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Abstract
We introduce Perceus, an algorithm for precise reference

counting with reuse and specialization. Starting from a func-

tional core language with explicit control-flow, Perceus emits

precise reference counting instructions such that (cycle-free)

programs are garbage free, where only live references are re-

tained. This enables further optimizations, like reuse analysis

that allows for guaranteed in-place updates at runtime. This

in turn enables a novel programming paradigm that we call

functional but in-place (FBIP). Much like tail-call optimiza-

tion enables writing loops with regular function calls, reuse

analysis enables writing in-place mutating algorithms in a

purely functional way. We give a novel formalization of ref-

erence counting in a linear resource calculus, and prove that

Perceus is sound and garbage free. We show evidence that

Perceus, as implemented in Koka, has good performance and

is competitive with other state-of-the-art memory collectors.

Keywords: Reference Counting, Algebraic Effects, Handlers

1 Introduction
Reference counting [7], with its low memory overhead and

ease of implementation, used to be a popular technique for

automatic memory management. However, the field has

broadlymoved in favor of generational tracing collectors [31],

partly due to various limitations of reference counting, in-

cluding cycle collection, multi-threaded operations, and ex-

pensive in-place updates.

In this work we take a fresh look at reference counting.We

consider a programming language design that gives strong

compile-time guarantees in order to enable efficient refer-

ence counting at run-time. In particular, we build on the

pioneering reference counting work in the Lean theorem

prover [46], but we view it through the lens of language

design, rather than purely as an implementation technique.

We demonstrate our approach in the Koka language [23,

25]: a functional language with mostly immutable data types

together with a strong type and effect system. In contrast

∗
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to the dependently typed Lean language, Koka is general-

purpose, with support for exceptions, side effects, and muta-

ble references via general algebraic effects and handlers [39,

40]. Using recent work on evidence translation [50–52], all

these control effects are compiled into an internal core lan-

guage with explicit control flow. Starting from this functional

core, we can statically transform the code to enable efficient

reference counting at runtime. In particular:

• Due to explicit control flow, the compiler can emit precise
reference counting instructions where a (non-cyclic) ref-

erence is dropped as soon as possible. We call this garbage
free reference counting as only live data is retained (§ 2.2).

• We show that precise reference counting enables many

optimizations, in particular drop specialization which re-

moves many reference count operations in the fast path

(Section 2.3), reuse analysis which updates (immutable)

data in-place when possible (Section 2.4), and reuse spe-
cialization which removes many in-place field updates

(Section 2.5). The reuse analysis shows the benefit of a

holistic approach: even though the surface language has

immutable data types with strong guarantees, we can use

dynamic run-time information, e.g. whether a reference is

unique, to update in-place when possible.

• The in-place update optimization is guaranteed, which

leads to a new programming paradigm that we call FBIP:
functional but in-place (Section 2.6). Just like tail-call op-

timization lets us write loops with regular function calls,

reuse analysis lets us write in-place mutating algorithms

in a purely functional way. We showcase this approach

by implementing a functional version of in-order Morris

tree traversal [35], which is stack-less, using in-place tree

node mutation via FBIP.

• We present a formalization of general reference counting

using a novel linear resource calculus, 𝜆1, which is closely

based on linear logic (Section 3), and we prove that ref-

erence counting is sound for any program in the linear

resource calculus. We then present the Perceus1 algorithm

1
Perceus, pronounced per-see-us, is a loose acronym of “PrEcise Reference

Counting with rEUse and Specialization”.
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as a deterministic syntax-directed version of 𝜆1, and prove

that it is both sound (i.e. never drops a live reference), and

garbage free (i.e. only retains reachable references).

• We demonstrate Perceus by providing a full implementa-

tion for the strongly typed functional language Koka [1].

The implementation supports typed algebraic effect han-

dlers using evidence translation [51] and compiles into

standard C11 code. The use of reference counting means

no runtime system is needed and Koka programs can read-

ily link with other C/C++ libraries.

• We show evidence that Perceus, as implemented for Koka,

competes with other state-of-the-art memory collectors

(Section 4). We compare our implementation in alloca-

tion intensive benchmarks against OCaml, Haskell, Swift,

and Java, and for some benchmarks to C++ as well. Even

though the current Koka compiler does not have many

optimizations (besides the ones for reference counting), it

has outstanding performance compared to these mature

systems. As a highlight, on the tree insertion benchmark,

the purely functional Koka implementation is within 10%

of the performance of the in-place mutating algorithm in

C++ (using std::map [13]).
Even though we focus on Koka in this paper, we believe that

Perceus, and the FBIP programming paradigm we identify,

are both broadly applicable to other programming languages

with similar static guarantees for explicit control flow.

There is an accompanying technical report [41] containing

all the proofs and further benchmark results.

2 Overview
Compared to a generational tracing collector, reference count-

ing has low memory overhead and is straightforward to

implement. However, while the cost of tracing collectors

is linear in the live data, the cost of reference counting is

linear in the number of reference counting operations. Op-

timizing the total cost of reference counting operations is

therefore our main priority. There are at least three known

problems that make reference counting operations expensive

in practice and generally inferior to tracing collectors:

• Concurrency: when multiple threads share a data structure,

reference count operations need to be atomic, which is

expensive.

• Precision: common reference counted systems are not pre-
cise and hold on to objects too long. This increases memory

usage and prevents aggressive optimization of many ref-

erence count operations.

• Cycles: if object references form a cycle, the runtime needs

to handle them separately, which re-introduces many of

the drawbacks of a tracing collector.

We handle each of these issues in the context of an eager,

functional language using immutable data types together

with a strong type and effect system. For concurrency, we

precisely track when objects can become thread-shared (Sec-

tion 2.7.2). For precision, we introduce Perceus, our algorithm

for inserting precise reference counting operations that can

be aggressively optimized. In particular, we eliminate and

fuse many reference count operations with drop specializa-
tion (Section 2.3), turn functional matching into in-place

updates with reuse analysis (Section 2.4), and minimize field

updates with reuse specialization (Section 2.5).

Finally, although we currently do not supply a cycle col-

lector, our design has two mitigations that reduces the oc-

currences of cycles in the first place. First, (co)inductive data
types and eager evaluation prevent cycles outside of explicit

mutable references, and it is statically known where cycles

can possibly be introduced in the code (Section 2.7.4). Second,

being a mostly functional language, mutable references are

not often used – moreover, reuse analysis greatly reduces the

need for them since in-place mutation is typically inferred.

The reference count optimizations are our main contribu-

tion and we start with a detailed overview in the following

sections, ending with details about how we mitigate the

impact of concurrency and cycles.

2.1 Types and Effects
We start with a brief introduction to Koka [23, 25] – a strongly

typed, functional language that tracks all (side) effects. For

example, we can define a squaring function as:

fun square( x : int ) : total int { x * x }

Here we see two types in the result: the effect type total and

the result type int. The total type signifies that the func-

tion can be modeled semantically as a mathematically total
function, which always terminates without raising an excep-

tion (or having any other observable side effect). Effectful

functions get more interesting effect types, like:

fun println( s : string ) : console ()
fun divide( x : int, y : int ) : exn int

where println has a console effect and divide may raise an

exception (exn) when dividing by zero. It is beyond the scope

of this paper to go into full detail, but a novel feature of Koka

is that it supports typed algebraic effect handlers which can

define new effects like async/await, iterators, or co-routines

without needing to extend the language itself [24–26].

Koka uses algebraic data types extensively. For example,

we can define a polymorphic list of elements of type a as:

type list⟨a⟩ {
Cons( head : a, tail : list⟨a⟩ )
Nil

}

We can match on a list to define a polymorphic map function

that applies a function f to each element of a list xs:

fun map( xs : list⟨a⟩, f : a -> e b ) : e list⟨b⟩ {
match(xs) {

Cons(x,xx) -> Cons(f(x), map(xx,f))
Nil -> Nil

}
}

Here we transform the list of generic elements of type a to

a list of generic elements of type b. Since map itself has no
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intrinsic effect, the overall effect of map is polymorphic, and

equals the effect e of the function f as it is applied to every

element. The map function demonstrates many interesting

aspects of reference counting and we use it as a running

example in the following sections.

2.2 Precise Reference Counting
An important attribute that sets Perceus apart is that it is pre-
cise: an object is freed as soon as no more references remain.

By contrast, common reference counting implementations

tie the liveness of a reference to its lexical scope, whichmight

retain memory longer than needed. Consider:

fun foo() {
val xs = list(1,1000000) // create large list
val ys = map(xs, inc) // increment elements
print(ys)

}

Many compilers emit code similar to:

fun foo() {
val xs = list(1,1000000)
val ys = map(xs, inc)
print(ys)
drop(xs)
drop(ys)

}

where we use a gray background for generated operations.

The drop(xs) operation decrements the reference count of

an object and, if it drops to zero, recursively drops all chil-

dren of the object and frees its memory. These “scoped life-

time” reference counts are used by the C++ shared_ptr⟨T⟩
(calling the destructor at the end of the scope), Rust’s Rc⟨T⟩
(using the Drop trait), and Nim (using a finally block to call
destroy) [53]. It is not required by the semantics, but Swift

typically emits code like this as well [14].

Implementing reference counting this way is straightfor-

ward and integrates well with exception handling where the

drop operations are performed as part of stack unwinding.

But from a performance perspective, the technique is not

always optimal: in the previous example, the large list xs is

retained in memory while a new list ys is built. Both exist for

the duration of print, after which a long, cascading chain of

drop operations happens for each element in each list.

Perceus takes a more aggressive approach where owner-
ship of references is passed down into each function: now

map is in charge of freeing xs, and ys is freed by print: no

drop operations are emitted inside foo as all local variables

are consumed by other functions, while the map and print

functions drop the list elements as they go. In this example,

Perceus generates the code for map as given in Figure 1b. In

the Cons branch, first the head and tail of the list are dupped,
where a dup(x) operation increments the reference count

of an object and returns itself. The drop(xs) then frees the

initial list node. We need to dup f as well as it is used twice,

while x and xx are consumed by f and map respectively.

At first blush, this seems more expensive than the scoped

approach but, as we will see, this change enables many fur-

ther optimizations. More importantly, transferring owner-

ship, rather than retaining it, means we can free an object

immediately when no more references remain. This both

increases cache locality and decreases memory usage. For

map, the memory usage is halved: the list xs is deallocated

while the new list ys is being allocated.

2.3 Drop Specialization
Oncewe change to precise, ownership-based reference count-

ing, there are many further optimization opportunities. After

the initial insertion of dup and drop operations, we perform a

drop specialization pass. The basic drop operation is defined

in pseudocode as:

fun drop( x ) {
if (is-unique(x)) then drop children of x; free(x)

else decref(x)
}

and drop specialization essentially inlines the drop opera-

tion specialized at a specific constructor. Figure 1c shows

the drop specialization of our map example. Note that we

only apply drop specialization if the children are used, so no

specialization takes place in the Nil branch.

Again, it appears we made things worse with extra opera-

tions in each branch, but we can perform another transfor-

mation where we push down dup operations into branches

followed by standard dup/drop fusion where corresponding

dup/drop pairs are removed. Figure 1d shows the code that

is generated for our map example.

After this transformation, almost all reference count op-

erations in the fast path are gone. In our example, every

node in the list xs that we map over is unique (with a refer-

ence count of 1) and so the if (is-unique(xs)) test always

succeeds, thus immediately freeing the node without any

further reference counting.

2.4 Reuse Analysis
There is more we can do. Instead of freeing xs and imme-

diately allocating a fresh Cons node, we can try to reuse xs
directly as first described by Ullrich and de Moura [46]. Reuse
analysis is performed before emitting the initial reference

counting operations. It analyses each match branch, and tries

to pair each matched pattern to allocated constructors of

the same size in the branch. In our map example, xs is paired

with the Cons constructor. When such pairs are found, and

the matched object is not live, we generate a drop-reuse

operation that returns a reuse token that we attach to any

constructor paired with it:

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
val ru = drop-reuse(xs)
Cons@ru( f(x), map(xx, f))

}
Nil -> Nil

}
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fun map( xs : list⟨a⟩, f : a -> e b ) : e list⟨b⟩ {
match(xs) {

Cons(x,xx) -> Cons(f(x), map(xx,f))
Nil -> Nil

}
}

(a) A polymorphic map function

(a)

(b) (c) (d)

(e) (f) (g)

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
dup(x); dup(xx); drop(xs)
Cons( dup(f)(x), map(xx, f))

}
Nil { drop(xs); drop(f); Nil }

}
}

(b) dup/drop insertion (2.2)

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
dup(x); dup(xx)
if (is-unique(xs))

then drop(x); drop(xx); free(xs)
else decref(xs)

Cons( dup(f)(x), map(xx, f))
}
Nil { drop(xs); drop(f); Nil }

}
}

(c) drop specialization (2.3)

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
if (is-unique(xs))

then free(xs)
else dup(x); dup(xx); decref(xs)

Cons( dup(f)(x), map(xx, f))
}
Nil { drop(xs); drop(f); Nil }

}
}

(d) push down dup and fusion (2.3)

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
dup(x); dup(xx);
val ru = drop-reuse(xs)
Cons@ru( dup(f)(x), map(xx, f))

}
Nil { drop(xs); drop(f); Nil }

}
}

(e) reuse token insertion (2.4)

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
dup(x); dup(xx);
val ru = if (is-unique(xs))

then drop(x); drop(xx); &xs
else decref(xs); NULL

Cons@ru( dup(f)(x), map(xx, f))
}
Nil { drop(xs); drop(f); Nil }

}
}

(f) drop-reuse specialization (2.4)

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
val ru = if (is-unique(xs))

then &xs
else dup(x); dup(xx);

decref(xs); NULL
Cons@ru( dup(f)(x), map(xx, f))

}
Nil { drop(xs); drop(f); Nil }

}
}

(g) push down dup and fusion (2.4)

Fig. 1. Drop specialization and reuse analysis for map.

}

The Cons@ru annotation means that (at runtime) if ru==NULL

then the Cons node is allocated fresh, and otherwise the mem-

ory at ru is of the right size and can be used directly. Figure 1e

shows the generated code after reference count insertion.

Compared to the program in Figure 1b, the generated code

now consumes xs using drop-reuse(xs) instead of drop(xs).

Just like with drop specialization we can also specialize

drop-reuse. The drop-reuse operation is specified in pseu-

docode as:

fun drop-reuse( x ) {
if (is-unique(x)) then drop children of x; &x

else decref(x); NULL
}

where &x returns the address of x. Figure 1f shows the code

for map after specializing the drop-reuse. Again, we can push

down and fuse the dup operations, which finally results in

the code shown in Figure 1g. In the fast path, where xs

is uniquely owned, there are no more reference counting

operations at all! Furthermore, the memory of xs is directly

reused to provide the memory for the Cons node for the

returned list – effectively updating the list in-place.

2.5 Reuse Specialization
The final transformation we apply is reuse specialization, by
which we can further reuse unchanged fields of a constructor.

A constructor expression like Cons@ru(x,xx) is implemented

in pseudocode as:

fun Cons@ru( x, xx) {
if (ru!=NULL)

then { ru->head := x; ru->tail := xx; ru } // in-place
else Cons(x,xx) // malloc’d

}

However, for our map example there would be no benefit to

specializing as all fields are assigned. Thus, we only specialize

constructors if at least one of the fields stays the same. As

an example, we consider insertion into a red-black tree [17].

We define red-black trees as:

type color { Red; Black }
type tree {

Leaf
Node(color: color, left: tree, key: int,

value: bool, right: tree)
}

The red-black tree has the invariant that the number of black

nodes from the root to any of the leaves is the same, and that

a red node is never a parent of red node. Together this ensures

that the trees are always balanced. When inserting nodes,

the invariants need to be maintained by rebalancing the

nodes when needed. Okasaki’s algorithm [37] implements

this elegantly and functionally (the full algorithm can be

found in accompanying technical report [41]):
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void inorder( tree* root, void (*f)(tree* t) ) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

fun bal-left( l : tree, k : int, v : bool, r : tree ): tree {
match(l) {

Node(_, Node(Red, lx, kx, vx, rx), ky, vy, ry)
-> Node(Red, Node(Black, lx, kx, vx, rx), ky, vy,

Node(Black, ry, k, v, r))
...

}
fun ins( t : tree, k : int, v : bool ): tree {

match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) // second branch

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is effective. For

example, if we look at the second branch in ins we see that

the newly allocated Node has almost all of the same fields as

t except for the left tree l which becomes ins(l,k,v). After

reuse specialization, this branch becomes:

Node(Red, l, kx, vx, r) { // second branch
val ru = if (is-unique(t)) then &t

else { dup(l); dup(kx); dup(vx); dup(r); NULL }
if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused

directly, and only its left child is re-assigned as all other

fields stay unchanged. This applies to many branches in this

example and saves many assignments.

Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-

ing Node allocation – if we consider all branches we can see

that we either match one Node and allocate one, or we match

three nodes deep and allocate three. With reuse analysis this

type visitor {
Done
BinR( right:tree, value : int, visit : visitor )
BinL( left:tree, value : int, visit : visitor )

}
type direction { Up; Down }

fun tmap( f : int -> int, t : tree,
visit : visitor, d : direction ) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

means that every Node is reused in the fast path without

doing any allocations!

Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place

mutating re-balancing algorithm (without any further allo-

cation). Moreover, if we use the tree persistently [36], and

the tree is shared or has shared parts, the algorithm adapts

to copying exactly the shared spine of the tree (and no more),

while still rebalancing in place for any unshared parts.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with

Perceus we can write algorithms that dynamically adapt

to use in-place mutation when possible (and use copying

when used persistently). Importantly, a programmer can rely

on this optimization happening, e.g. they can see the match

patterns and match them to constructors in each branch.

This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-

timization lets us describe loops in terms of regular func-

tion calls, reuse analysis lets us describe in-place mutating

imperative algorithms in a purely functional way (and get

persistence as well). Consider mapping a function f over all

elements in a binary tree in-order:

type tree {
Tip
Bin( left: tree, value : int, right: tree )

}
fun tmap( t : tree, f : int -> int ) : tree {

match(t) {
Bin(l,x,r) -> Bin( tmap(l,f), f(x), tmap(r,f) )
Tip -> Tip

}
}

This is already quite efficient as all the Bin and Tip nodes are

reused in-place when t is unique. However, the tmap function

is not tail-recursive and thus uses as much stack space as the

depth of the tree.

In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [22] (For
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readers not familiar with the problem it might be fun to try

this in your favorite imperative language first and see that

it is not easy to do). Since then, numerous solutions have

appeared in the literature. A particularly elegant solution

was proposed by Morris [35]. This is an in-place mutating

algorithm that swaps pointers in the tree to “remember”

which parts are unvisited. It is beyond this paper to give a

full explanation, but a C implementation is shown in Figure 2.

The traversal essentially uses a right-threaded tree to keep

track of which nodes to visit. The algorithm is subtle, though.

Since it transforms the tree into an intermediate graph, we

need to state invariants over the so-called Morris loops [29]
to prove its correctness.

We can derive a functional and more intuitive solution

using the FBIP technique. We start by defining an explicit

visitor data structure that keeps track of which parts of the

tree we still need to visit. In Koka we define this data type

as visitor given in Figure 3. (Interestingly, our visitor data

type can be generically derived as a list of the derivative of

the tree data type
2
[20, 30]). We also keep track of which

direction we are going, either Up or Down the tree.

We start our traversal by going downward into the tree

with an empty visitor, expressed as tmap(f, t, Done, Down).

The key idea is that we are either Done (C), or, on going

downward in a left spine we remember all the right trees

we still need to visit in a BinR (A) or, going upward again (B),

we remember the left tree that we just constructed as a BinL

while visiting right trees (D). When we come back (E), we

restore the original tree with the result values. Note that we

apply the function f to the saved value in branch D (as we

visit in-order), but the functional implementation makes it

easy to specify a pre-order traversal by applying f in branch

A, or a post-order traversal by applying f in branch E.

Looking at each branch we can see that each Bin matches

up with a BinR, each BinR with a BinL, and finally each BinL

with a Bin. Since they all have the same size, if the tree

is unique, each branch updates the tree nodes in-place at
runtime without any allocation, where the visitor structure

is effectively overlaid over the tree nodes while traversing

the tree. Since all tmap calls are tail calls, this also compiles

to a loop and thus needs no extra stack- or heap space.

Finally, just like with re-balancing tree insertion, the algo-

rithm as specified is still purely functional: it uses in-place up-

dating when a unique tree is passed, but it also adapts grace-

fully to the persistent case where the input tree is shared,

or where parts of the input tree are shared, making a single

copy of those parts of the tree.

2
Conor McBride [30] describes how we can generically derive a zipper [20]
visitor for any recursive type 𝜇x . F as a list of the derivative of that type,
namely list ( 𝜕

𝜕x F |x =𝜇x .F) . In our case, calculating the derivative of the

inductive tree, we get 𝜇x . 1 + (tree × int × x) + (tree × int × x) , which
corresponds to the visitor datatype.

2.7 Static Guarantees and Language Features
So far we have shown that precise reference counting en-

ables powerful analyses and optimizations of the reference

counting operations. In this section, we use Koka as an exam-

ple to discuss how strong static guarantees at compile-time

can further allow the precise reference counting approach

to be integrated with non-trivial language features.

2.7.1 Non-Linear Control Flow. An essential require-

ment of our approach is that programs have explicit control

flow so that it is possible to statically determine where to

insert dup and drop operations. However, it is in tension with

functions that have non-linear control flow, e.g. may throw

an exception, use a longjmp, or create an asynchronous con-

tinuation that is never resumed. For example, if we look at

the code for map before applying optimizations, we have:

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
dup(x); dup(xx); drop(xs); dup(f)
Cons( f(x), map(xx, f) )

}
...

If f raised an exception and directly exited the scope of map,

then xx and f would leak and never be dropped. This is

one reason why a C++ shared_ptr is tied to lexical scope;

it integrates nicely with the stack unwinding mechanism

for exceptions that guarantees each shared_ptr is dropped

eventually.

In Koka, we guarantee that all control-flow is compiled to

explicit control-flow, so our reference count analysis does

not have to take non-linear control-flow into account. This

is achieved through effect typing (Section 2.1) where every

function has an effect type that signifies if it can throw ex-

ceptions or not. Functions that can throw are compiled into

functions that return with an explicit error type that is either

Ok, or Error if an exception is thrown. This is checked and

propagated at every invocation
3
.

For example, for map the compiled code (before optimiza-

tion) becomes like:

fun map( xs, f ) {
match(xs) {

Cons(x,xx) {
dup(x); dup(xx); drop(xs); dup(f)
match(f(x)) {

Error(err) -> { drop(xx); drop(f); Error(err); }
Ok(y) -> { match(map(xx, f)) {

Error(err) -> drop(y); Error(err)
Ok(ys) -> Cons(y,ys)

}
...

At this point all errors are explicitly propagated and all

control-flow is explicit again. Note the we have no refer-

ence count operations on the error values as these are im-

plemented as value types which are not heap allocated.

3
Koka actually generalizes this using a multi-prompt delimited control

monad that works for any control effect, with essentially the same principle.



Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 22, 2020,

This is similar to error handling in Swift [21] (although

it requires the programmer to insert a try at every invoca-

tion), and also similar to various C++ proposals [44] where

exceptions become explicit error values.

The example here is specialized for exceptions but the

actual Koka implementation uses a generalized version of

this technique to implement a multi-prompt delimited con-

trol monad [18] instead, which is used in combination with

evidence translation [51] to express general algebraic effect

handlers (which in turn subsume all other control effects, like

exceptions, async/await, probabilistic programming, etc).

2.7.2 Concurrent Execution. If multiple threads share a

reference to a value, the reference count needs to be incre-

mented and decremented using atomic operations which can

be expensive. Ungar et al. [47] report slowdowns up to 50%

when atomic reference counting operations are used. Never-

theless, in languages with unrestricted multi-threading, like

Swift, almost all reference count operations need to assume

that references are potentially thread-shared.

In Koka, the strong type system gives us additional guar-

antees about which variables may need atomic reference

count operations. Following the solution of Ullrich and de

Moura [46], we mark each object with whether it can be

thread-shared or not, and supply an internal polymorphic op-

eration tshare : forall a. a -> io ()which marks any ob-

ject and its children recursively as being thread-shared. Even

though marking is linear, it happens at most once for any

object since shared objects cannot be unshared. All objects

start out as unshared, and are only marked through explicit

operations. In particular, when starting a new thread, the

argument passed to the thread is marked as thread-shared.

The only other operation that can cause thread sharing is

setting a thread-shared mutable reference but this is quite

uncommon in typical Koka code. The drop and dup oper-

ations can be implemented efficiently by avoiding atomic

operations in the fast path by checking the thread-shared

flag.

For example, drop may be implemented in C as:

static inline void drop( block_t* b ) {
if (b->header.thread_shared) {

if (atomic_dec(&b->header.rc) == 1) drop_free(b);
} else if (b->header.rc-- == 1) drop_free(b);

}

However, this may still present quite some overhead as many

drop operations are emitted.

In Koka we encode the reference count for thread-shared

objects as a negative value. This enables us to use a single
inlined test to see if we need to take the slow path for either

a thread-shared object or an object that needs to be freed;

and we can use a fast inlined path for the common case
4
:

static inline void drop( block_t* b ) {

4
Since the thread-shared sign-bit is stable, we can do the test

b->header.cr <= 1 without needing expensive atomic operations and can

use a memory_order_relaxed atomic read.

if (b->header.rc <= 1) drop_check(b); // slow path
else b->header.rc--;

}

The drop_check function checks if the reference count is

1 to release it, or otherwise it adjusts the reference count

atomically. We also use the negative values to implement

a sticky range where very large reference counts (2
30

in

our implementation) stay without being further adjusted

(preventing overflow, and keeping them alive for the rest of

the program).

2.7.3 Mutation. Mutation in Koka is done through ex-

plicit mutable references. Here we look at first-class mutable

reference cells, but Koka also has second-class mutable local

variables that can be more convenient. A mutable reference

cell is created with ref, dereferenced with (!) and updated

using (:=):

fun ref( init : a ) : st⟨h⟩ ref⟨h,a⟩
fun (!)( r : ref⟨h,a⟩ ) : st⟨h⟩ a
fun (:=)( r : ref⟨h,a⟩, x : a ) : st⟨h⟩ ()

where each operation has a stateful effect st⟨h⟩ in some heap

h. A reference cell of type ref⟨h,a⟩ is a first-class value that
contains a reference to a value of type a. As such, there are

always two reference counts involved: that of the reference

itself, and that of value that is referenced.

When a mutable reference cell is thread-shared, this pre-

sents a problem as an update operation may race with a read

operation to update the reference counts. The pseudocode

implementation of both operations is:

fun (!)( r ) { fun (:=)( r, x ) {
val x = r->value val y = r->value
dup(x) r->value := x
x drop y

} }

The read operation (!) first reads the current reference in

x, and then increments its reference count. Suppose though

that before the dup, the thread is suspended and another

thread writes to the same reference: it will read the same

object into y, update the reference, and then drop y – and if

y has a reference count of 1 it will be freed! When the other

thread resumes, it will now try to dup the just-freed object.

To make this work correctly, we need to perform both op-

erations atomically, either through a double-CAS [9], using

hazard pointers [15, 33], or using some other locking mecha-

nism. Either way, this can be quite expensive. Fortunately,

in our setting, we can avoid the slow path in most cases.

First of all, since FBIP allows for the efficiency of in-place

updates with a purely functional specification (Section 2.6),

we expect mutable references to be a last resort rather than

the default. Secondly, as discussed in Section 2.7.2, we can

also check if a mutable reference is actually thread-shared

and thus avoid the atomic code path almost all of the time.

2.7.4 Cycles. A known limitation of reference counting

is that it cannot release cyclic data structures. Just like with
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mutability, we try to mitigate its performance impact by re-

ducing the potential for this to occur in the first place. In

Koka, almost all data types are immutable and either induc-
tive or coinductive. It can be shown that such data types are

never cyclic (and functions that recurse over such data types

always terminate).

In practice, mutable references are the main way to con-

struct cyclic data. Since mutable references are uncommon

in our setting, we leave the responsibility to the programmer

to break cycles by explicitly clearing a reference cell that

may be part of a cycle. Since this strategy is also used by

Swift, a widely used language where most object fields are

mutable, we believe this is a reasonable approach to take for

now. However, we have plans for future improvements: since

we know statically that only mutable references are able to

form a cycle, we could generate code that tracks those data

types at run time and may perform a more efficient form of

incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static

guarantees at compile-time can be used to mitigate the per-

formance impact of concurrency and the risk of cycles. This

paper does not yet present a general solution to all prob-

lems with reference counting and future work is required

to explore how cycles can be handled more efficiently, and

how well Perceus can be used with implicit control flow.

Yet, we expect that our approach gives new insights in the

general design space of reference counting, and showcase

that precise reference counting can be a viable alternative

to other approaches. In practice, we found that Perceus has

good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,

𝜆1, which is closely based on linear logic. The operational

semantics of 𝜆1 is formalized in an explicit heap with refer-

ence counting, and we prove that the operational semantics

is sound. We then formalize Perceus as a sound and precise

syntax-directed algorithm of 𝜆1 and thus provide a theoretic

foundation for Perceus.

3.1 Syntax
Figure 4 defines the syntax of our linear resource calculus 𝜆1.

It is essentially an untyped lambda calculus extended with

explicit binding as val x = e1; e2, and pattern matching as

match. We assume all patterns in match are mutually exclu-

sive, and all pattern binders are distinct. Syntactic constructs

in gray are only generated in derivations of the calculus and

are not exposed to users. Among those constructs, dup and

drop form the basic instructions of reference counting.

Contexts Δ, Γ are multisets containing variable names. We

use the compact comma notation for summing (or splitting)

multisets. For example, (Γ, x) adds x to Γ, and (Γ1, Γ2) ap-
pends two multisets Γ1 and Γ2. The set of free variables of

Expressions

e ::= v | e e (value, application)

| val x = e; e (bind)

| match x { pi → ei } (match)

| dup x; e (duplicate)

| drop x; e (drop)

| match e { pi → ei } (match expr)

v ::= x | 𝜆x . e (variables, functions)

| C v1 . . . vn (constructor of arity n)
p ::= C b1 . . .bn (pattern)

b ::= x | _ (binder or wildcard)

Contexts Δ, Γ : := ∅ | Δ ∪ x

Syntactic shorthands

e1; e2 ≜ val x = e1; e2 sequence, x ̸∈ fv(e2)
𝜆_. e ≜ 𝜆x . e x ̸∈ fv(e)
𝜆x . e ≜ 𝜆ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus 𝜆1.

Δ
↑
| Γ
↑
⊢ e

↑
⇝ e′

↓
(↑ is input, while ↓ is output)

Δ | x ⊢ x ⇝ x
[var]

Δ | Γ, x ⊢ e ⇝ e′ x ∈ Δ, Γ

Δ | Γ ⊢ e ⇝ dup x; e′
[dup]

Δ | Γ ⊢ e ⇝ e′

Δ | Γ, x ⊢ e ⇝ drop x; e′
[drop]

Δ, Γ2 | Γ1 ⊢ e1 ⇝ e′
1

Δ | Γ2 ⊢ e2 ⇝ e′
2

Δ | Γ1, Γ2 ⊢ e1 e2 ⇝ e′
1
e′
2

[app]

∅ | Γ, x ⊢ e ⇝ e′ Γ = fv(𝜆x . e)
Δ | Γ ⊢ 𝜆x . e ⇝ 𝜆Γx . e′

[lam]

x ̸∈ Δ, Γ1, Γ2
Δ, Γ2 | Γ1 ⊢ e1 ⇝ e′

1
Δ | Γ2, x ⊢ e2 ⇝ e′

2

Δ | Γ1, Γ2 ⊢ val x = e1; e2 ⇝ val x = e′
1
; e′

2

[bind]

[match] Δ | Γ, bv(pi) ⊢ ei ⇝ e′i
Δ | Γ, x ⊢ match x { pi ↦→ ei } ⇝ match x { pi ↦→ e′i }

Δ, Γi+1, . . ., Γn | Γi ⊢ vi ⇝ v ′i 1 ⩽ i ⩽ n

Δ | Γ1, . . ., Γn ⊢ C v1 . . . vn ⇝ C v′
1
. . . v ′n

[con]

Fig. 5. Declarative linear resource rules of 𝜆1.

an expression e is denoted by fv(e), and the set of bound

variables of a pattern p by bv(p).
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E ::= □ | E e | v E
| val x = E; e

e −→ e′

E[e] ↦−→ E[e′]
[eval]

(app) (𝜆x . e) v −→ e[x:=v]
(bind) val x = v ; e −→ e[x:=v]
(match) match (C v1 . . . vn) {pi → ei}

−→ ei [x1:=v1, . . ., xn:=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for 𝜆1.

3.2 The Linear Resource Calculus
The derivation Δ | Γ ⊢ e ⇝ e′ in Figure 5 reads as follows:

given a borrowed environment Δ, a linear environment Γ, an
expression e is translated into an expression e′ with explicit

reference counting instructions. We call variables in the lin-

ear environment owned.
The key idea of 𝜆1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs

to be explicitly duplicated (in rule dup) if it is needed more

than once; or be explicitly dropped (in rule drop) if it is not

needed. The rules are closely related to linear typing.

Following the key idea, the variable rule var consumes a

resource when we own and only own x exactly once in the

owned environment. For example, to derive the K combinator,

𝜆x y. x, we need to apply drop to be able to discard y, which
gives 𝜆x y. drop y; x.

The app rule splits the owned environment Γ into two sep-

arate contexts Γ1 and Γ2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned

environment. Since Γ2 is consumed in the e2 derivation, we
know that resources in Γ2 are surely alive when deriving

e1, and thus we can borrow Γ2 in the e1 derivation. The rule
is quite similar to the [let!] rule of Wadler’s linear type

rules [48,pg.14] where a linear type can be “borrowed” as a

regular type during evaluation of a binding.

Borrowing is important as it allows us to conduct a dup
as late as possible, or otherwise we will need to duplicate

enough resources before we can divide the owned envi-

ronment. Consider 𝜆f g x . (f x) (g x). Without borrowing,

we have to duplicate x before the application, resulting

in 𝜆f g x . dup x; (f x) (g x). With the borrowing environ-

ment it is now possible to derive a translation with the dup
right before passing x to f : 𝜆f g x . (f (dup x; x)) (g x)). No-
tice rule dup allows dup from the borrowing environment,

where drop only applies to the owned environment.

