions Rep2 and P.ep3. 
Rep3 says that every database of S,$ is represented distantly related to him. By the same token, when 
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the last PET of the last OCCUPANT of the last APT# 
of a given ADDRESS runs away, the association 
between LANDLORD and ADDRESS is also destroyed. 

Another problem with S is data redundancy. 
Each LANDLORD is represente 2 in four tuples although 
each only owns one building. To change the 
building owned by Codd, say, requires that all four 
tuples with ADDRESS = "3 NF St" be updated. If 
some of these tuples were forgotten, the database 
would be inconsistat, meaning that some depen- 
dencies would no longer hold. In this case, 
LANDLORD-HADDRESS would no longer hold. 

These difficulties are caused by a lack of 
separation in S$. To overcome these difficulties, 
a series of &h&se ncPm&fO~shave been proposed, 
four of which are of interest. Before defining 
them, we present several preliminary concepts. 

Let S= &=<Ti,ri>(i=l,...,n) be a schema 

and let r= (Uy,lri). (1) Superkey--Let XET.; X 

is a superkey of R i if X+T. is in r + . 3. (2.) key-- 

Let XGT.; X is a key of R. 
no X'cx'is. 

if X is a superkey and 
(3) prime ;;iftribute--Let AcTi; A 

is prime in.% if A is in any key of 3. 
(4) !l'ransit%ve dependence--Let AETi and XETi; A 
is transitively dependent on X in 9 if there 
exists YcTi such that X+YEr+, Y+AEr+, Y+Xer+, 
and A$! < (5) TKviQZ FD--x+Y is trivial, 
meaning it holds in all relations, if YEX. 
(6) tiviaz m--X*4 and X*Ti-X are trivial 
in I. 

We now define four normal forms of interest. 
1. Third Normal Form (abbr. 3NF)*: [141 &ES is 
in 3NF if none of its nonprimeattributes is 
tra=ively dependent on any of its keys 
2. Boyce-Codd Normal Form (BCNF): [15] Let f:X+Y 
be any nontrivial FD in r*, defined on %iES. % 
is in BCNF if for all such f, X is a superkey of Ri. 
3. Weak Fourth Normal Form (MNF): Let g:X++YEr+ 
be any nontrivial MVD in RJ ES. s is in W4NF if 
it is in 3NF and all such g are FDs. 
4. Fourth normal Form (4NF): [23) Let g:X+YEr+ 
be any nontrivial MVD in &ES. 3 is in 4NF if 
for all such g, X is a superkey of 3. 

Notice that 3NF is a weak version of BCNF, and 
W4NF is a weak version of 4NF. Also W4NF implies 
3NF and 4NF implies BCNF. BCNF and 4NF always 
succeed in separating independent relationships into 
separate schemes. This is illustrated in Fig. 8. 
Notice that SD in Fig. 8 RepZ-represents RENTAL- 
UNITS. There are cases, though, where the stronger 
normal forms cannot be achieved and we must settle 
for the weaker forms. Fig. 9 shows an example of 
this sort. The following formalize this observ- 
ation. Let s,+,= {c=<T,F>). 

FACT 3: There always exists a 3NF schema that 
Repl-represents So (7). 

FACT 4: There need not exist a BCNF schema 
that RepZ-represents S+. Moreover the question, 
"Is schema S in BCNF?" is NP-hard [51. 

FACT 5: There need not exist a 4NF schema 
that RepZ-represents S$. (Follows from Fact 4 when 
G= 4.) It is not known whether a W4NF scheme 

*~NF simply requires that relations be "flat", non- 
hierarchical. ~NF is a weak form of 3NF and is 
subsumed by it [14,161. 

RepZ-representing S 
4 

need always exist. 

FACT 6: There always exists a 4NF schema that 
Rep3-represents S 1231. It follows that a BCNF 
schema Rep3-representing S 

4 
is always achievable, 

too. 

