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Fig. 1. Chartem Overview. Chartem embeds a piece of application-dependent digital information such as a chart specification (f) into a
chart image (a). It detects background regions of the chart (b), embeds coarse marks (A), fine marks (B), and packaged information
into the background regions (c and d), and adjusts the opacity of the embedded patterns to produce an information-embedded chart
image (e), which can be used as a regular chart since the embedding patterns are generally subtle. However, when needed, Chartem
can recover the embedded information (f) for different uses by determining and decoding the background patterns.

Abstract— In practice, charts are widely stored as bitmap images. Although easily consumed by humans, they are not convenient for
other uses. For example, changing the chart style or type or a data value in a chart image practically requires creating a completely
new chart, which is often a time-consuming and error-prone process. To assist these tasks, many approaches have been proposed
to automatically extract information from chart images with computer vision and machine learning techniques. Although they have
achieved promising preliminary results, there are still a lot of challenges to overcome in terms of robustness and accuracy. In this
paper, we propose a novel alternative approach called Chartem to address this issue directly from the root. Specifically, we design a
data-embedding schema to encode a significant amount of information into the background of a chart image without interfering human
perception of the chart. The embedded information, when extracted from the image, can enable a variety of visualization applications to
reuse or repurpose chart images. To evaluate the effectiveness of Chartem, we conduct a user study and performance experiments on
Chartem embedding and extraction algorithms. We further present several prototype applications to demonstrate the utility of Chartem.

Index Terms—Chart embedding, background embedding, data embedding, chart image, chart reuse.

1 INTRODUCTION

As an effective and efficient means to convey quantitative informa-
tion [39], charts have become an increasingly pervasive type of content
widely adopted in newspapers, textbooks, websites, academic papers,
etc. Nowadays, there are many tools, such as Excel, Tableau, and
Power BI, to help users convert data into charts or graphs effortlessly.
During the authoring process, a chart object is often created to maintain
relationships between data and visual elements. After the authoring
process, it is common to save the created chart as a bitmap image, for
easy typesetting or sharing. In many cases, the resulting image is then
disconnected from its chart object and becomes the only representation
available for the underlying data. This may cause several issues in
the long run. First, since the carried information and visual style are
locked in a chart image, it is hard to reuse or repurpose the chart in the
future. For example, if Alice wants to change the chart type or style
for a different story or document, she often has to do it manually as
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a chart image is generally not machine readable. To assist with this
task, many image-recognition-based techniques have been proposed to
automatically recover data and visual design information from chart
images [5, 6, 10, 11, 20, 21, 25]. However, this is still a relatively new
research direction, and a robust solution that can accurately recover the
full information of a chart image has not been accomplished yet due
to diversity and complexity of chart content. Second, in many cases,
the message conveyed by a chart is distilled from a bigger dataset via a
series of aggregation and filtering operations. If a user likes to perform
a different analysis on the same underlying dataset for a different pur-
pose, it will be impossible since the information carried by the chart is
limited and the original dataset is completely lost after the conversion.

In this paper, we present a novel approach to solving the above issues
and unlocking chart images with more potential. Our solution, called
Chartem, embeds the chart data or arbitrary data into a chart image
when it is published. Once embedded, the information becomes an
intrinsic part of the chart image. It can be retrieved, when needed, for
further processing. For instance, if the information is the chart data, it
can be directly used to generate a chart with a different style or type,
or be analyzed for a different insight, etc. An overview of this process
is shown in Fig. 1. Unlike image-recognition-based techniques, the
integrity of extracted information is verified in our method to guarantee
completeness and accuracy of the restored chart object. As a result, our
proposed method unlocks chart data accurately, which would open a
great opportunity for reusing underlying data of chart images.

There are alternative information-carrying solutions, such as over-
laying information on a chart image (e.g., QR code) or piggybacking
the information into chart files. Our data-embedding approach has two
advantages over them. First, our embedding patterns are not apparent or
intrusive during chart reading, thus the same user experience of normal
charts is preserved. Second, the embedded information stays with the



chart even after the chart image is format-converted or screenshot.
Image data embeddings have been extensively studied for natural

images. These methods have been built on the continuous-tone char-
acteristics of natural images. Unlike natural images, chart images
typically comprise homogeneous color regions, which makes natural-
image-based embedding techniques ineffective for chart images.

In Chartem, we present a novel data-embedding scheme specifically
designed for chart images. It embeds arbitrary data into background
regions of a chart image by slightly modifying the pixel values to
form deliberated patterns to encode the data. Embedding patterns
are faintly visible and do not incur adverse impact on chart reading.
Chartem adopts a data segmentation mechanism as well as a design
of synchronization marks to enhance the robustness of data extraction.
The embedded data can be accurately extracted even if an embedded
chart image undergoes typical image manipulations such as resizing,
screenshot, compression, rotations, and brightness variations.

We present a user study to understand the impact of embedding
patterns on human perception of charts and experimental evaluation of
Chartem’s performance. In illustrating potential utilization of Chartem,
we present a prototype application as an Excel add-in to demonstrate
how Chartem can be integrated into a chart authoring system to generate
chart images with embedded data, followed by two prototype applica-
tions to show that Chartem can enable scenarios such as redesigning
charts and reading charts to people with vision impairment.

2 RELATED WORK

2.1 Parsing Chart Images
A huge amount of information is locked inside chart images and inac-
cessible to machines and visually impaired people [6,20]. To overcome
this limit, many computational methods have been proposed to interpret
chart images based on OCR and image recognition techniques. From a
given bitmap chart image, these methods attempt to extract information
including chart type, underlying data, visual encodings, etc.

ReVision [25] first uses a SVM model to detect chart type, then
applies image processing techniques to locate the marks and recover
data from bar and pie chart images. FigureSeer [26] trains a CNN net-
work for chart type classification and uses legend information for more
accurate data extraction. DVQA [11] employs a deep dual-network
model to directly parse the data from bar chart images. Scatteract [7]
automatically restores the numerical values of data points from im-
ages of scatter plots. More recently, Choi et al. [6] built a DNN-based
automatic pipeline to extract data from chart images for reading to vi-
sually impaired people. Apart from chart data, there are research works
focusing on chart design aspects. For example, Poco and Heer [20]
proposed a multi-stage pipeline, which combines ML and heuristics
techniques, to automatically infer a visual encoding specification from
a chart image. Poco et al. [21] sought to extract color mappings from
chart images. Besides images of standard charts, researchers have
also investigated computational methods to parse images of infograph-
ics [2,5,14]. Due to diversity and complexity of chart content, all these
techniques support only a limited number of chart types (e.g., bar, pie,
line, scatter charts). Moreover, they often cannot achieve sufficient
accuracy of data extraction, especially when a chart has overlapped
visual entities. Although some techniques, such as ChartSense [10] and
iVoLVER [16], adopt a mixed-initiative approach to improving data
extraction accuracy with human interactions, they are not suitable for
applications that require fully automated processing.