The lam rule is interesting as it essentially derives the body

of the lambda independently. The premise Γ = fv(𝜆x .e) re-
quires that exactly the free variables in the lambda are owned

– this corresponds to the notion that a lambda is allocated

as a closure at runtime that holds all free variables of the

lambda (and thus the lambda expression consumes the free
variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-

ment only owning the argument and the free variables (in

the closure). The translated lambda is also annotated with

Γ, as 𝜆Γx . e, so we know precisely the resources the lambda

should own when evaluated in a heap semantics. We often

omit the annotation when it is irrelevant.

The bind rule is similar to application and borrows Γ2 in
the derivation for the bound expression. This is the main

reason to not consider val x = e1; e2 as syntactic sugar for
(𝜆x . e2) e1. The match rule consumes the scrutinee and owns

the bound variables in each pattern for each branch. For con-

structors (rule con), we divide the owned environment into n
parts for each component, and allow each component deriva-

tion to borrow the owned environment of the components

derived later.

We use the notation ⌈e⌉ to erase all drop and dup in the

expression e. We can now state that derivations leave expres-

sions unchanged except for inserting dup/drop operations:

if Δ | Γ ⊢ e ⇝ e′ then e = ⌈e′⌉.

3.3 Semantics
Figure 6 defines standard semantics for 𝜆1 using strict evalu-

ation contexts [49]. The evaluation contexts uniquely deter-

mine where to apply an evaluation step. As such, evaluation

contexts neatly abstract from the usual implementation con-

text of a stack and program counter. Rule (match) replies
on the internal form of expression match e { pi → ei }: after
substitution (app), values may appear in positions where

only variables were allowed, and this is exactly what enables

us to do pattern match on a data constructor.

In Figure 7 we define our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-

stitution only substitutes variables. Here, each heap entry

x ↦→n v points to a value v with a reference count of n (with

n ⩾ 1). In these semantics, values other than variables are

allocated in the heap with rule (lamr ) and rule (conr ). The
evaluation rules discard entries from the heap when the refer-

ence count drops to zero. Any allocated lambda is annotated

as 𝜆ysx . e to clarify that these are essentially closures holding
an environment ys and a code pointer 𝜆x . e. Note that it is
important that the environment ys is a multi-set. After the

initial translation, ys will be equivalent to the free variables

in the body (see rule lam), but during evaluation substitution

may substitute several variables with the same reference. To

keep reference counts correct, we need to keep considering

each one as a separate entry in the closure environment.

When applying an abstraction, rule (appr ) needs to sat-

isfy the assumptions made when deriving the abstraction

in rule lam. First, the (appr ) rule inserts dup to duplicate

variables ys, as these are owned in rule lam. It then drops the
reference to the closure itself. Rule (matchr ) is similar to rule

(appr ), which duplicates the newly bound pattern bindings
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H : x → (N+, v)
E ::= □ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e −→r H′ | e′

H | E[e] ↦−→r H′ | E[e′]
[eval]

(lamr ) H | (𝜆ys x . e) −→r H, f ↦→1 𝜆ysx . e | f fresh f
(conr ) H | C x1 . . . xn −→r H, z ↦→1 C x1 . . . xn | z fresh z

(appr ) H | f z −→r H | dup ys; drop f ; e[x:=z] (f ↦→n 𝜆ysx . e) ∈ H
(matchr ) H | match x {pi → ei} −→r H | dup ys; drop x; ei [xs:=ys] with pi = C xs and (x ↦→n C ys) ∈ H
(bindr ) H | val x = y ; e −→r H | e[x:=y]

(dupr ) H, x ↦→n v | dup x; e −→r H, x ↦→n+1 v | e
(dropr ) H, x ↦→n+1 v | drop x; e −→r H, x ↦→n v | e if n ⩾ 1

(dlamr ) H, x ↦→1 𝜆ysz.e | drop x; e −→r H | drop ys; e
(dconr ) H, x ↦→1 C ys | drop x; e −→r H | drop ys; e

Fig. 7. Reference-counted heap semantics for 𝜆1.

and drops the scrutinee
5
. Rule (bindr ) simply substitutes the

bound variable x with the resource y.
Duping a resource is straightforward as rule (dupr )merely

increments the reference count of the resource. Dropping is

more involved. Rule (dropr ) just decrements the reference

count when there are still multiple copies of it. But when

the reference count would drop to zero, rule (dlamr ) and
rule (dconr ) actually free a heap entry and then dynamically

insert drop operations to drop their fields recursively.

The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we

prove that the reference counting semantics is sound and

corresponds to the standard semantics. Below we use heaps

as substitutions on expressions. We write [H]e to mean H
applied as a substitution to expression e.

Theorem 1. (Reference-counted heap semantics is sound)
If we have ∅ | ∅ ⊢ e ⇝ e′ and e ↦−→∗ v, then we also have

∅ | e′ ↦−→∗
r H | x with [H]x = v.

To prove this theorem we need to maintain strong invariants

at each evaluation step to ensure a variable is still alive if it is

going to be referred later. Second, we prove that the reference

counting semantics never hold on to unused variables. We

first define the notion of reachability.

Definition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and

an expression e, denoted as reach(x, H | e), if (1) x ∈ fv(e);
or (2) for some y, we have reach(y, H | e) ∧ y ↦→n v ∈ H ∧
reach(x, H | v).

5
A difference between (appr ) and (matchr ) is that for application the free

variables ys are dynamic and thus the duplication must be done at runtime.

In contrast, a match knows the the bound variables in a pattern statically. In

practice we therefore generate the required dup and drop operations during

elaboration for each branch – this is essential as that enables the further

optimizations as shown in Section 2.2.

With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ∅;∅ ⊢ e ⇝ e′, and ∅ | e′ ↦−→∗

r H | x, then for ev-

ery intermediate state Hi | ei, we have for all y ∈ dom(Hi),
reach(y, Hi | ei).
In the accompanying technical report [41], we further show

that the reference counts are exactly equal to the number

of actual references to the resource. Notably, to capture the

essence of precise reference counting, 𝜆1 does not model

mutable references (Section 2.7.3). From Theorem 2 we see

that mutable references are indeed the only source of cycles.

A natural extension of the system is to include mutable ref-

erences and thus cycles. In that case, we could generalize

Theorem 2, where the conclusion would be that for all re-

source in the heap, it is either reachable from the expression,

or it is part of a cycle.

These theorems establish the correctness of the reference-

counted heap semantics. However, correctness does not im-

ply precision, ie. that the heap is garbage free. Eventually all

live data is discarded but it may well hold on to live data

too long by delaying drop operations. As an example, con-

sider y ↦→1 () | (𝜆x . x) (drop y; ()), where y is reachable

but dropped too late: it is only dropped after the lambda

gets allocated. In contrast, a garbage free algorithm would

produce y ↦→1 () | drop y; (𝜆x . x) (). In the next section we

present Perceus as a syntax directed algorithm of the linear

resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 defines syntax directed derivation ⊢s for our resource
calculus and as such specifies our Perceus algorithm. Like

before, Δ | Γ ⊢s e ⇝ e′ translates an expression e to e′ un-
der an borrowed environment Δ and an owned environment

Γ. During the derivation, we maintain the following invari-

ants: (1) Δ ∩ Γ = ∅; (2) Γ ⊆ fv(e); (3) fv(e) ⊆ Δ, Γ; and (4)
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Δ
↑
| Γ
↑
⊢s e

↑
⇝ e′

↓
Δ ∩ Γ = ∅ Γ ⊆ fv(e) fv(e) ⊆ Δ, Γ multiplicity of each member in Δ, Γ is 1

Δ | x ⊢s x ⇝ x
[svar]

Δ, x | ∅ ⊢s x ⇝ dup x; x
[svar-dup]

Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′
1

Δ | Γ2 ⊢s e2 ⇝ e′
2

Γ2 = Γ ∩ fv(e2)
Δ | Γ ⊢s e1 e2 ⇝ e′

1
e′
2

[sapp]

x ∈ fv(e) ∅ | ys, x ⊢s e ⇝ e′

ys = fv(𝜆x . e) Δ1 = ys − Γ

Δ,Δ1 | Γ ⊢s 𝜆x . e ⇝ dup Δ1; 𝜆
ys x . e′

[slam]

x ̸∈ fv(e) ∅ | ys ⊢s e ⇝ e′

ys = fv(𝜆x . e) Δ1 = ys − Γ

Δ,Δ1 | Γ ⊢s 𝜆x . e ⇝ dup Δ1; 𝜆
ys x . (drop x; e′)

[slam-d]

x ∈ fv(e2) x ̸∈ Δ, Γ
Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′

1

Δ | Γ2, x ⊢s e2 ⇝ e′
2

Γ2 = Γ ∩ (fv(e2) − x)
Δ | Γ ⊢s val x = e1; e2 ⇝ val x = e′

1
; e′

2

[sbind]

x ̸∈ fv(e2), Δ, Γ
Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′

1

Δ | Γ2 ⊢s e2 ⇝ e′
2

Γ2 = Γ ∩ fv(e2)
Δ | Γ ⊢s val x = e1; e2 ⇝ val x = e′

1
; drop x; e′

2

[sbind-d]

Δ | Γi ⊢s ei ⇝ e′i Γi = (Γ, bv(pi)) ∩ fv(ei) Γ′i = (Γ, bv(pi)) − Γi

Δ | Γ, x ⊢s match x { pi ↦→ ei } ⇝ match x { pi ↦→ drop Γ′i ; e
′
i }

[smatch]

Δ, Γi+1, . . ., Γn | Γi ⊢ s vi ⇝ v ′i 1 ⩽ i ⩽ n Γi = (Γ − Γi+1 − . . . − Γn) ∩ fv(vi)
Δ | Γ ⊢ s C v1 . . . vn ⇝ C v′

1
. . . v ′n

[scon]

Fig. 8. Syntax-directed linear resource rules of 𝜆1.

multiplicity of each member in Δ, Γ is 1. We ensure these

properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-

ing: we delay a dup operation to come as late as possible,

pushing them out to the leaves of a derivation; and we gener-

ate a drop operation as soon as possible, right after a binding

or at the start of a branch.

Rule svar-dup borrows x by inserting a dup. The sapp rule
now deterministically finds a good split of the environment

Γ. We pass the intersection of Γ with the free variables in

e2 to the e2 derivation. Otherwise the rule is the same as

in the declarative system. For abstraction and binding we

have two variants: one where the binding is actually in the

free variables of the expression (rule slam and sbind), and

one where the binding can be immediately dropped as it is

unused (rule slam-d and sbind-d). In the abstraction rule, we

know that Γ ⊆ fv(𝜆x .e) and thus Γ ⊆ ys. If there are any
free variables not in Γ, they must be part of the borrowed

environment (as Δ1) and these must be duplicated to ensure

ownership. The bind rules are similarly constructed as a

mixture of sapp and slam.

The smatch rule is interesting as in each branch there may

be variables that can to be dropped as they no longer occur

as free variables in that branch. The owned environment

Γi in the ith branch is the intersection of (Γ, bv(pi)) and
the free variables in that branch; any other owned variables

(as Γ′i ) are dropped at the start of the branch. Rule scon

deterministically splits the environment Γ as in rule sapp.

We show that the Perceus algorithm is sound by showing

that for each rule there exists a derivation in the declarative

linear resource calculus.

Theorem 3. (Syntax directed translation is sound.)
If Δ | Γ ⊢s e ⇝ e′ then also Δ | Γ ⊢ e ⇝ e′.

More importantly, we prove that any translation resulting

from the Perceus algorithm is precise, where any intermedi-

ate state in the evaluation is garbage free:

Theorem 4. (Perceus is precise and garbage free)
If ∅ | ∅ ⊢s e ⇝ e′ and ∅ | e′ ↦−→∗

r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation

(ei ≠ E[drop x; e′i ] and ei ≠ E[dup x; e′i ]), we have that

for all y ∈ dom(Hi), reach(y, Hi | ⌈ei⌉).
This theorem states that after evaluating any immediate ref-

erence counting instructions, every variable in the heap is

reachable from the erased expression. This rules out, for ex-

ample, y ↦→1 () | (𝜆x . x) (drop y; ()) as y is not in the free

variables of the erased expression. Just like Theorem 2, if

the system is extended with mutable references, then Theo-

rem 4 could be generalized such that every resource is either

reachable from the erased expression, or it is part of a cycle.

The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component

transformations, including inlining and dup/drop fusion, are

standard, the soundness of those optimizations follows natu-

rally and a proof is beyond the scope of this paper.
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Fig. 9. Relative execution time and peak working set with

respect to Koka. Using a 6-core 64-bit AMD 3600XT 3.8Ghz

with 64GiB 3600Mhz memory, Ubuntu 20.04.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as

implemented in Koka, versus state-of-the-art memory recla-

mation implementations in various other languages. Since

we compare across languages we need to interpret the results

with care – the results depend not only on memory recla-

mation but also on the different optimizations performed by

each compiler and how well we can translate each bench-

mark to that particular language.We view these results there-

fore mostly as evidence that the Perceus reference counting
technique is viable and can be competitive and not as a direct
comparison of absolute performance between systems.

As such, we selected only benchmarks that stress memory

allocation, and we tried to select mature comparison systems

that use a range of memory reclamation techniques and are

considered best-in-class. The systems we compare are:

• Koka 2.0.3, compiling the generated C code with gcc 9.3.0

using a customized version of the mimalloc allocator [27].

We also run Koka “no-opt” with drop/reuse specialization

and reuse analysis disabled to measure the impact of those

optimizations.

• OCaml 4.08.1. This has a stop-the-world generational col-

lector with a minor and major heap. The minor heap uses

a copying collector, while a tracing collector is used for

the major heap [11, 34,Chap.22]. The Koka benchmarks

correspond essentially one-to-one to the OCaml versions.

• Haskell, GHC 8.6.5. A highly optimizing compiler with

a multi generational garbage collector. The benchmark

sources again correspond very closely, but since Haskell

has lazy semantics, we used strictness annotations in the

data structures to speed up the benchmarks, as well as to

ensure that the same amount of work is done.

• Swift 5.3. The only other language in this comparison

where the compiler uses reference counting [6, 47]. The

benchmarks are directly translated to Swift in a functional

style without using direct mutation. However, we trans-

lated tail-recursive definitions to explicit loops with local

variables.

• Java SE 15.0.1. Uses the HotSpot JVM and the G1 con-

current, low-latency, generational garbage collector. The

benchmarks are directly translated from Swift.

• C++, gcc 9.3.0 using the standard libc allocator. A highly

optimizing compiler with manual memory management.

Without automatic memory management, many bench-

marks are difficult to express directly in C++ as they use

persistent and partially shared data structures. To imple-

ment these faithfully would essentially require manual

reference counting. Instead, we use C++ as our perfor-

mance baseline: if provided, we either use in-place updates

without supporting persistence (as in rbtree which uses

std::map) or we do not reclaim memory at all (as in deriv,

nqueens, and cfold).

The benchmarks are all chosen to be medium sized and non-

trivial, and all stress memory allocation with little compu-

tation. Most of these are based on the benchmark suite of

Lean [46] and all are available in the Koka repository [1].

The execution times and peak working set as the median

over 10 runs and normalized to Koka are given in Figure 9

(each benchmark runs between 1 to 5 seconds for Koka, and

uses up to 300MiB). When a benchmark is not available for

a particular language, it is marked as “NA” in the figures.

• rbtree: this benchmark performs 42 million insertions

into a red-black balanced tree and after that folds over

the tree counting the true elements. Here the reuse anal-

ysis of Koka (as shown in Section 2.4) is doing well com-

pared to the other systems. OCaml is close in performance

– rebalancing generates lots of short-lived object alloca-

tion which are a great fit a minor heap copying-collector

with fast aggregated bump-pointer allocation. The C++

benchmark is implemented using the in-place updating

std::map implementation, which internally uses an op-

timized red-black tree implementation [13]. Surprisingly,
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the purely functional Koka implementation is within 10%

of the C++ performance. Since the insertion operations

are the same, we believe this is partly because C++ alloca-

tions must be 16-byte aligned while the Koka allocator can

use 8-byte alignment in the allocations and thus allocate

a bit less (as apparent in Figure 9) (and similarly, bump

pointer allocation in OCaml can be faster than general

malloc/free). Java performs close to C++ here but also

uses almost 10× the memory of Koka (1.7GiB vs. 170MiB,

Figure 9). This can be reduced to about 1.5× by provid-

ing tuning parameters on the command line but that also

made it slower on our system. This benchmark also shows

the potential effectiveness of the reference count optimiza-

tions where the “no-opt” version is more than 2× slower.

However, in benchmarks with lots of sharing, like deriv

and nqueens, the optimizations are less effective. More

generally, we expect a GC to do better when reuse opti-

mization is not triggered, and there is lots of short-lived

object allocation.

• rbtree-ck: it has been suggested that rbtree is biased to

reference counting as it has no shared subtrees and thus

reuse analysis can use in-place updates all the time. The

rbtree-ck benchmark remedies this and is a variant of

rbtree that keeps a list of every 5th tree generated and thus

sharesmany subtrees. This pattern occurs often in practice,

for example in compilers using scoped environments, or

in backtracking searches where the original state is shared

among different exploratory branches. Again though the

reference counting strategy outperforms all other systems.