FIGURE 8. 4NF schema and instance corresponding to 
RENTAL-UNITS (Figs. 1 & 2) 

sD= {owNs,cBARGES,LIVES,L~VES~ -~-- 

OWNS <(LANDLORD,ADDRESS~,{LANDLORD"ADDRESS)> 
CHARGES:<~ADDRESS,APT#,RENT~,~ADDRESS,~T#'~NT~> 
LIVES =<(OCCUPANT,ADDRESS,APT#), 

{OCCUPANT+ADDRESS,APT#)> 
LOVES = <{OCCUPANT,PETS},{OCCUPANT*PETS~> 

OWNS(LANDLORD,ADDRESS) LIVES(OCCUPANT,ADDRESS,APT#) 

Wizard OZ Tinman, 02, #3 
Codd 3 NF St Witch, 02, #l 

Lion, oz., #2 
CBARGES(ADDRESS,APT#,RENT) Beeri, 3 NF St,#l 

02, #3 $ 50 Bernstein,3 NF St,#l 
02, #l $ 50 Goodman, 3 NF St,#2 

02, #2 $ 75 
3 NF St, #l $500 L~VFS(~CCUPANTS,PETS) 

3 N-F St, #2 $600 Tinman, Oilcan 
Witch, Bat 
Witch, Snake 
Lion, Mouse 
Beeri, Fish 
Bernstein, Dog 
Bernstein, Rhino 
Goodman, Cat 

FIGURE 9. w4NF schema and instance. 

s 
4 

= IRENTA~UNITS' = 

<{LANDLORD,ADDRESS,APT#,RENT,OCCUPANT,PETS), 
IADDRESS,APT#+ P.ENT;~CCUPANT+ADDRESS,APT#, 
LANDLORD-HADDRESS;OCCUPANT*PETS; 
ADDRESS,APT#+LANDLORD)> 

SD= {OWNS',CBARGES,LIVBS,LOVES~, CBARGES,LIVES,LOVES -- --_I 
same as In Fig. 8. 

OWNS' = <{LANDLORD,ADDRESS,AT#),CLANDLORD-HADDRESS; 
ADDP.ESS,APT#+LANDLORD~> 

CBARGES,LIVES,LOVES in 4NF (from Fig. 8) -- 
OWNS' in W4NF since LANDLORD'ADDRESS implied by 

S 
4 

's dependencies: 

(1) OCCUPANT'ADDRESS,APT#KJCCUPANT'ADDR=S(FD6) 
(2) LANDLORDHADDRESS and OCCUPANT'ADDRESS 

I, LANDLORD+ADDRESS(FD-MVD~) 

Extension of OWNS', given data in Figs. 1 and 8. 

OWNS'(LANDLORD, ADDRESS, APT#) 

Wizard, 02, #3 
Wizard, 02, #l 
Wizard, oz, #2 
Codd, 3NFst, #l 
Codd, 3NFst, #2 
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Another observation to make from Fig. 9 is 
that W4NF doesn't achieve total separation in the 
way 4NF does. OWNS' has redundant information and 
suffers the same kind of update anomalies as 
RENTAL-UNITS does. The same is true of 3NF vs. 
BCNF. And since 4NF and BCNF cannot always be 
achieved under Rep2 (Facts 4 & 51, we must conclude 
that Rep2 and total separation are incompatible 
concepts. This result is both surprising and 
fundamental; it holds for non-computerized data- 
bases as well as computerized ones, and has 
applicability in all data models. 

This result has been interpreted differently 
by some workers [16,24] who argue that BCNF and 
4NF schemas should be obtained even if Rep2 is not 
achieved. We saw such a case in Fig. 7(a), which 
we replicate in Fig. 10. In that example, SD 
violates Rep2 because it does not include 
ADDRBSS,APT#'OCCUPANT. Without this FD legal 
instances of SD can correspond to illegal in- 
stances of S @' and may represent illegal conditions 
in the real world (see Fig. 10(b)). It is 
suggested in [16] that these illegal instances be 
prevented by adding ADDRESS,APT#+OCCUPANT to SD 
as an "interrelational constraint." However, 
because Rep2 is incompatible with BCNF in this 
case, this suggestion is futile. If we add the 
suggested interrelational constraint, the two 
relations can no longer be updated independently, 
which simply defeats the original goal of sepa- 
ration. 

