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Abstract

Automatic song writing aims to compose a song (lyric and/or1

melody) by machine, which is an interesting topic in both2

academia and industry. In automatic song writing, lyric-to-3

melody generation and melody-to-lyric generation are two4

important tasks, both of which usually suffer from the fol-5

lowing challenges: 1) the paired lyric and melody data are6

limited, which affects the generation quality of the two tasks,7

considering a lot of paired training data are needed due to the8

weak correlation between lyric and melody; 2) Strict align-9

ments are required between lyric and melody, which relies10

on specific alignment modeling. In this paper, we propose11

SongMASS to address the above challenges, which lever-12

ages masked sequence to sequence (MASS) pre-training and13

attention based alignment modeling for lyric-to-melody and14

melody-to-lyric generation. Specifically, 1) we extend the15

original sentence-level MASS pre-training to song level to16

better capture long contextual information in music, and use17

a separate encoder and decoder for each modality (lyric or18

melody); 2) we leverage sentence-level attention mask and19

token-level attention constraint during training to enhance the20

alignment between lyric and melody. During inference, we21

use a dynamic programming strategy to obtain the alignment22

between each word/syllable in lyric and note in melody. We23

pre-train SongMASS on unpaired lyric and melody datasets,24

and both objective and subjective evaluations demonstrate25

that SongMASS generates lyric and melody with signifi-26

cantly better quality than the baseline method without pre-27

training or alignment constraint.28

1 Introduction29

Automatic song writing is an interesting and challenging30

task in both research and industry. Two most important31

tasks in automatic song writing are lyric-to-melody gen-32

eration (L2M) (Bao et al. 2019; Yu and Canales 2019;33

Lee, Fang, and Ma 2019) and melody-to-lyric generation34

(M2L) (Watanabe et al. 2018; Lu et al. 2019; Lee, Fang,35

and Ma 2019). L2M and M2L can be regarded as sequence36

to sequence learning tasks and can be modeled by the tech-37

niques in natural language processing since both melody and38
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Another   day    has gone                     I’m still all      alone

rest G3 E4    D4 C4 B3 C4 rest E4 D4 C4 B3   C4

Lyric Another day has gone I’m still alone

Pitch R G3 E4 D4 C4 B3 C4 R E4 C4 B3 C4
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Figure 1: A song fragment “Another day has gone, I’m still
all alone” with its melody. The table shows the alignment of
the lyric and melody (pitch and duration).

