
Hybrid Cascade Point Search Network
for High Precision Bar Chart Component Detection

Junyu Luo
Pennstate University
Pennsylvania, USA

junyu@psu.edu

Jinpeng Wang
Microsoft Research

Beijing, China
jinpwa@microsoft.com

Chin-Yew Lin
Microsoft Research

Beijing, China
cyl@microsoft.com

Abstract—Bar charts are commonly used for data visualization.
One common form of chart distribution is in its image form. To
enable machine comprehension of chart images, precise detection
of chart components in chart images is a critical step. Existing
image object detection methods do not perform well in chart
component detection which requires high boundary detection
precision. And traditional rule-based approaches lack enough
generalization ability. In order to address this problem, we design
a novel two-stage component detection framework for bar charts
that combines point-based and region-based ideas, by simulating
the process that human creating bounding boxes for objects. The
experiment on our labeled ChartDet dataset shows our method
greatly improves the performance of chart object detection. We
further extend our method to a general object detection task and
get comparable performance.

I. INTRODUCTION

Bar charts are common forms of human communication.
They are ubiquitous and are easily found in news, web
pages, company reports, scientific papers, etc. The automatic
analysis of those data can bring us huge commercial values.
In many cases, these charts are published as images. Humans
can readily decode the underlying data in chart images,
but machines have no way to understand them [1]. Some
methods [1]–[3] have been proposed to address this challenge.
Despite promising performance on their reported datasets,
these previous work highly rely on manually defined features
which are applicable only to certain types of bar chart. The
diversity in chart designs and styles make rule-based chart
component detection methods difficult to scale, e.g., adding
texts or patterns to the bars of a bar chart always make hand-
craft heuristics failed to detect the bars. Hence, a more general
approach is desired to detect chart components to enhance
machine interpretation of charts. The recent advanced natural
object detection methods attract our attention. By casting chart
component detection as an object detection problem, we can
leverage the existing work in image object detection. However,
due to the special precision requirement of chart components,
the existing mainstream object detection methods can’t solve
this task easily.

For region-based methods, e.g, Faster-RCNN [4], the high
precision detection of the boundary is hard to achieve. As
shown in Fig. 1, most boundaries are shifted a few pixels. Al-
though some works have been proposed to improve precision
by eliminating error detection [5], [6] or better loss function

(a) Faster-RCNN (b) CornerNet

Fig. 1: Typical mistakes produced by existed object detection
apporaches. (a) the common mistake of Faster-RCNN: most
of boundaries shifted a few pixels. (b) the common mistake
of CornerNet: miss-pairing different objects to one object,
although the detected boundaries are precise.

[7], [8], the resolution problem still exists as described below.
In order to capture the whole structure information of the target
object, the region-based method usually needs to encode a
large region. However, due to the high computational cost, the
sampled resolution is usually very low, e.g, 7× 7 in Ren [4].
It’s not a surprise that region-based methods do not work well
in the terms of precision.
For key-point based methods like CornerNet [9] are likely
to mistakenly pair points belong to different objects as one
object. CornerNet directly works on the highest resolution
scale and has a good boundary detecting ability. However,
the ConerNet only uses the local feature information around
key points to pair the points. When a large number of similar
and homogeneous objects appeared in one chart image. As
shown in Fig. 1, the miss-pairing problems for CornerNet on
chart images are severe. Some methods [10], [11] try to use the
category information of the central point to eliminate the miss-
pairing problem, but due to a large number of homogeneous
components in one chart image, it is not a proper choice as
we will show in the experimental results.