While sharing the same goal with these techniques, our work takes
a completely different approach to unlocking chart images with more
potential. Specifically, Chartem embeds data into background regions
of a chart image. The embedded data can be extracted to support
further processing. Compared with prior works on parsing content of
chart images, our solution has several advantages. First, our solution is
more robust and accurate as desired information is directly embedded
into chart images. Second, since our solution does not depend on
interpreting visual elements to decode information, it can be easily
applied to different chart types. Third, the embedded data can be any
digital information even not being presented on charts, so our solution
can enable richer chart reuse applications.

2.2 Data Embedding and Watermarking
Both watermarking and data embedding embed information into a host
signal, typically audio, image, or video [28]. While they share many
common properties and requirements, watermarking and data embed-
ding are targeted for different applications. Watermarking is generally
used for tracking and copyright protection. A small number of bits
are embedded, but the embedded data has to be very robust against all
possible perceptual-quality-preserving manipulations including inten-
tional attacks. Data embedding, on the other hand, generally embeds as
much information as possible into a host signal, and the embedded data
only has to survive the processing needed in its targeted applications.
As a special type of data embedding, steganography aims to conceal
the presence of a hidden message in a host signal [4]. Embedding in
steganography should be imperceptible and undetectable.

Data embedding embeds information into a host signal by modify-
ing selected features of the host signal, while watermarking can either
embed watermark in or superimpose an additive spread spectrum wa-
termark on the host signal. We focus on embedding techniques used in
watermarking and data embedding. Features selected to carry informa-
tion can be pixels in the spatial domain or coefficients in a transform
domain such as in the frequency domain or a wavelet-transform domain.
Spatial-domain embedding is generally for host images, wherein the
least significant bits (LSBs) of pixels are modified to carry informa-
tion [3,40] or pixels are modified in pairs, with each pair carrying one bit
information [38]. Image steganography typically embeds in the spatial
domain too, e.g., HUGO [19]. Transform-domain embedding, on the
other hand, can be applied to audios [34, 35], images [8, 12, 31, 32, 45],
and videos [29, 30, 33, 45], wherein middle and/or high frequencies
in the frequency domain [8, 12, 30–35] or a wavelet-transform do-
main [29,45] are modified. Spatial-domain embedding is generally less
robust than transform-domain embedding.

In addition to the above traditional approaches, deep learning has
also been used for data embedding. An embedding network and an ex-
traction network can be trained simultaneously to hide an image [1] or
arbitrary data [43] into a host image for image steganography. They can
hide a large amount of data into a host image, but small perturbations of
a common image manipulation such as JPEG compression, screenshot,
resizing, or rotation would render the hidden data unextractable. By
incorporating, during training, various perturbations that an image may
go through, hidden data is still extractable after JPEG compression and
cropping [44], displaying and photographing [42], or printing and pho-
tographing [36], but the embedding capacity is significantly reduced,
e.g., 56 bits for [36]. The perceptual quality of images produced by
these deep-learning-based methods is generally good, but the embed-
ding residual can be perceptible in large low-frequency regions of a
host image [36], and a sharp edge can be found blurred.

All the aforementioned watermarking and data-embedding methods
are designed for natural host signals, e.g., natural or continuous-tone
images. Unlike natural images, synthetic images such as chart images
typically comprise homogeneous color components. Spatial-domain-
embedding methods used for natural images are generally ineffective
for synthetic images since data embedding makes a homogeneous color
region no longer homogeneous after embedding, resulting in perceptible
embedding residual. Transform-domain-embedding methods are also
ineffective since a homogeneous region has only energy around zero
frequency. There is no middle or high frequency that can be modified
to carry information. To address the unique characteristics of synthetic
images, Masry [15] proposed a watermarking scheme for map and
chart images by modifying boundaries of homogeneous color compo-
nents. Designed for watermarking applications, this method can embed
only limited information, and thus is ineffective for data-embedding
applications that we focus on.

2.3 QR Code
Since its introduction in 1994 by Masahiro Hara [23], the QR code [41]
has been widely used to carry information for various applications.
The QR code is a machine-readable 2D barcode of black and white
cells. Inspired by the QR code design, Chartem has borrowed some
designs from the QR code, such as coarse and fine marks. On the other



hand, our scheme differs from QR codes in several critical ways: our
information carrying patterns are chart-dependent, faintly visible, and
interleaved with foreground regions that vary from one chart to another.
These key differences demand a very different approach.

3 CHARTEM

Chartem consists of two parts: an embedder to embed information into
chart images, and an extractor to extract embedded information from
chart images. Like traditional data embedding, Chartem faces three
main conflicting requirements or challenges:

Perceptual quality. A chart embedded with information should
not interfere with normal consumption of the chart.

Capacity. All desired information should be able to be embedded
into a host chart image.

Robustness. The embedded information should be correctly ex-
tracted after targeted processing and distortions.

These requirements are inversely related. It is generally more robust
when perceptual quality is lowered or capacity is reduced.

In viewing a chart, human’s attention is typically focused on fore-
ground components of the chart. To ensure perceptual quality, Chartem
modifies only background pixels to carry information while keeping
foreground components unchanged. To improve robustness, Chartem
packages input data into segments. Each segment can independently
determine if its extracted data is correct and complete. To balance
capacity and robustness, Chartem uses fountain codes [13] to generate
extra segments to embed whenever there is extra capacity. Any set of
recovered segments with the count equal to the number of segments the
input data is partitioned into can virtually recover the whole embedded
data. A chart image the extractor receives may have a different shape or
size from its original chart image, unknown to the extractor. Chartem
embeds two sets of synchronization marks, or simply marks, for the
extractor to register a received chart image to its original chart image.

3.1 Chartem Embedder
Fig. 1 includes a flowchart of the embedding process: Chartem detects
the background of a chart image, embeds coarse and fine synchroniza-
tion marks and bits of segments generated from packaging input data
and fountain coding, and adjusts the visibility of generated embedded
patterns via a weight. The resulting data-carrying chart image has the
same size as and looks nearly identical to the original chart image.
These processing steps will be described in detail in the following
subsections.

3.1.1 Background Detection
Background locations can be either passed to Chartem from a chart
creation tool or detected by Chartem. For good usability, foreground
components in a chart are typically visually distinctive from the back-
ground. This distinctiveness and the characteristics of chart images are
exploited to detect the background of a chart image:

First Chartem groups pixels into clusters by classifying a new pixel
into the cluster closest to it if the distance is within a threshold, de-
termined a priori by the expected spread of background pixel values,
or otherwise a new cluster. Each cluster maintains a histogram of its
pixels and a reference value equal to the center of the histogram bin
with the highest count. The distance of a pixel to a cluster is defined
as the distance of the pixel’s value to the reference value of the cluster,
and the distance between two clusters is defined as the distance of their
reference values. The reference value of a cluster is updated whenever
the cluster adds a fixed number of new pixels.

