
FAST MAINTENANCE OF SEMANTIC INTEGRITY ASSERTIONS USING REDUNDANT AGGREGATE DATA*

Philip A. Bernstein
Barbara T. Blaustein

Edmund M. Clarke

Aiken Computation Laboratory
Harvard University

Cambridge, MA 02138

Abstract

Semantic integrity assertions are predicates
that define consistent database states. To enforce
such assertions, a database system must prevent any
update from mapping a consistent state to an incon-
sistent one. In this paper, we describe an enforce-
ment method that is efficient for a large class of
relational calculus assertions. The method auto-
matically selects minima and maxima of certain sets
to maintain as redundant data in the database. This
redundant data is sufficient for enforcing all of
the assertions in the class, yet it can be easily
maintained. Correctness proofs are expressed in
Hoare's program logic.

1. Introduction

Accuracy is an important property of any data-
base. One way to prevent inaccurate data from being
stored in a database is to use semantic integrity
assertions. These assertions are predicates on da-
tabase states; a database state is consistent with
these assertions if all assertions hold in that
state. By defining a collection of semantic inte-
grity assertions, a user specifies consistent states.
The database system is responsible for ensuring da-
tabase consistency by rejecting updates that pro-
duce inconsistent states.

The main components of an implementation of
semantic integrity assertions are a specification
language for defining assertions and enforcement
algorithms for guaranteeing database consistency
relative to those assertions. Expressive power
is an asset for such a language, since it allows
many types of constraints to be stated; but it is
also a liability, since complicated assertions are
often expensive to enforce. One language that is
richly expressive is relational calculus [Codd 721.
However, since many applications do not need the
full power of relational calculus to express seman-
tic integrity assertions, and since arbitrary re-
lational calculus assertions can be quite expen-
sive to enforce, we focus on a restricted class of
assertions. Our restricted class is sufficiently
general to express many common assertions, yet
simple enough to be enforced efficiently.

*This work was supported by the National Science
Foundation under grants MCS-77-05314, MCS-79-07762,
and MCS-79-08365,

Efficient enforcement depends not only on the
complexity of the assertions, but also on the struc-
ture of the database. One method for improving the
efficiency of enforcement algorithms is to augment
the database, p, with stored redundant information,
D', that summarizes the contents of D. If D' is
cleverly designed,

-
it will contain sufficient in-

formation for testing the consistency of most asser-
tions during updates. However, D' itself must be
kept consistent relative to the database, g, it is
intended to describe. So, there is a trade-off be-
tween the work saved during consistency testing by
exploiting D' and the extra effort required to keep
D' consistent with respect to D. For D' to be ef-
fective, its benefit for consistency tzting must ex-
ceed the cost of maintaining it.

We have adopted the use of redundant data to
reduce the cost of testing consistency. The redun-
dant data that we typically add to the database is
aggregate information that characterizes a set of
values in the database, such as the greatest lower
bound of a set. We test consistency using the stored
aggregate data rather than all the individual values
in the set. The aggregate information is designed to
be quickly accessed and easily maintained.

The enforcement method that is the subject of
this paper includes: A formal definition of the class
of assertions it can enforce; a procedure that se-
lects the appropriate aggregate information to store
for each assertion in the class; a procedure that de-
termines the proper run-time test for each type of
update and assertion; and a procedure that generates
an efficient program for maintaining the correctness
of the redundant aggregate information during data-
base updates. Each of these procedures requires
little more than a table look-up. The method re-
quires no mechanical theorem proving, and can exploit
the full capabilities of the database system's query
processor (as in [Stonebraker 751).

This method represents a qualitatively differ-
ent approach to integrity enforcement than other
published methods. We do not simply incorporate heu-
ristics in a general purpsoe integrity enforcement
mechanism and apply the heuristics whenever they seem
cost effective. Rather, we define a class of asser-
tions for which the heuristic--maintaining aggregate
data--is virtually guaranteed to be cost effective.
We can then conclude that any assertion in our class
will be enforced efficiently by out method.

c~1534-7/80/0000-0126$00.75 @ 1980 IEEE 126

Section 2 defines the database model and the
restricted class of assertions we consider in this
paper. Section 3 presents algorithms to generate
fast consistency tests. We use Hoare's program lo-
gic [Hoare 69; Hoare and Wirth 731 to prove that
these tests are sufficient to guarantee consistency.
Implementation issues of accessing and maintaining
aggregate data are discussed in Section 4. Finally,
in Section 5, we compare our approach with previous
work and argue that our approach has low cost.

2. Modelling Databases, Assertions and&dates

2.1 Relational Data Model

We use relations as our underlying data model.
A database is described by a database schema, which
consists of a set of relation schemas. Each reta-
tion schema consists of a relation name, say R, and
a set of attributes, say {A

1
,...,An}, and is denoted

by R(A1,...tAn). An example database schema that

we use throughout this paper appears in Fig. 1.

A state of a relation schema R(Al...,A,)is a

terpretation of arithmetic function symbols), a re-
lation to each predicate symbol (with the standard
interpretation of arithmetic relations), and a set
of relations to each relation symbol (the set of
possible states of each relation schema). An inter-
pretation of our language includes a structure and a
database state. In what follows; we assume a fixed
structure; only the database state can change as a
result of program execution.

Example 1 - Assertions

(a) English assertion: No item may be sold at a loss.
Assertion:* VbuysEBLJYS Vsells6SELLS

(buys.ITEM=sells.ITEM =+ buys.COST<sells.PRICE)

(b) English assertion:Items can only be bought by
cases.
Assertion: '&~lbuysEBLlYS 3packsEPACKS

(buys.ITEM=packs.ITE~buys.QUANTITY~packs.#PER-CASE)
where x G y E x is an integer multiple of y. q

(We will use 5 to abbreviate "is defined as")

Figure 1

relation, R, which is a subset of dom(Al)x...xdom(Al), An Example Database Schema

where dom(Ai) is the domain of values for Ai.. A

database state D of database schema ~={F&,...~} is

a set of relations (Rl,..., Rn} where Ri is a state of

R -. I 1
i = l,...n.