To solve the above-mentioned problems, we propose a
new two-stage object detection framework that combines ad-
vantages from the both region and point-based methods. As
shown in Fig. 2, our method imitates the process that human



Fig. 2: The workflow of our method. Step 1: The detected top-
left points and bottom-right points. Step 2: Starting with one
top-left point, the main region for its corresponding object are
estimated iteratively. Step 3: pair top-left points and bottom-
right points based on the estimated regions.

creating bounding boxes for objects: the first step is to generate
unpaired top-left and bottom-right points with a point-based
method; Then, for each top-left point, a network is designed
to search the main region for its corresponding object; at last,
we pair top-left points and bottom-right points based on the
regions for objects. It utilizes not only the ability of point-
based methods for predicting precise key points of boundaries,
but also the ability of region-based methods for predicting
boundaries based on sampled regions. On the ChartDet data
set collected by us which targets precise object detection, our
method achieved the state-of-the-art on all metrics, especially
when precise boundaries are required.

In summary, we make the following contributions:
• Propose a hybrid two-stage object detection framework

that utilizes not only the ability of point-based methods
for predicting key points of boundaries, but also the
ability of region-based methods for predicting boundaries
based on sampled regions.

• Achieve state-of-the-art on bar chart component detec-
tion, especially when precise boundaries are required.

• A new annotated data set for bar chart component detec-
tion with precise boundaries.

II. RELATED WORK

A. Feature Based Chart Components Extraction

Since charts are highly structured, the feature based methods
[1], [12], [13] for extracting chart components from chart im-
ages are the mainstream methods. Those methods highly rely
on hand-crafted heuristics and low-level pre-defined features.
They are efficient for the data with targeted design styles, but
lack of generalization ability when minor changes are made
to the input image. For example, adding texts or patterns to
the bars always make such rules failed to detect the bars or
the rules designed for detecting vertical bars are hard to work
for horizontal bars. The styles and designs of charts change

quickly today, which brings difficulty to the industrial use of
those feature-based methods. More details can be found in
Section V

B. Region-Based Object Detection

Region-based methods first sample a small region, then
generate the bounding box based on the feature. According to
the rounds of sampling, it can be divided into one-stage and
two-stage methods. For one-stage methods, e.g. YOLO [14]
and SSD [15], after the initial sample, the network needs to
give out the final detection results directly, and the limitation of
fixed sample region is the major disadvantage of such methods.
Later, feature pyramid network (FPN) [16] solves this problem
with multi-scale features. For two-stage methods like R-CNN
[17], SPP [18], and Fast-RCNN [19] have an initial sampling
procedure to dynamically generate sample regions, and the
adaptive sample region greatly improves the precision. Recent
work like deformable convolution network (DCN) [20] further
improves the performance of these methods.

C. Point-Based Object Detection

The point-based methods are free of the limitation of the ini-
tial sample region, thus can achieve high precision in boundary
detecting. For these methods, detection starts with key points,
e.g., top-left points and bottom-right points in CornerNet [9] or
peak points in ExtremeNet [11]. After the detection of the key
points, a pairing algorithm is applied to pair the key points.
Semantic embedding is used in CornerNet, and other methods
like central heat map [11] or the combination of them [10] are
also proposed. The grouping steps are performed outside the
network, hence they can not be optimized through training and
usually takes more than O(n2) in terms of time complexity.
For dense scenes, e.g., tens of bars on a chart, the time cost
is huge and impractical.

III. METHOD

The framework of Hybrid Cascade Pairing Network
(HCPN) consists of two major networks. It is inspired by the
process that when annotators are creating bounding boxes for
objects. First, identify the top-left point of an object, then fit
the top-left point and draw a bounding box that covers the
main region of the current object, finally, adjust the boundary
slightly to make it more precise. In our framework, as shown
in Fig. 3, hourglass network (HG) [21] is adopted as the
feature backbone network, then Step 1 is executed by a
fully convolutional key point proposal network, which aims
to find the potential unpaired top-left and bottom-right points
by predicting a heat map of points. In Step 2, given the initial
top-left point on the input image, the object search network
is designed to find the main region of the current object
iteratively. In Step 3, the point pairing module pairs the top-
left point with its corresponding bottom-right point produced
by Step 1, based on the detected region of the object of Step
2. In this section, we will show more details about these steps.