Then Chartem labels one cluster as background and remaining clus-
ters as foreground based on the cluster’s size, spatial shape and location
in the image, and distances to other clusters. The foreground is struc-
turally dilated. Isolated foreground pixels and small background regions
are removed. The resulting background is the background to find.

3.1.2 Coarse and Fine Synchronization Marks
After data embedding, a chart image may undergo size or shape changes
such as scaling. The extractor needs to register a received chart image
to its original size and shape before correctly extracting the embedded
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Fig. 2. The structure of a segment. Header consists of a marker (a), a
segment ID (b), CRC (c), and a status bit (d).

data. A general approach like in QR codes is to insert specially designed
marks at a preset distance to register a received image to the desired
size and shape. Unfortunately, this approach does not work for Chartem
since marks can be inserted only into background regions of a chart
image. Background regions vary from one chart to another. A fixed
location may not be available for all chart images to embed a mark.

To address this problem, Chartem embeds two sets of synchroniza-
tion marks: coarse marks for rough and fine marks for accurate estima-
tion of transformation parameters. These transformation parameters
are used to register a received chart image to its original shape and
size. Both marks have unique patterns that can be easily identified.
Fig. 1(A) and (B) show the coarse and fine mark patterns that Chartem
uses, respectively. The coarse mark is a pattern of 9 by 9 logical bits,
while the fine mark is a pattern of 7 by 7 logical bits. Their center ratios
along both directions are 1:1:1:3:1:1:1 and 1:1:1:1:1:1:1, respectively.

In its basic setting, Chartem inserts at least three and up to four
coarse marks at the corners of a rectangle within which data embedding
occurs. The rectangle can contain foreground components. In such
a setting, coarse marks indicate a bounding box of data-embedding
regions. This setting is not necessary since Chartem uses start and end
blocks to indicate where data blocks are located (Section 3.1.5). In
a general setting, the rectangle can be anywhere in a chart image, as
long as at least three coarse marks can be embedded at its corners. The
rectangle should be large enough to reduce potential estimation errors
at the extractor.

To embed fine marks, Chartem determines a grid of cell size h× v
logical pixels and its bias so that more fine marks can be embedded at
grid intersections in the background, where h,v ∈ A, and A is a set of
admissible values for a grid. Chartem selects A = {56,63}, which is
designed to uniquely determine, after image registration with coarse
marks, h or v of the grid used in a received chart image from two
detected fine marks up to 4 cells apart. Chartem requires inserting at
least three fine marks not aligned along a horizontal or vertical line.
More embedded fine marks improve robustness since the extractor may
miss some fine marks. In Fig. 1(c), six fine marks are embedded with a
grid of 56×56 logical pixels: one circled by the right red circle, one
on its left and two below it, and two more below the left red circle.

The synchronization marks are embedded into the background of a
chart image first. They are embedded in the same way as embedding
data, which is described in Section 3.1.5. Data is embedded into
remaining background regions.

3.1.3 Data Packaging
Information to be embedded can be arbitrary data. Input data is first
compressed losslessly to reduce its capacity requirement, and then
prefixed with 2 bytes to represent the length of compressed data. The
prefixed input data is then partitioned and packaged into segments.
Each segment can be extracted and checked correctness independently.
Such data packaging prevents error propagation from one segment to
another and thus improves the robustness of extraction.

A chart image may have extra capacity after embedding the segments
constructed from input data. In this case, we use fountain codes [13] to
generate an arbitrary number of segments to exhaust all the embedding
capacity of the chart image. Fountain codes are a class of erasure codes
that can generate a potentially unlimited number of segments from a set
of source segments such that the source segments can be fully recovered
from any subset of segments with the size equal to or slightly larger
than the number of the source segments. The fountain coding [37] used
in Chartem preserves input data. As a result, we refer to a segment
constructed from input data as a data segment and a segment generated
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Fig. 3. A data block sequence: start and end blocks at both ends, and
one or more data blocks in the middle. In a data block, there is a flip bit
(a), and the remaining (b-i) bits are data bits.

from fountain codes as a fountain segment in this paper.
A segment consists of header, payload, and parity, as shown in Fig. 2.

The header is composed of a marker to identify a segment header from a
bitstream, a segment ID for the index of the segment among all distinct
segments, a status bit to indicate if the segment is a data or fountain
segment, and a CRC (Cyclic Redundancy Check) code to check if
there is any error in the combination of the segment ID, the status, and
the payload. Payload contains data from user data for a data segment
or data generated by fountain codes for a fountain segment. Parity
contains error correction parity to correct errors in the combination of
the payload and the header excluding the marker in the header. In this
setting, the total number of distinct segments is limited by the size of
segment ID. When more segments can be embedded, Chartem reuses
existing segments.

3.1.4 Data Blocks

Bits in segments are partitioned into data blocks, which are then orga-
nized into block sequences. Each block sequence consists of a start
block, an end block, and one or more data blocks between them, as
shown in Fig. 3, and is embedded into a continuous background region
not taken by any synchronization mark. Each block comprises m×n
such as 3×3 logical bits. The start and end blocks are special blocks
with fixed bit patterns. They are used to identify a block sequence.

A data block contains a flip bit to indicate if the bits in the block
have been flipped or not, and the remaining bits are bits from segments.
When adding a data block to a block sequence, Chartem checks if the
start or end block is replicated. If replication occurs, the newly added
data block is flipped to eliminate the replication. In this way, there is
no replication of the start or end block in any block sequence.

3.1.5 Embedding Data

To embed a block sequence, each logical bit in the block sequence
is mapped into a preset block of, such as p× p, pixels. The block
size is determined by targeted applications. Mapping to a large block
of pixels increases robustness at the cost of reduced capacity. Based
on the logical bit value, Chartem assigns each pixel in the block a
color value slightly above or below the local average of background
pixels. The gap between pixels representing 0 and 1 of a logical bit is
a fixed factor times a weight. By adjusting the weight, we can adjust
the perceptual quality of data-embedded chart images. The larger the
weight is, the more visible the embedded patterns are. If logical bits
are randomly distributed, this embedding process preserves the local
average of background pixels. When moving up or down a specified
distance from a local average results in a value outside the valid value
range of pixels, Chartem shifts the assigned value back to the valid
range while preserving the gap between pixels representing 0 and 1.
After such shifting, the local average after embedding is slightly shifted
from the original local average.