In other words, while total separation is a 
goal of schema design, there simply are cases where 
it cannot be achieved. 

FIGURE 10. An instance of SD that is not an 
instance of S 

4' 
s+= {DWELLER= <Im~mss,m~#,cxxw~~~l 

~D~SS,APT#+~~CUP~T; 
OCCUP~~~DRESS;OCCUPAN~~T#)>) 

sD= {ADD-• CC= <bum~ss,occumml; 
{CCCUPANT'ADDRESS~>; 

APT-OCC=<~APT#,OCCUPANT};(OCCUPANT~APT#}>}. 

SD does not Rep2-represent S 

%' 
4 

. SD Rep3-represents 

(a) 

Relation: ADD-OCC 

Attributes: ADDRFSS,OCCUPANT 

Tuples: Oz, Tinman 
02, Witch 
02, Lion 
02, Scarecrow 

Relation: APT-OCC 

Attributes: APT#, OCCUPANT 

Tuples: #3, Tinman 
#I, Witch 
#2, Lion 
a, Scarecrow 

Each relation has legal contents--all dependencies 
hold. But, ADDRESS,APT#+OCCUPANT does not hold in 
ADD-OCC*APT-OCC. 

ADD-OCC*APT-OCC = 

Attributes: ADDRESS, APT#, OCCUPANT 

Tuples: 02, #3, Tinman 
02, #l, Witch 
02, ?a, Lion 
02, #2, Scrarecrow 

(b) 

6. THE PRINCIPLE OF MINIMAL REDUNDANCY 

Another goal in designing SD is minimal ra- 
dundrmcy; SD must contain the information needed 
to represent S$ but it should not contain the in- 
formation redundantly. The meaning of minimal 
redundancy depends on the definition of represent- 
ation. Only by knowing what it means to represent 
information can we judge whether a certain re- 
presentation is redundant. 

Virtually all work on schema design adopts 
some notion of minimal redundacy, although often 
this point is addressed intuitively. Consequently 
our treatment of redundancy must be sketchier than 
the previous sections. We present here different 
definitions of redundancy analogous to the defi- 
nitions of representation in Sec. 4. In the 
following, let SD=(~i=<Ti,ri>li=l,...,n}. 

Definition Redl. EiiEsD is redundant if 

T.cUn i- j=l,j#iTj' This approach, like Definition 

Rep1 , is unsatisfactory since it does not account 
for relationships among attributes. Also, minimal 
redundancy under Red1 is always attained in S 
since each attribute appears only once. 4 

Definition Red2. SiEsD is redundant if 3's 
data dependencies are represented by the other 
schemes. For the case of FDs, the definition can 
be made formal. 

= (U" 

R. ES, is redundant if (T=lrj)+ 
+ - 

j=l,j+irj) e Note that the FDs of ri need not 

be explicitly represented. Rather, they need only 
be derivable from the FDs in the other schemes. 
As for Rep2, this definition does not easily 
generalize to MVDs since rules for manipulating 
MVDs in different relations are not known. 

Definition Red3. $6 SD is redundant if for 
each database of SD, the data in Ri is contained in 
(RjIj=l,...,n, j#i). For this definition to be 
meaningful, a database of SD must be viewed as a 
set of related relations, since if relations can 
assume independent values, no relation scheme is 
ever redundant. The universal relation assumption 
(Sec.1) provides the necessary connection and leads 
to the following. 
f 0 

R+ is redundant in SD if 

R. = j=l j j=l,j#iRj' ! for all databases of SD. 

Definition Red4. si.SD is redundant if there 
is a one-to-one correspondence between the set of 
instances of SD and the set of instances of SD-&_i). 
This definition, like Repl, combines data and 
dependency aspects of schema design. 

We note, in conclusion, that other approaches 
to redundancy are possible, e.g., using as a 
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measure the number of data items in relations, etc. 

7. SCHEMA DESIGN METHODS 

Traditionally, schema design has been called 
"database normalization" in the literature in this 
area and two approaches are prominent: synthesis 
[5,7], and decomposition [14,20,21,25,41]. This 
section describes both approaches, explaining how 
they interpret and achieve the schema design 
principles discussed earlier. 