Haskell and OCaml are now relatively slower than in

rbtree – we conjecture this is due to extra copying be-

tween generations, and perhaps due to increased tracing

cost. We have no C++ version of this benchmark as that

would essentially require a persistent implementation of

std::map.
• deriv: calculates the derivative of large symbolic expres-

sions (up to 10M nodes). Interestingly, the memory usage

of OCaml is slightly less here than Koka – since Perceus

is garbage free we would expect though that Koka always
uses less memory than a GC based system. From study-

ing the generated code of OCaml we believe that it is

because the optimizing OCaml compiler can avoid some

allocations by applying inlining with “case of case” trans-

formations [38] which the naive Koka compiler is not (yet)

doing. It is also interesting to see that the “no-opt” Koka is

only just slightly slower than optimized Koka here. This

is probably due to the sharing of many sub-expressions

when calculating the derivative – this in turn causes the

code resulting from drop/reuse specialization and reuse

analysis to mostly use the “slow” path which is equivalent

to the one in “no-opt”.

• nqueens: calculates all solutions for the n-queens problem

of size 13 into a list, and returns the length of that list. The

solution lists share many sub-solutions and, as in deriv,

for the C++ version we do not free any memory (but do

allocate the same objects as the other benchmarks). Again,

Koka is quite competitive even with the large amount of

shared structures, and the peak working set is significantly

lower.

• cfold: performs constant-folding over a large symbolic

expression (2M nodes). This benchmark is similar to the

deriv benchmark and manipulates a complex expression

graph. Koka does significantly better than other systems.

Just as in deriv, we see that OCaml uses slightly less mem-

ory as it can avoid some allocations by optimizing well.

The “no-opt” version of Koka also uses 11% less memory;

this is because the reuse analysis essentially holds on to

memory for later reuse. Just like with scoped based refer-

ence counting that may lead to increased memory usage

in some situations.

An interesting overall observation is that the reference count-

ing implementation of Swift seems less effective than Koka

– this may be partly due to the language and compiler, but

we also believe that this may be a confirmation of our ini-

tial hypothesis where we argue that a combination of static

compiler optimizations with dynamic runtime checks (e.g.

is-unique) are needed for best results. As discussed for ex-

ample in Section 2.7.2, some of the optimizations we perform

are difficult to do in Swift as the static guarantees of the

language are not strong enough. More research is needed

though to confirm this as there may be other causes well

unrelated to reference counting as such.

Finally, we also ran our benchmarks using just atomic

operations for our reference counts to see the impact of

the thread-shared flag. We observed a slowdown from 5%

(rbtree) up to 59% (nqueens) across our benchmarks. This

matches the observations by Ungar et al. [47] who performed

a similar experiment in Swift.

5 Related Work
Our work is closely based on the reference counting algo-

rithm in the Lean theorem prover as described by Ullrich

and de Moura [46]. They describe reuse analysis based on

reset/reuse instructions, and describe both reference count-

ing based on ownership (i.e. precise) but also support bor-

rowed parameters. We extend their work with drop- and

reuse specialization, and generalize to a general purpose

language with side-effects and complex control flow. We

also introduce a novel formalization of reference counting

with the linear resource calculus, and define our algorithm

in terms of that. As such, the Perceus algorithm may differ

from the Lean one as that is specified over a lower-level cal-

culus that uses explicit partial application nodes (pap) and
has no first-class lambda expressions. Schulte [43] describes

an algorithm for inserting reference count instructions in a

small first-order language and shows a limited form of reuse

analysis, called “reusage” (transformation T14).
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Using explicit reference count instructions in order to opti-

mize them via static analysis is described as early as Barth [3].

Mutating unique references in place has traditionally focused

on array updates [19], as in functional array languages like

Sisal [32] and SaC [16, 42]. Férey and Shankar [12] provide

functional array primitives that use in-place mutation if the

array has a unique reference; we plan to add these to Koka.

We believe this would work especially well in combination

with reuse-analysis for BTree-like structures using trees of

small functional arrays.

The 𝜆1 calculus is closely based on linear logic. Turner

and Wadler [45] give a heap-based operational interpreta-

tion which does not need reference counts as linearity is

tracked by the type system. In contrast, Chirimar et al. [5]

give an interpretation of linear logic in terms of reference

counting, but in their system, values with a linear type are

not guaranteed to have a unique reference at runtime.

Generally, a system with linear types [48], like linear

Haskell [4], or the uniqueness typing of Clean [2, 8], can

offer static guarantees that the corresponding objects are

unique at runtime, so that destructive updates can always be

performed safely. However, this usually also requires writ-

ing multiple versions of a function for each case (unique-

versus shared argument). By contrast, reuse analysis relies

on dynamic runtime information, and thus reuse can be per-

formed generally. This is also what enables FBIP to use a

single function that can be used for both unique or shared

objects (since the uniqueness property is not part of the type).
These two mechanisms could be combined: if our system

is extended with unique types, then reuse analysis could

statically eliminate corresponding uniqueness checks.

The Swift language is widely used in iOS development

and uses reference counting with an explicit representation

in its intermediate language. There is no reuse analysis but,

as remarked by Ullrich and de Moura [46], this may not be

so important for Swift as typical programs mutate objects

in-place. There is no cycle collection for Swift, but despite

the widespread usage of mutation this seems to be not a

large problem in practice. Since it can be easy to create ac-

cidental cycles through the self pointer in callbacks, Swift

has good support for weak references to break such cycles

in a declarative manner. Ungar et al. [47] optimize atomic

reference counts by tagging objects that can be potentially

thread-shared. Later work by Choi et al. [6], uses biased
reference counting to avoid many atomic updates.

The CPython implementation also uses reference count-

ing, and uses ownership-based reference counts for parame-

ters but still only drops the reference count of local variables

when exiting the frame. Another recent language that uses

reference counting is Nim. The reference counting method

is scope-based and uses non-atomic operations (and objects

cannot be shared across threads without extra precautions).

Nim can be configured to use ORC reference counting which

extends the basic ARC collector with a cycle collection [53].

Nim has the acyclic annotation to identify data types that

are (co)-inductive, as well as the (unsafe) cursor annotation

for variables that should not be reference counted.

In our work we focus on precise and garbage free refer-
ence counting which enables static optimization of reference

count instructions. On the other extreme, Deutsch and Bo-

brow [10] consider deferred reference counting – any ref-

erence count operations on stack-based local variables are

deferred and only the reference counts of fields in the heap

are maintained. Much like a tracing collector, the stack roots

are periodically scanned and deferred reference counting

operations are performed. Levanoni and Petrank [28] extend

this work and present a high performance reference count-

ing collector for Java that uses the sliding view algorithm to

avoid many intermediate reference counting operations and

needs no synchronization on the write barrier.

6 Conclusion and Future Work
In this paperwe present Perceus, a precise reference counting

system with reuse and specialization, which is built upon 𝜆1,

a novel linear resource calculus closely based on linear logic.

Our implementation in Koka is competitive with other ma-

ture memory collectors over our benchmark suite but more

experimentation in larger systems is needed. We would like

to integrate selective “borrowing” into Perceus – this would

make certain programs no longer be garbage free, but we
believe it could deliver further performance improvements if

judiciously applied. It also remains to be seen how to handle

cycle collection efficiently. Finally, the explicit control-flow

is not zero-cost (like C++ exception handling), and it would

be interesting to see if this can be improved further.

Acknowledgements
We like to thank Erez Petrank for the discussions on the race

conditions that can occurwith in-place updates and reference

counts. Alex Reinking was supported by the United States

National Science Foundation under Grant 1723445.



Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 22, 2020,

References
[1] Koka repository. 2019. URL https://github.com/koka-lang/koka.
[2] Erik Barendsen and Sjaak Smetsers. Uniqueness typing for functional

languages with graph rewriting semantics. Mathematical Structures in
Computer Science, 6 (6): 579–612, 1996. doi:10.1017/S0960129500070109.

[3] Jeffrey M. Barth. Shifting garbage collection overhead to compile time.

Technical Report UCB/ERL M524, EECS Department, University of

California, Berkeley, Jun 1975. URL http://www2.eecs.berkeley.
edu/Pubs/TechRpts/1975/29109.html.

[4] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon

Peyton Jones, and Arnaud Spiwack. Linear haskell: Practical linearity

in a higher-order polymorphic language. Proc. ACM Program. Lang., 2
(POPL), December 2017. doi:10.1145/3158093.

[5] Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference count-

ing as a computational interpretation of linear logic. Journal of Func-
tional Programming, 6: 6–2, 1996.

[6] Jiho Choi, Thomas Shull, and Josep Torrellas. Biased reference count-

ing: Minimizing atomic operations in garbage collection. In Proceed-
ings of the 27th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’18, 2018. doi:10.1145/3243176.3243195.

[7] George E Collins. A method for overlapping and erasure of lists.

Communications of the ACM , 3 (12): 655–657, 1960.

[8] Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson. Unique-

ness typing simplified. In Olaf Chitil, Zoltán Horváth, and Viktória

Zsók, editors, Implementation and Application of Functional Languages
(IFL’08), pages 201–218. Springer, 2008. ISBN 978-3-540-85373-2.

[9] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele Jr. Lock-

free reference counting. In in Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing, pages 190–199,
2001.

[10] L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremental,

automatic garbage collector. Communications of the ACM , 19 (9):

522–526, September 1976. ISSN 0001-0782. doi:10.1145/360336.360345.

[11] Damien Doligez and Xavier Leroy. A concurrent, generational garbage

collector for a multithreaded implementation of ML. In Proceedings
of the 20th ACM Symposium on Principles of Programming Languages
(POPL), pages 113–123. ACM press, January 1993.

[12] Gaspard Férey and Natarajan Shankar. Code generation using a for-

mal model of reference counting. In Sanjai Rayadurgam and Oksana

Tkachuk, editors, NASA Formal Methods, pages 150–165. Springer
International Publishing, 2016. ISBN 978-3-319-40648-0.

[13] Free Software Foundation, Silicon Graphics, and Hewlett–Packard

Company. Internal red-black tree implemention for “stl::map”. URL

https://code.woboq.org/gcc/libstdc++-v3/src/c++98/tree.
cc.html.

[14] Matt Gallagher. Reference counted releases in Swift. Blog post, Decem-

ber 2016. URL https://www.cocoawithlove.com/blog/resources-
releases-reentrancy.html.

[15] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas. Efficient

and reliable lock-free memory reclamation based on reference count-

ing. In 8th International Symposium on Parallel Architectures,Algorithms
and Networks (ISPAN’05), 2005.

[16] Clemens Grelck and Kai Trojahner. Implicit memory management for

SAC. In 6th International Workshop on Implementation and Application
of Functional Languages (IFL’04), September 2004.

[17] Leo J Guibas and Robert Sedgewick. A dichromatic framework for

balanced trees. In 19th Annual Symposium on Foundations of Computer
Science (sfcs 1978), pages 8–21. IEEE, 1978.

[18] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization

of exceptions and control in ml-like languages. In Proceedings of the
Seventh International Conference on Functional Programming Languages
and Computer Architecture, FPCA ’95, page 12–23. ACM, 1995. ISBN

0897917197. doi:10.1145/224164.224173.

[19] Paul Hudak and Adrienne Bloss. The aggregate update problem

in functional programming systems. In Proceedings of the 12th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’85, page 300–314. ACM, 1985. ISBN 0897911474.

doi:10.1145/318593.318660.

[20] Gérard P. Huet. The zipper. Journal of Functional Programming, 7 (5):
549–554, 1997.

[21] Apple Inc. The Swift guide: Error handling. 2017. URL https://docs.
swift.org/swift-book/LanguageGuide/ErrorHandling.html.

[22] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd
Ed.): Fundamental Algorithms. Addison Wesley Longman Publishing

Co., Inc., 1997. ISBN 0201896834.

[23] Daan Leijen. Koka: Programming with row polymorphic effect types.

In MSFP’14, 5th workshop on Mathematically Structured Functional
Programming, 2014. doi:10.4204/EPTCS.153.8.

[24] Daan Leijen. Algebraic effects for functional programming. Technical

Report MSR-TR-2016-29, Microsoft Research technical report, August

2016. Extended version of [25].

[25] Daan Leijen. Type directed compilation of row-typed algebraic effects.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL’17), pages 486–499, January 2017a.

ISBN 978-1-4503-4660-3. doi:10.1145/3009837.3009872.

[26] Daan Leijen. Structured asynchrony with algebraic effects. In Proceed-
ings of the 2nd ACM SIGPLAN International Workshop on Type-Driven
Development, TyDe 2017, pages 16–29, 2017b. ISBN 978-1-4503-5183-6.

doi:10.1145/3122975.3122977.

[27] Daan Leijen, Zorn Ben, and Leo de Moura. Mimalloc: Free list shard-

ing in action. Programming Languages and Systems, 11893, 2019.
doi:10.1007/978-3-030-34175-6_13. APLAS’19.

[28] Yossi Levanoni and Erez Petrank. An on-the-fly reference-counting

garbage collector for java. ACM Trans. Program. Lang. Syst., 28 (1):
1–69, January 2006. ISSN 0164-0925. doi:10.1145/1111596.1111597.

[29] Prabhaker Mateti and Ravi Manghirmalani. Morris’ tree traversal

algorithm reconsidered. Science of Computer Programming, 11 (1):

29–43, 1988. ISSN 0167-6423. doi:10.1016/0167-6423(88)90063-9.

[30] Conor McBride. The derivative of a regular type is its type of one-

hole contexts, 2001. URL http://strictlypositive.org/diff.pdf.
(Extended Abstract).

[31] John McCarthy. Recursive functions of symbolic expressions and their

computation by machine, part i. Communications of the ACM , 3 (4):

184–195, 1960.

[32] J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert,

I. Dobes, and P. Hohensee. SISAL: streams and iteration in a single-

assignment language. language reference manual, version 1. 1. Techni-

cal Report LLL/M-146, ON: DE83016576, Lawrence Livermore National

Lab., CA, USA, 7 1983.

[33] Maged M. Michael. Hazard pointers: Safe memory reclamation for

lock-free objects. IEEE Trans. Parallel Distrib. Syst., 15 (6): 491–504,
June 2004. doi:10.1109/TPDS.2004.8.

[34] Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World
OCaml: Functional programming for the masses. 2012. ISBN 978-

1449323912. URL https://dev.realworldocaml.org.
[35] Joseph M. Morris. Traversing binary trees simply and cheaply. In-

formation Processing Letters, 9 (5): 197 – 200, 1979. doi:10.1016/0020-

0190(79)90068-1.

[36] Chris Okasaki. Purely Functional Data Structures. Colombia University,

June 1999a. ISBN 9780521663502.

[37] Chris Okasaki. Red-black trees in a functional setting.

Journal of Functional Programming, 9 (4): 471–477, 1999b.

doi:10.1017/S0956796899003494.

[38] Simon L. Peyton Jones and André L. M. Santos. A transformation-

based optimiser for haskell. Science of Computer Programming, 32 (1):
3 – 47, 1998. doi:10.1016/S0167-6423(97)00029-4.

[39] Gordon D. Plotkin and John Power. Algebraic operations and

generic effects. Applied Categorical Structures, 11 (1): 69–94, 2003.

https://github.com/koka-lang/koka
https://doi.org/10.1017/S0960129500070109
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1975/29109.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1975/29109.html
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3243176.3243195
https://doi.org/10.1145/360336.360345
https://code.woboq.org/gcc/libstdc++-v3/src/c++98/tree.cc.html
https://code.woboq.org/gcc/libstdc++-v3/src/c++98/tree.cc.html
https://www.cocoawithlove.com/blog/resources-releases-reentrancy.html
https://www.cocoawithlove.com/blog/resources-releases-reentrancy.html
https://doi.org/10.1145/224164.224173
https://doi.org/10.1145/318593.318660
https://docs.swift.org/swift-book/LanguageGuide/ErrorHandling.html
https://docs.swift.org/swift-book/LanguageGuide/ErrorHandling.html
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3122975.3122977
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1145/1111596.1111597
https://doi.org/10.1016/0167-6423%252888%252990063-9
http://strictlypositive.org/diff.pdf
https://doi.org/10.1109/TPDS.2004.8
https://dev.realworldocaml.org
https://doi.org/10.1016/0020-0190%252879%252990068-1
https://doi.org/10.1016/0020-0190%252879%252990068-1
https://doi.org/10.1017/S0956796899003494
https://doi.org/10.1016/S0167-6423%252897%252900029-4


MSR-TR-2020-42, Nov 22, 2020, Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen

doi:10.1023/A:1023064908962.

[40] Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects.

volume 9, 2013. doi:10.2168/LMCS-9(4:23)2013.

[41] Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen.

Perceus: Garbage free reference counting with reuse. Technical Report

MSR-TR-2020-42, Microsoft Research, November 2020.

[42] Sven-Bodo Scholz. Single Assignment C: Efficient support for

high-level array operations in a functional setting. Journal
of Functional Programming, 13 (6): 1005–1059, November 2003.

doi:10.1017/S0956796802004458.

[43] Wolfram Schulte. Deriving residual reference count garbage collectors.

In Manuel Hermenegildo and Jaan Penjam, editors, Programming Lan-
guage Implementation and Logic Programming (PLILP), pages 102–116,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. ISBN 978-3-540-

48695-4.

[44] Herb S. Sutter. Zero-overhead deterministic exceptions: Throwing

values. C++ open-std proposal P0709 R2, 10 2018.

[45] David N. Turner and Phillip Wadler. Operational interpretations of

linear logic. (227): 231–248, 1999.

[46] Sebastian Ullrich and Leonardo de Moura. Counting immutable beans

– reference counting optimized for purely functional programming. In

Proceedings of the 31st symposium on Implementation and Application
of Functional Languages (IFL’19), September 2019.