2.2 The Assertion Language

We express assertions in a language much like
relational calculus [Codd 721. The symbols of our
language include

variables
-relation symbols (e.g., R,S);
-tuple variable symbols (e.g., r, which denotes

a tuple of a relation);
-indexed tuple variable symbols (e.g., r.B, which

denotes the B attribute of tuple r);

parameters
-constant symbols (includinq "true", "false", and

the rational numbers);
- function symbols, including arithmetic functions

(e.g., +,x,-j;
-predicate symbols, including arithmetic relations

(e.g., =,< , etc.);
-the quantifiers V and 3 ;
-boolean operators (e.g.,, , A,V , a).

Assertions are well-formed formulas (abbr.
wffs) as in relational calculus, where terms are
indexed tuple variables and constants and clauses
are formed in the usual way. (Unlike relational
calculus, the range of a quantifier can only be a
single relation.) A[x/yl denotes a wff A with x
substituted for all occurrences Of y,

A structure for our language interprets the
parameters and assigns a universe to the variables.
It assigns a value to each constant symbol, a func-
tion to each function symbol (with the standard in-

DATABASE SCHEMA: D = ~,SELLS,PACKS}
RELATION SCHEMAS:-

--

BUYS(INVOICE#,DEPT,ITEM,QUANTITY,COST)
An invoice entry records a department buying a
quantity of an item at a certain cost per item.

SELLS(INVOICE#,DEPT,ITEM,QUANTITY,PRICE)
An invoice entry records a department selling a
quantity of an item at a certain price per item.

PACKS(ITEM,CASE-TYPE,#-PER-CASE)
A certain number of items are packed in each type
of case (e.g., 'economy', 'jumbo', etc.)

ATTRIBUTES:
Attribute name Domain
DEPT,ITEM,CASE-TYPE Alphanumeric strings
INVOICE#,QUANTITY,#-PER-CASE Nonnegative integers
COST,PRICE Positive real numbers

with two decimal places
-------------~-~'---r-rcppn

2.3 A New Class of Assertions

Our assertion language is very powerful, making
it potentially quite expensive to preserve the con-
sistency of an arbitrary assertion. The purpose of
this paper is to demonstrate methods for preserving
the consistency of a restricted class of assertions,

called two-free assertions.

An assertion is two-free if it is of the form:
l)VrERt/&S(P(r,s) * r.A<s.B), or 2) VrEms(P(r,s)
Ar.A<s.B), or 3) 3rERVsES(P(r,s) A r.Als.B), where
r.A and s.B have the same underlying domain, P is a
wff, r and s are the only free tuple variables in P,

* We useVbuysEBUYS(...) to abbreviate the more com-
plex but formally correct (V/buys) (BUYS(buys) *(...)).

127

and no bound tuple variable in P has the same range
as r or s.* 0

We will only consider updates to relations
whose tuple variables are free in P. In our exam-
ples, P is a function of r and s only. If R and S
are the same relation, we perform tests for an up-
date to R and for an update to S.

The assertions in Ex. 1 are two-free. In
EX. lb,

Vbuys EBUYS 3packs EPACKS(buys.ITEM=packs,ITEM
A buys.QUANTITY f packs.#-PER-CASE),

integer division defines a partial order. While we
could denote the partial order by the symbol 2,
we use G to avoid confusion with the standard
arithmetic ordering.

In this paper, "assertion" refers only to
two-free assertions. Assertions of forms 1, 2, and
3 are called t/t/-assertions, a-assertions, and
3V-assertions, respectively. We fix the order of
the quantifiers and require that the r quantifier-
precede the s quantifier.

2.4 Simple Updates

In this paper we consider only sirnpte updates:
single-tuple insertions and single-tuple deletions.
An in-place modification of an existing tuple is
modelled currently by a deletion followed by an in-
sertion; techniques for handling these updates di-
rectly will appear in a future paper. We model up-
dates with assignment statements. Given a tuple rO

and a relation R, "R:=R U r 6" denotes an insertion

of r 0 into R, and "R:=R- r U" denotes a deletion

of rD from R. (We have dropped the usual set brac-

kets, "I}", from enclsing rU to avoid confusion with

the notation of Hoare's logic that follows.) Assign-
ments to R have no effect on
database.

other relations in the

2.5 Hoare's Logic

We use Hoare's program logic [Hoare 69; Hoare
and Wirth 731 to analyze the effects of updates on
assertions. Formulas in the logic include formulas
of the assertion language and formulas of the form
P{u}Q, where P and Q are formulas and u is a program.
In our case, u will always be a database update. A
form~a P{u}Q is true in a?7 interpFe&iOn I=(gD),
where giis a structure and D is a database state,
denoted +IP{u}Q, if whenever preCOn&tiOn P is true

* Assertions of the above form prefixed by 3rER3sES
can also be handled by our method. However, extra
technical machinery is required to do so. Since ex-
amples of such assertions are few and, for the most
part, contrived, we choose not to discuss them in
this paper.

in I before the update then postcondition Q is true
in fp,u(D)), where u(D) is the database state after
u executes. The logic is a set of axioms and infer-
enge rules that permits us to determine,whenever
provable. if a formula is true in all database states
(see Fig.2). We use kP{u}Q to denote that the
formula P{u)Q is provable in the logic.

Figure 2
Axioms of Hoare's Program Logic

General form:
ElE2...En ,

E AL El A E2 A . . . A E n

Assignment Axiom:

Composition Axiom:

Conditional Axiom:

Alternative Axiom:

Consequence Rule:

then E

t P[y/xl(x:=yjP

t P(Ql)Rl t Rl(Q21R

,p(Q, ;Q,jR
I L

j- PAB(S)Q j- PAlB='Q

f- PAB(Sl?Q /-- PA,BIS2)Q

/-PIif B then Sl else S2)Q -

t SEQ}T

It follows from the soundness of the logic that if
/--Pfu}Q r then for all database states D, k !%D)
P{u}Q [Clarke 791.

