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Abstract

Commonsense reasoning requires a model to
make presumptions about world events via
language understanding. Many methods cou-
ple pre-trained language models with knowl-
edge graphs in order to combine the merits
in language modeling and entity-based rela-
tional learning. However, although a knowl-
edge graph contains rich structural informa-
tion, it lacks the context to provide a more
precise understanding of the concepts and rela-
tions. This creates a gap when fusing knowl-
edge graphs into language modeling, espe-
cially in the scenario of insufficient paired
text-knowledge data. In this paper, we pro-
pose to utilize external entity description to
provide contextual information for graph en-
tities. For the CommonsenseQA task, our
model first extracts concepts from the ques-
tion and choice, and then finds a related triple
between these concepts. Next, it retrieves
the descriptions of these concepts from Wik-
tionary and feed them as additional input to a
pre-trained language model, together with the
triple. The resulting model can attain much
more effective commonsense reasoning capa-
bility, achieving state-of-the-art results in the
CommonsenseQA dataset with an accuracy of
80.7% (single model) and 83.3% (ensemble
model) on the official leaderboard.

1 Introduction

One critical aspect of human intelligence is the
ability to reason over everyday matters based on
observation and knowledge. This capability is usu-
ally shared by most people as a main foundation
for communication and interaction with the world.
Therefore, commonsense reasoning has emerged as
an important task in natural language understand-
ing. Various datasets and models have been pro-
posed in this area (Ma et al., 2019; Talmor et al.,
2018; Wang et al., 2020; Lv et al., 2020).

*Equal contribution

While massive pre-trained models such as BERT
(Devlin et al., 2018) and RoBERTa (Liu et al.,
2019) are effective in language understanding, they
lack modules to explicitly handle knowledge and
commonsense. Also, text is much less efficient in
representing commonsense compared with struc-
tured data. For example, to understand that the
painting Mona Lisa is in Louvre, it requires mul-
tiple sentences containing this fact for the lan-
guage model to implicitly encode this informa-
tion, whereas an edge with relation “LocatedAt”
between two entity nodes “Mona Lisa” and “Lou-
vre” can exactly represent the same information.
Therefore, there have been multiple methods cou-
pling language models with various forms of knowl-
edge graphs for commonsense reasoning, including
knowledge bases (Tandon et al., 2017; Sap et al.,
2019), relational paths (Lin et al., 2019), graph rela-
tion network (Feng et al., 2020) and heterogeneous
graph (Lv et al., 2020). These methods combine the
merits of language modeling and structural knowl-
edge information, and improve the performance on
commonsense reasoning.

However, there is still a non-negligible gap be-
tween the performance of these models and hu-
mans. One reason is that although a knowledge
graph can encode topological information between
the concepts, it lacks rich context information. For
instance, for the entity node “Mona Lisa”, the graph
depicts its relations to multiple other entities. But
given this neighborhood information, it is still hard
to infer that it is a painting. On the other hand, we
can retrieve the precise definition of “Mona Lisa”
from external sources, e.g. Wiktionary: A paint-
ing by Leonardo da Vinci, widely considered as
the most famous painting in history. Therefore, to
produce a representation of structured data that can
be seamlessly integrated into language models, we
need to provide a panoramic view of each concept
in the knowledge graph, including its neighboring



concepts, relations to them and a definitive descrip-
tion of it.

Thus, we propose the DEKCOR model, i.e. DE-
scriptive Knowledge for COmmonsense Reasoning.
Given a commonsense question and a choice, we
first extract the contained concepts. Then, we ex-
tract the edge between the question concept and
the choice concept in ConceptNet (Liu and Singh,
2004). If such an edge does not exist, we compute
a relevance score for each triple (node-edge-node)
containing the choice concept, and select the one
with the highest score. Next, we retrieve the defini-
tion of these concepts from Wiktionary via multiple
criteria of text matching. Finally, we feed the ques-
tion, choice, selected triple and definitions into the
language model Albert (Lan et al., 2019), and the
relevance score is generated by the appended atten-
tion layer and softmax layer.

We evaluate our model on CommonsenseQA
dataset and DEKCOR outperforms the previous
state-of-the-art result by 1.2% (single model) and
3.8% (ensemble model) in the test set, becoming
the first model to surpass the accuracy of 80%.
We further conduct ablation study to demonstrate
the effectiveness of fusing context into knowledge
graph.

