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Abstract
The attention-based Transformer model has achieved promis-
ing results for speech recognition (SR) in the offline mode.
However, in the streaming mode, the Transformer model usu-
ally incurs significant latency to maintain its recognition accu-
racy when applying a fixed-length look-ahead window in each
encoder layer. In this paper, we propose a novel low-latency
streaming approach for Transformer models, which consists of
a scout network and a recognition network. The scout network
detects the whole word boundary without seeing any future
frames, while the recognition network predicts the next sub-
word by utilizing the information from all the frames before the
predicted boundary. Our model achieves the best performance
(2.7/6.4 WER) with only an average of 639 ms latency on the
test-clean and test-other data sets of Librispeech.
Index Terms: online speech recognition, adaptive look-ahead,
streaming model

1. Introduction
Recently, there has been a surge of end-to-end (E2E) automatic
speech recognition (ASR) models, including the connectionist
temporal classification (CTC) [1, 2, 3], the RNN-Transducer
[4, 5, 6] and the attention-based encoder-decoder (AED) mod-
els [7, 8, 9, 10] due to their simple training procedure, desirable
decoding efficiency and promising performance on large-scale
speech benchmarks. In particular, the Transformer model [11]
has been successfully applied to the E2E ASR, which enjoys
faster training and better performance compared with RNNs.
However, it is nontrivial to apply Transformer in an online
recognition system due to the global encoder-decoder attention
mechanism and the self-attention encoder, which requires the
entire utterance. To solve the first problem, Transformer based
monotonic chunkwise attention (MoChA) [12] and trigger at-
tention mechanism (TA) [13] have been proposed to replace the
global encoder-decoder attention. Regarding the streaming en-
coder, existing approaches can be categorized into look-ahead
based method [13, 14] and chunk-based method [15, 12, 16, 17],
as shown in Figure 1(a) and Figure 1(b). The former sets a look-
ahead window for each frame to incorporate the necessary con-
text information. However, latency will increase linearly with
the number of layers. The chunk-wise approach segments the
utterance into several fixed-length chunks and feeds them to the
encoder one by one. There are always overlaps between chunks
to improve the performance. However, this hurts the training
parallelism of self-attention layers, and degrades the recogni-
tion accuracy when the chunk size is small.

In this paper, we propose an adaptive look-ahead approach
to trade-off latency and WER, where the context window size is
modified dynamically. We hypothesize that the most valuable

contextual information to produce an output token is from the
speech segment which corresponds to this word. Therefore, we
introduce a neural component to detect the boundaries in the
speech where a word starts and stops. We refer to this compo-
nent as the scout network (SN), with a metaphor as a scout sent
out ahead of the main force to gather the valuable information.
Then the recognition network (RN) only looks ahead the frames
up to the detected word boundaries. In this way, the recognition
latency is not fixed but dependent on the duration of words and
the segmentation performance of the SN.

To train the SN, we formulate it as a simple sequence label-
ing problem, where each frame is classified as either a bound-
ary or not. We use the force-alignment results as ground truth
to train the network. SN does not see any future information for
the boundary detection. Hence, there is no additional latency
overhead in the SN. After the word boundaries are detected,
any end-to-end (E2E) model can be employed as the RN. In
this paper, we use the TA based Transformer model [13] as the
RN to conduct frame-synchronous one-pass decoding by look-
ing ahead to the detected word boundaries.

Our experiments are conducted on Librispeech benchmark
[18]. The results show that our proposed method can not only
significantly reduce the latency, but also achieve the state-of-
the-art recognition quality. Our base model with 78M param-
eters and large model with 138M parameters achieve 2.9/7.4
and 2.7/6.4 on test-clean and test-other datasets. To understand
the effect of our proposed SN, we conduct experiments to an-
alyze the relationship between the word error rate (WER) of
the RN and the threshold in the SN. Experiments show that the
higher threshold of the prediction precision (with lower recall
of the boundaries and higher latency), leads to better recogni-
tion quality. The latency and the quality of the recognition can
be balanced with the precision threshold of the SN.