A database state D is sonsistent with an assertion
A iff k ,p,D)Ae An update u presemes the consistency

of D with respect to (abbr. w.r.t.1 A iff l=cgDjA{~)A.

We say u preserves A if, for all database sta;es D,
u preserves the consistency of D w.r.t. A. Note that

.if I- A{u)A, then u preserves A.
We assume that the database state is consistent

prior to the update. %-assertions are the only
ones for which the empty database state is inconsis-
tent. In this case only, we assume that consistency
tests for each update are suppressed until an initial
consistent state is reached

3.1 General Strategy

One way to test that an update, u, preserves
the consistency of an assertion A, in a particular
state is to perform u and then evaluate A in the new

128

state. If the new state is consistent, then the up-
date is backed-out, thereby undoing its effects.

In view of this potential back-out, it may be
preferable to test that u preserves A before u is
acutally executed. To accomplish this, we construct a
con6istency test, t, that, for each database state,
D, determines whether u preserves D w.r.t. A. We
can check that we correctly constructed t by proving
the theorem: k A{if t then u)A. This theorem veri-
fies that t is a correct test for all database
states. (If t(D) = false, then u is not executed
and the database state is unchanged.) We adopt
this strategy of testing consistency before pennit-
ting the update. We note that this strategy is
essentially the one used in the query modification
method proposed by Stonebraker (751.

To enforce an assertion A, a database system
must provide a consistency test for each update.
Assuming the enforcement method is a compile-time
algorithm that cannot access the database state, then
enforcement amounts to an algorithms that maps each
assertion. A and update u into a test t, such that
kA{f t then u)A and t-A{if -I t then u} I A.
For the tests in this paper,the proof of tA{if t
then u) 1 A should be clear from the proof of -
bA{if t then u}A.

To determine a test t for A and u, we could
begin by finding the weakest precondition sufficient
to ensure the truth of A after u executes, denoted
wp(A,u) [Dijkstra 761; so,kwp(A,u){u}A. However,
wp(A,u) assumes we know nothing about the database
state before u executes. In fact, we do know that
A holds in that state. So, we can substitute any
test t for wp(A,u) such that /-(AAt) * wp(A,u).
One method for determining t is to substitute the
Boolean constant true in each clause of wp(A,u) that
A implies; the resulting formula is a correct test
(although not necessarily a "minimal" one).

3.2 Trivial Tests

For some combination of two-free assertions
and updates, the assertion implies the weakest
precondition. That is, tA - wp(A,u). In this case,
the consistency test is trivial-- it is simply true,
because t-A{if true then u)A. A trivial consistency
test for a particular assertion and update means that
the update preserves the assertion. For such up-
dates, the database system does not need to do any
work to enforce the assertion.

Example 2 - A Trivial Test

Assertion: (as in Ex. la)
Update: SELLS:=SELLS-SellSO, where sells0 is an ar-

bitrary tuple in SELLS
Claim: The update preserves A, so no consistency test

is required. Formally stated,

tA{SELLS:=SELLS-sellsO}A

Proof.

1. VbuysEBUYSVsellsESELLS P(buys,sells)
* VbuysEBUYSVsellsE(SELLS-sellsO)P(buys,sells)

; by def. of two-free, there are no variables
other than buys and sells bound to BUYS and
SELLS in P.

2. J-A * ALSELLS-sellSO/SELLS)

; 1 and def. of substitution
3. tA[SELLS-sellsO/SELLSl{SELLS:=SE,LLS-sellsU)A

; Assignment axion.
4. tA{SELLS:=SELLS-sellsO}A

; 1,2, and Consequence Rule. 0

3.3 Using Stored Aggregates to Simplify
Consistency Tests

We can simplify all nontrivial consistency tests
further, provided certain aggregate values--minima
and maxima of certain domains--are maintained.

Let V be a set whose domain is partially ordered
by <. We define MIN(V,<) = {v@JII.(~v'EV) (v'<v)},
where (v'<v) abbreviates ((v'<v) A (v'fv)). Similar-
ly, MAX(V,<) = {"6Vl 1(3V'EV)T"<"f)}. Note that MIN -
and MAX are sets, not necessarily singletons. We
assume MIN and MAX are non-empty. When (MIN(V;()[=l,
we use MIN(V,<) to abbreviate the unique element in
the set (similarly for MAX). When the relevant
partial order is clear in context, we drop < as a -
parameter to MIN and MAX.

Example 3 - Using a Stored Aggregate to Simplify a
Consistency Test

Assertion: same as Ex.la.
Update: BUYS:=BUYSUbuysO,

where buysO=(494,'toy','whistle',lOO,.20)
Claim: If A is true before the update then

TEST~(t/mEMIN({sells.PRICE~sells~SELLS
Asells.ITEM=buys.ITEM}) (buys.COST<m))
is sufficient to ensure consistency. Formally
stated
kA{if TEST then BUYS:=BUYSUbuyso~A.

Proof.

1. IvrA[buyso/BUYS1 * AIBUYSUbuyso/BUYS]

; defs. of A and U
2. TEST * A[buyso/BUYS1

; defs. of A, TEST, and MIN
3. ~AATES'I~A[BUYSU~~~~~/BUYSI

; 1. and 2
4. kA[BUYSUbuys /BUYS](:BIJYS:=BUYSUbuysD~A

; Assignmen? axiom
5. I--AhTEST{BUYS:=BUYSUbuyso}A

; 3, 4, and Consequence rule
6. FAtif TEST th en BUYS:=BUYSUbuyso}A

; sand Conditional axiom

Since we design our tests to promote efficiency,
let us briefly discuss here the cost of this method
(a fuller discussion is in Section 5.2). If the
minimum PRICE of all 'whistle' tuples in SELLS is
available, we only need one comparison to evaluate

129

TEXT. By constrast, note that query- modification
[Stonebraker 751 sets out to prove
t-A{BUYS:=BUYSUbuysO}A and uses the Assignment Axion

to produce the precondition t/sell&SELLS
'('whistle'=sells.ITE~.2O~sells.PRICE). Assuming
no inverted files, this formula entails searching the
entire SELLS relation, checking the ITEM values, and
comparing .20 to the PRICE value for every tuple
with ITEM='whistle'. If SELLS is inverted on ITEM,
then the test must still be made on all 'whistle'
tuples in SELLS.