[47] David Ungar, David Grove, and Hubertus Franke. Dynamic atomicity:

Optimizing swift memory management. In Proceedings of the 13th
ACM SIGPLAN International Symposium on on Dynamic Languages,
DLS 2017, page 15–26, 2017. doi:10.1145/3133841.3133843.

[48] Phillip Wadler. Linear types can change the world! In Programming
Concepts and Methods, 1990.

[49] Andrew K. Wright and Matthias Felleisen. A syntactic approach

to type soundness. Inf. Comput., 115 (1): 38–94, November 1994.

doi:10.1006/inco.1994.1093.

[50] Ningning Xie and Daan Leijen. Effect handlers in Haskell, evidently.

In Proceedings of the 2020 ACM SIGPLAN Symposium on Haskell,
Haskell’20, August 2020. doi:10.1145/3406088.3409022.

[51] Ningning Xie and Daan Leijen. Generalized evidence passing for

effect handlers. Technical Report MSR-TR-2021-5, Microsoft Research,

March 2021.

[52] Ningning Xie, Jonathan Brachthäuser, Phillip Schuster, Daniel Hiller-

ström, and Daan Leijen. Effect handlers, evidently. In Proceedings
of the 25th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’2020), ICFP ’20, August 2020. doi:10.1145/3408981.

[53] Danil Yarantsev. Orc - nim’s cycle collector. October 2020. URL

https://nim-lang.org/blog/2020/10/15/introduction-to-
arc-orc-in-nim.html.

https://doi.org/10.1023/A:1023064908962
https://doi.org/10.2168/LMCS-9%25284:23%25292013
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1145/3133841.3133843
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3408981
https://nim-lang.org/blog/2020/10/15/introduction-to-arc-orc-in-nim.html
https://nim-lang.org/blog/2020/10/15/introduction-to-arc-orc-in-nim.html


Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 22, 2020,

type color {
Red
Black

}

type tree {
Leaf
Node(color:color, left:tree, key:int, value:bool, right:tree)

}

fun is-red(t : tree) : bool {
match(t) {

Node(Red) -> True
_ -> False

} }

fun bal-left(l:tree, k: int, v: bool, r: tree): tree {
match(l) {
Leaf -> Leaf
Node(_, Node(Red, lx, kx, vx, rx), ky, vy, ry)

-> Node(Red, Node(Black, lx, kx, vx, rx), ky, vy,
Node(Black, ry, k, v, r))

Node(_, ly, ky, vy, Node(Red, lx, kx, vx, rx))
-> Node(Red, Node(Black, ly, ky, vy, lx), kx, vx,

Node(Black, rx, k, v, r))
Node(_, lx, kx, vx, rx)

-> Node(Black, Node(Red, lx, kx, vx, rx), k, v, r)
} }

fun bal-right(l: tree, k: int, v: bool, r: tree): tree {
match(r) {
Leaf -> Leaf
Node(_, Node(Red, lx, kx, vx, rx), ky, vy, ry)

-> Node(Red, Node(Black, l, k, v, lx), kx, vx,
Node(Black, rx, ky, vy, ry))

Node(_, lx, kx, vx, Node(Red, ly, ky, vy, ry))
-> Node(Red, Node(Black, l, k, v, lx), kx, vx,

Node(Black, ly, ky, vy, ry))
Node(_, lx, kx, vx, rx)

-> Node(Black, l, k, v, Node(Red, lx, kx, vx, rx))
} }

fun ins(t: tree, k: int, v: bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r)

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r)
-> if (k < kx) then

(if (is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
else Node(Black, ins(l, k, v), kx, vx, r))

elif (k == kx) then Node(Black, l, k, v, r)
elif (is-red(r)) then bal-right(l, kx, vx, ins(r,k,v))
else Node(Black, l, kx, vx, ins(r, k, v))

} }

fun set-black(t: tree) : tree {
match(t) {
Node(_, l, k, v, r) -> Node(Black, l, k, v, r)
_ -> t

} }

fun insert(t: tree, k: int, v: bool): tree {
if (is-red(t))
then set-black(ins(t, k, v))
else ins(t, k, v)

}

Fig. 10. Red-black tree balanced insertion in Koka
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Fig. 11. Relative execution time and peak working set with

respect to Koka (lower is better). On a 10-core Intel Core

i9-7900X at 4.30GHz, Ubuntu 20.04.

Appendix
A Red-black tree implementation
Figure 10 shows balanced insertion into a red-black tree

using Okasaki’s algorithm [37].

B Further Benchmarks
Figure 11 show execution time and peak working sets on a

10-core Intel Core i9-7900X at 4.30GHz, Ubuntu 20.04.
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C Proofs
C.1 A Heap Reference Counting Calculus

H ⊢ v1 ⊣ H1 . . . Hn−1 ⊢ vn ⊣ Hn

H ⊢ C v1 . . . vn ⊣ Hn
[drcon]

H, x ↦→n+1 v ⊢ x ⊣ H, x ↦→n v
[drvar]

H ⊢ ys ⊣ H1

H, x ↦→1 𝜆ysz. e ⊢ x ⊣ H1

[drvarlam]

H ⊢ ys ⊣ H1

H, x ↦→1 C ys ⊢ x ⊣ H1

[drvarcon]

H, x ↦→n+1 v ⊢ e ⊣ H1

H, x ↦→n v ⊢ dup x; e ⊣ H1

[drdup]

H, x ↦→n v ⊢ e ⊣ H1

H, x ↦→n+1 v ⊢ drop x; e ⊣ H1

[drdrop]

H ⊢ drop ys; e ⊣ H1

H, x ↦→1 C ys ⊢ drop x; e ⊣ H1

[drdropcon]

H ⊢ drop ys; e ⊣ H1

H, x ↦→1 𝜆ysz. e ⊢ drop x; e ⊣ H1

[drdroplam]

H ⊢ ys ⊣ H1 ys ↦→1 (), x ↦→1 () ⊢ e ⊣ ∅
H ⊢ 𝜆ys x . e ⊣ H1

[drlam]

H ⊢ e1 ⊣ H1 H1 ⊢ e2 ⊣ H2

H ⊢ e1 e2 ⊣ H2

[drapp]

H ⊢ e1 ⊣ H1 H1, x ↦→1 () ⊢ e2 ⊣ H2 x ̸∈ H, H2

H ⊢ val x = e1 ; e2 ⊣ H2

[drbind]

H ⊢ x ⊣ H1 H1, Jbv(pi)K ⊢ ei ⊣ H′ bv(pi) ̸∈ H,H′

H ⊢ match x { pi ↦→ ei } ⊣ H′ [drmatch]

Lemma 1. (Heap Reference Counting Free variables)
If H1 ⊢ e ⊣ H2, then fv(e) ∈ H1, and fv(H2) ∈ H1 with same domains.

Proof. (Of Lemma 1) By a straightforward induction on the rules. □

Definition 2. (Extension)
H is extended with x, denoted as H ++ x, where ++ works as follows:

(1) if H = H′, x ↦→n v, then H ++ x = H′, x ↦→n+1 ys;
(2) if x ̸∈ H, then H ++ x = (H, x ↦→1 v) ++ fv(v).
We omit the domain of x in H ++ x for simplicity. The domain should always be available by inspecting the heap (in (1)) or via

explicit passing (in (2)).



Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 22, 2020,

We only focus on situations where there is no cycles in the dependency of x (but we are fine with existing cycles in H), so that

the extension terminates. That implies (H, x ↦→1 v) ++ fv(v) = H ++ fv(v), x ↦→1 v in (2).

Lemma 2. (Drop is dual to extension)
If H1 ⊢ drop x; () ⊣ H2, then H1 = H2 ++ x. Similarly, if H1 ⊢ x ⊣ H2, then H1 = H2 ++ x.

Proof. (Of Lemma 2) By induction on the judgment.

case

H, x ↦→n+1 ys ⊢ drop x; () ⊣ H, x ↦→n ys drdrop, drcon

case

H, x ↦→1 𝜆ysz. e ⊢ drop x; () ⊣ H1 given

H ⊢ drop ys; () ⊣ H1 drdroplam

H = H1 ++ ys I.H.

H, x ↦→1 𝜆ysz.e = H1 ++ x by definition

case

H, x ↦→1 C ys ⊢ drop x; () ⊣ H1 given

H ⊢ drop ys; () ⊣ H1 drdropcon

H = H1 ++ ys I.H.

H, x ↦→1 C ys = H1 ++ x by definition

□

Lemma 3. (Extension is dual to drop)
H ++ x ⊢ drop x; () ⊣ H. Similarly, H ++ x ⊢ x ⊣ H.

Proof. (Of Lemma 3) By induction on ++x.
case

H = H′, x ↦→n ys if

H++x = H′, x ↦→n+1 ys by definition

H′, x ↦→n+1 ys ⊢ drop x; () ⊣ H drdrop

case

x ̸∈ H if

ys = fv(v) let

H ++ x = H ++ ys, x ↦→1 v by definition

H ++ ys ⊢ ys ⊣ H I.H.

H ++ ys, x ↦→1 v ⊢ x ⊣ H drvarlam or drvarcon

□

Lemma 4. (Extension Commutativity)
H ++ x ++ y = H ++ y ++ x.

Proof. (Of Lemma 4) By induction on ++x and ++y, then we do case analysis. case x ∈ H. Then H = H′, x ↦→n v.
By definition, H ++ x ++ y = (H′, x ↦→n+1 v) ++ y. Since the way ++ works only depends on whether x exists but not the

exact number of its occurrence, we can decrease the number of x, do ++y and then add x back. That is, (H′, x ↦→n+1 v) ++ y
= (H′, x ↦→n v) ++ y ++ x = H ++ y ++ x.
case y ∈ H is similar as the previous case.

case x, y ̸∈ H. Then H ++ x = H ++ xs, x ↦→1 v where xs = fv(v).
subcase Assume ++y won’t cause ++x, then ++y doesn’t care about the existance of x.

So (H ++ xs, x ↦→1 v) ++ y = H ++ xs ++ y, x ↦→1 v
= H ++ y ++ xs, x ↦→1 v by I.H.

= H ++ y ++ x by definition.
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subcase Or otherwise ++y will cause ++x. Since there is no cycle in the dependency, that means ++x won’t cause ++y. Then
we can prove it as in the previous case. □

C.1.1 Relating to linear resource calculus.
Definition 3. (Context to Dependency Heap)
Given a context Γ, JΓK defines a dependency heap, with all x becoming x ↦→n () if x appears n times in Γ.

Lemma 5.
JΓ, xK ⊢ x ⊣ JΓK. Similarly, if JΔK ⊢ e ⊣ H, then JΓ, xK ⊢ drop x; e ⊣ H.

Proof. The goal holds by rule drvar (drdrop) when x ∈ Γ or by rule drvarcon (drdropcon) if x ̸∈ Γ. □

Lemma 6. (linear resource calculus relates to reference counting)
If Δ | Γ ⊢ e ⇝ e′, then JΔ, ΓK ⊢ e′ ⊣ JΔK.

Proof. (Of Lemma 6) By induction on the elaboration.

case

Δ | x ⊢ x ⇝ x given

JΔ, xK ⊢ x ⊣ JΔK Lemma 5

case

Δ | Γ ⊢ e ⇝ dup x; e′ given

Δ | Γ, x ⊢ e ⇝ e′ given

x ∈ Δ, Γ given

JΔ, Γ, xK ⊢ e′ ⊣ JΔK I.H.

JΔ, ΓK ⊢ dup x; e′ ⊣ JΔK drdup

case

Δ | Γ, x ⊢ e ⇝ drop x; e′ given

Δ | Γ ⊢ e ⇝ e′ given

JΔ, ΓK ⊢ e′ ⊣ JΔK I.H.

JΔ, Γ, xK ⊢ drop x; e′ ⊣ JΔK Lemma 5

case

Δ | Γ ⊢ 𝜆x . e ⇝ 𝜆ys x . e′ given

∅ | ys, x ⊢ e ⇝ e′ given

ys = fv(𝜆x . e) given

JΔ, ysK ⊢ ys ⊣ JΔK Lemma 5

Jys, xK ⊢ e′ ⊣ ∅ I.H.

JΔ, ysK ⊢ 𝜆ys x . e ⊣ JΔK drlam

case

Δ | Γ1, Γ2 ⊢ e1 e2 ⇝ e′
1
e′
2

given

Δ, Γ2 | Γ1 ⊢ e1 ⇝ e′
1

given

Δ | Γ2 ⊢ e2 ⇝ e′
2

given

JΔ, Γ1, Γ2K ⊢ e′
1
⊣ JΔ, Γ2K I.H.

JΔ, Γ2K ⊢ e′
2
⊣ JΔK I.H.

JΔ, Γ1, Γ2K ⊢ e′
1
e′
2
⊣ JΔK drapp

case
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Δ | Γ1, Γ2 ⊢ val x = e1; e2 ⇝ val x = e′
1
; e′

2
given

Δ, Γ2 | Γ1 ⊢ e1 ⇝ e′
1

given

Δ | Γ2, x ⊢ e2 ⇝ e′
2

given

x ̸∈ Δ, Γ1, Γ2 given

JΔ, Γ1, Γ2K ⊢ e′
1
⊣ JΔ, Γ2K I.H.

JΔ, Γ2, xK ⊢ e′
2
⊣ JΔK I.H.

x ̸∈ JΔK follows

JΔ, Γ1, Γ2K ⊢ val x = e′
1
; e′

2
⊣ JΔK drbind

case

Δ | Γ, x ⊢ match x { pi ↦→ ei } ⇝ match x { pi ↦→ e′i } given

Δ | Γ, bv(pi) ⊢ ei ⇝ e′i given

JΔ, Γ, xK ⊢ x ⊣ JΔ, ΓK Lemma 5

JΔ, Γ, bv(pi)K ⊢ e′i ⊣ JΔK I.H.

JΔ, ΓK ⊢ match x { pi ↦→ e′i } ⊣ JΔK drmatch

case

Δ | Γ1, . . ., Γn ⊢ C v1 . . . vn ⇝ C v′
1
. . . v ′n given

Δ, Γi+1, . . ., Γn | Γi ⊢ vi given

JΔ, Γi, Γi+1, . . ., ΓnK ⊢ vi − | JΔ, Γi+1, . . ., ΓnK I.H.

JΔ, Γ1, . . ., ΓnK ⊢ C v1 . . . vn ⊣ JΔK drcon

□

C.1.2 Weakening.
Lemma 7. (Weakening)
If H1 ⊢ e ⊣ H2, then H1 ++ x ⊢ e ⊣ H2 ++ x.

Proof. (Of Lemma 7) By induction on the judgment.

case

H ⊢ C v1 . . . vn − | Hn given

H ⊢ vi ⊣ Hi drcon

H++x ⊢ vi ⊣ Hi++x I.H.

H++x ⊢ C v1 . . . vn ⊣ Hn ++ x drcon

case

H ⊢ y ⊣ H2 given

H = H2 ++ y Lemma 2

H ++ x = H2 ++ y ++ x
= H2 ++ x ++ y Lemma 4

H2 ++ x ++ y ⊢ y ⊣ H2 ++ x Lemma 3

case

H, y ↦→n ys ⊢ dup y; e ⊣ H1 given

H, y ↦→n+1 ys ⊢ e ⊣ H1 drdup

(H, y ↦→n ys) ++ y ⊢ e ⊣ H1 definition of ++
(H, y ↦→n ys) ++ y ++ x ⊢ e ⊣ H1 ++ x I.H.

(H, y ↦→n ys) ++ y ++ x
= (H, y ↦→n ys) ++ x ++ y Lemma 4

(H, y ↦→n ys) ++ x ++ y ⊢ e ⊣ H1 ++ x By substitution

(H, y ↦→n ys) ++ x ⊢ dup y; e ⊣ H1 ++ x drdup

case
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H ⊢ drop y; e ⊣ H2 given

H ⊢ drop y; () ⊣ H3 follows

H3 ⊢ e ⊣ H2 above

H = H3 ++ y Lemma 2

H ++ x = H3 ++ y ++ x
= H3 ++ x ++ y Lemma 4

H3 ++ x ++ y ⊢ drop y; () ⊣ H3 ++ x Lemma 3

H3 ++ x ⊢ e ⊣ H2 ++ x I.H.

H3 ++ x ++ y ⊢ drop y; e ⊣ H2 ++ x Follows

H ++ x ⊢ drop y; e ⊣ H2 ++ x By substitution

case

H ⊢ 𝜆ys z. e ⊣ H1 given

H ⊢ ys ⊣ H1 given

ys ↦→1 (), z ↦→1 () ⊢ e ⊣ ∅ given

H ++ x ⊢ ys ⊣ H1 ++ x I.H.

H ++ x ⊢ 𝜆z. e ⊣ H1 ++ x drlam

case

H ⊢ e1 e2 ⊣ H2 given

H ⊢ e1 ⊣ H1 given

H1 ⊢ e2 ⊣ H2 given

H ++ x ⊢ e1 ⊣ H1 ++ x I.H.

H1 ++ x ⊢ e2 ⊣ H2 ++ x I.H.

H ++ x ⊢ e1 e2 ⊣ H2 ++ x drapp

case

H ⊢ val z = e1 ; e2 ⊣ H2 given

H ⊢ e1 ⊣ H1 given

H1, z ↦→1 () ⊢ e2 ⊣ H2 given

z ̸∈ H given

H ++ x ⊢ e1 ⊣ H1 ++ x I.H.