Detected 

Box

Top-Left Point 

Prediction

Bottom-Right Point

Prediction

Point Pairing 

Module 

IS Module

Point 

Heatmaps

FT Module

Loop T Times

Step 1

Step 2 Step 3

Object Search Network

Point Proposal Network

Hourglass 

Net

Hourglass 

Net

Fig. 3: A diagram of the hybrid cascade pairing network. Point Proposal Network (PPN), Object Search Network (OSN) and
Point Pairing Module (PPM) work in a cascade order.

A. Step 1: Point Proposal Network (PPN)

In this paper, we adopt a simplified CornerNet [9] as our
point proposal network. Follow the same setting, we predict
two sets of heatmaps, i.e., the heatmap of top-left points which
will be used as the initial search anchors in Step 2, and the
heatmap of bottom-right points which will be paired with
corresponding top-left points in Step 3. Each heatmap has C
channels, where C denotes the number of categories, and with
a size of H×W . For each key point, there is one ground-truth
positive location and those of negative locations are augmented
with unnormalized Gaussians. Let ycij be the ground-truth
at location (i, j) for class c and ŷcij be the corresponding
predicted score. The loss of a heatmap is:

Lheat = (1)

−1
N

C∑
c=1

H∑
i=1

W∑
j=1

{
(1− ŷcij)αlog(ŷcij), if ycij = 1

(1− ycij)β(ŷcij)αlog(1− ŷcij), else

where α, β are the hyperparameters that control the contribu-
tion of each point (we follow the same settings with Corner-
Net), and N is the number of the target objects in the image.
To eliminate the precision loss involved by downsampling, we
follow CornerNet to add the offset loss Loff , then the loss for
PPN is:

LPPN = Lheat + Loff (2)

Solving the above equation we get two heatmaps for top-left
points and bottom-right points. For each heatmap, we keep the
top-k points as candidate points according to their predicted
scores ŷcij , i.e., a set of top-left points {ptl} which will be used
as initial search anchors in Step 2 and a set of bottom-right
points {pbr} which will be paired with corresponding top-left
points in Step 3. For each point, p.score indicates its score
and p.label indicates its class. To enhance the representation

of the input image, we also integrate these two heatmaps with
the original input image.

B. Step 2: Object Search Network (OSN)

With the enhanced input image and the predicted top-left
points {ptl}, the target of OSN is to find the main region for
each top-left point.

1) Iterative Search Module (ISM): Starting from each top-
left point ptl at location (ptl.i, ptl.j), ISM searches the main
region of the current object ptl.lable iteratively. At iteration
t, (ptl.wt, ptl.ht) is the predicted width and height of the
object1. ISM makes predictions based on three factors: a)
RoI ISM

t : the image features of the current region started
from (ptl.i, ptl.j) with size (ptl.wt, ptl.ht). RoIAlign [22]
algorithm is used to sample the RoI into a fixed size feature
RoI ISM

t ∈ RHISM×WISM×Cf , where WISM, HISM are the sampled
resolutions and Cf is the number of channels of the feature
layer; b) ptl.label: the label information of ptl which is critical
because it can serve as an indicator to guide the network to
focus on label related objects. The label of top-left point is
represented in one-hot format ptl.label ∈ R1×C ; c) Scalet: the
scale information of sampled region at the current interation
t. Specifically, Scalet = (ptl.wt

WISM
, ptl.ht

HISM
). The outputs of ISM

at interaction t are shown as the following equations:

(fw,fh) = ISM
(
RoI ISM

t , ptl.label, Scalet
)

(3)
ptl.wt+1 = ptl.wt × fw, ptl.ht+1 = ptl.ht × fh (4)

Notice that this network predicts the relative ratios
(fw, fh) instead of directly predicting the size of region
(ptl.wt+1, ptl.ht+1), which makes the prediction of network
scale irrelevant. Hence, the module can share parameters from

1(ptl.w0, ptl.h0) = (WISM, HISM) for initialization.



different iterations which with different scales. And the loss
for ISM is:

LISM =
1

T

T∑
t=1

(
RegLos

(
log(fw), log(

ptl.wg
ptl.wt

)
)

(5)

+ RegLos
(
log(fh), log(

ptl.hg
ptl.ht

)
))

where T is the number of iterations, ptl.wg, ptl.hg are the
ground-truth size of region, and RegLos is the regression loss
function where smooth L1 loss is selected. In training, ptl and
ptl.label are provided by ground-truth annotations, while in
testing, they are predicted by PPN2.