In general, for any two-free assertion A and any
simple update u, there is an efficient test t such
that CAlif t then u)A. Figure 3 shows the test t
for each type of assertion and update. In all cases
where t is nontrivial, t relies on a MIN or MAX value
that must be maintained as redundant information in
the database. Efficient methods for locating and
maintaining these MIN and MAX values are discussed
in Section 4.

The pr?of of kA{if t then u}A for each case . included in Fig. 3 is similar to those in Examples
2 and 3; proofs appear in [Bernstein and Blaustein
801 .

Figure 3
Consistency test t for assertion A and update u such

that kA{if t then u}A

Assertion: VrERVsES(P(r,s)+r.A<s.B)
Update:

R:=RUr 0 Vm(%IN(~s.B~s~ShP(ro,s)~)rO.A<M -

s : =sus 0 Vm~MAX(~r.A~rfRAP(r,so)~)m<so.B

R-=R-r.O TRUE

s:=s-s 0 TRUE

Assertion: VfiR%ES(P(r,s)Ar.A<s.B)
Update:

R:=RUr-. Ll 3m&AX({s.B~s~ShP(ro,s)})ro.A~
-__._-.
S:=Sijs

0 TRUE

R:=R-r
0

TRUE
-_~-
j:=s-.s o Vr~{~R~P(r,so)}(~m~MAX({s.B~s~S-so

AP(r,s)})r.A<m)
___-_--

Assertion: 3rERVsfS(P(r,s)Ar.A~s.B) ---__
Update:

: =RiJr
3

-.-

f

:=cJ!s
0

---.-

3mEMIN({r.AlrERAP(r,s0)

AVsES(P(r,S)Ar.A~s.B)})
ma .B -0

R:=R-r 0 3mEMIN({r.A &R-roAVs(P(r,s)
A r.A<s.B 3)

VnEMIN(7s.B sES}) rns

I
s:=s-so TRUE

3.4 Special Cases

The tests in Fig. 3 are sufficiently general
'to handle MIN and MAX as sets. The cost of per-
forming a test, then, depends principally on the
size of the MIN or MAX set. However, in most com-
mon cases MIN and MAX each consist of a single
value. Consistency tests for these cases require
at most on comparison per update.

Lemma 1. If < defines a lattice and X is a
finite set, then tZere is a single value v which
is the greatest Zot;er bound of MIN(X,C). Similar-
ly, there is a single value VI which & the least
upper bound of MAX(X,~). 0

Note that Lemma 1 is only useful for W-assertions.

Lemma 2. If 5 defines a total ordering, then
IMIN(x,~) I = I MAX(X,O I = 1. 0

Examples l-3 use a partial ordering that is
also a total ordering. The following example ap-
plies our strategy to a different partial order,
integer division, and illustrates a case where the
MAX values are sets.

Example 4 - A Different Type of Partial Order

Assertion: same as Ex.lb.
Update: PACKS:=PACKS-packsor

where .packso = ('whistle', 'economy',lOO)

Application of Fiqure 3:
For a w-assertion and a deletion from S, Fig. 3
gives TEST t Vrf{rERIP(r,so)}(~m~MAX(Is.B~sES-sO
AP(r,S)})r.A_Qn) where kA{lf TEST e S:=S-sU]A.

Substituting BUYS,PACKS and packs0 for R, S, and

so respectively,we obtain:

TEST=VbuysE{buysEBUYS)buys.ITEM='whiStle'
(3mEMAx({packs.#-PER-CASE(packsePACKS-Packs0
Apacks.ITEM='whistle'})buys.QUANTITY<m)

This simplifies to

MAX({buys.QUANTITY(buysEBUYSAbuys.ITEM='whistle 1)
< MAX({packs.#-PER-CASE
TpacksEPACKS-packsUApacks.ITEM='whistle'))

Integer division defines our partial order
(m + n means that n divides m), so MAX contains the
least common divisors in the set. We take the MAX
(or least common divisors) of QUANTITY values of tup-
les in BUYS with ITEM='whistle' and try to find an
integer divisor for each such QUANTITY value from
the set of least connnon divisors of #-PER-CASE
values of PACKS tuples with ITEM='whistle'.

130

4. Implementation

Having discussed our general strategy, we now
focus on implementing a system based on this strate-
9Y. For any assertion and any update, Fig.3 gives
a consistency test. For trivial tests, the update
preserves the assertion, so there is nothing to im-
plement. For nontrivial tests, MIN and MAX values
are needed. SO, to support nontrivial tests, the
system must create MIN and MAX values in the data-
base when an assertion is defined, and must main-
tain these values during updating.

When an assertion is defined and added to the
system, the following steps must be taken.

Al. Augment the data description to include appro-
priate MIN or MAX sets needed for all nontri-
vial tests.

A2. Compute these MIN and MAX values.

A3. Test that the new assertion is true in the
current database state. When an update is
processed, the following steps must be taken
for each assertion:

Ul.'Find the appriate test in Fig. 3.

U2. Locate the correct MIN or MAX value.

~3. Perform the test. If it fails, reject the
update. Otherwise perform U4 and U5.

U4. Do any necessary bound maintenance.

U5. Execute the update.

We now explain how to perform each of the above
steps.

4.1 Identifying Bounds

Step Al uses Fig.3 to determine which bounds
must be included in the data description for non-
trivial tests. Suppose Fig. 3 specifies that a
MAX of the set {sESIP(r,s)} is needed to test con-
sistency when some rER is deleted. So, the MAX
of this set must be incorporated in the database.
It appears that each rER has its own set{sESIP(r,s! 3
and its own MAX. Fortunately, fewer sets and MAX's
are usually sufficient. The smaller number of sets
is obtained by grouping together R tuples that
satisfy P for precisely the same S values, since
each of these R tuples has the same associated set.
For formalize this idea, we define the equivalence
set of rOER w.r.t. P in state D to be P (D)

rO
n {rER]in state D, VsES(P(ro,s) 9 P(r,s))). We will

drop D as a parameter when it is clear in context.