In the implementation of Chartem, we convert a chart image into
the YUV color space, and embed information into Y-component while
leaving the UV components unchanged.

For each foreground component, we secure a buffer region of a fixed
width around the border of the foreground component as a transition
region. No data is embedded into any transition region. After em-
bedding block sequences to all available background regions, unused
background pixels, such as those in transition regions or background
regions too small to embed a block sequence, are assigned values in
the same way corresponding to random logical bit values except that
Chartem ensures no replication of the start or end block.
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Fig. 4. A flowchart of the data extraction process.

3.2 Chartem Extractor
Fig. 4 shows a flowchart of the data extraction process: the extrac-
tor detects background regions in a chart image, locates coarse and
fine marks to execute coarse and fine registrations of the chart image,
locates pairs of start and end blocks to identify block sequences and
extracts bits from their data blocks, detects and validates each segment,
performs fountain decoding, and validates the extracted data. To fa-
cilitate detection of coarse and fine marks and bit extraction, adaptive
binarization is used to enhance embedding patterns. These steps will
be described in detail in following subsections.

3.2.1 Detecting Background Regions
To detect background regions, the extractor applies the clustering
method described in Section 3.1.1 to cluster pixels inside a sliding
square window, typically of size in range [31,51], and then slides the
window to cluster new pixels coming into the window. After clustering,
it counts boundary pixels for each pair of clusters. If the maximum
count normalized by the image size is above a preset threshold, we
combine the two clusters of the pair into a single cluster and take it as a
candidate for background. This occurs when the embedding weight is
so large that pixels representing 0 and 1 are classified into two clusters.
Since pixels carrying 0 and 1 interleave with each other, their clusters
have significantly more boundary pixels than usual. The extractor then
determines a cluster as the background and the remaining clusters as
the foreground based on the cluster’s size, spatial shape and location in
the image, and distances to other clusters.

While embedder’s background detection tries to exclude foreground
pixels from the detected background to avoid touching foreground
pixels during embedding, the extractor’s background detection allows
some foreground pixels in the detected background to avoid missing
any embedded data. These foreground pixels and their impact will be
removed in subsequent procedures.

3.2.2 Adaptive Binarization
Binarization is needed in detecting coarse and fine marks and in extract-
ing embedded bits. Chartem adopts an adaptive binarization scheme for
potential lighting variation: It collects local distributions of background
pixels to determine the size of an adapting window, with background
pixels inside such an adaptive window being able to be considered as
quasi-static. Then Chartem moves the window over the image: the
window cannot cross any boundary of a large foreground region but can
contain small foreground regions. At each position, Chartem collects
the histogram of background pixels inside the window, removes pixels
whose values significantly outside the expected range of background
pixels, and applies the mode method [22] to determine a threshold,
which is robust to foreground pixels not excluded yet as long as their
ratio to the background pixels in the window is small. The threshold is
used to binarize the background pixels at the nominal center of the win-
dow, i.e., the center of the window at the position it should be located
if there were no large foreground regions in the chart image.

3.2.3 Detection of Marks and Image Registration
Coarse marks and fine marks are detected in the same manner. After bi-
narization of pixels in background regions, Chartem scans background
pixels to search for patterns that each matches the ratio of the mark to
be detected both horizontally and vertically across the center block of
the mark, with the outermost ring of the pattern, used as a guarding
buffer, excluded. For the coarse and fine marks shown in Fig. 1, the



ideal ratio to match is 1:1:3:1:1 for the coarse mark and 1:1:1:1:1 for
the fine mark. For each found pattern, Chartem checks if the exterior
shape of each layer of the pattern is nearly a parallelogram. If they are,
Chartem determines that the pattern is a mark to be detected.

Chartem detects coarse marks first. The center of an original coarse
mark is black. Chartem first uses centers of detected coarse marks to
determine black and white values of binarization. Then it uses detected
coarse marks to roughly register the received chart image. Since coarse
marks are arranged at corners of a rectangle at embedding, the detected
coarse marks are used to determine a perspective transform to convert
the received chart image into a rectangular shape. The horizontal and
vertical scales are then estimated from each converted coarse mark, and
their averages over detected coarse marks are calculated. The averaged
horizontal and vertical scales are then combined with the perspective
transform just applied to convert the received chart image into a chart
image roughly like the original image.

Chartem then detects fine marks on the roughly registered chart
image, determines the actual distances among detected fine marks,
and uses them to evaluate a more accurate perspective transform to
convert the received chart image into a chart image more accurately like
the original image. To facilitate data extraction to be described next,
Chartem actually registers a received image into a chart image of k
times the size of the original image, i.e., one original pixel is equivalent
to k× k pixels in the registered image.

3.2.4 Data Extraction
After the fine registration, each logical bit corresponds roughly kp×
kp pixels. Chartem first applies the adaptive binarization to convert
background pixels of the registered image to bipolar -1 and 1. It
then uses a template of kp× kp pixels, each of of value 1/(kp)2, as
a matched filter to scan all background pixels. In an ideal case, the
matched filter produces 1 or -1, corresponding to logical bit 1 and 0,
respectively, when the template is aligned with a block of pixels that
represents a logical bit, and the matched filter’s output is a maximum (or
minimum) along one direction, either horizontal or vertical direction, if
the logical bit is 1 (or 0) and its two neighboring logical bits on both
sides along the direction are both 0 (or 1). These facts are exploited to
detect values of logical bits and align them horizontally and vertically.

More specifically, Chartem applies a preset threshold to find all
locations whose absolute value of the matched filter output is larger
than the threshold. These locations are candidates of logical bit blocks.
Chartem then locate extremums (maximums or minimums) along both
directions and also along a single direction. To determine rows of
logical bits, Chartem locates rows with the number of extremums along
both directions and along the vertical direction above a preset threshold.
These rows are determined to be rows of logical bits. Chartem then
extends from these determined rows to determine other rows of logical
bits, based on the fact that the vertical distance of a row is about rp
pixels, fine-tuned with the locations of found extremums along both
directions and along the vertical direction close to the row. Chartem
determines locations of logical bits in each row in a similar way.

At the end of the above process, all logical bits are determined in
background regions of the chart image. Then Chartem applies the
patterns of start and end blocks to scan these logical bits to determine
potential locations of start blocks and end blocks, and determine each
matching pair of start block and end block that satisfies the conditions
at embedding. Each pair determines a block sequence, wherein data
blocks are determined, and raw bits are extracted.

3.2.5 Unpacking Raw Data
At the end of the last step, a stream of raw bits is obtained. Chartem
then applies the marker of a segment header as a matched filter to scan
the raw bit stream to locate positions whose output is above a preset
threshold. These positions are potential locations of segments. For
each potential segment, Chartem applies error correction to decode
the segment and then checks if CRC is correct. If both are successful,
Chartem determines that a segment is found.