2. Background

2.1. Transformer ASR

Transformer achieves promising results in ASR [19, 20]. Given
a T -length speech feature sequence X, the encoder transforms
it to an intermediate representation H, then the decoder pre-
dicts the following word yi based on H and previous out-
puts Y[1:i−1]. The Transformer encoder consists of a convo-
lution block and Ne encoder blocks, each of which has a multi-
head self-attention layer and a feedforward layer. The decoder
is composed of Nd decoder blocks, including a self-attention
layer, an encoder-decoder attention layer and a feed-forward
layer. Multihead attention mechanism is proposed, where in
each head, weights are formed from queries (Q ∈ Rd) and
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Figure 1: A comparison between three Transformer based streaming models.

keys (K ∈ Rd) and then applied to values (V ∈ Rd) as

Multihead(Q,K,V) = Concat(head1:m)Whead (1)

where headi = softmax(
QWqW

T
k KT

√
d

)VWv (2)

Q, K and V have the same dimension d. m is the number of
attention heads. Residual connections and layer normalization
are applied for each block.

2.2. Streaming ASR

To build a streaming AED based ASR system, both the encoder
and the decoder are allowed to access limited future context.
For the Transformer encoder, the self-attention mechanism pro-
vides a flexible way to control the range of context by mask-
ing the attention scores [13, 14]. However, the receptive field
and latency will increase linearly with the number of layers.
As shown in Figure 1(a), suppose the right look-ahead win-
dow size is wr , the latency is Ne × wr frames. Motivated by
Transformer-XL [21], other works [12, 15, 16, 17, 22] use a
chunk-wise approach, where the entire utterance is segmented
into several fixed-length chunks as shown in Figure 1(b).

In terms of the decoder, the key is to learn the online mono-
tonic alignments. [23, 24] restricts the range of the attention to
a fixed-size window with position determined by previous at-
tention distribution. Monotonic chunkwise attention (MoChA)
[25] and its extension [17, 26] use a trainable energy function to
shift the window. [22] applies it to multi-head encoder-decoder
attention. [27] proposes trigger attention where a CTC module
triggers the computation of the attention.

In this work, we use a Scout Network to detect word bound-
aries, enabling the encoder and the decoder to have an adaptive
right context window. We believe the context window to the
word boundary provides the most useful information for recog-
nition and brings a better tradeoff between latency and accuracy.

3. Method
3.1. Scout Network

The purpose of the SN is to perform word boundary detection.
In principle, SN can be implemented using any type of neural
networks, while in this work, we use a similar architecture as
the ASR encoder. It uses CNN as the pre-processing layer with
a sampling rate r, followed by Ns self-attention layers. Given

the acoustic input sequence X = (x1, . . . ,xT ), in each self-
attention layer, the output of the current frame i is conditioned
only on the previous states, so that there is no additional latency
incurred in the SN. We denote the output hidden sequence as
HS = (hs

1, . . . ,h
s
T ′), where T ′ = dT

r
e. Then a linear layer

and a sigmoid layer predicts a boundary probability pi. We train
the SN by minimizing the cross-entropy loss as:

LSN =
∑
T ′

bilog(pi) =
∑
T ′

bilog(Sigmoid(Whs
i )) (3)

where bi ∈ {0, 1} is the ground truth of the boundary deci-
sion. In this work, we used the Montreal Forced Aligner [28]
to perform word-level force-alignment and obtained the labels.
During inference, we set a threshold σ ∈ (0, 1) to determine
whether a frame is a boundary or not. Once pi ≥ σ, we denote
the i-th frame as a boundary. σ is tuned on the validation set.

3.2. Streaming ASR with the Scout Network

3.2.1. Recognition Network Training

For the recognition network encoder, the CNN pre-processing
block is the same as in the SN. Thus, RN and SN have the same
downsampling rate. During training of RN, we sample b̃ ac-
cording to the probability p produced by the SN as the predicted
boundary. Suppose b̃gj = 1 is the j-th predicted boundary, we
note gj as the end time tag of the j-th word. Then we update
the i-th hidden state in l-th self-attention layer as follows:

h̃l
i = Multihead(hl−1

i ,Hl−1
[1:gj ]

,Hl−1
[1:gj ]

) (4)

where i ∈ (gj−1, gj). The i-th state can only access the states
up to the time step gj . Hl−1

[1:gj ]
is regarded as key and value.