The key difference between synthesis and de- 
composition lies in the definition of representation 
that each adopts. In synthesis SD RepZ-represents 
input S , whereas with decomposition SD 
Rep3-re resents s 8 f’* This difference leads to a 
series of other d screpancies between the methods: 
(1) Since Rep2 is not compatible with total separa- 
tion (Sec.S), synthesis can only achieve 3NF and 
not higher normal forms: decomposition, on the 
other hand, is not limited in this way. (2) Rep2 
leads to the Red2 definition of redundancy, while 
Rep3 leads to Red3; therefore synthesis strives 
for minimality of dependencies while decomposition 
strives for minimality of data content. (3) Because 
definitions Rep2 and Red2 do not easily extend to 
MVDs,itisnotknownhow [or if) synthesiscanhandle 
MVDS; decomposition,ontheotherhand, is straight- 
forwardlyextendabletoMVDs. (4) Finally, as ex- 
plainedinsec. 5, RepSdoesnotguaranteethatallin- 
stances of SD correspondtolegalinstancesofS4; thus 
schemas producedbydecompositionadmit instancesthat 
would not be permitted by synthesized schemas. These 
differences are summarized in Figure 11. 

FIGURE 11. Differences between principal 
Normalization Methods 

Method 

Describei 
by 

Defini- 
tion of 
Represen- 
tation 

Dependen- 
cies 

Normal 
Form 

Defini- 
tion of 
Redun- 
dancy 

Instan- 
ces ad- 
mitted 
by SD 
-- 
*A decomE 

Same as 

% 

More than SameasS 

% 
4 

So, we add a stage to SYNl' to find and merge 
all relation schemes with equivalent keys. Dn- 
fortunately, this modification takes a step back- 
ward: it no longer produces 3NF schemes! _When we 
merge relation schemes we also add FDs to F from 

sition app ach is suggested by [Rissanen,77] in which SD Rep4-represents S,+,. This approach is 
algorithmically similar to the other decomposition approaches so will not be discussed separately. 

Synthesis 

Bernstein 
r71 

Reps, "SD 
has same 
dependen- 
cies as 
s n 

$ 

FDs 

3NF 

Red2 "re- 
dundincy 
of depen- 
dencies" 

attained) 

Decomposition Decomposition 

Fagin [25] Rissanen [31] 

Rep3, "SD ReP4, ,,sD and 
has same 
data con- 

S$ databases 
are l-to-l" 

tent as S n 
4 

FDs + MVDs FDs 

4NF,BCNF 3NF 

Red3,"redun- Red4,"both 
dancy of data Red2 + Red3" 
content*' (not (not attained 
attained by by current al- 
current algo- gorithms] 
rithms] 

7.1 The Synthesis Approach 

We discuss the synthesis approach in terms of 
the specific method of [7]. A central concept of 
this method is embodied FDS, which are FDS implied 
by keys. Formally, given si=<Ti,ri>, X+A iS 
embodied in % if X'AErir and X is a superkey of 
Ri* Fig. 12 presents a simplified synthesis algo- 
rithm (called SYNl) that uses embodied FDs to con- 
struct an SD Repa-representing S,$. SYNl is a first 
step towards a correct synthesis algorithm. SYNl 
is not yet correct because SD is not necessarily 
in 3NF, so transitive dependencies can be 

FIGURE 12. Simplified Synthesis Algorithm 

Algorithm SYNl 

Input: S4 = fIJ = <T,F>j 

output: SD = {R. -1 = <Ti,Fi>)i,l ,...,n 

1. AFind Covering]. Find a nonredundant covering 
F of F. 

2. (Partition). Partition F^ into "groups", Fir 
i=l,..., n, such that all FDs in each Fi have 
the same left hand side, and no two groups have 
the same left hand side. 

3. (Construct Relations). For each Fi construct a 
relation scheme s = <Ti,Fi> where Ti = all 
attributes appearing in Fi, 

Important Fact : The left hand side of every FD in 
Fi is a superkey of 3; each FD in Fi is em- 
bodied in R.. 

exhibited within individual FDs, due to extraneous 
attributes in their left hand sides. An attribute 
is extraneous in an FD if it could be eliminated 
from the FD without affecting the closure (F+). 