lyric can be represented as discrete token sequence. How- 39

ever, L2M and M2L have distinctive characteristics that dif- 40

fer them from other sequence to sequence learning tasks: 1) 41

lyric and melody are weakly correlated in L2M and M2L 42

while in other tasks (Bahdanau, Cho, and Bengio 2014; 43

Rush, Chopra, and Weston 2015), source and target se- 44

quences are strongly correlated in semantics; 2) one word or 45

syllable in lyric always strictly aligns with one or more notes 46

in melody, while other tasks do not require strict alignments. 47

An example of aligned lyric and melody piece is shown in 48

Figure 1. 49

The above distinctive characteristics throw several chal- 50

lenges in modeling L2M and M2L: 1) They require large 51

amount of paired melody and lyric data to learn the mapping 52

relationship between lyric and melody due to weak correla- 53

tion. However, it is difficult to collect such large amount of 54

paired data, and thus both tasks suffer from limited paired 55

data; 2) They need additionally generate strict alignments 56

between word/syllable in lyric and note in melody, and thus 57

how to model the alignments well is critical to ensure the 58

generation quality of lyric and melody. Previous works (Bao 59

et al. 2019; Li et al. 2020; Watanabe et al. 2018; Lee, Fang, 60

and Ma 2019) on L2M and M2L have not considered the 61

scenario of limited paired data, and only leverage some 62

greedy decisions for lyric and melody alignment, which can- 63

not well address these challenges. In this paper, we propose 64

SongMASS, an automatic song writing system for L2M and 65

M2L, which addresses the first challenge with masked se- 66

quence to sequence pre-training and the second challenge 67

with attention based alignment constraint. 68



Specifically, to handle the challenges of limited paired69

data, we leverage self-supervised pre-training on large70

amount of unpaired lyric and melody data. Since L2M and71

M2L are both sequence to sequence learning tasks, we adopt72

masked sequence to sequence pre-training (MASS) (Song73

et al. 2019), which is a popular pre-training method by74

masking a segment in the input sequence and predicting75

this segment in the output using an encoder-decoder frame-76

work. However, simply using original MASS in L2M and77

M2L cannot well handle the long lyric and melody sequence78

in song level and the diversity between lyric and melody79

modality. Therefore, we introduce two extensions on MASS:80

1) Instead of masking in a single sentence in original MASS,81

we design a song-level masked pre-training strategy to cap-82

ture longer contextual information, since music usually has83

repeat structure and relies on long context. 2) Unlike original84

MASS, we use separate encoder-decoder for lyric-to-lyric85

and melody-to-melody masked pre-training since they are in86

different modalities. However, separate training of lyric-to-87

lyric and melody-to-melody cannot ensure to learn a shared88

latent space between lyric and melody and thus could harm89

the transformation between them. Therefore, we add super-90

vised training with paired lyric and melody data to guide the91

pre-training towards learning a shared latent representation92

between lyric and melody modality.93

To address the challenges of lyric-melody alignment, we94

propose to align the word/syllable in lyric and note in95

melody based on the encoder-decoder attention. Due to long96

melody and lyric sequence in a song, we split the alignment97

into sentence level and token level. To ensure sentence-level98

alignment, we constrain each sentence in target sequence99

to only attend to the corresponding sentence in source se-100

quence during training and inference. We add an additional101

[SEP] token as the sentence boundary in each sequence, and102

during inference, once a [SEP] token is predicted in the tar-103

get side, we switch the attention to the next source sentence.104

For token-level alignment, we add constraints on the atten-105

tion matrix using the ground-truth alignment in the paired106

training data during training, and use a dynamic program-107

ming algorithm on the generated attention matrix during in-108

ference to obtain the final alignments.109

The contributions of our method are as follows:110

• We are the first to leverage pre-training to address the low-111

resource challenge on L2M and M2L, by introducing two112

extensions on MASS including song-level masked pre-113

training and using supervised pre-training to guide the114

separate encoder-decoder of lyric and melody to the same115

latent space.116

• To handle the alignment between word/syllable in lyric117

and note in melody, we design the attention-based118

sentence-level and token-level alignment constraints and a119

dynamic programming algorithm to obtain precise align-120

ments.121

• Experimental results with objective and subjective evalua-122

tions demonstrate that SongMASS significantly improves123

the quality of lyric and melody generation with the help124

of pre-training and alignment constraint.125

2 Background 126

Automatic Song Writing Automatic song writing usu- 127

ally covers several tasks including lyric generation (Malmi 128

et al. 2015), melody generation (Zhu et al. 2018), lyric- 129

to-melody generation (L2M) (Choi, Fazekas, and Sandler 130

2016; Yu and Canales 2019) and melody-to-lyric genera- 131

tion (M2L) (Bao et al. 2019; Li et al. 2020). In this work, 132

we focus on L2M and M2L. Choi, Fazekas, and Sandler 133

(2016); Yu and Canales (2019) generated melody condi- 134

tioned on the lyrics with RNN-based language model. Lee, 135

Fang, and Ma (2019); Bao et al. (2019) used sequence to 136

sequence model for L2M and M2L. However, these works 137

on L2M and M2L usually only used limited paired data, 138

without leveraging large-scale unpaired data. On the other 139

hand, some works only focused on L2M and M2L on the 140

sentence level, assuming there are strict one-to-one map- 141

ping in the training data, which cannot compose a complete 142