It can also be seen as chunk-based encoder where the chunk
size is adaptive and there is no overlap between chunks. During
training, we rely on the mask strategy to avoid the model seeing
context after the gj-th frame.

We can use any type of the streaming decoder in our
recognition network such as MoChA or Triggered Attention
(TA) [27]. In this work, we used TA with an adaptive look-
ahead window in the decoder. Once the CTC predicts a token
yk at frame i (i ∈ (gj−1, gj)), the decoder is triggered and the
encoder-decoder attention is computed based on the segment of
encoder output states H[1:gj ]. It should be noted that j may
not equal to the ground truth boundary due to prediction error
of SN and that one word may tokenized to several tokens. We



weighted average the CTC loss and the seq2seq loss to train our
model as:

L = −γ logPs2s(Y|X)− (1− γ) logPctc(Y|X). (5)

where Ps2s(Y|X) =
∑
yj∈Y

Ps2s(yj |Y[1:j−1],H[1:gj ]) (6)

We set γ as 0.7 in this work. The model is initialized from an
offline Transformer and fine-tuned in a streaming manner.

To train the decoder, the alignment between CTC paths and
the label sequence Y is required. Different from [13] which
performs Viterbi alignment during training, we used the path
with the highest Viterbi alignment score generated by the pre-
trained offline model to trigger the decoder.

3.2.2. Decoding

Algorithm 1 Streaming Transformer Decoding with Scout Net-
work

1: procedure SCOUT-THEN-DECODE(X, K,σ, σ0, λ, α, β )
2: k ← 0, gk ← 0
3: `← (〈sos〉, ), Ω← {l}
4: for i = 0 to T do
5: pi′ ← SN(xi), i′ ← i

r
. Scout Boundary

6: if pi′ > σ then
7: k ← k + 1, gk ← i′

8: H[gk−1+1:gk] ← ENC(X[1:i])
9: Ω, pjoint ←DECODE(Ω, H[1:gk], gk−1 + 1, gk,
K, σ0, λ, α, β)

10: return MAX(Ω, pjoint, 1)

11: procedure DECODE(Ω, H, start, end, K, σ0, λ, α, β)
12: Ω̂ta ← ∅
13: for j = start to end do
14: Ωctc, pctc ← CTCPREFIX(Ω, σ0,hj)
15: for ` in Ωctc do
16: if ` not in Ω̂ta then
17: pta(`)← Ps2s(`|H)

18: add ` to Ω̂ta

19: plocal(`)← log pctc + αlog pLM + β|`|
20: pjoint(`) ← λlog pctc + (1 − λ)log pta +

αlog pLM + β|`|
21: Ωlocal ← MAX(Ωctc, plocal,K) . Beam Pruning
22: Ωta ← MAX(Ωctc, pta,K)
23: Ωjoint ← MAX(Ωctc, pjoint,K)
24: Ω← Ωlocal ∪ Ωta ∪ Ωjoint

25: return Ω, pjoint

Algorithm 1 gives the decoding procedure for streaming
Transformer with the Scout Network. The hyper-parameters
used by the function include beam width K, boundary decision
threshold σ, CTC decoding threshold σ0, CTC decoding weight
λ, language model weight α and length penalty β. In the 2nd
line of the algorithm, we first initialize the index of speech seg-
ment k = 0 and the end boundary of the k-th segment gk. The
hypothesis set Ω is initialized in line 3 with the prefix sequence
` containing only the start of the sequence label 〈sos〉. In line
4-6, the frame-level feature is fed into the Scout Network and
an instantaneous decision is made by threshold σ. Once a word
boundary is detected, the ASR decoding is triggered at line 8-9.

The DECODE function shown from line 11 to 25 is simi-
lar to the decoding scheme in [13] with a small modification

Table 1: An example of the accuracy evaluation for the Scout
Network. E′ and E are downsampled positions.