Once all segments are determined, Chartem checks segments with
the same segment ID. If two segments with the same segment ID have

(B01) 

(B02) 
(B03) 

(L01) 

(L02) 

(L03) 

(P01) 

(P02) 
(P03) 

(S01) (S02) (S03) 

Fig. 5. Chart images used in our user study and experiments, including
bar charts (B01-B03), line charts (L01-L03), pie charts (P01-P03), and
scatter plots (S01-S03).

conflict, the one with the worse match of the header marker is dropped.
Then Chartem determines the largest segment ID of data segments and
the smallest segment ID of fountain segments to determine a potential
range for the number of data segments. Chartem tries each value in the
range to fountain-decode the payload data from survived segments. If
the decoding is successful, the embedded data is successfully extracted,
and the prefix length is used to determine the size of the input data. The
extracted input data is then decompressed and output.

4 EVALUATION

In our evaluation, we first carried out a user study to understand user
perception of embedded patterns with different weights. We then
conducted experiments to assess Chartem’s performance on embedding
capacity, extraction accuracy, and execution time. In addition, we
present a set of example results as supplementary material, which
demonstrate that Chartem can support a variety types of chart designs.

4.1 User Study

Chartem embeds data into background regions of a chart image by
adjusting background pixel values to form certain patterns to carry
desired information. As described in Section 3.1.5, Chartem uses a
parameter, weight, to determine the value Chartem moves a background
pixel from the local average to carry information. Weight determines the
distortion our data embedding brings to a chart image or equivalently
the visibility of our embedded patterns. The higher the weight is, the
more visible the embedded patterns are to humans, and at the same
time the more robust of the embedding. We conducted a user study
to understand human’s tolerance of embedding distortions and their
impact on aesthetics.

We recruited 22 participants (12 males and 10 females, 21-62 years
old, average age = 30.5) from a technology company and a university.
The participants included undergraduate and graduate students, profes-
sors, data analysts, researchers, program managers, software engineers
and salespersons. They were all general users who had more or less
experience of reading chart images to understand data in their daily
work and study. None of the participants reported vision impairment in
viewing the content on chart images.



4.1.1 Stimuli and Procedure
We prepared a set of 12 chart images shown in Fig. 5 for this user study.
These chart images were selected from the Internet to have a variety
of chart designs. Specifically, they are of four chart types: bar charts,
pie charts, line charts, and scatter plots. We consider these chart types
because they are the most frequently used ones in real world [9]. For
each chart type, we chose three chart images with different sizes and
chart styles. For example, we selected both vertical and horizontal
bar charts, included donut charts in addition to normal pie charts, and
covered not only single-series line charts but also multiple-series ones.

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 6. Embedding results with different weights. (a): original chart
image; (b)-(i): data-embedded chart images with weight = 6, 11, 17, 22,
27, 33, 63, and 93, respectively.

For each chart, we applied Chartem to create eight embedded chart
images, each embedded with the same data but using a different em-
bedding weight, as shown in Fig. 6 for a test pie chart. Specifically, we
selected eight levels of weight (i.e., 6, 11, 17, 22, 27, 33, 63, and 93).
These weights were selected using the following criterion: an added
weight should have perceptual difference from its adjacent weight when
examined closely. All embedded chart images, along with their original
images, are included as supplemental material.

Participants performed 12 trials. In each trial, participants were first
presented an original chart image, followed by eight embedded chart
images with different embedding weights. We asked participants to
rate each embedded chart image according to how much the embed-
ding patterns on background impact the overall aesthetic of the chart.
Participants responded using a 5-point Likert-scale ranging from ”High
Impact” to ”No Impact At All”. To avoid potential bias, the eight
embedded chart images were shown in a random order.

4.1.2 User Study Results
We received a total of 2,112 ratings (22 participants× 12 charts×
8 embedding wights). Fig. 7 shows 95% confidence intervals of mean
ratings for different chart types at each of the 8 embedding weights.

When weight increases, we observe a decreasing trend of ratings for
all the chart types, which verifies our hypothesis that a higher weight
leads to a lower acceptance by users. Specifically, the two highest
weights (i.e., 93 and 63) are not acceptable by participants with ratings
about 2.0 or below, while the three lowest weights (i.e., 6, 11, and 17)
all receive a rating above 3.5, indicating that they are well accepted
by participants. The other three weights (i.e., 22, 27, and 33) sit in
the marginal zone. The ratings on a same weight vary slightly with
different chart types. Generally, the ratings for pie and bar charts
are higher than line and scatter charts. This rating difference can be
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Fig. 7. Mean ratings and 95% confidence intervals per embedding wight
and per chart type, calculated via bootstrap (1 = High Impact; 2 = Impact;
3 = Neural; 4 = Not Impact; 5 = Not Impact At All).

explained by the distinct characteristics of different chart types: pie and
bar charts typically comprise large foreground components that quickly
attract human’s attention and are easier to understand, resulting in less
attention paid to the background when they are viewed. Line charts
and scatter plots, on the other hand, typically comprise smaller and
scattered foreground components that interleave much more extensively
with the background. A reader generally needs to pay more attention to
identify foreground components and understand the content of a chart
of these types, making embedding patterns more distractive.

The rating results show that when an appropriate weight is applied,
embedding distortions are totally acceptable to users, and do not impact
their effectiveness of reading chart images. Based on the results, we
further adopt 17, the highest among all acceptable weights, as the
default weight value used for Chartem data embedding. With this
setting, we hope to achieve a good balance that embedded patterns are
easy to detect by machines while remaining non-intrusive to readers.

4.2 Evaluation of Robustness, Capacity, and Runtime

We have implemented Chartem in C++ based on OpenCV [18] to eval-
uate the robustness, capacity, and runtime on the same set of chart
images used for the user study. Although these test charts all have
a popular white background, Chartem works on any chart with a flat
background of any color distinctly different from foreground compo-
nents. We include embedding examples of chart images with color
background in the supplemental material. The results and conclusions
obtained in this subsection are generally valid.

In our experiments, the default weight obtained from the user study
described in Section 4.1.2 was used, and the block size for each logic
bit described in Section 3.1.5 was set to 2×2, i.e., p = 2. In addition,
the header marker was set to 16 bits, Wirehair [37] was used as fountain
codes to recover data segments from extracted segments, and the Reed-
Solomon error correction [24] was selected for error correction within
a segment, with 5 bits for a symbol, 21 data symbols, and 10 parity
symbols. With this setting, the error correction can correct 5 erroneous
symbols or 10 erasure symbols, payload is of 11 bytes (i.e. 21×5−8−
8−1 = 88 bits), a segment has 171 bits (i.e., 21×5+10×5+16 =
171), and the combination of ID and CRC is 16 bits in total. If we
use 8 bits for segment ID and 8 bits for CRC, Chartem supports 256
distinct segments, and the maximum number of bits for input data (after
compression) is thus 2814 (= 256×11−2) bytes. If larger input data
needs to be supported, we can increase the size of segment ID, at the
cost of reduced error detection capacity by CRC. For example, if we use
10 bits for segment ID and thus 6 bits for CRC, 1024 distinct segments
can be supported, and input data in this case can be up to 56318 bytes.