(H1, z ↦→1 ()) ++ x ⊢ e2 ⊣ H2 ++ x I.H.

z ̸∈ H1 Lemma 1

H1, z ↦→1 () = H1 ++ z
(H1, z ↦→1 ()) ++ x = H1 ++ z ++ x
= H1 ++ x ++ z Lemma 4

= H1 ++ x, z ↦→1 ()
H1 ++ x, z ↦→1 () ⊢ e2 ⊣ H2 ++ x by substitution

H ++ x ⊢ e1 e2 ⊣ H2 ++ x drbind

case
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H ⊢ match z { pi ↦→ ei } ⊣ H′
given

H ⊢ z ⊣ H1 given

H1,Hi ⊢ ei ⊣ H′
given

Hi = Jbv(pi)K given

H ++ x ⊢ z ⊣ H1 ++ x I.H.

(H1,Hi) ++ x ⊢ ei ⊣ H′ ++ x I.H.

bv(pi) fresh assume

H1, JHiK = H1 ++ bv(pi)
(H1, Hi) ++ x = H1 ++ bv(pi) ++ x
= H1 ++ x ++ bv(pi) Lemma 4

= H1 ++ x, Hi
H1 ++ x,Hi ⊢ ei ⊣ H′ ++ x by substitution

H ++ x ⊢ match z { pi ↦→ ei } ⊣ H′ ++ x drmatch

□

C.2 Soundness of Reference Counting Semantics

Lemma 8. (Reference counting semantics is sound (small step))
If e1 −→ e2, and H1 ok, and e′1 ok, and [H1]e′1 = e1, and H1 ⊢ e′

1
⊣ H′

1
, then there exists H2, e′2 such that H1 | e′1 ↦−→∗

r H2 | e′2,
and [H2]e′2 = e2.

Proof. (Of Lemma 8) By induction on the evaluation judgment.

case (app) (𝜆x . e) v −→ e[x:=v]
[H1]e′1 = (𝜆x . e) v given

subcase e′
1
= f z.

[H1] (f z) = (𝜆x . e) v given

[H1]f = (𝜆x . e) follows

[H1]z = v follows

f ↦→n 𝜆ys x . e′ ∈ H1 follows

[H1]e′ = e above

H1 | f z −→r H1 | dup ys; drop f ; e′[x:=z] (app)
H1 ⊢ f z ⊣ H′

1
given

H1 = H′
1
++ f ++ z Lemma 2

H1 ok given

ys ∈ H1 f ↦→n 𝜆ys x · e′ ∈ H1

H1 | dup ys; drop f ; e′[x:=z]
−→r H1 ++ ys | drop f ; e′[x:=z] (dup) and ++
H1 ++ ys = H′

1
++ f ++ z ++ ys

= H′
1
++ ys ++ z ++ f Lemma 4

H1 ++ ys | drop f ; e′[x:=z]
−→r H′

1
++ys ++ z | e′[x:=z] (drop) and Lemma 3

H′
1
++ ys ++ z ⊢ e′[x:=z] ⊣ H′

1
Lemma 13

fv(e′[x:=z]) ∈ H′
1
++ ys ++ z Lemma 1

H1 = H′
1
++ f ++ z known

ys ∈ H1 known

fv(e′[x:=z]) ∈ H1 follows

[H′
1
++ys++z] (e′[x:=z])

= [H1] (e′[x:=z]) follows

= ( [H1]e′) [x:=[H1]z] by substitution

= e[x:=v]
subcase e′

1
= (𝜆x . e′) z.
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[H1] ((𝜆x . e′) z) = (𝜆x . e) v given

[H1]e′ = e follows

[H1]z = v follows

H | (𝜆x . e′) z ↦−→ H, f ↦→1 𝜆ysx . e′ | f z (lam) and step

f fresh, ys = fv(𝜆x . e′) above

H, f ↦→1 𝜆ysx .e′ ⊢ f z ⊣ H′
1

Lemma 14

H, f ↦→1 𝜆ysx .e′ ok above

f z ok above

[H, f ↦→1 𝜆ysx .e′] (f z) = (𝜆x . e v) by substitution

follows by the previous subcase

subcase The rest subcases are e′
1
= f v ′ and e′

1
= (𝜆x . e′) v ′ where v ′ is not a variable. Both cases are similar as the

previous one, with values stored in the heap first and the expression being f z as in the first subcase.

case (match) match (C v1 . . . vn) {pi → ei} −→ ei [x1:=v1, . . ., xn:=vn] with pi = C x1 . . . xn.
[H1]e′1 = match (C v1 . . . vn) {pi → ei} given

e′
1
= match x {pi → e′i } follows

[H1]x = C v1 . . . vn above

[H1]e′i = ei above

x ↦→n C y1 . . . yn ∈ H1 follows

[H1]y1 = v1, . . ., [H1]yn = vn above

H1 | match x {pi → e′i }
−→r H1 | dup ys; drop x; e′i [xs:=ys] (match)
pi = C xs above

H1 ⊢ match x {pi → e′i } ⊣ H′
1

given

H1 ⊢ x ⊣ H2 drmatch

H2, JxsK ⊢ ei ⊣ H′
above

H1 = H2 ++ x Lemma 2

H1 | dup ys; drop x; ei [xs:=ys]
−→r H1 ++ ys | drop x; ei [xs:=ys] (dup) and ++
H1 ++ ys = H2 ++ x ++ ys
= H2 ++ ys ++ x Lemma 4

H1 ++ ys | drop x; ei [xs:=ys] −→r H2++ys | ei [xs:=ys] (drop) and Lemma 3

H1 = H2 ++ x known

H1 and H2 ++ ys differs only in x
H2 ++ ys ⊢ ei [xs:=ys] ⊣ H′

1
Lemma 14

fv(ei [xs:=ys]) ∈ H2++ys Lemma 1

[H2++ys] (ei [xs:=ys]) = [H1] (ei [xs:=ys])
( [H1]ei) (xs:=[H1]ys) by substitution

(ei) (xs:=vs)
case (dup) dup x; e −→ e

[H1]e′1 = dup x; e given

e′
1
= dup x; e′ follows

[H1]e′ = e above

H1 ⊢ dup x; e′ ⊣ H′
1

given

x ∈ H1 follows

H1 | dup x; e′ −→r H1 ++ x | e′ (dup) and ++
[H1 ++ x]e′ = [H1]e′ = e
case (drop) drop x; e −→ e
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[H1]e′1 = drop x; e given

e′
1
= drop x; e′ follows

[H1]e′ = e above

H1 ⊢ drop x; e′ ⊣ H′
1

given

H1 ⊢ drop x; () ⊣ H2 follows

H2 ⊢ e′ ⊣ H′
1

above

H1 = H2 ++ x Lemma 2

H1 | drop x; e′ −→r H2 | e′ (drop) and Lemma 3

H2 ⊢ e′ ⊣ H′
1

Lemma 14

fv(e′) ∈ H2 Lemma 1

[H2]e′ = [H1]e′ = e
□

Lemma 9. (Reference counting semantics is sound (big step, part 1))
Given E[e1], and H1 ok, and e′

1
ok, and [H1]e′1 = E[e1], and H1 ⊢ e′

1
⊣ H′

1
, then there exists H2, E′′ and e′

2
such that

H1 | e′1 −→∗
r H2 | E′[e′2], and [H2]E′ = E, and [H2]e′2 = e1.

Proof. (Of Lemma 9) By induction on the evaluation context E.
case E = □. Let E′ = □ and e′

2
= e′

1
, then the goals follow trivially.

case E = E1 e.
[H1]e′1 = E1 [e1] e given

e′
1
= e′

2
e′
3

for some e′
2
, e′

3

[H1]e′2 = E1 [e1] follows

[H1]e′3 = e follows

H1 ⊢ e′
2
e′
3
⊣ H′

1
given

H1 ⊢ e′
2
⊣ H3 drapp

H3 ⊢ e′
3
⊣ H′

1
above

H1 ⊢ e′
2
−→∗

r H2 | E′[e′2] I.H.

[H2]E′ = E1 above

[H2]e′2 = e1 above

E′′ = E′ e′
3

let

H1 ⊢ e′
2
e′
3
−→∗

r H2 | E′[e′2] e′3 step

H1 ⊢ e′
1
−→∗

r H2 | E′′[e′
2
] by substitution

H2 ⊢ E′[e′
2
] e′

3
⊣ H′

1
Lemma 14

fv(e′
3
) ∈ H2 Lemma 1

[H2]E′′ = [H2]E′ [H2]e′3
= [H2]E′ [H1]e′3
= E1 e
case E = x E1.
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[H1]e′1 = x E1 [e1] given

e′
1
= y e′

3
for some y, e′

3

[H1]y = x follows

[H1]e′3 = E1 [e1] follows

H1 ⊢ y e′
3
⊣ H′

1
given

H1 ⊢ y ⊣ H3 drapp

H3 ⊢ e′
3
⊣ H′

1
above

H1 = H3 ++ y Lemma 2

H1 ⊢ e′
3
⊣ H′

1
++ y Lemma 7

H1 ⊢ e′
3
−→∗

r H2 | E′[e′2] I.H.

[H2]E′ = E1 above

[H2]e′2 = e1 above

E′′ = y E′ let

H1 ⊢ y e′
3
−→∗

r H2 | y E′[e′
2
] step

H1 ⊢ e′
1
−→∗

r H2 | E′′[e′2] by substitution

H2 ⊢ y E′[e′
2
] ⊣ H′

1
Lemma 14

y ∈ H2 Lemma 1

[H2]E′′ = [H2]y [H2]E′
= [H1]y [H2]E′
= x E1
case E = v E1 where v is not a variable.

[H1]e′1 = v E1 [e1] given

e′
1
= v ′ e′

3
for some v ′, e′

3

[H1]v ′ = v follows

[H1]e′3 = E1 [e1] follows

H1 ⊢ v ′ e′
3
⊣ H′

1
given

H1 ⊢ v ′ ⊣ H3 drapp

H3 ⊢ e′
3
⊣ H′

1
above

H1 = H3 ++ fv(v ′) Lemma 2

H1 ⊢ v ′ e′
3
−→ H1, z ↦→1 v ′ | z e′

3
(lam) or (con)

H1, z ↦→1 v ′ ⊢ e′
3
⊣ H′

1
++ fv(v ′), z ↦→1 v ′ Lemma 7

H1, z ↦→1 v ′ ⊢ e′
3
−→∗

r H2 | E′[e′2] I.H.

[H2]E′ = E1 above

[H2]e′2 = e1 above

E′′ = z E′ let

H1 ⊢ v ′ e′
3
−→∗

r H2 | z E′[e′2] step

H1 ⊢ e′
1
−→∗

r H2 | E′′[e′2] by substitution

H2 ⊢ v ′ E′[e′
2
] ⊣ H′

1
Lemma 14

fv(v ′) ∈ H2 Lemma 1

[H2]E′′ = [H2]v ′ [H2]E′
= [H1]v ′ [H2]E′
= v E1
case E = val x = E1; e.
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[H1]e′1 = val x = E1 [e1]; e given

e′
1
= val x = e′

2
; e′

3
for some e′

2
, e′

3

[H1]e′2 = E1 [e1] follows

[H1]e′3 = e follows

H1 ⊢ val x = E1 [e1]; e ⊣ H′
1

given

H1 ⊢ e′
2
⊣ H3 drbind

H1 ⊢ e′
2
−→∗

r H2 | E′[e′2] I.H.

[H2]E′ = E1 above

[H2]e′2 = e1 above

E′′ = val x = E′; e′
3

let

H1 ⊢ val x = e′
2
; e′

3
−→∗

r H2 | val x = E′[e′
2
]; e′

3
step

H1 ⊢ e′
1
−→∗

r H2 | E′′[e′
2
] by substitution

H2 ⊢ val x = E′[e′
2
]; e′

3
⊣ H′

1
Lemma 14

fv(e′
3
) ∈ H2, JxK Lemma 1

[H2]E′′ = val x = [H2]E′; [H2]e′3
= [H2]E′ [H1]e′3
= E1 e
□

Lemma 10. (Reference counting semantics is sound (big step, part 2))
If E[e1] ↦−→ E[e2], and H1 ok, and E′[e′

1
] ok, and [H1]E′ = E, and [H1]e′1 = e1, and H1 ⊢ E[e′

1
] ⊣ H′

1
, then there exists H2,

e′
2
such that H1 | E′[e′1] −→∗

r H2 | E′[e′2], and [H2]E′ = E. and [H2]e′2 = e2.

Proof. (Of Lemma 10) By induction on the evaluation context E. Note that following Lemma 14 and 1, we have fv(E′) ∈ H2.

So [H2]E′ = [H1]E′ = E.
case E = □. Then E′ = □. The goal follows by Lemma 8.

case E = E1 e, then E′ = E′
1
e′.

[H1]E′ = E1 e given

[H1]E′1 = E′ above

[H1]e′ = e above

E1 [e1] ↦−→ E1 [e2] given

H1 ⊢ E′
1
[e′

1
] e′ ⊣ H′

1
given

H1 ⊢ E′
1
[e′

1
] ⊣ H2 drapp

H2 ⊢ e′ ⊣ H′
1

above

H1 | E′1 [e′1] −→∗
r H3 | E′1 [e′2] I.H.

[H3] e′2 = e2 above

H1 | E′1 [e′1] e′ −→r H3 | E′1 [e′2] e′ ↦−→
case E = v E1, then E′ = x E′

1
.

[H1]E′ = v E1 given

[H1]x ′ = v above

[H1]E′1 = E1 above

E1 [e1] ↦−→ E1 [e2] given

H1 ⊢ x E′
1
[e′

1
] ⊣ H′

1
given

H1 ⊢ x ⊣ H2 drapp

H2 ⊢ E′
1
[e′

1
] ⊣ H′

1
above

H1 = H2 ++ x Lemma 2

H1 ⊢ E′
1
[e′

1
] ⊣ H′

1
++ x Lemma 7

H1 | E′1 [e′1] −→r H3 | E′1 [e′2] I.H.

[H3] e′2 = e2 above

H1 | x E′
1
[e′

1
] −→r H3 | x E′

1
[e′

2
] ↦−→

case E = val x = E1; e, then E′ = val x = E′
1
; e′.
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[H1]E′ = val x = E1; e given

[H1]E′1 = E′ above

[H1]e′ = e above

E1 [e1] ↦−→ E1 [e2] given

H1 ⊢ val x = E′
1
[e′

1
]; e′ ⊣ H′

1
given

H1 ⊢ E′
1
[e′

1
] ⊣ H2 drbind

H1 | E′1 [e′1] −→∗
r H3 | E′1 [e′2] I.H.

[H3] e′2 = e2 above

H1 | val x = E′
1
[e′

1
]; e′ −→r H3 | val x = E′

1
[e′

2
]; e′ ↦−→

□

Lemma 11. (Reference counting semantics is sound (big step))
If e1 ↦−→ e2, andH1 ok, and e′1 ok, and [H1]e′1 = e1, andH1 ⊢ e′

1
⊣ H′

1
, then there existsH2 and e′2 such thatH1 | e′1 −→∗

r H2 | e′2,
and [H2]e′2 = e2.

Proof. (Of Lemma 11)

e1 ↦−→ e2 given

e1 = E[e3] suppose

e2 = E[e4] suppose

E[e3] ↦−→ E[e4] given

e′
1
= E1 [e′2] suppose

H1 | E1 [e′2] −→∗
r H2 | E2 [e′3] Lemma 9

[H2]E2 = E above

[H2]e′3 = e3 above

H2 ok Lemma 14

E2 [e′3] ok above

H2 ⊢ E2 [e′3] ⊣ H′
1

above

H2 | E2 [e′3] −→ H3 | E2 [e′4] Lemma 10

[H3]E2 = E above

[H3]e′4 = e4 above

[H3] (E2 [e′4]) = ( [H3]E2) [ [H3]e′4 ] by substitution

= E[e4] = e2
□

Proof. (Of Theorem 1)

∅ | ∅ ⊢ e ⇝ e′ given

e ↦−→∗ v given

e′ ↦−→∗ v Theorem 5

H ok
e′ ok from lam

∅ ⊢ e′ ⊣ ∅ Lemma 6

e′ ↦−→∗
r H2 | v ′ Lemma 11

[H2]v ′ = v above

case v ′ = x. Then the goal is proved.

case v ′ is not a variable. Then by (lam) or (con) we have H2 | v ′ −→r H2, z ↦→1 v ′ | z, with z fresh. Then [H2, z ↦→1 v ′]z
= [H2, z ↦→1 v ′]v ′ = [H2]v ′ = v. □

C.3 No Garbage
C.3.1 Extending strict evaluation semantics. If we add dup e and drop e in the syntax, as well as add to the standard

semantics in Figure 6 the following rules:

(dup) dup e′; e −→ e
(drop) drop e′; e −→ e
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we immediately see that translations does not change evaluation:

Theorem 5. (Translation is sound)
If e ↦−→∗ v with ∅ | ∅ ⊢ e ⇝ e′, then also e′ ↦−→∗ v.

Proof. (Of Theorem 5) Follows directly from Lemma 12 and the two reduction rule (dup) and (drop). □

Lemma 12. (Translation only inserts dup/drop)
If Δ | Γ ⊢ e ⇝ e′ then e = ⌈e′⌉.

Proof. (Of Lemma 12) By straightforward case analysis of each derivation. □

C.3.2 Evaluation retains Heap Reference Counting.
Definition 4. (Well-formed Abstractions)
If e ok, then all (𝜆ys x .e1) in e satisfies Jys, xK ⊢ e1 ⊣ ∅.