2) Fine Truing Module (FTM): We add the FTM to further
refine the predictions by ISM. It is different from ISM, as FTM
focuses on fine-tuning the predicted region while ISM focuses
on finding targeted regions in a few iterations. This is also
inspired by [23] where a sequence of detectors trained with
increasing IoU thresholds to improve performance. Therefore
it’s better to model FTM as a separated module that focus on
the final stage where the IoU threshold is high. Specifically,
FTM predicts a linear offset to adjust the previous estimated
region from (ptl.wT , ptl.hT ) to (ptl.w, ptl.h):

(dw, dh) = FTM(RoIFTM, ptl.label, ScaleT ) (6)
ptl.w = ptl.wT × (1 + dw) (7)
ptl.h = ptl.hT × (1 + dh) (8)

where RoIFTM ∈ RHFTM×WFTM×Cf and the sampled resolution
is also higher compared with those for ISM. Again, Eq. 6
predicts the relative ratios instead of directly predicting the
size of region which makes the prediction of network scale
irrelevant. The loss of FTM is:

LFTM = RegLos
(
dw,

ptl.wg − ptl.wT
ptl.wT

)
(9)

+RegLos
(
dh,

ptl.hg − ptl.hT
ptl.hT

)
The final training loss of one top-left point for OSN is:

LOSN = LISM + LFTM (10)

C. Step 3: Point Pairing Module (PPM)

The accuracy of the region estimated by Step 2 is not precise
enough, since OSN is also a region based method, hence face
the same drawback due to the limitation of sampled resolution
as illustrated in Introduction. To address this problem, we
propose to pair the predicted top-left point based on the
corresponding bottom-right points predicted by Step 1 and the
regions predicted by Step 2, as shown in Algorithm 1. In Line
3, we first select the subset from bottom-right points {pbr}
where pbr close to pobj the bottom-right point of the predicted
region and has the same label with ptl. For each candidate
pbr, in Line 5, we calculate the IoU between bounding box
constructed by (ptl, pobj) and that by ptl, pbr. After that, if
the IoU and the weighted score in Line 7 reach corresponding

2We expand the ground-truth bbox with a fix exp pixel for OSN.

Algorithm 1 Point Pairing Algorithm

Input: top-left point ptl, top-k bottom-right points {pbr},
size of predicted region (ptl.w, ptl.h), threshold of IoU
TIoU , threshold of the score Tscore, ratio of candidate
region γ

Output: the paired bottom-right point p∗br
1: initial the max score Smax = 0
2: pobj = (ptl.i+ ptl.w, ptl.j + ptl.h)
3: {pbr}′ = select pbr from {pbr}

where pbr in (pobj .i±γ ·ptl.w, ptl.j±γ ·ptl.h)
and pbr.label == ptl.label

4: for pbr ∈ {pbr}′ do
5: SIoU = IoU

(
bbox(ptl, pobj), bbox(ptl, pbr)

)
6: if SIoU > TIoU then
7: Scur = SIoU × pbr.score
8: if Scur > Smax and Scur > Tscore then
9: Smax = Scur

10: p∗br = pbr
11: end if
12: end if
13: end for

Fig. 4: An example image from ChartDet val set.

thresholds, we update the answer of the bottom-right point
which should pairs with input ptl in Line 10. By using Quad
Tree index [24] the search of candidate points {pbr}′ takes
O(log4n), and the algorithmic complexity for fixing n points
is O(nlog4n).