Let us precede SYNl with a step that elimi- 
nates extraneous attributes from the left sides of 
FDs in F, and call the resulting algorithm SYNl'. 
SYNl' produces schemas that Rep2-represent the in- 
put and are guaranteed to be in 3NF. Algorithm 
SYNl' thus meets the representation and separation 
goals of schema synthesis. h 

The next step is to achieve minimality. Let F 
be the nonredundant covering of F obtained by 
SYNC' af$er excising extraneous attributes, and 
suppose F includes V+W and X+Y, X#V. Clearly 
these FDs will be embodied in different relation 
schemes. But suppose V and X are eqU&&Zxt; i.e., 
V+X and X+V are in F+. Then V-*X and X+V can 
be embedded in one relation scheme with both V and 
X as keys. Doing so reduces the number of synthe- 
sized schemes and makes explicit the equivalence 
of X and V. 
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(F+-G) which may thereby cause F to become redun- 
dant. A final stage is needed to eliminate this 
redundancy. This modification brings us to algo- 
ritlxnSYN2 (Fig. 13), which is our final schema 
synthesis algorithm. The following facts, are 
proved in [71, establishing that SYN2 achieves the 
three schema design principles. Given 
S+= lg=<T,F>) and SD = the result of applying 
sYN2 to s 

4' 
FACT 7: SD RepZ-represents S 

4 
. 

FACT 8: SD is in 3NF. 

FACT 9: SD is minimally redundant under de- 
finition Red2. In fact SD is minimal in an even 
stronger sense. Let SD = {S;lSA Rep2-represents S 
and all FDs in St, are embodced FDS). sD contains 4 
no more relation schemes than any other scheme in 
SD- In other words, SD is the smallest schema that 
can Rep2-represent S 

4 
using just keys. 

FIGURE 13. A Correct Synthesis Algorithm [5]. 

1. 

2. 

3. 

4. 

5. 

6. 

Algorithm SYN2 

Input: S+ = (II= <T,F>}. 

output: SD = {Ei = <Ti,Fi>li=l,...,n) 

(Eliminate Extraneous Attributes) Eliminates 
extraneous attributes from the left side of 
each FD in F, producing the set F'. 

(Find Covering) Find a nonredundant covering F^ 
of F'. 

(Partition) Partition F^ into groups Fir 
i=l,...,n , as in step 2 of SyNl. 

(Merge Equivalent Keys) Set J:=@. For each 
pair of groups Fir Fj with left hand sides Xi, 
Xj do the following: If Xij . EF+ and 
XjjXiEF', merge Fi and Fj, a d XiTXj and "a 
Xj+Xi to J, and remove them from F. 

(Eliminate Transitive Dependencies) Find a 
minimal F^' C F^ such that ($+J)+= ($'+J). Delete 
each element of Fh-Fh' from the group in which it 
appears. For each Xi+Xj in J, add it to the 
corresponding group. 

(Construct Relations) For each Fi construct a 
relation scheme % =<Ti,Fi> where Ti = all 
attributes appearing in F.. 

1 

7.2 The Decomposition Approach 

Fig. 14 shows a typical decomposition algo- 
rithm (which we call algorithm DEC) adapted from 
WI. DEC achieves the representation and separa- 
tion goals of decomposition but does not achieve 
minimal redundancy. These conclusions are stated 
formally as follows. 
SD = the result of app?~~~~ ig %~~"" and 

FACT 10: SD Rep3-represents S 
0' 

Reason: Whenever a scheme & is decomposed 
into 3 and 3 (in step 3 of DRC) &,3 has the 
lossless join property (by Fact 2). 

FIGURE 14. Basic Decomposition Algorithm 

1. 

2. 

3. 

4. 

5. 

4NF. 

FACT 12: SD is not necessarily minimally re- 
dundant under Rep3 (or most other reasonable de- 
finitions). 