4.2.1 Robustness

We first conducted experiments to evaluate Chartem’s robustness af-
ter typical operations on chart images, including scaling, screenshot,



Table 1. Precision and recall in percentage (%) of test chart images (Fig.
5) after randomly scaling up and then screenshotting (S+S) and rotations

Chart
S+S Rotating 30◦ Rotating −30◦

Precision Recall Precision Recall Precision Recall
B01 100.0 99.96 99.73 98.33 99.77 99.77
B02 100.0 99.97 98.25 94.21 99.72 97.03
B03 100.0 99.51 99.67 99.81 99.78 99.78
L01 100.0 99.96 99.59 99.60 99.71 99.71
L02 100.0 99.10 99.66 99.07 99.67 99.60
L03 100.0 99.36 99.39 98.67 99.34 99.30
P01 100.0 99.48 99.64 98.89 99.63 99.63
P02 100.0 99.94 99.72 99.75 99.73 99.73
P03 100.0 100.0 99.63 99.63 99.66 99.66
S01 100.0 99.98 99.27 99.27 99.35 99.35
S02 100.0 99.99 99.56 99.16 99.41 95.88
S03 100.0 99.90 99.60 99.60 98.41 99.48

Table 2. Precision and recall in percentage (%) of test chart images (Fig.
5) after JPEG compression with different quality-factor values

Chart
80 (default) 70 60

Precision Recall Precision Recall Precision Recall
B01 99.16 97.18 97.30 92.29 95.07 88.89
B02 99.18 98.00 97.92 97.22 95.96 86.91
B03 99.10 95.09 97.08 91.88 94.97 81.58
L01 99.19 98.21 97.39 91.20 95.31 81.08
L02 99.24 97.66 97.56 92.58 95.22 81.59
L03 99.20 97.38 97.66 87.15 95.74 78.35
P01 99.23 99.07 97.76 94.02 95.66 84.41
P02 99.28 98.92 97.66 89.71 95.87 84.85
P03 99.20 94.26 97.48 93.83 95.14 87.60
S01 99.06 98.41 97.35 91.94 95.96 83.67
S02 99.25 96.59 97.56 92.05 98.25 82.36
S03 99.12 96.43 97.85 92.72 95.97 83.13

rotating, JPEG compression, and brightness variations. In these experi-
ments, we generated random bits to embed without using any error or
erasure correction or data packaging (i.e., all 171 bits in each segment
were randomly generated) and then compared extracted bits with the
embedded bits to determine correctly extracted bits. We use recall and
precision to measure Chartem’s robustness. Recall is defined as the
number of correctly extracted bits divided by the total number of em-
bedded bits. Precision is defined as the number of correctly extracted
bits divided by the total number of extracted bits. The total number of
bits embedded into each chart image is listed as raw capacity in Table 3
and will be described in Section 4.2.2.

A data-embedded chart image was first saved into the PNG format.
Then we extracted the embedded bits from the saved image. This was
to test the robustness when a data-embedded chart image has not gone
through any distortion yet. All the test chart images got 100.0% for
both precision and recall.

The next experiment was to randomly scale up a data-embedded
image, screenshot the scaled image using Snipping Tool in Windows
[17], and extract the embedded bits from the captured image. This was
to mimic a typical process in which a user captures a digitally published
chart image, which may be scaled during the capturing process or
after being published. Columns 2 and 3 of Table 1 show the obtained
precision and recall for the test images. They all have 100.0% precision,
and their recalls are close to 100.0%.

To test robustness against rotations, an image was rotated at an angle
either anti-clockwise (a positive angle) or clockwise (a negative angle),
displayed on a screen, and screenshot. Extraction was then applied to
the screenshot image. Columns 4 to 7 of Table 1 show the results for
each test chart image after rotating ±30◦. Both precision and recall are
close to 100.0% for each test chart image.

To test robustness against JPEG compression, we used popular im-
age viewer software IrfanView [27] to convert an image into a JPEG
compressed image at different quality-factor values. Table 2 shows the
resulting precision and recall for each test chart image after JPEG com-
pression with the quality factor set to 80 (IrfanView’s default value), 70,
and 60. We can see from the table that the precision remains at about
95% or above while the recall decreases to around 80% or below when

the JPEG compression’s quality factor is lowered from the default 80 to
60. If the block size of a logic bit is increased from the current 2×2 to
4×4, at the cost of reduced capacity, the precision and recall are both
above 90% for each test chart image except images L03 and S03 even
when the quality factor decreases to 25. At block size 4×4, images
L03 and S03 cannot embed any data since neither one has a sufficiently
large background region to embed a single block sequence.

To test robustness against brightness variations, we conducted two
experiments. In one experiment, we linearly compressed pixel values
towards either 0 or 255 to leave enough room to respectively add 140
to or subtract 140 from each pixel to mimic brightening or darkening
an image. We got 100.0% for both precision and recall for all the test
chart images. In the other experiments, we compressed pixel values in
the same way to leave a room of 140 to add to or subtract from each
pixel, and then adjusted the value to add to or subtract from each pixel
in a linear manner along either horizontal or vertical direction such
that one side was 0 and the other side was 140. This was to mimic
gradual brightness changes. All the test chart images got 100.0% for
both precision and recall except S01 with 99.99% precision and 99.75%
recall when the value subtracted from each pixel changed linearly along
the vertical direction from 0 at the top and 140 at the bottom, and S02
with 100.0% precision and 98.58% recall when the value added to each
pixel changed linearly along the vertical direction from 0 at the top and
140 at the bottom.