IV. CHARTDET DATA SET

To evaluate the ability of object detection under a high
precision setting, a dataset contains boundaries with pixel-level
accuracy is required. The existing object detection datasets
cannot satisfy this request as most of them are annotated by
human annotators who hard to annotate objects with pixel-
level accuracy. In this paper, we present the ChartDet dataset
which is a labeled chart image dataset for high precision object
detection. On one hand, the boundaries and labels are exported
from editable charts with computer API automatically which
are precise. On the other hand, the task of chart object
detection has application values, e.g., extracting semantic in-
formation or data values from chart images with high precision
object detection, to enable machine readability for charts or



visualizing data for visually impaired users. In addition, the
ability to detect chart objects can be easily adapted to other
manual created image data like tables, posters, or web pages.

A. Dataset Collection

We first crawl public available Excel sheets from Internet.
For each chart in Excel sheets, we capture the image of chart
with Excel APIs and export 4 categories of boundaries, i.e.,
Legend, Title, Bar and Data Label as shown in Fig. 4.We
compared our data set with the general object detection data
set COCO [25] in Table I.

TABLE I: Dataset statistics. #cat. is the number of categories.

Data Set train val test #cat. #objects precise
per image boundary

COCO 118,287 5,000 20,288 81 7 ×
ChartDet 158,140 6,121 6,262 4 25 X

V. EXPERIMENTAL RESULTS

A. Implementation Details and Parameters

All experiments are conducted in the same environment
with 4 P100 GPUs. Batch size is chosen by the maximum
running size, and Soft-NMS is applied for all final results.
For OSN, DCN [20] block is included to align the features.
The selection of hyperparameters is confirmed by val set for
HCPN and the baseline methods. For PPN, we follow the
same setting of CornerNet: training iteration=100,000; batch
size=26. For OSN: training iteration=40,000; batch size=26;
learning rate=1e-4; the exp=3 pixels; iteration time T is set
to 3. For sample resolution, the ISM module is 20× 20 and
the FTM module is 40× 40. For PPM, γ is set to 0.3, TIoU
is set to 0.5 and Tscore is set to 0.25.

B. Compared Methods

For region approaches, we use Faster-RCNN [4], Retinanet
[26] and the state-of-the-art Cascade-RCNN [23]. For point
approaches, we select CornerNet [9] and CenterNet [10]. For
Faster-RCNN, Cascade-RCNN, and Retinanet, the batch size
is set to 20, and training iteration is set to 14 epochs of data set.
Learning rates are set to their default best learning rate. SGD
optimizer is used and the learning rate is reduced 10 times
at 10 and 12 epoch to guarantee the network can converge
to its best fit. No pre-training for the backbone networks for
fairness. For CornerNet and CenterNet, we follow the same set
of OSN. We include DCN blocks for all methods that contain
region sampling, and FPN is used to provide multi-scale
features. For rule-based baseline, we select Revison [12]3.
For our approaches, HCPN is the full model which described
in Section III, and HCPN w/o PPM is our ablation method
without the point pairing module.

3ReVision only includes the extraction of bar components, so we only
compare it on this category.

C. Evaluation Metric

We adopt the COCO Average Precision (AP) across IoU
thresholds from 0.5 to 0.95 with an interval of 0.05. We also
report the AP scores from 0.5 to 0.95 to measure the high
precision boundary detecting ability. In the meanwhile, we
conduct additional studies to analyze the grouping ability and
the effectiveness of different steps in OSN.

D. Overall Performance

Table II shows the performance for all methods on the test
set of ChartDet, and Fig. 5 visualizes their examples. We can
see that the rule-based method Revision cannot detect any
stacked elements because it doesn’t have related rules. For
other charts, Revision is always disturbed by texts or patterns
and work poorly. In terms of AP, Cascade-RCNN, CornerNet,
and CenterNet are comparable, while our HCPN achieves the
best performance among all methods, i.e., HCPN outperforms
CenterNet with 6.0% improvement on AP.