Definition 5. (Well-formed Heap)
If H ok, then (1) if x ↦→n v ∈ H, then fv(v) ∈ H, and v ok; (2) there is no dependency cycles in H.

Lemma 13. (No Garbage (Small step))
Given H1 ok and e1 ok if H1 ⊢ e1 ⊣ H′

, and H1 | e1 −→r H2 | e2, then H2 ok, e2 ok, and H2 ⊢ e2 ⊣ H′
.

Proof. (Of Lemma 13) When we a new variable z ↦→1 v in the heap (e.g., (lam)), z is fresh so its domain cannot refer to z
(even indirectly). So there is no dependency cycle. Also, in those cases, since H1 ⊢ v ⊣ H′

, by Lemma 1, we know fv(v) ∈ H1.

Moreover we have v ok as a precondition.

Heap reduction retains abstractions, with the only change being substitution. If Jys, xK ⊢ e ⊣ ∅, then Jys[y:=z], xK ⊢ e[y:=z] ⊣ ∅
by substitution.

Now we prove H2 ⊢ e2 ⊣ H′
by induction on the judgment.

case (appr ) H | f z −→r H | dup ys; drop f ; e[x:=z] (f ↦→n 𝜆ysx . e) ∈ H
H ⊢ f z ⊣ H1 given

H = H1 ++ f ++ z Lemma 2

ys ∈ H1 ++ f ++ z f ↦→ 𝜆ysx . e
H ⊢ dup ys; () ⊣ H ++ ys by definition

H ++ ys = H1 ++ f ++ z ++ ys
= H1 ++ ys ++ z ++ f Lemma 4

H1 ++ ys ++ z ++ f ⊢ drop f ; () ⊣ H1 ++ ys ++ z Lemma 3

Jys, xK ⊢ e ⊣ ∅ 𝜆ysx . e ok
Jys, zK ⊢ e[x:=z] ⊣ ∅ by substitution

H1 ++ ys ++ z ⊢ e[x:=z] ⊣ H1 Lemma 7

case (matchr ) H | match x {pi → ei} −→r H | dup ys; drop x; ei [xs:=ys] with pi = C xs and (x ↦→n C ys) ∈ H

H ⊢ match x {C xs → ei} ⊣ H′
given

H ⊢ x ⊣ H1 given

H1, JxsK ⊢ ei ⊣ H′
given

xs ̸∈ Hi given

H = H1 ++ x Lemma 2

(x ↦→n C ys) ∈ H given

ys ∈ H H ok
H ⊢ dup ys; () ⊣ H ++ ys by definition

H ++ ys = H1 ++ x ++ ys
= H1 ++ ys ++ x Lemma 4

H1 ++ ys ++ x ⊢ drop x; () ⊣ H1 ++ ys Lemma 3

H1 ++ ys ⊢ ei [xs:=ys] ⊣ H′
by substitution

case (lamr ) H | (𝜆ys x . e) −→h H, f ↦→1 𝜆ys x . e | f fresh f
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H ⊢ 𝜆ys x . e ⊣ H1 given

H ⊢ ys ⊣ H1 given

H, f ↦→1 𝜆ys x . e ⊢ f ⊣ H1 drvar

case (conr ) H | C x1 . . . xn −→r H, z ↦→1 C x1 . . . xn | z fresh z
H ⊢ C x1 . . . xn ⊣ H1 given

H, z ↦→1 C x1 . . . xn ⊢ z ⊣ H drcon

case (dupr ) H, x ↦→n v | dup x; e −→r H, x ↦→n+1 v | e
H, x ↦→n v ⊢ dup x; e ⊣ H1 given

H, x ↦→n+1 v ⊢ e ⊣ H1 drdup

case (dropr ) H, x ↦→n+1 v | drop x; e −→r H, x ↦→n v | e if n ≥ 1

H, x ↦→n+1 v ⊢ drop x; e ⊣ H1 given

H, x ↦→n v ⊢ e ⊣ H1 $[drdrop]

case (dlamr ) H, x ↦→1 𝜆ysz.e | drop x; e −→r H | drop ys; e
H, x ↦→1 𝜆ysz.e ⊢ drop x; e ⊣ H1 given

H ⊢ drop ys; e ⊣ H1 drdroplam

case (dconr ) H, x ↦→1 C ys | drop x; e −→r H | drop ys; e
H, x ↦→1 C ys ⊢ drop x; e ⊣ H1 given

H ⊢ drop ys; e ⊣ H1 drdropcon

□

The ok part reasoning of Lemma 13 can be easily generalized to big step. So from now on we will implicitly assume every

expression and heap we discuss is ok.

Lemma 14. (No Garbage (big step))
If H1 ⊢ E[e1] ⊣ H′

, and H1 | E[e1] ↦−→r H2 | E[e2], then H2 ⊢ E[e2] ⊣ H′
.

Proof. (Proof for Lemma 14) By induction on E.
case E = □. Follows by Lemma 13.

case E = E1 e.
H1 ⊢ E1 [e1] e ⊣ H2 given

H1 ⊢ E1 [e1] ⊣ H3 drapp

H3 ⊢ e ⊣ H2 given

H1 ⊢ E1 [e2] ⊣ H3 I.H.

H1 ⊢ E1 [e2] e ⊣ H2 drapp

case E = x E1.
H1 ⊢ x E1 [e1] ⊣ H2 given

H1 ⊢ x ⊣ H3 drapp

H3 ⊢ E1 [e1] ⊣ H2 given

H3 ⊢ E1 [e2] ⊣ H2 I.H.

H1 ⊢ x E1 [e2] ⊣ H2 drapp

case E = val x = E1; e.
H1 ⊢ val x = E1 [e1]; e ⊣ H2 given

H1 ⊢ E1 [e1] ⊣ H3 drbind

H3, x ↦→1 () ⊢ e ⊣ H2 given

x ̸∈ H2 given

H1 ⊢ E1 [e2] ⊣ H3 I.H.

H1 ⊢ val x = E1 [e2] ; e ⊣ H2 drbind

case E = C x1 . . . xi E1 vj . . . vn.
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H1 ⊢ C x1 . . . xi E1 [e1] vj . . . vn ⊣ H2 given

H1 ⊢ x1 . . . xi ⊣ H3 drcon

H3 ⊢ E1 [e1] ⊣ H4 given

H4 ⊢ vj . . . vn ⊣ H2 given

H3 ⊢ E1 [e2] ⊣ H4 I.H.

H1 ⊢ C x1 . . . xi E1 [e2] vj . . . vn ⊣ H2 drcon

□

Theorem 6. (No garbage)
Given ∅;∅ ⊢ e ⇝ e1, and ∅ | e1 ↦−→∗

r Hi | ei, then Hi ⊢ ei ⊣ ∅.

Proof. (Of Theorem 6)

∅ ok by construction

e1 ok by lam

∅ ⊢ e1 ⊣ ∅ Lemma 6

Hi ⊢ ei ⊣ ∅ Lemma 14

□

C.3.3 No Garbage.
Lemma 15. (Reachability)
IfH1 ⊢ e ⊣ H2, then there for all y ∈ dom(H1) − dom(H2), reach(y, H1 | e). For ease of reference, we denote it as reach(H1 − H2, H1 | e)

Proof. (Of Lemma 15) By induction on the judgment.

case

H0 ⊢ C v1 . . . vn ⊣ Hn given

H0 ⊢ v1 ⊣ H1 . . . Hn−1 ⊢ vn ⊣ Hn drcon

reach(Hi−1 − Hi, Hi−1 | vi) I.H.

reach(Hi−1 − Hi, H0 | vi) Lemma 1

reach(Hn − H0, H0 | C v1 . . . vn) Follows

case

H, x ↦→n+1 v ⊢ x ⊣ H, x ↦→n v given

dom(H, x ↦→n+1 v) − dom(H, x ↦→n v) = ∅
case

H, x ↦→1 𝜆ysz. e ⊢ x ⊣ H1 given

H ⊢ ys ⊣ H1 drvarlam

reach(H − H1, H | ys) I.H.

reach(H − H1, H | 𝜆ysz. e) by definition

reach((H, x ↦→1 𝜆ysz. e) − H1, (H, x ↦→1 𝜆ysz. e) | x) follows

case

H, x ↦→1 C ys ⊢ x ⊣ H1 given

H ⊢ ys ⊣ H1 drvarcon

reach(H − H1, H | ys) I.H.

reach(H − H1, H | C ys) by definition

reach((H, x ↦→1 C ys) − H1, (H, x ↦→1 C ys) | x) follows

case

H, x ↦→n v ⊢ dup x; e ⊣ H1 given

H, x ↦→n+1 v ⊢ e ⊣ H1 drdup

reach((H, x ↦→n+1 v) − H1, (H, x ↦→n+1 v) | e) I.H.

reach((H, x ↦→n v) − H1, (H, x ↦→n v) | dup x; e) follows
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case

H, x ↦→n+1 v ⊢ drop x; e ⊣ H1 given

H, x ↦→n v ⊢ e ⊣ H1 drdrop

reach((H, x ↦→n+1 v) − H1, (H, x ↦→n+1 v) | e) I.H.

reach((H, x ↦→n v) − H1, (H, x ↦→n v) | drop x; e) follows

case

H, x ↦→1 C ys ⊢ drop x; e ⊣ H1 given

H ⊢ drop ys; e ⊣ H1 drdropcon

reach(H − H1, H | drop ys; e) I.H.

reach((H, x ↦→1 C ys) − H1, (H, x ↦→1 C ys) | drop x; e) follows

case

H, x ↦→1 𝜆ysz. e ⊢ drop x; e ⊣ H1 given

H ⊢ drop ys; e ⊣ H1 drdroplam

reach(H − H1, H | drop ys; e) I.H.

reach((H, x ↦→1 𝜆ysz. e) − H1, (H, x ↦→1 𝜆ysz. e) | drop x; e) follows

case

H ⊢ 𝜆ys x . e ⊣ H1 given

H ⊢ ys ⊣ H1 drlam

reach(H − H1, H | ys) I.H.

reach(H − H1, H | 𝜆ysx . e) follows

case

H ⊢ e1 e2 ⊣ H2 given

H ⊢ e1 ⊣ H1 drapp

H1 ⊢ e2 ⊣ H2 drapp

reach(H − H1, H | e1) I.H.

reach(H1 − H2, H1 | e2) I.H.

reach(H1 − H2, H | e2) Lemma 1

reach(H − H2, H | e1 e2) follows

case

H ⊢ val x = e1 ; e2 ⊣ H2 given

H ⊢ e1 ⊣ H1 drbind

H1, x ↦→1 () ⊢ e2 ⊣ H2 drbind

x ̸∈ H, H2 drbind

reach(H − H1, H | e1) I.H.

reach((H1, x ↦→1 ()) − H2, (H1, x ↦→1 ()) | e2) I.H.

reach((H1, x ↦→1 ()) − H2, (H, x ↦→1 ()) | e2) Lemma 1

dom(H1) ⊆ dom(H1, x ↦→1 ())
reach(H1 − H2, (H, x ↦→1 ()) | e2) follows

x ̸∈ H known

x ̸∈ dom(H) − dom(H2) follows

reach(H − H2, H | val x = e1; e2) follows

case
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H ⊢ match x { pi ↦→ ei } ⊣ H′
given

H ⊢ x ⊣ H1 drmatch

H1, Jbv(pi)K ⊢ ei ⊣ H′
drmatch

bv(pi) ̸∈ H,H′
drmatch

reach(H − H1, H | x) I.H.

reach((H1, Jbv(pi)K) − H′, (H1, Jbv(pi)K) | ei) I.H.

reach((H1, Jbv(pi)K) − H′, (H, Jbv(pi)K) | ei) Lemma 1

dom(H1) ⊆ dom(H1, Jbv(pi)K)
reach(H1 − H′, (H, Jbv(pi)K) | ei) follows

bv(pi) ̸∈ H known

bv(pi) ̸∈ dom(H) − dom(H′) follows

reach(H − H′, H | match x { pi ↦→ ei } ) follows

□

Proof. (Of Theorem 2)

∅;∅ ⊢ e ⇝ e′ given

Hi ⊢ ei ⊣ ∅ Theorem 6

reach(Hi − ∅, Hi | ei) Lemma 15

□

C.4 Soundness of Syntax-directed Translation

Proof. (Of Theorem 3) By induction on the judgment.

case

Δ | x ⊢s x ⇝ x given

Δ | x ⊢ x ⇝ x var

case

Δ, x | ∅ ⊢s x ⇝ dup x; x given

Δ, x | x ⊢ x ⇝ x var

Δ, x | ∅ ⊢ x ⇝ dup x; x dup

case

Δ,Δ1 | Γ ⊢s 𝜆x . e ⇝ dup Δ1; 𝜆
ys x . e′ given

x ∈ fv(e) slam

∅ | ys, x ⊢s e ⇝ e′ slam

ys = fv(𝜆x . e) slam

Δ1 = ys − Γ slam

∅ | ys, x ⊢ e ⇝ e′ I.H.

Δ,Δ1 | Γ, Δ1 ⊢s 𝜆x . e ⇝ 𝜆ys x . e′ lam

Δ,Δ1 | Γ ⊢s 𝜆x . e ⇝ dup Δ1; 𝜆
ys x . e′ dup

case

Δ,Δ1 | Γ ⊢s 𝜆x . e ⇝ dup Δ1; 𝜆
ys x . (drop x; e′) given

x ̸∈ fv(e) slam-d

∅ | ys ⊢s e ⇝ e′ slam-d

ys = fv(𝜆x . e) slam-d

Δ1 = ys − Γ slam-d

∅ | ys ⊢ e ⇝ e′ I.H.

∅ | ys, x ⊢ e ⇝ drop x; e′ drop

ys = fv(𝜆x . drop x; e) follows

Δ,Δ1 | Γ, Δ1 ⊢s 𝜆x . e ⇝ 𝜆ys x . drop x; e′ lam

Δ,Δ1 | Γ ⊢s 𝜆x . e ⇝ dup Δ1; 𝜆
ys x . e′ dup
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case

Δ | Γ ⊢s e1 e2 ⇝ e′
1
e′
2

given

Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′
1

sapp

Δ | Γ2 ⊢s e2 ⇝ e′
2

sapp

Γ2 =̂ Γ ∩ fv(e2) sapp

Δ, Γ2 | Γ − Γ2 ⊢ e1 ⇝ e′
1

I.H.

Δ | Γ2 ⊢ e2 ⇝ e′
2

I.H.

Δ | Γ ⊢ e1 e2 ⇝ e′
1
e′
2

app

case

Δ | Γ ⊢s val x = e1; e2 ⇝ val x = e′
1
; e′

2
given

x ∈ fv(e2) sbind

x ̸∈ Δ, Γ sbind

Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′
1

sbind

Δ | Γ2, x ⊢s e2 ⇝ e′
2

sbind

Γ2 =̂ Γ ∩ (fv(e2) − x) sbind

Δ, Γ2 | Γ − Γ2 ⊢ e1 ⇝ e′
1

I.H.

Δ | Γ2, x ⊢ e2 ⇝ e′
2

I.H.

Δ | Γ ⊢ val x = e1; e2 ⇝ val x = e′
1
; e′

2
bind

case

Δ | Γ ⊢s val x = e1; e2 ⇝ val x = e′
1
; drop x; e′

2
given

x ̸∈ fv(e2), Δ, Γ sbind-d

Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′
1

sbind-d

Δ | Γ2 ⊢s e2 ⇝ e′
2

sbind-d

Γ2 =̂ Γ ∩ fv(e2) sbind-d

Δ, Γ2 | Γ − Γ2 ⊢ e1 ⇝ e′
1

I.H.

Δ | Γ2 ⊢ e2 ⇝ e′
2

I.H.

Δ | Γ2, x ⊢ e2 ⇝ drop x; e′
2

drop

Δ | Γ ⊢ val x = e1; e2 ⇝ val x = e′
1
; drop x; e′

2
bind

case

Δ | Γ, x ⊢s match x { pi ↦→ ei } ⇝ match x { pi ↦→ drop Γ′i ; e
′
i } given

Δ | Γi ⊢s ei ⇝ e′i smatch

Γi =̂ (Γ, bv(pi)) ∩ fv(ei) smatch

Γ′i = (Γ, bv(pi)) − Γi smatch

Δ | Γi ⊢ ei ⇝ e′i I.H.

Δ | Γi, Γ′i ⊢ ei ⇝ drop Γ′i ; e
′
i drop

Δ | Γ, bv(pi) ⊢ ei ⇝ drop Γ′i ; e
′
i by substitution

Δ | Γ, x ⊢ match x { pi ↦→ ei } ⇝ match x { pi ↦→ drop Γ′i ; e
′
i } match

case

Δ | Γ ⊢ s C v1 . . . vn ⇝ C v′
1
. . . v ′n given

Δ, Γi+1, . . ., Γn | Γi ⊢ s vi ⇝ v ′i scon

Γi =̂ (Γ − Γi+1 − . . . − Γn) ∩ fv(vi) scon

1 ⩽ i ⩽ n scon

Δ, Γi+1, . . ., Γn | Γi ⊢ vi ⇝ v ′i I.H.