Table 3. The image size, background ratio, and embedding capacity for
each test chart image (Fig. 5) (where S+S means randomly scaling up
followed by screenshotting and JPEG is of the default quality)

Chart
Size

Backgrd Capacity
Ratio Raw Input Data (bytes)

(pixels) (%) (bits) S+S JPEG
B01 480×480 84.06 30911 1978 1945
B02 750×563 81.42 46375 2979 2946
B03 791×444 62.43 24871 1560 1505
L01 1000×600 89.78 60023 3859 3738
L02 700×525 94.44 46487 2935 2649
L03 600×467 81.19 21575 1351 1307
P01 619×591 90.54 53879 3430 3155
P02 805×511 71.54 51511 3309 2968
P03 721×786 46.88 34767 2231 2187
S01 674×424 89.52 22383 1428 1406
S02 900×604 88.48 75215 4827 4596
S03 595×404 77.55 10879 691 647

4.2.2 Embedding Capacity
Another important performance metric is the amount of arbitrary binary
data that can be embedded into a chart image, i.e., embedding capacity,
which is inversely related to robustness studied in Section 4.2.1: increas-
ing robustness generally reduces capacity, and vice versa. Embedding
capacity of a chart image depends on the size and the distribution of
foreground components of a host chart image. Table 3 shows the size,
background ratio defined as the total number of background pixels
divided by the image size, raw capacity, and input data capacity for
scaling up and then screenshotting and JPEG at the default quality
for each test chart image. Raw capacity is the total number of bits of
all segments, including header and parity bits, embedded into a chart
image, while input data capacity is the maximum number of bytes of
arbitrary input data that can still be correctly extracted after the targeted
processing. For the specific setting of the experiments described at the
beginning of Section 4.2, a segment contains 171 raw bits but only 11
bytes of payload for input data. The latter is much smaller than the
former due to error correction and header information of a segment.

The capacity in Table 3 is for arbitrary binary input data, which is
after compressing user data in practical applications. The actual amount
of user data that can be embedded into a chart image depends on the
compressibility of the user data. For text input, lossless compression
can typically reduce to half of the original size, and thus the amount of
data to be embedded would be twice the capacity shown in Table 3.

As a rule of thumb, the larger the size of a chart image, the more data
the chart image can host. For chart images of the same size, the higher



ratio of background regions to the image size, the more embedded
data. Since a block sequence has to be embedded into a continuous
background region and a block sequence has a minimum of 3 blocks,
start and end blocks and at least one data block, a chart image with
large background regions can embed more data than a chart image with
scattered small background regions when they have the same image
size and background ratio.

Table 4. Execution time (s) for embedding: overall and major modules
Chart Backgrd Detection Sync Marks Data Overall
B01 0.128 0.070 0.062 0.276
B02 0.258 0.151 0.120 0.552
B03 0.209 0.105 0.084 0.421
L01 0.317 0.142 0.144 0.636
L02 0.357 0.101 0.092 0.572
L03 0.324 0.103 0.065 0.519
P01 0.276 0.079 0.097 0.476
P02 0.355 0.067 0.110 0.558
P03 0.328 0.174 0.134 0.670
S01 0.306 0.066 0.070 0.463
S02 0.451 0.124 0.153 0.758
S03 0.239 0.097 0.050 0.408

Table 5. Execution time (s) of overall and major modules for extracting
data from chart images after scaling up by 20% and then screenshotting

Chart Backgrd Detection Binarization Sync Marks Data Overall
B01 0.068 0.337 0.352 0.241 1.020
B02 0.243 0.611 0.595 0.396 1.876
B03 0.121 0.382 0.348 0.300 1.174
L01 0.172 0.925 0.900 0.635 2.666
L02 0.278 0.597 0.675 0.392 1.968
L03 0.421 0.410 0.413 0.257 1.529
P01 0.109 0.562 0.627 0.392 1.714
P02 0.249 0.502 0.553 0.385 1.716
P03 0.143 0.354 0.335 0.433 1.294
S01 0.334 0.454 0.388 0.296 1.498
S02 0.402 0.832 0.902 0.587 2.754
S03 0.435 0.353 0.217 0.207 1.234

4.2.3 Runtime
To measure runtime, we ran Chartem with a single thread on an ASUS
FL8000 laptop with Intel i7-8550U CPU @1.80GHz and 8GB memory
running 64-bit Windows 10. Table 4 and Table 5 show the obtained
overall runtime and its breakdown by major modules for both embed-
ding and extraction, respectively. The second column in both tables is
the runtime for background detection. In Table 4, the third column is
the runtime for finding an embedding rectangle and embedding coarse
and fine synchronization marks, and the fourth column for packaging
and embedding data. The overall embedding time ranges from 0.276s
to 0.758s for the test chart images. In Table 5, the third column is
the runtime for the adaptive binarization, the fourth column for detect-
ing coarse and fine synchronization marks and registering the image,
and the fifth column for extracting and unpacking data. The overall
extraction time ranges from 1.020s to 2.754s.

For both embedding and extraction, an image of a larger size and
with more background pixels generally has a longer overall runtime.
We note that the current implementation has not been optimized for
execution time. There should be a significant room to speed up.

5 SAMPLE APPLICATIONS

In this section, we demonstrate three sample applications that leverage
Chartem to create and consume charts with embedded information.

5.1 Chart Creation in Excel
To take advantage of Chartem’s ability to embed and extract informa-
tion, the first step is to build a convenient tool to help users embed
information into normal charts. One obvious choice is to build a stan-
dalone tool to ask users to directly provide a chart image and embed
information into it. However, we believe this is not ideal in terms of
user experience, as users need to leverage a proprietary tool. Instead,
we aim to integrate Chartem smoothly into the workflow of general

users. As a result, we have built an Excel add-in for Chartem, as Excel
is a powerful and widely used platform for analyzing data and creating
chart visualizations.

Specifically, users may follow their normal workflow to analyze
data and create chart visualizations accordingly with all the built-in
functions in Excel. Once a chart is created (Fig. 8(a1)), users can
directly click the Chartem button in the ribbon area. Then a side panel
(Fig. 8(a2)) will appear to help users embed information into the chart.
In this prototype application, we allow two types of information, both
are optional. The first one is the data table itself. Since Excel maintains
the data model that drives the chart visualization, we can directly collect
the data table from the model, instead of parsing the chart image. The
second one is a textual description. We allow users to directly provide
it in the side panel. Finally, we allow users to customize the embedding
weight, although a default value is provided. Once users complete
the configuration, they can click the Embed button, and an embedded
version of the chart is created and previewed in a pop-up dialog. Then,
users can either save the chart as an image to the file system or copy it
to the clipboard for use in other applications.

5.2 Customize Charts in PowerPoint
By design, PowerPoint is able to host charts generated by Excel. By
doing so, backend chart models can be maintained and used to support
a wide range of follow-up actions. For example, users can directly
revise the backend data, so that the chart visualization can be updated
automatically. In addition, users can also change the chart type or style
to make it more consistent with the theme of presentation. However, in
many cases when the chart visualization is imported as an image, all
these possibilities are lost.