Example 5 - Equivalence Sets of Tuples ---

Assertion: same as Ex.lb.
Update: (as in Example 4) PACKS:=PACKS-packso,

where packso= ('whistle','economy',lOO)

In Ex. 4 we need the MAX of the set {packs.#-PER-CASE
IpacksEPACKS-packsoApacks.ITEM='whistle'}.

This set is simply the projection of P
packs,, CD) on

#-PER-CASE, where P=(buys.ITEM=packs.ITEM) and D is
the state after the deletion. In words, P packs0

is the set of remaining PACKS tuples with
ITEM='whistle'. 0

Equivalence sets can be indexed by the attri-
butes referenced in P, called p-attributes. Let
A Since P is

1
,...,A, be all the P-attributes for R.

a formula on indexed tuple variables and constants,
each A

1
,...,Am value uniquely identifies an equiva-

lence set of R tuples. Therefore, each equivalence
set and its relevant bounds can be indexed by
P-attribute values.

Example 6 - Identifying Agqegate Values

Assertion: same as Ex.la.

All BUYS tuples with the same ITEM value are equi-
valent with respect to this assertion, as are SELLS
tuples. We store bounds of COST values indexed by
ITEM values for BUYS tuples and bounds of PRICE
values indexed by ITEM values for SELLS tuples. q

Executing Al, then, involves identifying the
P-attributes of the relations in the assertion and
using these P-attribute values to identify stored
bound values. A2 computes the MIN or MAX of all
tuples in the relation having the same P-attributes.
A3 then compares bound values to test the current
state. We proceed in Section 4.2 to show how to
decide which values must be compared with each other.

4.2 Locating the Correct MIN and MAX Values

The tests in Fig. 3 show which aggregates to
store for assertions of each type. Steps A3 and U2
depend on accessing particular bound values. Once
the appropriate values are accessed, A3 and U3 simply
compare them. Using equivalence sets of tuples
reduces the number of bounds stored, and these bounds
are easy to locate because they are indexed by attri-
bute values. The only remaining difficulty is to find
pairs of equivalence sets from R and S that simdta-
neously satisfy P. That is, given an assertion and
P-attribute values for one relation (the one being
updated), we need to find the (set of) P-attribute
values in the other relation that satisfy P. In this
paper,we assume that each tuple has a unique associated
equivalence set in the other relation*. Essentially,
P is being interpreted as a query.

*Although our examples deal only with assertions
where P is a single equality formula, methods hand-
ling general expressions have been developed and
will appear in a later paper.

131

Example I - P as a Query

Assertion: same as Ex.la.
buys Update: BUYS:=BUYS 0' where

buysO=(324,'toy','whistle',l00,.101

Before we can compare .lO with the minimum PRICE
value, we must evaluate P(BUYS.ITEM=sells.ITEM),
with buys0 substituted for buys, to find the ITEM-

value in SELLS which indexes the correct equivalence
set. Thus, P acts as a query which finds an ITEM-
value in SELLS given a tuple in BUYS.

Even had we not used equivalence sets, it
would have been necessary to compare .lO with PRICE
values for all tuples satisfying VsellsESELLS('whist-
le'=sells.ITE&@.10~sells.PRICE). P would have had
to be evaluated in exactly the same way. Consistency
checking methods must all evaluate the query P and
can all use the same mechanism to do so. cl

Interpreting P is basic to all consistency
testing methods. It is essentially a query optimi-
zation problem and can be abstracted from other as-
pects of consistency verification. We choose to
treat it in this way and do not discuss it further
in this paper.

4.3 Maintaining Bounds

If an update preserves consistency (the test
in U3 succeeds), then we may need to change the
bound value of the updated tuple's equivalence set
(in step U4). It is not enough for the assertion
A to be true after the update; the stored bound
value must also be accurate relative to the new
database state produced by the update. In effect,
we are adding a new precondition and postcondition
that describe the accuracy of our bounds. Formally,
we must define a formula B that is true in a data-
base state iff the stored bound is accurate in that
state. We then augment the given update, u, by
another update, ub, that maintains the consistency

of the bounds. That is,

k MB{if t then (ub;u)j AAB.

For our method to be cost effective, the cost
of bound maintenance must not exceed the savings
gained in using those bounds to test the consistency
of assertions. SO, bound maintenance must be effi-
cient. This efficiency is obtained by combining
bound maintenance with the consistency test. This
combined activity helps when a tuple update does not
affect the bound of its equivalence set. Since con-
sistency only depends on bound values, if the bound
is unchanged, then the database must be consistent
and no consistency test is needed. In such cases,
bound maintenance subsumes the consistency test.

Example 9 - Combining Bound Maintenance and Con-
sistency Tests

Assertion: same as Ex.la.
Update: BUYS:=BUYSUbuyso, where

buys0 = (434,'toy','whistle',500,.05).

Claim: Let MX be the BUYS aggregate used to test
consistency of insertions into BUYS. Let B f
(MX=MAX(~buys.COS~~~buys~BUYSAbuys.ITEM='whistle'))).
B is an assertion that describes states in which MX
has the intended value . We claim that if A A B hold
before the update and the update does not force a re-
calculation of MX, then no consistency test is re-
quired. Formally stated

kAAB{if .059X then BUYS:=BUYSUbuyso

else if -- .05<MIN{{sells.PRICE
~seils~SELLShsells.ITEM='whistle'})

then begin MX:r.O5; BWS:=BUYSUbuyso SjAAB.

In the above program, if .05<Mx, then the assertion
is satisfied, the existing b&nd (MX) is still cor-
rect, and no SELLS tuples need be accessed. If not,
a consistency test is performed and, if it yields
true, then the stored bound is changed and the update
is executed.