We further zoom in the results with another two metrics
to analyze the problems discussed in Section I: AP0.5 which
mainly reflects the ability to detect the general target objects
and isn’t sensitivity to the precision of boundary; and AP0.95
which is sensitivity to the precision of boundary in addition
to the ability to find the target objects. We can see that
Faster-RCNN works well on AP0.5 while poor on AP0.95, and
CornerNet has a relatively low score in terms of AP0.5, despite
CornerNet has a good AP score. This confirms with our finding
in Section I that Faster-RCNN suffers from the problem of
precision and CornerNet easy to make mistakes when pairing
top-left points and bottom-right points. CenterNet tries to solve
this problem by adding a center heatmap, but due to a large
number of homogeneous components in chart images, the
improvement of CenterNet to CornerNet is small. Moreover,
CenterNet also drops on AP0.95, which shows that its precision
is hurt. The above results show that our method effectively
combines the advantage of region methods and point-based
methods by using region structure information to group points
and using key points to keeps the precision of boundary, and
Fig. 5 further shows that the problems of miss-pairing and
boundary missing are solved effectively. In the meanwhile, by
comparing HCPN with HCPN w/o PPM, we find that PPM
effectively improved the performance on AP0.95 by improving
the precision of the bottom-right points, which also proves our
assumption of precision loss in region sampling.

E. Error Analysis

Fig. 6.a, Fig. 6.c and Fig. 6.e show the error analysis of the
rule-based method Revision. We can see that Revision cannot
handle stacked charts (e.g., Fig. 6.a) and always be disrupted
by the texts (e.g., Fig. 6.a and Fig. 6.e) or the background
patterns (e.g., Fig. 6.c).

Fig. 6.g, Fig. 6.i and Fig. 6.k show the error analysis of
Faster-RCNN for chart component detection. We can see that
Faster-RCNN in Fig. 6.g, the boundaries shifted a few pixels,
and in Fig. 6.i and Fig. 6.k, Faster-RCNN is struggle to assign
correct bounding boxes for larger components.



TABLE II: The overall performance of chart component detection on ChartDet test set. AP0.5 mainly reflects the ability of
detecting the general target objects and isn’t sensitivity to the precision of boundary; AP0.95 is sensitivity to the precision of
boundary in addition to the ability of finding the target objects.

Method AP AP0.5 AP0.75 AP0.8 AP0.85 AP0.9 AP0.95

Retinanet 101 0.459 0.729 0.497 0.389 0.253 0.110 0.012
Faster-RCNN 101 0.580 0.805 0.664 0.578 0.434 0.233 0.056
Cascade-RCNN 101 0.647 0.831 0.723 0.660 0.552 0.375 0.149
CornerNet 0.646 0.783 0.717 0.674 0.587 0.429 0.225
CenterNet 0.666 0.820 0.742 0.685 0.592 0.429 0.205

HCPN w/o PPM 0.697 0.870 0.775 0.714 0.610 0.429 0.222
HCPN 0.706 0.868 0.778 0.723 0.623 0.457 0.261

HCPN (Bar Only) 0.810 0.934 0.873 0.837 0.757 0.635 0.397
Revision (Bar Only) 0.330 0.598 0.316 0.217 0.112 0.032 0.002

(a) Revision (b) Faster-RCNN (c) CornerNet (d) CenterNet (e) HCPN

Fig. 5: Visualization examples on ChartDet val set (IoU Threshold 0.4). a) The rule-based method Revision cannot handle
stacked bars; b) the boundaries detected by Faster-RCNN shifted a few pielxs; c) CornerNet miss-pairs different objects to one
object; d) CenterNet alleviates the miss-pairing problem; e) Our HCPN doesn’t have the above problems.