Y it gave an imposing appearance to
most of the wholesale houses

E′ 7 12 14 28 42 45 52 54 56 ** 68
E 7 12 15 28 42 45 52 ** 56 61 68
evaluate sub del ins
word latency (ms) 30 30 70 30 30 30 30 110 30 – 30

in beam pruning. In line 14, we perform the CTC prefix beam
search [29] based on the current encoder state hj and prefix set
Ω, generating candidates set Ωctc. Then the trigger attention de-
coder scores every candidate. To avoid duplicated computation,
we store all the scored candidates in Ω̂ta. In line 19 to 20, a local
score and a joint score are assigned to each candidate. Then we
select the top-K candidates based on local score, attention score
and joint score respectively, and combine them as the hypoth-
esis set for the next step. When the process finishes, we select
the prefix with the highest joint score as the decoding output.

4. Experiments
4.1. Setup

We performed our experiments on the LibriSpeech dataset [18],
which contains 960 hours of audio in the training set. We use
dev-clean as the validation set and report results on the test-
clean and test-other sets.

Our approach is implemented based on ESPnet [19]. We
used 80-dim log Mel-filter bank features with 3-dim pitch fea-
tures [30] with 10ms sampling rate. The text is tokenized using
SentencePiece [31] and we set the vocabulary size to 5000. We
evaluated our method in two settings, the Base setting and the
Large setting. For the Base setting, we used the same architec-
ture as [13] with dmodel = 512, dff = 2048, dh = 4, Ne =
12, and Nd = 6 for a fair comparison with previous works. We
used the released Transformer model provided by ESPnet as the
pretrained offline model. For the Large setting, we used the ar-
chitecture described in our previous work [32] with Ne = 24
and Nd = 12. For both settings, the down-sampling rate r is
4, so that the self-attention layers operate at the sampling rate
of 40ms per frame. We updated the SN using the Adam opti-
mizer with a learning rate of 0.001. The RN was trained using
a warmup step of 2500 and a learning rate coefficient of 1.0
following the schedule in [11]. SpecAugment [33] is applied
following the recipe in ESPnet. We run the fine-tuning stage for
about 20 epochs. For decoding, we averaged the last 5 check-
points as the final model. For decoding hyper-parameters, we
set K = 10, σ0 = 0.0005, λ = 0.5, α = 0.5, β = 2.0 as in
Algorithm 1. The N-best was re-scored using an LSTM lan-
guage model provided by ESPnet.

4.2. Scout Network Evaluation

We first evaluate the accuracy of the Scout Network for word
boundary prediction. Given a predicted boundaryE and a refer-
ence boundaryE′ from the force-alignment, we use the edit dis-
tance as the metric, which can be decomposed into substitution
(sub), deletion (del), insertion (ins) rates. An example is given
in Table 1. In Table 2, we show the validation results of dif-
ferent number of layers Ns and threshold σ. We observe a high
precision but a low recall with a high threshold such as σ = 0.9.
And not surprisingly, a shallower Transformer degrades the ac-
curacy of the SN slightly. To draw the connection between the



Table 2: Segmentation Evaluation on the dev clean dataset.
Precision can be estimated as (1.0 - sub - ins) and recall can
be estimated as (1.0 - sub - del) The first two columns are aver-
aged per frame time cost.

Ns GPU CPU σ sub del ins
0.5 0.13 0.072 0.019

12 11.1ms 29.8ms 0.7 0.08 0.21 0.006
0.9 0.003 0.426 0.001

8 7.4ms 19.7ms 0.9 0.025 0.514 0.001
4 3.7ms 10.6ms 0.9 0.024 0.562 0.001

Figure 2: The distribution of segment length for different thresh-
olds. The blue area shows the density. The deep blue lines are
the mean values. The white markers represent the median val-
ues and the black vertical lines is the interquartile ranges.

threshold and the latency of the recognition network, we fur-
ther evaluate the distribution of the segment lengths on the joint
test sets, which is shown in Figure 2, where we used the base
SN with Ns = 12. For each segment, the length is computed as
(gj−gj−1)×40ms, where gj is the predicted end boundary. As
shown in the figure, even with a threshold of 0.9, there are still
50% segments shorter than 480ms and 75% segments shorter
than 920ms. Though some segments have a length longer than
2s, we can apply a threshold to control the maximum segment
length. We also show the computation time for a Scout Network
to process each frame when running on a P40 GPU and 24 cores
Intel(R) 2.60GHz CPU in Table 2. Since the duration of each
frame is 40ms, the Scout Networks can run faster than real-time
on either GPU or CPU in our experiments.