song. Some other works (Bao et al. 2019; Watanabe et al. 143

2018) explicitly predicted the alignment flag (e.g., whether 144

switches to next word/syllable when predicting notes or not) 145

in the model, with a greedy decision in the word/syllable or 146

note level, which is not flexible and fail to capture the global 147

alignment in the whole sentence. In this paper, we propose 148

SongMASS, which uses sequence to sequence pre-training 149

method to leverage the unpaired lyric and melody data, and 150

attention-based alignment constraints for global and precise 151

lyric-melody alignment. 152

Pre-training Methods Pre-trained language models (e.g., 153

BERT (Devlin et al. 2019), GPT (Radford et al. 2018), 154

XLNet (Yang et al. 2019), MASS (Song et al. 2019) and 155

etc) have achieved significant progress in natural language 156

processing. They usually employ specific self-supervised 157

tasks and pre-train on large-scale unlabeled data corpus 158

to improve the understanding and generation capability. 159

MASS (Song et al. 2019) is the first and one of most 160

successful pre-training methods for sequence to sequence 161

learning tasks, and several pre-training methods such as 162

BART (Lewis et al. 2019) and T5 (Raffel et al. 2019) are also 163

proposed to handle this kind of task. In this paper, we build 164

our pre-training method upon MASS considering its popu- 165

larity for sequence to sequence learning tasks and suitability 166

for different modalities. Given a sequence from the unpaired 167

sentence corpus, MASS randomly replaces a segment of to- 168

kens with mask tokens and takes the masked sequence as 169

the encoder input and predicts the masked segment in the 170

decoder. We leverage the basic idea of MASS and extend it 171

with several improvements to address the distinctive chal- 172

lenges in the pre-training of L2M and M2L. 173

Alignment Modeling Alignment modeling builds the cor- 174

relation between the tokens in source and target sequences, 175

which plays an important role in sequence to sequence tasks. 176

In L2M and M2L tasks, previous works usually used greedy 177

alignment mechanisms to handle the correlation between 178

lyric and melody. For example, Watanabe et al. (2018) used 179

the Needleman-Wunsch algorithm (Needleman and Wunsch 180

1970) to count the alignment of lyric and melody. Bao et al. 181



(2019) predicted how many syllables in the predicting word182

given current note input. However, these greedy alignment183

strategies cannot provide flexible and global alignments in184

the sentence level. In other sequence to sequence learning185

tasks like neural machine translation, Bahdanau, Cho, and186

Bengio (2014); Luong, Pham, and Manning (2015) intro-187

duced attention mechanism to learn the relationship between188

source and target languages. In this paper, we leverage the189

attention mechanism to build the global and soft alignment190

between lyric and melody, and finally design a dynamic pro-191

gramming method to obtain the strict alignment between192

word/syllable and note.193

3 Method194

3.1 System Overview195

The overall architecture of SongMASS for L2M and M2L is196

shown in Figure 2, which adopts the Transformer (Vaswani197

et al. 2017) based encoder-decoder framework. We em-198

ploy separated encoders and decoders for lyric and melody199

respectively due to the large diversity between lyric and200

melody. To leverage the knowledge from large-scale unla-201

beled lyrics or melodies, we perform MASS pre-training for202

lyric-to-lyric and melody-to-melody in our framework. We203

pre-train our model in song level to better capture long con-204

textual information for lyric or melody sequence, and incor-205

porate supervised learning (lyric-to-melody and melody-to-206

lyric) into our pre-training to learn a shared latent space be-207

tween different modalities. To learn the alignment between208

word/syllable in lyric and note in melody, we further lever-209

age sentence-level constraint and token-level constraint into210

our model to guide the alignment between lyric and melody.211

We use a dynamic programming strategy to obtain the final212

strict alignment between the lyric and melody. In below, we213

describe the details of our pre-training methods and align-214

ment strategies in SongMASS.215

Lyric Decoder

Lyric Encoder

Melody Decoder

Melody Encoder

Unsupervised pre-training Supervised pre-training

Lyric Input Melody Input

Lyric Output Melody Output

Figure 2: The overall architecture of our SongMASS frame-
work. The red line means unsupervised pre-training on lyric-
to-lyric or melody-to-melody. The blue dotted line is super-
vised pre-training on lyric-to-melody or melody-to-lyric.

3.2 Pre-training Methods216

In this subsection, we introduce our pre-training methods,217

including song-level MASS pre-training to capture long218

contextual information from the whole song, and supervised 219

pre-training to learn a shared latent space between lyric and 220

melody modality. 221

Song-Level MASS Pre-training As mentioned in Sec- 222

tion 2, the original MASS pre-training is designed to help 223

the model understand and generate sequence in sentence 224

level. However, instead of using sentence-level information, 225

we expect model to capture long contextual information in 226

song level (i.e., the whole song). Therefore, we introduce the 227

song-level MASS pre-training to address this issue. 228

Denote X ′ and Y ′ as the corpus of unpaired lyrics and
melodies in the song level respectively. For any x ∈ X ′
and y ∈ Y ′, we split the song-level sequence into multi-
ple sentences and insert a special token [SEP] in the bound-
ary of adjacent sentences. For every sentence from the song-
level sequence, we perform the same mask strategy as in the
original MASS (as mentioned in Section 2). The details of
the masking strategy are shown in Figure 3. The encoder
takes the masked song-level sequence as input and the de-
coder predicts masked fragments corresponding to all the
sentences in this song. The formulation of song-level MASS
is as follows:

L(X ; θenc, θdec) =
∑
x∈X

S∑
i=1

logP (xui:vi |x\{ui:vi}Si=1 ; θenc, θdec)

=
∑
x∈X

S∑
i=1

log

vi∏
t=ui

P (xui:vi
t |xui:vi

<t , x\{ui:vi}Si=1 ; θenc, θdec),

(1)
where S represents the number of sentences in sequence 229

x, x\{ui:vi}Si=1 represents the masked song-level sequence, 230

and xui:vi represents the masked segment in the i-th sen- 231

tence. We define θencx , θdecx , θency , θdecy as the parame- 232

ters of lyric encoder, lyric decoder, melody encoder and 233

melody decoder. The loss for lyric-to-lyric generation is 234

Lx = L(X ; θencx , θdecx ) and the loss for melody-to-melody 235

is Ly = L(Y; θency , θdecy ). 236

Supervised Pre-training Although MASS pre-training
can help the model understand and generate lyric and
melody respectively, the model cannot learn to generate
melody from lyric and lyric from melody. What is worse is
that the encoder-decoder models for lyric and melody can-
not align in the same latent space and may deviate from each
other, which will harm the transformation between lyric
and melody. To prevent them from deviating and help align
them together, we leverage the supervised training on lyric-
melody paired data in the pre-training process. Given paired
corpus (X ,Y), the loss of the supervised pre-training is

L(X ,Y; θenc,θdec) =
∑

(x,y)∈(X ,Y)

logP (y|x; θenc, θdec)

=
∑

(x,y)∈(X ,Y)

log

|y|∏
t=1

P (yt|y<t, x; θ
enc, θdec).

(2)
The supervised pre-training is applied on both lyric-to- 237

melody and melody-to-lyric generation. The loss for lyric- 238
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Figure 3: The song-level MASS pre-training.

to-melody generation is Lxy = L(X ,Y; θencx , θdecy ) and the239

loss for melody-to-lyric is Lyx = L(Y,X ; θency , θdecx ).240

Finally, the total pre-training loss is

Lpt = Lx + Ly + Lxy + Lyx, (3)

where Lx and Ly are the unsupervised MASS pre-training241

loss described in Equation 1, and Lxy and Lyx are the super-242

vised pre-training loss. During fine-tuning, we only use Lxy243

for lyric-to-melody generation and Lyx for melody-to-lyric244

generation.245

3.3 Alignment Strategy246

In this subsection, we describe how to learn the alignment247

between lyric and melody in SongMASS. The basic idea248

is to leverage the encoder-decoder attention to infer the249

alignment between each word/syllable in lyric and note in250

melody. In order to extract strict alignment, we explicitly251

add constraints on the attention to learn effective atten-252

tion patterns during training and inference. Due to the long253

song-level sequence, we divide our alignment strategy into254

sentence-level constraint and token-level constraint.255
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[SEP]
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[SEP]
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[SEP]

Figure 4: Sentence-level attention mask.

Sentence-Level Constraint A song consists of multiple256

lyric sentences and melody phrases. In song writing, the257

given lyrics and melodies are naturally grouped into sen-258

tences or phrases. The lyric sentences and the melody259

phrases are strictly aligned in the training data. So we con-260

strain that each sentence (lyric sentence or melody phrase) in261

the target sequence can only attend to the corresponding sen-262

tence (melody phrase or lyric sentence) in source sequence.263

Specifically, we apply a sentence-level constraint mask on264

the encoder-decoder attention. We denote yi and xj as the265

i-th token in the target sequence and j-th token in the source266

sequence respectively. We assume the representations of xj267

and yi from the previous Transformer layer as hencj and hdeci . 268

So the attention score between target token yi and source to- 269

ken xj is computed as: 270

f(i, j) =
hdec
i WQ(henc

j WK)T
√
dz

+M(i, j), (4)

A(i, j) =
exp f(i, j)∑
j exp f(i, j)

(5)

where A(i, j) calculates the attention score between the yi
and xj . WQ,WK ∈ Rdz×dz are model parameters, and dz
is the dimension of the hidden representations. M(i, j) rep-
resents the mask element between yi and xj , whose value is
set as follows:

M(i, j) =

{
0 ID(yi) = ID(xj)

−∞ ID(yi) 6= ID(xj)
. (6)

where ID(x) gets the index of the sentence that the token x 271

belongs to. M is used as our sentence-level alignment con- 272

straint, as shown in Figure 4. Besides, we insert a special to- 273

ken [SEP] in the sentence boundary of the input and output 274

sequences as shown in Figure 3, to help the model better cap- 275

ture the sentence boundary information and identify which 276

sentence of the input sequence should to be attended to at 277

the current step during the inference stage. Benefiting from 278

such design, we guarantee the number of sentences in the 279

generated sequences is consistent with the input sequence. 280

Token-Level Constraint Unlike sentence-level align-
ment, the alignment choices between each word/syllable and
note are more flexible. Therefore, we propose a regulariza-
tion term on the encoder-decoder attention during the train-
ing on paired data, and apply a dynamic programming algo-
rithm on the attention matrix to obtain the final strict align-
ment during inference. We expect the attention weight be-
tween yi and xj to follow:

u(i, j) =

{
1
T

if yi is aligned to xj ,
0 Otherwise,

(7)

where T is the number of tokens in the source sentence that
yi is aligned to. As shown in Figure 5, we add a regulariza-
tion term to constrain the attention weights:

Latt =
1

N ∗M

M∑
i=1

N∑
j=1

‖A(i, j)− u(i, j)‖2, (8)



Figure 5: Token-level guided attention mask.

where ‖·‖ represents L2-Norm.N andM are the number of
tokens in the source and target sentence respectively. Finally,
the loss function is:

L = Lpt + α · Latt, (9)

where α is the hyper-parameter of Latt, and Lpt is the pre-281

training loss defined in Equation 3.282

When all tokens in a sentence are generated and the at-283

tention matrix A is obtained, we infer the global alignment284

by applying a dynamic programming algorithm as shown in285

Algorithm 1. We consider the following cases: a target to-286

ken is aligned to one or many source tokens, and a source287

token is aligned to one or many target tokens. For the first288

case, as shown in Line 7 - 12 in Algorithm 1, we search for289

a k that the alignment between yi and x[K+1:j] reaches the290

highest score, which is calculated by summing all the corre-291

sponding attention weights. Similarly for the second case, as292

shown in Line 13 - 18 in Algorithm 1, we search for a k that293

the alignment between y[k+1:i] and x[j] reaches the highest294

score. We take the average weights as score in the second295

case, since the weights of the target sequence dimension are296

not normalized like that of the source sequence. We choose297

the higher score of the two cases and save the aligned pair.298

4 Experiments and Results299

4.1 Experimental Setup300

Dataset Unpaired Lyric and Melody. We use “380,000+301

lyrics from MetroLyrics”1 as our unpaired lyrics for pre-302

training, which contains 362,237 songs. The lyrics in each303

song are split into sentences by the line break. For un-304

paired melodies, we choose “The Lakh MIDI Dataset” (Raf-305

fel 2016)2. The dataset contains 176,581 MIDI files with306

complete tracks, and we extract the melody tracks by Midi-307

miner3. Finally, we get 65,954 melodies as our unpaired308

data for pre-training. According to the characteristics of vo-309

cal melody, we consider the pitch and duration tokens of310

each note as the melody sequence. Each melody is trans-311

posed to the scale of C major or A minor. All the notes are312

shifted by octave so that the most pitches of the song fall313

into one-lined octave (MIDI pitch from 60 to 71). For un-314

paired melody MIDI file, we calculate the starting beat and315

duration of the note based on the absolute time and the BPM316

(Beats Per Minute), all the notes are aligned to 1/16 notes317

as paired data. We spread the melodies into sequences of318

pitch-duration patterns, as melody sequences for our model.319

For example, the melody in Figure 1 will be represented as320

1https://www.kaggle.com/gyani95/380000-lyrics-from-
metrolyrics

2https://colinraffel.com/projects/lmd
3https://github.com/ruiguo-bio/midi-miner

Algorithm 1 DP for Melody-Lyric Alignment

1: Input: Attention matrix A ∈ RN×M , score matrix F ∈
R(N+1)×(M+1), path matrix Path, source sequence x and tar-
get sequence y. N and M are the length of x and y.