Sketch of Proof. Let Tl = (.05<MAX({buys.COST
)buysEBUYSAbu~.ITEM=*whistle'~)) and
T2 f (.O%MIN({sells.PRICE

)sells~S%LSAsells.ITEM='whistle'~)).
The proof follows immediately from

AABAT1(BUYS:=BUYSUbuyso~MB and
~Bh7TlAT2~MX:=.0~)A[BUYSUbuyso/BUYS]

ABIBUYSUbuysO/BUYS], using the axioms in Fig. 2.0

Using techniques such as that of Ex. 8, we have
produced algorithms that combine consistency testing
and bound maintenance for each type of assertion and
update. The algorithms are defined by two procedures:
CHECK to test consistency and maintain bounds, and
MAINT to maintain bounds only (used for trivial tests).
These procedures use two consistency tests, called
TEST1 and TEST2, and a recalculation of bounds,called
BOUND, which are defined in Fig. 4.

CHECK(A,U,TESTl,TEST2,BOUND) I
begin
/*first compare tuple with its own equivalence set*/
if TEST1 then U;
Ftest against other relations and maintain bound*/
else if TEST2 then (call BOUND;U;) -- --
end -

MAINT(A,U,TESTl,BOUND) B
begin
/*do maintenance if necessary*/
if TEST1 then call BOUND;
v;

--

end -

"xp
rtl

is defined MAX({r.AlrEP, 1); similarly for
0

MN'~;, %so and ~~~~~ and MNps . MNiro is defined

MIN({r.A(r<P AtlsES(P(r,s)Ar-A&-B)}).
rO

Each combined consistency check and bound main-
tenance algorithm given by Fig. 4 and the above pro-
cedure definitions ensures that A is true and the
stored bound is correct after the algorithm is exe-
cuted.

132

Figure 4
Comined Integrity Checking and Bound Maintenance

Assertion type: VrVs

UPDATE: R:=RUr D; PROCEDURE: CHECK

TEST1 = (3m E MXp 1 (rU.A<m)
r

TEST2s(VmEMIN(?s.BlsESAP(r0,s)}))(rU.h<m)

BOUND =MXp := 'Mxp -{mEMXp

rO I

m<ro.A)) 2 (rU.A}

rO =0

UPDATE: S:=SUs U; PROCEDURE: CHECK

TESTls (~~EMNP
SO

) (m<sU.B)

TEST2s (Vm~MAXMAX(~r.A)r~RAP~r,so)~))(m~so.B)

BOUND =MN P
:= (MN

SO pSO
-{m E MZp

SO I
so.B<m}) Ufso.Bi

UPDATE: R:=R-rO: PROCEDURE: MAINT

TESTlnro.AEMXP
r0

BOUND =MX
Pr

:=MAX(b.AlrEP -ro))

0 =0

S;=S-so; PROCEDURE: MAINT

TEST1 sso.BblNp
S.-.

BOUND=MNp

sO

:=MI&.BlsEP -so})
sO

Assertion type: \dr%

R:=RUr o; PRCCEDURE;CHECK

BOUND sMXp := (MX

=0

pr -{mEMX P
0 r0 I

m<ro.Aj) U{ro.Al

UPDATE: SUSo; PROCEDURE; MAINT

TESTls7(3mEMX psn) (so-B <ml

BOUND sMXp := 01;