Reason: Fig. 15 shows two ways DEC could 
decompose the same schema, one of which is minimal 
and one of which is not. Few minimality facts 
have been established regarding decomposition, and 
it is not even known whether minimal schemas can 
be produced by non-deterministic decomposition. 
Also, it is not known whether decomposition can 
consider coverings of dependencies rather than 
entire closures; in the specific case of Fig. 15(a) 
minimality would be guaranteed if S$ were decom- 
posed using a nonredundant, nonextraneous covering 
of r. 

Algorithmic aspects of decomposition have not 
been considered fully either, and current algorithms 
have high computational complexity. For example, 
DEC is probably very slow, because the question 
"Is schema S in 4NF?" is NP-hard and DEC asks this 
question repeatedly. A related problem is caused 
by using closures rather than coverings. Closures 
can be exponentially large and their use can lead 
to exponential worst case running time. 

Another problem is that decompositions are 
not unique. At each stage the algorithm may have 
several decomposition choices with different 
choices leading to very different outputs (e.g., 
Fig. 15). Some choices produce "natural looking" 
schemas while other choices may lead to bizarre 
results (see Fig. 16). Also, the dependencies in 
the output schema can depend idiosynchratically 
on the input and the algorithm (see Fig. 17). 

Algorithm DEC 

Input: 
% 

= fu = <T,r>} 

output: SD = {R+ = <Ti,ri>li=l,...,n) 

(Initialize) Set k:=@. 

(Test for Separation) If all schemes in Sk are 
in 4NF, then output SD:=Sk. 

(Decompose) Set Sk+l:=$. Let %=<Ti,ri> be 

any non-4NF scheme in S k' and set Sk:=Sk-$. 

Decompose $ into R+ 1 and R+ 2 as follows: 

(1) Let X*Y be any'non-trivial MVD in r de- 

R+fS . k 
(Eliminate Some Redundancy) For each gi,%6Sk+l. 

If TiGT. set S 

(Iterate)' 
k+l:=Sk+l - $1. 

Set k:=k+l. Go to step 2. 

FACT 11: SD is in 4NF. 

Reason: DEC will not stop until SD is in 
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Notice in Fig. 17 that Sl Rep3-represents Sl 

Rep3-represents S2 D1 cp' c 

#' 
and S and S2 both Rep3-repre2 

4 cp 
sent a third schema S 

@ 
= {g=<T,(F1+F2)+. Wonethe- 

less, Si and SE have substantially different sets 

of legal instances. Heuristics for choosing 
"good" decompositions are suggested in [411 but no 
rules are known to work in all cases. 

FIGURE 15. Algorithm D does not achieve minimal 
redundancy (italicized attributes 
become relations schemes). 

s$=I~=<T=IA,B,c,D), r =(B*c;D*B;BC-HA)>~ 

ABCD 

ABC 

//I+\ //.?( 

AB BC BD CD 

(a) 

ABCD 
/\ 

AB ;sC BC CD 

(b) 

FIGURE 16. Natural and unnatural 4NF schemas 
produced by decomposition. 

S =<T={IANDLORD,ADDRESS,APT#,RENT,CCCUPANT,PETS~ 
= i LANDLORD* ADDRESS ; ADDRESS ,APT# + RENT; 

OCCUPANT+ADDRESS,APT#;CCCUPANT++PETS)> 

LANDMRD,ADDRESS,APT#,RENT, 
OCCUPANT.PETS 

ADDRESS, APTc#, RENT LANDLORD;ADDRESS,APT#, 
OCCUPANT,PETS 

/' 
ADDRESS,APT#, OCCUPANT 

LANDLORD,OCCUPANT,PETS 

LANDLORD, UC&&NT h&ANT, PETS 

(a) Si 

LANDLORD,ADDRESS,APT#,PENT, 
~CCUPANT,PETS 

/ I 
IANDLORD,ADDPESS,APT#, OCCUPANT, PETS 

RENT,OCCUPANT 

I 1 
LANDLORD, ADDRESS LANDLOF?D,APT#,RENT,OCCUPANT 

/\ 
LANDLORD, APT#, RENT APT#, OCCUPANT 

(b) S; 

FIGURE 17. Idiosyncratic behavior of decomposition 

(Note : d)+ = (F2)+). 

s; = $=<Tl={AB}, F;={A+B}> 

R1=<T2={BC}, F;={B'C}> 
-2 

177=<T3=jCD), F;={C+Dj>) 

S; = h;=<T1=bB}, F;={}> 

E;=<T2={BCj, F;=@>{}> 

I%%=<T3={CDj, F;={C'D]>) . 