2 Related work

Leveraging external knowledge sources to answer
commonsense questions has been investigated with
different approaches. Min et al. (2019) addresses
open-domain QA by retrieving from a passage
graph, where vertices are passages and edges repre-
sent relationships derived from external knowledge
bases and co-occurrence. Sap et al. (2019) intro-
duces the ATOMIC graph with 877k textual de-
scriptions of inferential knowledge (e.g. if-then re-
lation) to answer causal questions. Lin et al. (2019)
projects questions and choices to the knowledge-
based symbolic space as a schema graph. It then
utilizes path-based LSTM to give scores. Feng
et al. (2020) adopts the multi-hop graph relation
network (MHGRN) to perform reasoning which
unifies path-based methods and graph neural net-
works to achieve better interpretability and scal-
ability. Lv et al. (2020) proposes to extract evi-
dence from both structured knowledge base such
as ConceptNet and Wikipedia text and conduct
graph-based representation and inference for com-
monsense reasoning. Wang et al. (2020) employs
GPT-2 to generate knowledgeable paths between

knowledge graph concepts, which can dynamically
provide multi-hop relations between any pair of
concepts.

There have been works utilizing knowledge de-
scriptions for different tasks. Yu et al. (2020) uses
description text from Wikipedia for knowledge-text
co-pretraining. Xie et al. (2016) encodes the seman-
tics of entity descriptions in knowledge graphs to
improve the performance on knowledge graph com-
pletion and entity classification. Chen et al. (2018)
co-trains the knowledge graph embeddings and en-
tity description representation for cross-lingual en-
tity alignment.

3 Method
3.1 Knowledge Retrieval

Problem formulation. Given a commonsense
question @ and several answer choices ¢y, ..., ¢y,
the task is to select the correct answer. In most
cases, the question does not contain any mentions
of the answer. Therefore, external knowledge
source can be used to provide additional informa-
tion. We adopt ConceptNet (Liu and Singh, 2004)
as our knowledge graph G = (V, E), which con-
tains over 8 million entities as nodes and over 21
million relations as edges. In the following, we
use triple to refer to two neighboring nodes and the
edge connecting them, i.e. (u € V,p = (u,v) €
E,veV).

For each question and answer we get the corre-
sponding concept in the knowledge graph provided
by CommonsenseQA. Suppose the question entity
is e, € V and the choice entity is e. € V. In order
to conduct knowledge reasoning, we employ the
KCR method (Knowledge Chosen by Relations)!.
If there is a direct edge r from ¢, to e. in G, we
choose this triple (eg, 7, e.). Otherwise, we retrieve
all the N triples containing e.. Each triple j is as-
signed a score s; which is the product of its triple
weight w; (provided by ConceptNet) and relation
type weight ¢, :

S = wj ’trj (1)
N

ty. = 2

NN 0

Here, r; is the relation type of the triple j, and
N, is the number of triples among the retrieved
triples that have the relation type r;. Finally, the
triple with the highest weight is chosen.

'https://github.com/jessionlin/csqa/
blob/master/Model_details.md
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Figure 1: The input to Albert includes the question, choice, entity names, description text and triple. An attention-
based weighted sum and a softmax layer processes the output from Albert to produce the prediction.

3.2 Contextual information

The retrieved entities and relations from the knowl-
edge graph are described by their surface form.
Without additional context, it is hard to for the
language model to understand its exact meaning,
especially for proper nouns.

Therefore, we leverage large-scale online dictio-
naries to provide definitions as context. We use the
dump of Wiktionary? which includes definitions of
999,614 concepts. For every concept, we choose its
first definition entry in Wiktionary as the descrip-
tion. For every question/choice concept, we find
its closest match in Wiktionary by using the fol-
lowing forms in order: i) original form; ii) lemma
form by Spacy (Honnibal and Montani, 2017); iii)
base word (last word). For example, the concept
“taking notes” does not appear in its original form
in Wiktionary , but its lemma form “take notes” is
in Wiktionary and we get its description text: To
make a record of what one hears or observes for
future reference. We find descriptions of all entities
in our experiments. The descriptions of the ques-
tion and choice concept are denoted by d, and d.,
respectively.

Finally, we feed the question, answer, descrip-
tions and triple (from Section 3.1) into the Albert
(Lan et al., 2019) encoder in the following format:
[CLS] Q c; [SEP] e4: dy [SEP] e.: d.. [SEP] triple.

3.3 Reasoning

On top of the output from Albert, we leverage an
attention-based weighted sum and a softmax layer
to generate the relevance score for the question-

https://www.wiktionary.org/

Table 1: Example question and answer choices in Com-
monsenseQA. The correct choice is in bold.

Q: Where can I stand on a river to see water
falling without getting wet?

(A) waterfall, (B) bridge, (C) valley, (D)
stream, (E) bottom

choice pair.

In detail, suppose the output representations of
Albert is (xg, ..., €, ), where x; € R%. We com-
pute a weighted sum of these embeddings based on
attention:

G =u"Wa; 3)

a; = softmax(gq;) “4)

V= Z a;L;, (5)
i=0

where w is a parameter vector and W € R™? is a
parameter matrix.

The relevance score of the question and the j-th
choice is then s; = softmax(vd), where b € R?
is a parameter vector and the softmax is computed
over all choices for the cross entropy loss function.