sO

ps -hEMxp
I
m<sO:B)) U Iso.Bl

0 SO

UPDATE: R:=R-ro; PROCEDURE; MAINT

TESTl sro.AEMXp
r0

BOUND "MXp :=MAX({r.AlrEP
rO =0

-roll

UPDATE: S:=S-so; PROCEDURE;CHECK

TESTl'+o.BEMXp)
SO

TEST2s(Vm~EX(b.AlrERAP(r,so)~)

~~~MAX(~S.B~~~P~~-S~~)) (m<n) 

BOUNDsMX 
P 

sO 
:=MAX(fs.BlsEP -so)) 

SO 

. ._ 

Assertion type: 3rVS 
--- 

UPDATE: R:=RUrO; PROCEDURE;MAINT 

TESTls,(amEMN' 

BOUNDsMN' 
prO 20 I 

rO.A<M)) u {ro.A) 

UPDATE: S:=Suso; PROCEDURE: CHECK 

TEST1 E (3mEMNp 
SO 

)(m<so.B) 

TEST~~(~~EMIN({~.A~~ERAVSES P(r,s )I) 

VnEMNp 1 (m<n) 
50 

BOUND =MNP := mlp -tmEMN 
SO SO pSO I 

so.B<m)) 3 {so.B) 

UPDATE: R:=R-rO; PROCEDURE; CHECK 

TEST1 s-j(ro.AEMN; ) 
'0 

TEST2 =(3mEMIN(b.AtrEP 
rO 

-r. 

AVsES(P(r,s)Ar.A<s.B) 1) 
VnEMIN(~s.BlsESA~(rO,s)))) (mul) - 

BOUND MN' 
P 

rO 

:=MIN((r.AlrEP -r. 
rO 

AVtiS(P(r,s)w-.Als.B)}) 

UPDATE: S:=S-,so; PROCEDURE: MAINT 

TEST1 =sO.BEMNp 
=0 

BOUND =MNp 
SO 

:=MIN({s.Bis EP -So)) 
so 

133 



5. Comparison with Previous Work 

5.1 Comparing Approaches 

Few systematic approaches to the implementation 
of semantic integrity assertions have been published; 
two well-known.examples are the query modification 
method of Stonebraker 1751 and the heuristic program 
analysis of Hammer and Sarin [78]. Let us compare 
our method to each of these two. 

Comparing our method to [Stonebraker 751, we 
see three main differences: the types of assertions 
studied, the role of aggregates in assertopms and 
the cost of consistency testing. 

Our class of assertions is a subset of those 
studied by Stonebraker [75]. We studied only two- 
variable assertions with certain forms (two-free 
assertions). Stonebraker studied assertions with 
any number of variables and with any logical struc- 
ture. He divided assertions into categories based 
on the number of variables in the assertion and on 
the role in the assertion of the relation being 
updated. Our class of two-free assertions is not 
directly comparable to his categories, in that two- 
free assertions include two-variable assertions from 
each of these categories. We note that the categori- 
zaticn of assertions by Hammer and McLeod [75] is 
similar to that of [Stonebraker 751, and the above 
comments apply to their categorization as well. 

The impact of aggregates on consistency tests 
is markedly different in each method. In query mo- 
dification, assertions involving aggregates are among 
the most difficult to test, because testing the as-., 
sertion requires calculating the aggregate. In con- 
trast, our method maintains stored agqreqates;often, 
it is even cost beneficial to transform assertions 
without aggregates into assertions involving 
aggregates. 

The cost of testing consistency also differs 
from method to method. In query modification, the 
modified update often requires significantly more 
work for evaluation than does the original update. 
For example, for multivariate assertions with more 
than one tuple ranging over the relating being up- 
dated, the number of clauses to be evaluated is ex- 
ponential in the number of variables ranging over 
the relation being updated. This usually leads to 
a high cost of evaluating the assertion. Even when 
the number of clauses is small, the modified update 
may access many tuples of relations referenced in 
the assertion. 

Example 9 - Update Modification 

Assertion: same as Ex.la. 
Update: SELLS:=SELLSU(432,'toy','whistle',30,.75). 
Modified Update: Insert (432,'toy','whistle',30,.75) 
into SELLS where 
Vb~y~~BUYS(buys.ITEM='whistle')~uys.COST~.75). 

All tuples in BUYS must be checked for ITEMf'whistle' 
or COST<.75 before the insertion is done. If BUYS 
is inverted on ITEM, then IBUYS[ITEM='whistle'l 1 
tuples must accessed, compared to only one tuple 
in our method. 0 

Section 5.2 discusses cost comparisons more 
fully. 

Hammer and Sarin [Sarin 77; Hammer and Sarin 
781 discuss faster methods of evaluating assertions 
by using knowledge about the update transaction and 
the assertion to identify specific conditions which 
may cause a semantic integrity violation. Testing 
these conditions is often less costly than evalua- 
ting the complete assertion on the current database 
state. This method depends on an analysis of the 
particular assertion and update transaction. And, 
the analytic technique is essentially mechanical 
theorem proving, which is typically slow. BY contrast, 
dur algorithms apply to all simple updates and a 
given class of assertions. And, they do not require 
any. prior analysis of the actual update transaction; 
all of the analysis is done a priori and can be sum- 
marized in a table. At run-time, the analysis is no 
more complex than a table look-up to obtain the ap- 
propriate procedures. 

5.2 Cost Estimates 

It is difficult to quantify the cost of different 
integrity enforcement methods, yet this task is essen- 
tial for precisely comparing them. As with any cost 
model, it is difficult to capture all the factors which 
affect the final cost and to assign relative costs to 
each factor. Integrity enforcement costs cannot be 
accurately determined independent of an actual machine 
and database because they depend on such factors as 
the structure of the assertion to be verified, the 
type and frequency of updates, the storage structure 
of the database, and even on the actual values in the 
database and in the update. 

Although we cannot define a general and mathe- 
matically precise cost model, we can focus on several 
of the major factors affecting cost. The role of each 
of these factors in different verification methods 
helps to determine the condition under which each 
method works best. The cost of our method is chiefly 
dependent on: 

1. the type of assertion (VV, t/3, etc.) 
2. the ratio of deletions to insertions 
3. the probability that the bound of an equivalent 

set will not change with each update 
4. the average size of equivalence sets, and 
5. the cost of evaluating P. 

With the caveat that our cost equations are only 
rough estimates, we proceed to characterize the im- 
pact of the above factors. We use the resulting for- 
mulas only to help compare relative costs and do not 
try to derive absolute costs from them. 

Cast Constants: 

Q, = cost of evaluating P for an updated tuple ro, 
i.e., of finding {s&SIP(ro,s)~ 

QR = cost of evaluating P for an updated tuple so, 

i.e., of finding {rERIP(r,so)} 

M 
R 

= average size of P 
rO 

MS 
= average size of P 

sO 

134 



c = cost of comparing (<) two values 
d = cost of one database access 
P 

R = probability that an update changes an R bound 

P S = probability that an update changes an S bound. 

Using the algorithms in Section 4.2 and Fig.4, 
we can derive cost formulas. we describe the deri- 
vation for insertions and deletions of R tuples for 
W-assertions, and list the formulas for other types 
of assertions and updates later. we assume that 
Lemma 1 or 2 holds, so that we have only bound value 
for each equivalence set (this usually seems to hold 
in practice since the underlying domain is the set 
of integers, reals, etc.) Thus, each MIN and MAX 
set contains only one element. So, accessing a 