8. HISTORY, CONCLUSIONS, AND FUTURE WORK 

The history of database normalization theory 
begins with Codd's early work [14]. Codd intro- 
duced the notion of FD, but did not formalize it. 
The first mathematizations of FDs were by Delobel 
[17], Rissanen and Delobel [331, and Delobel and 
Casey [201; these authors concentrated on formal 
properties of dependencies and their relationship 
to the decomposition approach. They were followed 
by Armstrong [3] who introduced the notion of 
completeness of inference rules and proved the 
completeness of a set of rules for FDs. This work 
laid the groundwork for the formal theory that has 
developed since. The earliest synthesis algorithm 
was an informal one described by Wang and Wedekind 
t381. Bernstein [173 followed with a synthesis 
algorithm that used Armstrong's theory to prove 
properties of synthesized schemas. Bernstein's 
algorithm was the first to use a formal definition 
of representation. This algorithm was subsequently 
enhanced by Bernstein and Beeri [5,81 who improved 
its running time. 

The first generalization of FDs was the con- 
cept of first order hierarchical decomposition by 
Delobel 1181 and Delobel and Leonard [211. The 
related concept of MVD was introduced by Fagin [231 
and Zaniolo [41], and 4NF was introduced by Fagin 
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E31. Completeness of inference rules for MVDs is 
treated by Beeri, Fagin and Howard [6] and Mendel- 
zohn 1291, and algorithmic questions about MVDS by 
Beeri [4]. Recently, attention has been directed 
to the representation principle by the work of Aho, 
Beeri, and Ullman [l] and Rissanen [31]. 

These references are a mere sketch of the 
history of normalization theory; a more complete 
bibliography follows. 

A variety of important results appear in these 
papers, but the lack of uniform definitions has 
obscured the relationships among many works. We 
hope the paper will clear up some of the confusion 
by comparing the major definitions and outlining 
a general framework in which all can be embedded. 

Our main theme is that schema design is 
directed by the three principles of representation, 
separation, and minimal redundancy. A goal of 
research in schema design is to develop a design 
methodology that satisfies these three principles. 
Specific formulations of the principles depend upon 
the types of constraints involved, so a thorough 
understanding of the formal properties of FDS and 
MVDs is a prerequisite for achieving this goal. 

Many questions still remain unanswered. We 
list four important areas where more work is 
needed: 
1. Other dependency structures--An MVD can hold in 
a projection of a relation, although it does not 
hold in the entire relation 119,251. These em- 
bedded MVDs (abbr. EMVD) may appear when decompo- 
sing a relation scheme into smaller schemes. While 
some inference rules for EMVDs have appeared, a 
complete set is not currently known [19]. 

MVDs characterize lossless joins between two 
relations. Dependency structures that characterize 
lossless joins among N relations have recently been 
suggested, and should be integrated into the theory 
[30,321. In addition, the concept of representation 
(particularly Rep2, Rep4) has only been developed 
for FDs. Representation questions about MVDs and 
other dependency structures are open. 
2. Semantic operations on dependencies--Dependency 
structures can be used to guide correct retrievals 
given only minimal logical access path information 
[11,34]. However, the influence of dependency 
structures on data operations and the constraints 
that hold in a relation constructed by operations 
are only known for special cases. 
3. UniversaZ PeZation asswnption--This assumption 
simplifies many theoretical problems but apparently 
does not hold in practice. It should either be 
abandoned or adapted for practical situations in 
some way. 
4. Design tools--Mechanical procedures must be 
developed to assist the database designer. A 
schema synthesis algorithm that takes FDs and MVDs 
as input could be one such design aid. Mechanical 
mappings from high level data descriptions (e.g., 
[36]) into dependency structures are also needed. 
The true test of the theory is demonstrating its 
effectiveness in solving day to day database design 
problems. On this metric the theory will live or 
die. 
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