TABLE III: The ability of pairing top-left points and bottom-
right points for CornerNet and HCPN. w/ GT masks the mis-
takes on predicting key points by substitute the top-left points,
bottom-right points and object categories with corresponding
ground-truths.

AP0.5 w/ GT w/o GT

CornerNet 0.903 0.783
HCPN 0.956 0.868

Fig. 6.m and Fig. 6.o show the error analysis of CornerNet
for chart component detection. We can see that CornerNet
miss-pairing different objects to one object, although the
detected boundaries are precise, especially when detecting the
chart images with crowd objects.

F. Pairing Ability Study

To analyze the pairing ability for top-left points and bottom-
right points, we mask the mistakes in predicting key points by
substitute the top-left points, bottom-right points, and object
categories with corresponding ground-truths. Here, we also
choose to report AP0.5, as it mainly reflects the ability to
find the general target objects correctly. From Table III, we
can see that, with ground-truth information, both methods
got significant improvements, and HCPN achieve 0.956 on
AP0.5 which is nearly perfect while that for CornerNet is only
0.903. This result proves the improvement of our approach on

TABLE IV: Model inference time and the corresponding chart
component detection performance for HCPN w/o PPM.

#Iteration 1 2 3 4 CenterNet Revision

AP 0.580 0.683 0.697 0.700 0.666 -
AP0.5 0.813 0.867 0.870 0.870 0.820 -
FPS 2.99 2.85 2.82 2.74 3.26 0.05

point pairing ability. It also shows that the major bottleneck
of HCPN is the point proposal network.

G. OSN Search Step Analysis

Fig. 7 visualizes the boundaries under each search step of
OSN, we can see that ISM first make a rough estimation of the
target object and then adjust the prediction according to the
new region information, and FTM makes the final decisions
with more precise boundaries. We also report the AP scores
and inference time under different count of search iterations T
for ISM in Table IV. As we can see, the iteration procedure of
ISM is necessary: the initial steps of ISM usually cannot cover
the ground-truth and have low AP scores; more iterations bring
higher precision; and the improvement is tiny after the third
iteration. With more iterations, the cost of inference also goes
up, but the FPS is still acceptable under the high precision
requirement. Compared with CenterNet, despite CenterNet is
a one-stage method, the FPS of CenterNet is closed to ours,
which is due to its high complexity of the grouping algorithm.
In further work, with shared backbone network acceleration,
the time consuming of our method can be further reduced.



(a) Revision (b) HCPN (c) Revision (d) HCPN

(e) Revision (f) HCPN (g) Faster-RCNN (h) HCPN

(i) Faster-RCNN (j) HCPN (k) Faster-RCNN (l) HCPN

(m) CornerNet (n) HCPN (o) CornerNet (p) HCPN

Fig. 6: Error analysis. For the rule-based method Revision, in a) it failed to detect the bar components for stacked charts; in
a) and e) it is disrupted by the texts; in c) it is disrupted by the background pattern. For Faster-RCNN, in g) the boundaries
shifted a few pixels; in i) and k), it is struggle to assign correct bounding boxes for larger components. For CornerNet, in m)
and o) it miss-pairing different objects to one object, although the detected boundaries are precise, especially when detecting
the chart images with crowd objects.

TABLE V: Performance of object detection on COCO val set

Method AP AP0.5 AP0.75 APS APM APL

HCPN 0.390 0.556 0.409 0.205 0.417 0.550
CornerNet 0.391 0.546 0.414 0.193 0.416 0.546

In addition, we also report the inference time of Revision
here. Revision can run inference at only 0.05 FPS while our
HCPN can run at 2.82 FPS, which makes Revision far from
commercialization.

H. Performance on General Object Detection

We also report the performance of HCPN on COCO data
set in Table V. As we can see, compared with its backbone
CornerNet, HCPN gets a litter improvement, especially under

a lower IoU setting, where the PSN step can eliminate the
impossible point grouping results. However, HCPN is designed
for dense scenes that include multiple homogeneous objects at
the same image, which is quite different from COCO where
the average number of objects in a per image is less than 7. In
addition, the miss-pairing problem on the COCO dataset is not
significant, as most of the objects in one image usually belong
to different categories. It’s not surprising that the improvement
of HCPN on general object detection is limited.