4.3. Recognition Results

To measure latency, we define two metrics without consider-
ing the computation time, namely the frame-level latency and
the word-level latency. The frame-level latency is defined as
how many future frames are consumed for prediction at each
timestep i, which is same as that in [13]. For our model, it
is computed as (gj − i) × 40ms + 30ms (from CNNs), where
gj−1 < i ≤ gj . Word-level latency is defined as the time
difference between the actual end boundary and the end bound-
ary produced by SN. For words whose boundaries are predicted
correctly, their word-level latency is 30ms. For words whose
boundaries are missed or predicted after the reference bound-
ary, we compute the distance between the next boundary gj and
the real boundary g′j as (g′j−gj)×40ms + 30ms.1 An example

1The latency is computed in word-level. As the SN is latency-free,
the reported result is total latency of our system.

Table 3: The comparison with literature baselines and reim-
plemented baselines. The offline AED models adopt hybrid
CTC/Attention decoding algorithm. ∞ denotes the whole ut-
terance. We reproduce the TA baselines with our decoding al-
gorithm, marked with *.

Models WER latency(ms)
clean other frame word

Base setting (∼78M)

Contextual [22] 4.6 13.1 ∞
TA (78M) [13] 2.7 6.1 ∞
TA-1 3.2/3.4* 8.2/9.5* 750
TA-2 2.9/3.0* 7.8/8.5* 1230
TA-4 2.8 7.3 2190
Our method offline 2.7 5.9 ∞

+SN-12 σ=0.5 3.5 9.4 317 63
+SN-12 σ=0.7 3.3 8.5 404 133
+SN-12 σ=0.9 2.9 7.4 619 338
+SN-4 σ=0.9 2.8 7.1 844 546
+golden 2.1 5.3 299 30

Large setting (∼140M)

Transducer [14] 2.4 5.6 ∞
Transducer-2 3.0 7.7 1080
Transducer-6 2.8 6.9 3240
Our method offline 2.2 5.2 ∞

+SN-12 σ=0.9 2.7 6.4 639 352

is shown in Table 1. We report the average latency.
We compare our method with the approaches from the lit-

erature in Table 3. Contextual Block [22] system uses a chunk-
based encoder with a contextual embedding to utilize global in-
formation and a decoder with global attention. The TA system
[13] adopts a look ahead based encoder and a trigger-attention
based decoder. In Large setting, [14] proposes Transformer
Transducer with look-ahead based speech and label encoders.

In the base setting, we present model performance across
different thresholds of the SN. Compared with TA baselines,
our model with SN-12 and thresholds 0.9 can achieve a simi-
lar WER with their best model while reducing the latency from
2190ms to 619ms. Model with SN-4 achieves better WER but
sacrificing latency. We can see that the higher segmentation
threshold (less substitution and insertion segmentation errors),
lower the WER. Tuning the threshold can give us more room for
potential WER and latency tradeoffs. We also show the results
when the golden segmentation is obtained. The result is sur-
prising as it even outperforms the offline model. In the Large
setting, our model has lower WER and lower latency compared
with Transformer Transducer [14], which to our knowledge is
the state-of-the-art results for streaming E2E ASR system on
the LibriSpeech benchmark.

5. Conclusion
We propose a new strategy for E2E speech recognition model
where a scout network detects the current word boundary and
then a recognition network conducts frame-synchronous one-
pass decoding by looking ahead to the predicted boundary. Our
method produces a good tradeoff between WER and latency. It
achieves 2.7% and 6.4% WER score on test-clean and test-other
sets with an average of 640ms frame latency and 352ms word
latency, which to our knowledge is the best publisted results for
E2E streaming ASR model on LibriSpeech benchmark.
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