The architecture of DEKCOR model and the
input construction is shown in Fig. 1.

4 Experiments

4.1 Datasets

We evaluate our model on the benchmark dataset
for commonsense reasoning: CommonsenseQA
(Talmor et al., 2018). This dataset contains 12,102
examples, which include 9,741 for training, 1,221
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Table 2: Accuracy on the test set of CommonsenseQA.

Methods Single Ensemble
BERT+OMCS 62.5 -
RoBERTa (Liu et al., 2019) 72.1 72.5
RoBERTa+FreelLB (Zhu et al., 2019) 72.2 73.1
RoBERTa+HyKAS (Ma et al., 2019) 73.2 -
XLNet+DREAM - 73.3
RoBERTa+KE 73.3 -
RoBERTa+KEDGN - 74.4
XLNet+GraphReason (Lv et al., 2020) 75.3 -
Albert (Lan et al., 2019) - 76.5
RoBERTa+MHGRN (Feng et al., 2020)  75.4 76.5
Albert+PG-Full (Wang et al., 2020) 75.6 78.2
T5 (Raffel et al., 2019) 78.1 -
Albert+KRD 78.4 -
UnifiedQA (Khashabi et al., 2020) 79.1 -
Albert+KCR 79.5 -
DEKCOR (ours) 80.7 83.3

Table 3: Ablation results on the dev set of Common-
senseQA.

Methods Accuracy
DEKCOR 84.7

— Description 82.0

— Triple 80.1

for development and 1,140 for test. Each example
consists of a question and up to five answer choices
(Table 1). The name of the concept in the question
is also given, which corresponds to an entity in
ConceptNet.

4.2 Baselines

We compare our models with state-of-the-art base-
lines on CommonsenseQA. All baselines employ
pre-trained models including RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019), Albert (Lan et al.,
2019) and T5 (Raffel et al., 2019). Some base-
lines employ additional modules to process knowl-
edge information. XLNet+GraphReason (Lv et al.,
2020) retrieves knowledge from both structured
knowledge base (i.e. ConceptNet) and Wikipedia
plain text. Albert+PG-FULL (Wang et al., 2020)
fine-tunes GPT-2 on ConceptNet to generate knowl-
edgeable paths between knowledge graph concepts.
RoBERTa+MHGRN (Feng et al., 2020) adopts the
multi-hop graph relation network to perform rea-
soning on ConceptNet with both path-based meth-
ods and graph neural networks. ROBERTa+HyKAS

(Ma et al., 2019) employs an option comparison
network based on RoBERTa to consume triples
from ConceptNet. Albert+KRD retrieves top k
commonsense knowledge from Open Mind Com-
mon Sense for the question-choice pair and then
uses a self-attention module to compute a weighted
sum of these triple representations.

4.3 Implementation Details

We use the AdamW (Loshchilov and Hutter, 2017)
optimizer with a learning rate of 2e-5. The batch
size is 8. We limit the maximum length of input
sequence to 192 tokens. The model is trained for
10 epochs. We use the Huggingface (Wolf et al.,
2019) implementation for the Albert model.

For the ensemble model, we train 7 single mod-
els with different initialization random seeds. The
output of the ensemble model is the majority of
choices selected by these single models.

4.4 Results

Table 2 shows the accuracy on the official test set
of CommonsenseQA. For fair comparison, we cat-
egorize the results into single models and ensem-
ble models. As shown, our proposed DEKCOR
outperforms the previous state-of-the-art result by
1.2% (single model) and 3.8% (ensemble model).
This demonstrates the effectiveness of the usage of
knowledge description to provide context.
Furthermore, we notice two trends based on
the results. First, the underlying pre-trained lan-



guage model is important in commonsense rea-
soning quality. In general, we observe this or-
der of accuracy among these language models:
BERT<RoBERTa<XLNet<Albert<T5. Second,
the additional knowledge module is critical to pro-
vide external information for reasoning. For exam-
ple, ROBERTa+KEDGN outperforms the vanilla
RoBERTa by 1.9% in accuracy, and our model
outperforms the vanilla Albert model by 6.8% in
accuracy.

Ablation study. Table 3 shows that the usage
of concept descriptions from Wiktionary and triple
from ConceptNet can help improve the accuracy
of DEKCOR on the dev set of CommonsenseQA
by 2.7% and 4.6% respectively. This demonstrates
that additional context information can help with
fusing knowledge graph into language modeling
for commonsense reasoning.

5 Conclusions

In this paper, we propose to fuse context infor-
mation into knowledge graph for commonsense
reasoning. As a knowledge graph often lacks de-
scription for the contained entities and edges, we
leverage Wiktionary to provide definitive text for
each question/choice entity. This description is
combined with entity names and sent into a pre-
trained language model to produce predictions. The
resulting DEKCOR model achieves state-of-the-art
result on the benchmark dataset CommonsenseQA.
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