VI. CONCLUSION

We make the initial attempt on charts and offer the Chart-
Det dataset, a new benchmark of such human-created chart
images, labeled with precise bounding boxes. Our tests on
this benchmark show that such images challenge state-of-the-
art detectors. The performance of modern object detectors



Fig. 7: Iteration visualization of OSN. Boxes from dark to
bright with blue numbers represent the search steps of ISM
and the green one represents the FTM.

on bar chart component detection is remarkable yet still
limited. To address these challenges, we presented HCPN, a
new framework for precise object detection. The experiments
proved that our method effectively combining the strengthens
of the region and point-based methods on chart component
detection tasks. For future work, we will further expand this
work for more types of charts and visualized data.

REFERENCES

[1] J. Poco and J. Heer, “Reverse-engineering visualizations: Recovering
visual encodings from chart images,” in Computer Graphics Forum,
2017, pp. 353–363.

[2] R. A. Al-Zaidy and C. L. Giles, “A machine learning approach for
semantic structuring of scientific charts in scholarly documents,” in
Twenty-Ninth IAAI Conference, 2017.

[3] J. Poco, A. Mayhua, and J. Heer, “Extracting and retargeting color
mappings from bitmap images of visualizations,” IEEE Transactions on
Visualization & Computer Graphics, vol. PP, no. 99, pp. 1–1, 2017.

[4] S. Ren, K. He, R. Girshick, and S. Jian, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” 2015.

[5] E. Goldman, R. Herzig, A. Eisenschtat, J. Goldberger, and T. Hassner,
“Precise detection in densely packed scenes,” in CVPR, 2019.

[6] A. Neubeck and L. V. Gool, “Efficient non-maximum suppression,” in
International Conference on Pattern Recognition, 2006.

[7] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression,” in CVPR, 2019, pp. 658–666.

[8] Y. He, C. Zhu, J. Wang, M. Savvides, and X. Zhang, “Bounding box
regression with uncertainty for accurate object detection,” arXiv preprint
arXiv:1809.08545, 2018.

[9] H. Law and J. Deng, “Cornernet: Detecting objects as paired key-
points,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 734–750.

[10] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet:
Keypoint triplets for object detection,” arXiv preprint arXiv:1904.08189,
2019.

[11] X. Zhou, J. Zhuo, and P. Krahenbuhl, “Bottom-up object detection by
grouping extreme and center points,” in CVPR, 2019, pp. 850–859.

[12] M. Savva, N. Kong, A. Chhajta, F. F. Li, M. Agrawala, and J. Heer,
“Revision: automated classification, analysis and redesign of chart
images,” in Acm Symposium on User Interface Software & Technology,
2011.

[13] J. Gao, Z. Yin, and K. E. Barner, “View: Visual information extraction
widget for improving chart images accessibility,” in IEEE International
Conference on Image Processing, 2013.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[16] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss
for dense object detection,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, vol. PP, no. 99, pp. 2999–3007, 2017.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in IEEE Conference on Computer Vision & Pattern Recognition, 2014.

[18] H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian, “Spatial pyramid
pooling in deep convolutional networks for visual recognition,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, vol. 37, no. 9,
pp. 1904–16, 2014.

[19] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[20] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2: More
deformable, better results,” in CVPR, 2019, pp. 9308–9316.

[21] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in ECCV. Springer, 2016, pp. 483–499.

[22] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, vol. PP,
no. 99, pp. 1–1, 2017.

[23] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality
object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 6154–6162.

[24] H. Samet, “The quadtree and related hierarchical data structures,” Acm
Computing Surveys, vol. 16, no. 2, pp. 187–260, 1984.

[25] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” 2014.

[26] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.