bound costs d and testing a tuple against a bound 
costs c. Also, assume that P produces one equiva- 
lence set per relation (this is only relevant for 
El-assertions.) 

The algorithm for inserting r,, for a W-asser- 
tion is CBECK(A,R:=R rDTEST1 ,TESTZ,BOUND). Filling 

in the appropriate tests and bound assignments we 
get: 

1. if 3mEMXeMAX({r.A(rEP - 
rO 

})r,.A<;II then R:=RUrD; 

2. else if t/m~MIN(~s.B~sEShP(ro,s)})ro.A<m -- 

3. then begin MX:=(MX={mEMXlm ro.A})U{ro.A}; -- 

4. 
end 

R:=RUrO; 

Evaluating Line 1 involves accessing the 
stored bound and comparing it to ro.A, for a cost 
of d+c. 

Line 2 is only executed if the bound must be 
changed (r 

0 
.A>MAX({r.alrEP 

rO 
I)), so it only adds to 

the total cost with probability pR. Evaluating 

Line 2 involves evaluating P to find the correct S 
equivalence set, accessing the stored bound, and 
comparing it with ro.A, Thus, line 2 costs 

pR(Qs+d+c). 

The rest of the algorithm adds no significant 
cost. If the test succeeds and Line 3 is executed, 
we simply store the new bound value. we have al- 
ready accessed the proper equivalence set, and 
changing the bound involves no new computation. 
Line 4 is just the cost of inserting the tuple. 

Query modification for insertion to R for a 
W-assertion requires evaluating P, accessing each 
S tuple which satisfies P, and comparing it to the 
inserted tuple. In our system, the S tuples satis- 
fying P would constitute an equivalence set, so we 
can denote the number of these S tuples as MS. 

Therefore, the cost formula is QS+~S*d.c . 

cost formulas for other types of assertions 
are: l)Insert to relation with universally quanti- 
fied tuple variable, d+c+p(Q+d+c), 2) Insert to 
relation with existentially quantified tuple variable, 

d+c, 3) Delete from relation with univerally quanti- 
fied tuple variable, d+c+p(Mdc), and 4) Delete from 
relation with existentially quantified tuple variable, 
d+c+p(Q+Mdc+c). By Fig. 3, the test for deletion for 
W-assertions is trivial, so the cost of query modifi- 
cation in this case is 0. 

Note that for W-assertions,insertion and deletion 
of S tuples are exactly analogous to those of R tuples. 

In performing a comparison of the two methods, we 
make the following simplifying assumptions: 1) each 
operation (insert to R, insert to S, delete from R, 
delete from S) occurs with the same frequency; 2) the 
average equivalence set size is the same for R as for 
s (M~=M~; we will use M=MR=MS);3) the query processor 

is equally efficient given and R tuple or an S tuple 
(Q,=Q,; we will use Q to mean either QR or Q,); 4) c is 

a unit cost, and evaluating P costs more than a data- 
base access, which in turn is more than c (c<d<Q); and 
5) the probability that the bound of an equivalence 
set will change with a given update is l/M. Assumption 
1 allows us to simply add together the costs for 
each operation. We drop the c in each formula by 
Assumption 4 and make the simplifications in Assump- 
tion 2, 3, and 5. 

Query modification: 2(q+Md) 

Our method: 2(d+l/m(Q+d)+d+(l/M)Md 
= 2 (~/~+(3+1/M)d) 

Comparing these formulas, we see that our method is 
more efficient (given all the assumptions), when the 
average equivalence set size is 3 or more. Depending 
on the cost of evaluating P relative to the cost of 
a database access, our method may also be efficient 
for M=2. 

Under other assumptions, our method may be even 
more efficient. For example, if Assumption 1 were 
changed to model a situation where insertions out- 
number deletions, our method would compare even more 
favorably to query modification. On insertions a 
bound change only requires comparison with the pre- 
vious bound; it is not necessary to access all the 
tuples in the equivalence set. Deletions that cause 
bound changes are more costly, in that each tuple in 
the equivalence set must be accessed; but even this 
process only involves accessing the same number of 
tuples that query modification accessses on each in- 
sertion (i.e., the set of tuples which satisfy P). 
Furthermore, 
will not have 

in most cases (pR<l) bound maintenance 
to be done for each deletion. 

Although the above formulas yield no absolute 
cost values, they help identify the conditions under 
which our method is most useful. Whenever stored 
aggregates of values in an equivalence set can be 
used frequently to avoid accessing tuples indivi- 
dually, the efficiency of checking integrity off- 
sets the cost of maintaining bounds. 

135 



6. Conclusion 

The approach to semantic integrity we have 
described consists of designing a class of asser- 
tions that can be efficiently enforced using suit- 
able tactics,and then fully analyzing the compile- 
time and run-time enforcement algorithms. In this 
paper, we worked through the analysis for two-free 
assertions using redundant aggregate data as a 
tactic. We have carried out this analysis on other 
classes of assertions with equal success. We be- 
lieve this approach offers the best hope of deve- 
loping a semantic integrity subsystem for a data- 
base system with acceptable performance. 

Acknowledgements 

We gratefully acknowledge Marco Casanova, 
Nathan Goodman, John Smith and Umeshwar Dayal, whose 
careful reviews of early drafts led to many termino- 
logical and organizational improvements. We also 
wish to thank the referees for their helpful com- 
ments and suggestions. 

References 

[Berstein and Blaustein SO] 
Bernstein, P. A.; and Blaustein, B. T., "Efficient 
Maintenance of Semantic Integrity Assertions Con- 
taining Two Tuple Variables", Technical Report 
Aiken Computation Laboratory, Harvard University, 
to appear. 

[Clarke 791 
Clarke, E. M., "Programming Language Constructs 
for Which It Is Impossible to Obtain Good Hoare 
Axiom Systems", JACM 26, 1 (Jan. 1979),129-147. 

[Codd 721 
Codd, E. F.," Relational Completenessof Data Base 
Sublanguages", in Data Base Systems, Courant 
Computer Science Symposia Seris, Vo1.6, Prentice- 
Hall, Englewood Cliffs, NJ 1972, pp.65-90. 

[Dijkstra 761 
Dijkstra, E. W., A DiscipZine of Progrming, 
Prentice-Hall, Englewood Cliffs, NJ, 1976. 

[Hammer and McLeod 751 
Hammer, M. M.i and McLeod, D. J.,"Semantic 
Integrity in a Relational Data Base System", 
in Proceedings First International Conference 
on Very Large Data Bases, 1975, pp.25-47. 

[Hammer and Sarin 781 
Hammer, M. M. and Sarin, S.,"Efficient Monitoring 
of Database Assertions", Proceedings of 1978 
SIGMOD Conference on Management of Data, ACM, 
NY , 1978. 

[Hoare 691 
Hoare, C. A. R., "An Axiomatic Basis for Computer 

Programming", in CACM, ~01.12, ~0.10, October, 
1969. 

[Hoare and Wirth 731 
Hoare, C. A. R., and Wirth, N., "An Axiomatic 
Definition of the Programming Language PASCAL", 
in Acta Informatica, Vo1.2, 1973, pP.335-355. 

[Sarin 771 
S-in, s. K., *Automatic Synthesis of Efficient 
Procedures for Database Integrity Checking", 
Master's Thesis, Massachusetts Institute of Tech- 
nology, Sept., 1977. 

[Stonebraker 751 
Stonebraker, M., "Implementation of Integrity 
Constraints and Views by Query Modification", 
Proceedings 1975 ACM-SIGMOD Conference,pp.65-78. 

136 