In the second sample application, we demonstrate how to leverage
embedded information to empower chart images with the same flexibil-
ity in PowerPoint. Specifically, we have built a PowerPoint add-in to
convert a chart image generated by the previous Excel add-in to an ac-
tive chart object. For example, users can directly drag-and-drop a chart
image into PowerPoint (Fig. 8(b1)). Then, to further customize the
chart visualization, they can simply click the Convert to Chart button.
Our backend service first tries to recover all essential information from
the image, such as the backend data table and chart configurations. If all
the information exist, our add-in will replace the inserted image with its
equivalent of chart object (Fig. 8(b2)), so that users can take advantage
of the built-in features to freely customize the chart as needed.

5.3 Voice-Over on Mobile Phones
During the creation process, we allow users to embed a free-form text
into a chart image, which can be used to serve different purposes. For
example, we can integrate additional description to elaborate the chart
or essential description to help visually impaired users.

A voice-over mobile app is illustrated in Fig. 8(c). In this hypothet-
ical scenario, users may use the camera on a mobile phone to scan a
chart image (Fig. 8(c1)). Then the mobile app will try to extract the
textual information embedded in the image, and use a text-to-speech
program to convert the description to an audio clip and play it back
(Fig. 8(c2)). Currently, a desktop version of the application is imple-
mented, in which a chart image is loaded as a image file instead of
captured using cameras. However, we believe it is promising to directly
recover embedded information using a camera and a mobile app.

6 DISCUSSION

6.1 Machine Friendly Charts
As chart data is accumulating rapidly on the Internet, it has become
an important topic for machines to interpret chart images. There are
several intriguing motivations behind this idea. For example, users may
need to reprocess the data behind a certain chart, restyle or index a
chart, etc. However, since charts are originally designed to be read by
humans, they are not easy for machines to interpret. Many sophisti-
cated approaches have been proposed to involve computer vision and
machine learning techniques. Although they have achieved promising
preliminary results, there are still a lot of challenges to overcome in
terms of robustness and accuracy.
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Fig. 8. Sample applications: (a) A Excel add-in to help users embed information into typical charts; (b) A PowerPoint add-in to help users convert
chart images into chart objects; (c) A voice-over mobile app that reads embedded information.

In this work, we try to address this issue from the root, i.e., directly
creating charts that are friendly to both humans and machines. Specif-
ically, we do not aim to change human’s reading experience. People
can use charts in any ways that they are used to. On the other hand, we
piggyback information that can be efficiently and accurately consumed
by machines on top of chart images.

There are two unique advantages of this approach. First, since the
extracted information can be guaranteed completeness and accuracy, it
is more robust and direct compared with previous machine-learning-
based approaches. Second, since machines do not rely on chart visuals
to collect any information, this method works for different chart types.
Therefore, it has the potential to be a new form of charts to replace
existing chart visualizations, as it maintains the human experience
while providing opportunities for more applications.

6.2 Opportunities for New Applications
As discussed in Section 1 and Section 2.2, there are several ways to
embed information. For example, we may directly overlay information
(e.g., QR code) on a chart, insert information into image files, encode in-
formation using the frequency domain, etc. Among all these candidates,
we choose to embed information into the background area of a chart
for two reasons. First, we aim to minimize interruptions to the reading
experience. According to the user study reported in Section 4.1.2, most
participants felt comfortable when reading the charts generated by our
method, since chart backgrounds are generally not their foci and our
embedding patterns are barely noticeable. Second, the information
needs to be associated with chart images instead of files, since charts
may be screenshot or saved in different formats.

In addition, since the embedded information is highly customizable,
it can provide more flexibility to downstream applications. We have
illustrated two examples in Section 5. However, we believe there are
much more scenarios that can take advantage of this technique. For
example, creators can embed encrypted confidential information into
a chart. Then, only authorized users can use a mobile app to scan
the chart and provide a password to decrypt the extracted information.
We can also use the technique to enable AR-like experiences. For
example, users may use a mobile device to see animations by pointing
the camera at a chart with proper information embedded, which is a
valuable complement to traditional static charts.

However, to make general users benefit from our approach, it is
required to vastly distribute the chart embedder and extractor. Ideally,
they can be integrated into mainstream software, as demonstrated in
Section 5. Otherwise, charts with embedded information simply regress
to normal charts without providing any benefits at all. Considering
this situation, we believe machine-learning-based approaches are still
prevalent and valuable for the foreseeable future.

6.3 Limitations
Chartem makes charts accessible to machines, which may greatly ex-
pand the scope of applications. At the same time, it is also subject to
several restrictions and limitations.

The first limitation is about embedding capacity. Chartem requires a
minimum background size to embed information. A valid embedding
pattern includes at least three coarse marks, three fine marks, and a
block sequence of a minimum of 3 blocks (for data, start, and end,
respectively). This requires a minimum background size to embed.
When a chart image does not meet this minimum requirement, no data
can be embedded at all. In addition, if background regions are too
small, it may also fail to embed all desired data. There are several
ways to address the insufficient capability issue. For example, it is
possible to combine the technique used in [15] by also embedding data
at boundaries of foreground components to complement Chartem’s
background embedding. In addition, if the foreground also contains
large areas of solid colors (e.g., in a typical treemap), we can also
embed into foreground regions with a control of its embedding noise to
make the perceptual quality acceptable for targeted applications. This
foreground embedding complements Chartem’s background embedding
well and can significantly increase the embedding capacity. Finally, it
is also possible to store the actual information in the cloud and embed
the corresponding url address in the chart image instead. However, this
approach requires Internet access when extracting information.

The second limitation is related to information robustness. Chartem
embeds a bit by adjusting a block of pixels above or below the local
average. Extracting the bit requires estimating the local average. To
reduce estimation error, Chartem requires that background should be
relatively smooth locally. If background of a chart image is not smooth,
the estimated local average may be significantly affected by distortions
to local pixels brought by an operation on the chart image such as scal-
ing and thus inaccurate, hence damaging the information robustness.
However, charts in the real world may have a much more complex or
hostile background. For example, they may have noisy backgrounds
or natural images as backgrounds, which are difficult for Chartem
to embed information since Chartem is designed for charts with ho-
mogeneous backgrounds. For such complex backgrounds, traditional
image-data-embedding methods can be adopted to embed information
into background regions. Traditional image data embedding comple-
ments Chartem well for various backgrounds charts may use.

7 CONCLUSION

We presented a novel solution, Chartem, to unlock information locked
in charts, typically published in bitmap images that are unfriendly to
machines, and enrich chart applications. Chartem is based on data em-
bedding: chart data and information and/or generic data that enriches
user experiences can be embedded into background regions of a chart
image. Foreground regions are untouched to ensure a good percep-
tual quality after embedding yet maintain a large capacity and good
robustness. Our user study and performance experiments indicate that
data-embedded chart images are well accepted and Chartem is robust
with relatively high capacity. We presented several prototype applica-
tions to demonstrate the utility of Chartem. In addition to extracting
chart data and information to revive a chart image, Chartem opens the
door for many more potential applications around chart images.
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