2: Output: The aligned pairs list D.
3: Initialize: F is initialized as −∞. Path is initialized as an

empty matrix with a shape of (N + 1)× (M + 1).
4: F [0][0] = 0
5: for i = 1 to T do
6: for j = 1 to S do
7: for k = 0 to j − 1 do
8: score = F [i− 1][k] +

∑j
h=k+1A[i][h]

9: if score ≥ F [i][j] then
10: F [i][j] = score, Path[i][j] = (i− 1, k)
11: end if
12: end for
13: for k = 0 to i− 1 do
14: score = F [k][j − 1] +

∑i
h=k+1

A[h][j]
i−k

15: if score ≥ F [i][j] then
16: F [i][j] = score, Path[i][j] = (k, j − 1).
17: end if
18: end for
19: end for
20: end for
21: m,n =M,N
22: while m 6= 0 and n 6= 0 do
23: i, j = Path[m][n]
24: add the aligned pair (x[j+1:n],y[i+1:m]) to D
25: m,n = i, j
26: end while
27: return D

“R, 7/16, G3, 1/16, E4, 1/8 ...”. During pre-training, we sim- 321

ply split the unpaired melodies into phrases according to the 322

average phrase length in paired data, since there is no nat- 323

ural phrase segmentation symbol in the MIDI files. Paired 324

Lyric and Melody. We use the LMD dataset (Yu and Canales 325

2019)4 which contains aligned melodies and lyrics from 326

7,998 songs. We apply the same operation, as aforemen- 327

tioned, to process melody and lyric data. The lyrics/melodies 328

are split into sentences/phrases based on the annotations. 329

Model Configuration and Training We choose Trans- 330

former (Vaswani et al. 2017) as our basic model structure, 331

which consists of 6 encoder/decoder layers. The hidden size 332

and filter size of each layer are set as 512 and 2048. The 333

number of attention heads is 8. We use the same mask- 334

ing strategy as in Song et al. (2019). We use Adam op- 335

timizer (Kingma and Ba 2015) with a learning rate of 5e- 336

4. The model is trained on a NVIDIA Tesla T4 GPU card, 337

and each mini-batch contains 4096 tokens. During training, 338

we apply dropout with the rate of 0.1. The hyper-parameter 339

α is set as 0.5. The dataset is split as training/valid/test set 340

with a ratio of 8:1:1. Our baseline is a standard Transformer 341

model, using the same model configuration with SongMASS 342

but without any pre-training or alignment constraints. 343

4https://github.com/yy1lab/Lyrics-Conditioned-Neural-
Melody-Generation



Lyric-to-Melody Melody-to-Lyric
PD (%) ↑ DD (%) ↑ MD ↓ PPL ↓ PPL ↓

Baseline 38.20 52.00 2.92 3.27 37.50

SongMASS 57.00 65.90 2.28 2.41 14.66
− pre-training 43.50 57.00 2.79 3.72 45.10
− separate encoder-decoder 55.00 64.80 2.32 2.53 15.57
− supervised loss 47.20 53.60 3.29 2.92 27.50

− alignment 56.10 65.20 2.36 2.07 8.54

Table 1: Results of lyric-to-melody and melody-to-lyric generation in objective evaluation.