Δ | Γ ⊢ C v1 . . . vn ⇝ C v ′
1
. . . v ′n con

□

C.5 Precision
C.5.1 A Heap Reference Counting Calculus for the Algorithm.
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H ⊢ s v1 ⊣ H1 . . . Hn−1 ⊢ s vn ⊣ Hn

H ⊢ s C v1 . . . vn ⊣ H1

[srcon]

H, x ↦→n+1 v ⊢ s x ⊣ H, x ↦→n v
[srvar]

H ⊢ s ys ⊣ H1

H, x ↦→1 𝜆ysz. e ⊢ s x ⊣ H1

[srvarlam]

H ⊢ s ys ⊣ H1

H, x ↦→1 C ys ⊢ s x ⊣ H1

[srvarcon]

H ⊢ s ys ⊣ H1 ys ↦→1 (), x ↦→1 () ⊢ s e ⊣ ∅
H ⊢ s 𝜆

ys x . e ⊣ H1

[srlam1]

H ⊢ s ys ⊣ H1 ys ↦→1 () ⊢ s e ⊣ ∅
H ⊢ s 𝜆

ys x . drop x; e ⊣ H1

[srlam2]

H ⊢ s e1 ⊣ H1 H1 ⊢ s e2 ⊣ H2

H ⊢ s e1 e2 ⊣ H2

[srapp]

H ⊢ s e1 ⊣ H1 H1, x ↦→1 () ⊢ s e2 ⊣ H2 x ̸∈ H,H2

H ⊢ s val x = e1 ; e2 ⊣ H2

[srbind1]

H ⊢ s e1 ⊣ H1 H1 ⊢ s e2 ⊣ H2 x ̸∈ H

H ⊢ s val x = e1 ; drop x; e2 ⊣ H2

[srbind2]

H ⊢ s x ⊣ H1 H1, Jbv(pi)K ⊢ r drop ysi; () ⊣ Hi
Hi ⊢ s ei ⊣ H′ bv(pi) ̸∈ H,H′

ysi ⊆ fv(⌈ei⌉) ∪ bv(pi)
H ⊢ s match x { pi ↦→ drop ysi; ei } ⊣ H′

[srmatch]

H, x ↦→n+1 v ⊢ s e ⊣ H1

H, x ↦→n v ⊢ s dup x; e ⊣ H1

[srdup]

Where drop, and dup followed by drop are only allowed in:

H, x ↦→n+1 v ⊢ r e ⊣ H1

H, x ↦→n v ⊢ r dup x; e ⊣ H1

[rrdup]

H, x ↦→n v ⊢ r e ⊣ H1

H, x ↦→n+1 v ⊢ r drop x; e ⊣ H1

[rrdrop]

H ⊢ r e ⊣ H1

H, x ↦→1 () ⊢ r drop x; e ⊣ H1

[rrdropunit]

H ⊢ r drop ys; e ⊣ H1

H, x ↦→1 𝜆ysz. e ⊢ r drop x; e ⊣ H1

[rrdroplam]

H ⊢ r drop ys; e ⊣ H1

H, x ↦→1 C ys ⊢ r drop x; e ⊣ H1

[rrdropcons]
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H ⊢ s e ⊣ H1

H ⊢ r e ⊣ H1

[rrsub]

C.5.2 Properties. Those properties are essentially the same as the lemma for the heap reference counting calculus.

Definition 6. (Well-formed Abstractions)
If e okr , then all (𝜆ys x .e1) in e satisfies (1) Jys, xK ⊢ r e1 ⊣ ∅; or (2) e1 = drop x; e2, and JysK ⊢ r e2 ⊣ ∅.

Definition 7. (Well-formed Heap)
If H ok, then (1) if x ↦→n v ∈ H, then fv(v) ∈ H, and v okr ; (2) there is no dependency cycles in H.

Lemma 16. (Heap Reference Counting Free variables)
If H1 ⊢ r e ⊣ H2 or H1 ⊢ s e ⊣ H2, then fv(e) ∈ H1, and fv(H2) ∈ H1 with same domains.

Lemma 17. (Drop is dual to extension)
If H1 ⊢ r drop x; () ⊣ H2, then H1 = H2 ++ x. Similarly, if H1 ⊢ r x ⊣ H2 or H1 ⊢ s x ⊣ H2, then H1 = H2 ++ x.

Lemma 18. (Extension is dual to drop)
H ++ x ⊢ r drop x; () ⊣ H. Similarly, H ++ x ⊢ s x ⊣ H and H ++ x ⊢ s x ⊣ H.

Lemma 19.
JΓ, xK ⊢ r x ⊣ JΓK. Similarly, if JΔK ⊢ r e ⊣ H, then JΓ, xK ⊢ r drop x; e ⊣ H.

Theorem 7. (No garbage)
Given ∅;∅ ⊢ r e ⇝ e1, and ∅ | e1 ↦−→∗

r Hi | ei, then Hi ⊢ r ei ⊣ ∅.

C.5.3 Relating to linear resource calculus.
Lemma 20. (Algorithmic linear resource calculus relates to reference counting)
If Δ | Γ ⊢ s e ⇝ e′, then JΔ, ΓK ⊢ s e′ ⊣ JΔK. By rrsub we also have JΔ, ΓK ⊢ r e′ ⊣ JΔK.

Proof. (Of Lemma 20) During the proof, we reply on the fact that source program (i.e., e) has no drop or dup. By induction on

the elaboration.

case

Δ | x ⊢ s x ⇝ x given

JΔ, xK ⊢ s x ⊣ JΔK Lemma 19

case

Δ, x | ∅ ⊢ s x ⇝ dup x; x given

JΔ, xK ++ x ⊢ s x ⊣ JΔ, xK Lemma 18

JΔ, xK ⊢ s dup x; x ⊣ JΔ, xK srdup

case

Δ,Δ1 | Γ ⊢s 𝜆x . e ⇝ dup Δ1; 𝜆
ys x . e′ given

x ∈ fv(e) slam

∅ | ys, x ⊢s e ⇝ e′ slam

ys =̂ fv(𝜆x . e) slam

Δ1 = ys − Γ slam

Jys, xK ⊢ s e′ ⊣ ∅ I.H.

JΔ, Δ1, ysK ⊢ s ys ⊣ JΔ,Δ1K Lemma 18

JΔ, Δ1, Γ, Δ1K ⊢ s ys ⊣ JΔ,Δ1K by substitution

JΔ, Δ1, Γ, Δ1K ⊢ s 𝜆
ys x . e′ ⊣ JΔ,Δ1K srlam1

JΔ, Δ1, ΓK ⊢ s dup Δ1; 𝜆
ys x . e′ ⊣ JΔ,Δ1K srdup

case
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Δ,Δ1 | Γ ⊢s 𝜆x . e ⇝ dup Δ1; 𝜆
ys x . (drop x; e′) given

x ̸∈ fv(e) slam-d

∅ | ys ⊢s e ⇝ e′ slam-d

ys =̂ fv(𝜆x . e) slam-d

Δ1 = ys − Γ slam-d

JysK ⊢ s e′ ⊣ ∅ I.H.

JΔ, Δ1, ysK ⊢ s ys ⊣ JΔ,Δ1K Lemma 18

JΔ, Δ1, Γ, Δ1K ⊢ s ys ⊣ JΔ,Δ1K by substitution

JΔ, Δ1, Γ, Δ1K ⊢ s 𝜆
ys x . drop x; e ⊣ JΔ,Δ1K srlam2

JΔ, Δ1, ΓK ⊢ s dup Δ1; 𝜆
ys x . drop x; e′ ⊣ JΔ,Δ1K srdup

case

Δ | Γ ⊢s e1 e2 ⇝ e′
1
e′
2

given

Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′
1

sapp

Δ | Γ2 ⊢s e2 ⇝ e′
2

sapp

Γ2 =̂ Γ ∩ fv(e2) sapp

JΔ, ΓK ⊢ s e′1 ⊣ JΔ, Γ2K I.H.

JΔ, Γ2K ⊢ s e′2 ⊣ JΔK I.H.

JΔ, ΓK ⊢ s e′1 e
′
2
⊣ JΔK srapp

case

Δ | Γ ⊢s val x = e1; e2 ⇝ val x = e′
1
; e′

2
given

x ∈ fv(e2) sbind

x ̸∈ Δ, Γ sbind

Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′
1

sbind

Δ | Γ2, x ⊢s e2 ⇝ e′
2

sbind

Γ2 =̂ Γ ∩ (fv(e2) − x) sbind

JΔ, ΓK ⊢ s e′1 ⊣ JΔ, Γ2K I.H.

JΔ, Γ2, xK ⊢ s e′2 ⊣ JΔK I.H.

x ̸∈ JΔK follows

x ̸∈ JΔ, ΓK follows

JΔ, ΓK ⊢ s val x = e′
1
; e′

2
⊣ JΔK srbind1

case

Δ | Γ ⊢s val x = e1; e2 ⇝ val x = e′
1
; drop x; e′

2
given

x ̸∈ fv(e2), Δ, Γ sbind-d

Δ, Γ2 | Γ − Γ2 ⊢s e1 ⇝ e′
1

sbind-d

Δ | Γ2 ⊢s e2 ⇝ e′
2

sbind-d

Γ2 =̂ Γ ∩ fv(e2) sbind-d

JΔ, ΓK ⊢ s e′1 ⊣ JΔ, Γ2K I.H.

JΔ, Γ2K ⊢ s e′2 ⊣ JΔK I.H.

x ̸∈ JΔ, ΓK follows

JΔ, ΓK ⊢ s val x = e′
1
; drop x; e′

2
⊣ JΔK srbind2

case
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Δ | Γ, x ⊢s match x { pi ↦→ ei } ⇝ match x { pi ↦→ drop Γ′i ; e
′
i } given

Δ | Γi ⊢s ei ⇝ e′i smatch

Γi =̂ (Γ, bv(pi)) ∩ fv(ei) smatch

Γ′i = (Γ, bv(pi)) − Γi smatch

JΔ, Γ, xK ⊢ x ⊣ JΔ, ΓK Lemma 19

JΔ, Γ′i , ΓiK ⊢ drop Γ′i ; () ⊣ JΔ, ΓiK Lemma 19

JΔ, ΓiK ⊢ e′i ⊣ JΔK I.H.

bv(pi) ̸∈ JΔ, Γ, xK assume bv(pi) fresh
bv(pi) ̸∈ JΔK follows

Γ′i = (Γ, bv(pi)) − Γi known

Γ′i ⊆ (Γ, bv(pi)) follows

Γ, x ⊆ fv(match x { pi ↦→ ei }) invariant

Γ, x ⊆ (x, fv(ei)) definition of fv
multiplicity of each member in Γ, x is 1 invariant

Γ ⊆ fv(ei) follows

fv(⌈e′i ⌉) = fv(ei) Lemma 12

Γ ⊆ fv(⌈e′i ⌉) by substitution

JΔ, ΓK ⊢ match x { pi ↦→ drop Γ′i ; e
′
i } ⊣ JΔK srmatch

case

Δ | Γ ⊢ C v1 . . . vn ⇝ C v ′
1
. . . v ′n given

Δ, Γi+1, . . ., Γn | Γi ⊢ s vi ⇝ v ′i scon

Γi =̂ (Γ − Γi+1 − . . . − Γn) ∩ fv(vi) scon

JΔ, Γi, Γi+1, . . ., ΓnK ⊢ s vi ⊣ JΔ, Γi+1, . . ., ΓnK I.H.

JΔ, ΓK ⊢ s C v1 . . . vn ⊣ JΔK srcon

□

C.5.4 Precision.
Lemma 21. (Reachability for erased expressions)
If H1 ⊢ s e ⊣ H2, then reach(H1 − H2, H1 | ⌈e⌉).

Proof. (Of Lemma 21) By induction on the judgment.

case

H ⊢ s C v1 . . . vn ⊣ H1 given

H ⊢ s v1 ⊣ H1 . . . Hn−1 ⊢ s vn ⊣ Hn srcon

reach(Hi−1 − Hi, Hi−1 | ⌈vi⌉) I.H.

reach(Hi−1 − Hi, H0 | ⌈vi⌉) Lemma 16

reach(Hn − H0, H0 | ⌈C v1 . . . vn⌉) Follows

case

H, x ↦→n+1 v ⊢ s x ⊣ H, x ↦→n v given

dom(H, x ↦→n+1 v) − dom(H, x ↦→n v) = ∅
case

H, x ↦→1 𝜆ysz. e ⊢ s x ⊣ H1 given

H ⊢ s ys ⊣ H1 srvarlam

reach(H − H1, H | ⌈ys⌉) I.H.

reach(H − H1, H | ⌈𝜆ysz. e)⌉ by definition

reach((H, x ↦→1 𝜆ysz. e) − H1, (H, x ↦→1 𝜆ysz. e) | ⌈x⌉) follows

case
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H, x ↦→1 C ys ⊢ s x − | H1 given

H ⊢ s ys ⊣ H1 srvarcon

reach(H − H1, H | ⌈ys⌉) I.H.

reach(H − H1, H | ⌈C ys⌉) by definition

reach((H, x ↦→1 C ys) − H1, (H, x ↦→1 C ys) | ⌈x⌉) follows

case

H ⊢ s 𝜆
ys x . e ⊣ H1 given

H ⊢ s ys ⊣ H1 srlam1

reach(H − H1, H | ⌈ys⌉) I.H.

reach(H − H1, H | ⌈𝜆ysx . e)⌉ follows

case

H ⊢ s 𝜆
ys x . e ⊣ H1 given

H ⊢ s ys ⊣ H1 srlam2

reach(H − H1, H | ⌈ys⌉) I.H.

reach(H − H1, H | ⌈𝜆ysx . drop x; e)⌉ follows

case

H ⊢ s e1 e2 ⊣ H2 given

H ⊢ s e1 ⊣ H1 srapp

H1 ⊢ s e2 ⊣ H2 srapp

reach(H − H1, H | ⌈e1⌉) I.H.

reach(H1 − H2, H1 | ⌈e2⌉) I.H.

reach(H1 − H2, H | ⌈e2⌉) Lemma 16

reach(H − H2, H | ⌈e1 e2⌉) follows

case

H ⊢ s val x = e1 ; e2 ⊣ H2 given

H ⊢ s e1 ⊣ H1 srbind1

H1, x ↦→1 () ⊢ s e2 ⊣ H2 srbind1

x ̸∈ H, H2 srbind1

reach(H − H1, H | ⌈e1⌉) I.H.

reach((H1, x ↦→1 ()) − H2, (H1, x ↦→1 ()) | ⌈e2⌉) I.H.

reach((H1, x ↦→1 ()) − H2, (H, x ↦→1 ()) | ⌈e2⌉) Lemma 16

dom(H1) ⊆ dom(H1, x ↦→1 ())
reach(H1 − H2, (H, x ↦→1 ()) | ⌈e2⌉) follows

x ̸∈ H known

x ̸∈ dom(H) − dom(H2) follows

reach(H − H2, H | ⌈val x = e1; e2⌉) follows

case

H ⊢ s val x = e1 ; drop x; e2 ⊣ H2 given

H ⊢ s e1 ⊣ H1 srbind2

H1 ⊢ s e2 ⊣ H2 srbind2

x ̸∈ H srbind2

reach(H − H1, H | ⌈e1⌉) I.H.

reach((H1 − H2, H1 | ⌈e2⌉) I.H.

reach((H1 − H2, H | ⌈e2⌉) Lemma 16

x ̸∈ H known

x ̸∈ dom(H) − dom(H2) follows

reach(H − H2, H | ⌈val x = e1; drop x; e2⌉) follows

case
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H ⊢ s match x { pi ↦→ drop ysi; ei } ⊣ H′
given

H ⊢ s x ⊣ H1 srmatch

H1, Jbv(pi)K ⊢ r drop ysi; () ⊣ Hi srmatch

Hi ⊢ s ei ⊣ H′
srmatch

bv(pi) ̸∈ H,H′
srmatch

ysi ⊆ fv(⌈ei⌉) ∪ bv(pi) srmatch

reach(H − H1, H | x) I.H.

H1, Jbv(pi)K = Hi ++ ysi Lemma 17

reach((Hi − H′, Hi | ⌈ei⌉) I.H.

reach((Hi − H′, (H, Jbv(pi)K) | ⌈ei⌉) Lemma 16

ysi ⊆ fv(⌈ei⌉) ∪ bv(pi) known

reach((Hi++ysi − H′, H | bv(pi); ⌈ei⌉) follows

reach((H1, Jbv(pi)K − H′, H | bv(pi); ⌈ei⌉) by substitution

bv(pi) ̸∈ H known

bv(pi) ̸∈ dom(H) − dom(H′) follows

reach(H − H′, H | match x { pi ↦→ ⌈ei⌉ } ) follows

case

H, x ↦→n v ⊢ s dup x; e ⊣ H1 given

H, x ↦→n+1 v ⊢ s e ⊣ H srdup

x ∈ fv(⌈e⌉) srdup

reach((H, x ↦→n+1 v) − H, (H, x ↦→n+1 v) | e) I.H.

reach((H, x ↦→n v) − H, (H, x ↦→n v) | e) Follows

□

Proof. (Of Theorem 4)

∅ | ∅ ⊢s e ⇝ e′ given

∅ ⊢ r e′ ⊣ ∅ Lemma 20

Hi ⊢ r ei ⊣ ∅ Theorem 7

ei ≠ E[dup x; e′i ] given

Hi ⊢ s e′ ⊣ ∅ rrsub

reach(Hi − ∅, Hi | ⌈e⌉) Lemma 21

all y ∈ dom(Hi), reach(y, Hi | ei) follows

□
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