4.2 Evaluation Metrics344

In this subsection, we introduce the objective and subjective345

metrics used in this paper to evaluate the quality of lyric-to-346

melody and melody-to-lyric generation.347

Objective Evaluation We mainly measure the similarity348

between the generated melody and ground-truth melody in349

lyric-to-melody generation, in terms of pitch and duration350

distribution and melody sequence, which are described be-351

low. We use perplexity (PPL) to measure the model fitness352

for both lyric-to-melody and melody-to-lyric generations.353

Besides, we also use alignment accuracy to measure align-354

ment quality in two generation tasks, which is also described355

below.356

• PD and DD (Pitch and Duration Distribution Similarity):357

We calculate the distribution (frequency histogram) of358

pitches and durations in melodies, and measure the sim-359

ilarity (average overlapped area (Ren et al. 2020)) of the360

distribution between generated melodies and ground-truth361

melodies: 1
Ns

∑Ns
i=1OA(Disi, D̂isi), where Disi and D̂isi362

represent the pitch or duration distribution of the i-th gen-363

erated and ground-truth song respectively, Ns is the num-364

ber of songs in the testset, OA represents the average over-365

lapped area.366

• MD (Melody Distance): To evaluate the pitch trend of the367

melody, we spread out the notes into a time series of pitch368

according to the duration, with a granularity of 1/16 note.369

We subtract each pitch with the average pitch of the en-370

tire sequence for normalization. To measure the similarity371

between the generated and ground-truth time series with372

different lengths, we use dynamic time warping (Berndt373

and Clifford 1994) to measure their distance.374

• Alignment Accuracy: To evaluate the alignment between375

melodies and lyrics, for each token in the source se-376

quence, we calculate how many tokens in the target se-377

quence (generated or ground-truth) are aligned to it, and378

check if the number of the tokens in the generated se-379

quence equals to that in the ground-truth sequence. We380

calculate the ratio of equals among all source tokens and381

all songs in the test set to obtain the alignment accuracy.382

Subjective Evaluation For subjective evaluation, we in-383

vite 5 participants with professional knowledge in music and384

singing as human annotators to evaluate 10 songs (338 pairs385

of generated lyric sentences and melody phrases) randomly386

selected from our test set. We require each annotator to an- 387

swer some questions using a five-point scale, from 1 (Poor) 388

to 5 (Perfect). The whole evaluation is conducted in a blind- 389

review mode. Inspired by Watanabe et al. (2018), the metrics 390

to evaluate the generated lyrics are as follows: 1) Listenabil- 391

ity: Is the lyric sounds natural with the melody? 2) Grammat- 392

icality: It the lyric grammatically correct? 3) Meaning: Is the 393

lyric meaningful? 4) Quality: What is the overall quality of 394

the lyric? The metrics to evaluate the melody are as follows: 395

1) Emotion (Bao et al. 2019): Does the melody represent the 396

emotion of the lyrics? 2) Rhythm (Zhu et al. 2018): Are the 397

note durations and pauses of the melody sound natural? 3) 398

Quality (Watanabe et al. 2018): What is the overall quality 399

of the melody? 400

Metric Baseline SongMASS
Lyric
Listenability 1.67 ± 0.62 2.00 ± 0.65
Grammaticality 3.00 ± 0.76 3.27 ± 0.59
Meaning 2.20 ± 0.68 3.20 ± 0.68
Quality 2.27 ± 0.46 3.00 ± 0.38
Melody
Emotion 2.40 ± 1.06 3.53 ± 0.64
Rhythm 2.33 ± 1.18 2.87 ± 0.74
Quality 2.33 ± 1.05 2.93 ± 0.70

Table 2: Subjective evaluation results. Average scores and
standard deviations are shown for each measure.

4.3 Results 401

The main results of the objective evaluation of lyric-to- 402

melody and melody-to-lyric generations are shown in Ta- 403

ble 1. The baseline model uses the same model struc- 404

ture with SongMASS, but does not leverage unsupervised 405

melody and lyric data for pre-training and does not lever- 406

age attention-based alignment constraints. It can be seen that 407

SongMASS greatly outperforms the baseline model in all 408

objective metrics. The subjective evaluations are shown in 409

Table 2, from which we can see that the lyrics and melodies 410

generated by SongMASS obtain better average scores in 411

all subjective metrics. These results demonstrate the effec- 412

tiveness of SongMASS in generating high-quality lyric and 413

melody5. We further conduct ablation study to verify the ef- 414

fectiveness of pre-training and alignment constraint in Song- 415

5Melody and lyric samples are available at: https:
//musicgeneration.github.io/SongMASS/



(a) Left: without sentence-level constraints. Right: with sentence-
level constraints.

(b) Left: without token-level constraints. Right: with token-level con-
straints.

Figure 6: Attention visualization. All of the results are displayed on the average attention score of all heads in the last layer
of the encoder-decoder attention in Transformer. In Figure 6(b), the red blocks are the alignments searched by our dynamic
programming algorithm while the yellow blocks are by the greedy algorithm described in the second paragraph in Section 4.4.

MASS. As shown in Table 1, removing each component re-416

sults in worse performance than SongMASS6, demonstrat-417

ing the contribution of pre-training and alignment constraint.418

4.4 Method Analysis419

Pre-training Method We further investigate the effective-420

ness of each design in pre-training method, including us-421

ing separate encoder-decoder for lyric-to-lyric and melody-422

to-melody pre-training and using supervised pre-training423

to learn a shared latent space between lyric and melody.424

From Table 1, removing separate encoder-decoder (i.e., us-425

ing shared encoder-decoder) and removing supervised loss426

both result in worse performance than SongMASS, which427

demonstrates the effectiveness of the two designs.428

L2M Acc ↑ M2L Acc ↑
SongMASS 62.6 45.4
- TC 62.1 44.8
- SC 56.2 44.0
- TC - SC 55.3 43.8
- TC - SC - PT 48.3 37.1
- DP 15.7 11.3

Table 3: Analyses of the designs in alignment constraints.

Alignment Strategy We study the effectiveness of the429

sentence-level and token-level alignment constraints (de-430

noted as SC and TC respectively) on the alignment accu-431

racy (denoted in Section 4.2) between melodies and lyrics.432

The results are shown in Table 3. It can be seen that both433

token-level and sentence-level (especially sentence-level)434

constraints can improve alignment accuracy. It is interest-435

ing that pre-training (PT) also benefits alignment, which is436

probably because the patterns of lyrics and melodies are bet-437

ter captured with pre-training. Finally, we investigate the438

alignment accuracy without dynamic programming (DP) al-439

gorithm. In this case, we implement a naive alignment al-440

gorithm on attention weight matrix, which greedily decides441

to add another token to the current one-to-many or many-to-442

one alignment or to start a new alignment pair at each time443

6Removing alignment constraint causes slightly better perfor-
mance in PPL, which indicates that attention constraint may harm
the fitting capability of the model, but still result in better genera-
tion accuracy in terms of PD, DD and MD. We also demonstrate
in Table 3 that alignment constraint indeed improves the alignment
accuracy of the generated results.

step. When the sequence reaches the last token, we align all 444

the remaining tokens of the other sequence to that token to 445

ensure all tokens are aligned. We find that the alignment ac- 446

curacy is drastically decreased without DP in Table 3, show- 447

ing the importance of DP for accurate alignments. 448

Alignment Visualization To better highlight the advan- 449

tages of our alignment strategy, we further visualize some 450

cases from the lyric-to-melody tasks, as shown in Figure 6. 451

Figure 6(a) shows the attention weights of the whole song 452

with and without sentence-level alignment constraints. It 453

can be seen that the attention weights without sentence- 454

level constrains are dispersed in all positions of the whole 455

long sequence, and the target token cannot attend to the 456

correct source sentences. When using sentence-level con- 457

straints, there are monotonous alignments between source 458

and target sequence, which demonstrates the effectiveness 459

of sentence-level alignments. Figure 6(b) shows the differ- 460

ences of whether using token-level constraints or not. We 461

find that the attention distributions without the token-level 462

constraints are chaotic. When applying token-level attention 463

constraints, there are obvious diagonal trend in the attention 464

weights, which further enable the dynamic programming al- 465

gorithm to find a better alignment path as marked in red rect- 466

angles. These results demonstrate the effectiveness of token- 467

level alignment constraints. 468

5 Conclusion 469

In this paper, we have proposed SongMASS, an automatic 470

song writing system for both lyric-to-melody and melody- 471

to-lyric generation, which leverages masked sequence to 472

sequence pre-training and attention-based alignment con- 473

straint. We introduce some specific designs based on MASS 474

for lyric-to-lyric and melody-to-melody pre-training, includ- 475

ing song-level unsupervised pre-training and supervised pre- 476

training loss to learn a shared latent space between lyric and 477

melody. Furthermore, we introduce the sentence-level and 478

token-level alignment constraints, and a dynamic program- 479

ming algorithm to obtain accurate alignments between lyric 480

and melody. Experimental results show that our proposed 481

SongMASS greatly improves the quality of lyric-to-melody 482

and melody-to-lyric generation compared with the baseline. 483

For future work, we will investigate other sequence to se- 484

quence pre-training methods and more advanced alignment 485

algorithms for lyric-to-melody and melody-to-lyric genera- 486

tion. 487
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Appendix565

Visualization Examples566

To demonstrate the advantages of our methods in alignment,567

we further randomly choose some cases for attention visual-568

ization. The results are shown Figure 7. From Figure 7, we569

observe obvious monotonous alignments in each case, and570

the dynamic programming algorithm achieves more precise571

alignments than greedy alignments.572

(a)

(b)

(c)

Figure 7: Attention visualization. The meaning of red and
yellow blocks are same as Figure 7.


