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ABSTRACT

Although mask based adaptive beamforming technique benefits
speech recognition in far-field, noisy and multi-talker scenarios, it
depends on the long time context to estimate target and interfer-
ence statistics, thus when applied in applications with low latency
requirement, its performance usually drops drastically. In contrast,
the fixed beamformers do not import time delay but usually have
limited capability in acoustic cancellation of interfering source. In
this work, we propose a novel multi-channel speech separation sys-
tem that targets at overlapped speech recognition with low latency
processing, which includes four jointly optimized components: a
pre-separator, a set of fixed beamformer, an attentional selection
module and neural post filtering. With proposed model, low latency
processing is achieved by utilizing the known microphone geometry
information, while keeps the high quality separation through neural
post filtering and end-to-end optimization. In our experiments, we
show that the proposed system achieves comparable performance
in offline evaluation with the mask based MVDR and speech ex-
traction system, while yield remarkable improvements in the online
evaluation.

Index Terms— multi-channel speech separation, robust speech
recognition, speaker extraction, source localization, fixed beam-
former

1. INTRODUCTION

Deep learning approaches have brought remarkable progresses to
speaker-independent speech separation in the past few years [1, 2,
3, 4] and the consistent improvements of the separated signal qual-
ity are reported on the benchmarking dataset such as WSJ0-2mix[2].
However, multi-talker speech recognition is still remained as a chal-
lenging problem [5].

Speech separation is a common practice to handle the over-
lapped speech. Existing efforts in overlapped speech recognition
can be roughly categorized into two families: on building a ro-
bust separation system as front-end processor for automatic speech
recognition (ASR) tasks [6, 7, 8, 9, 10, 11, 12] , or directly train a
special multi-talker awared acoustic model [13, 14, 15, 16, 17, 18].
Although better performance is usually expected by the end to end
training with acoustic model, the separately optimized front end
processing is usually preferable in real world applications such as
meeting transcription [19] for two reasons. Firstly, in conversation
transcription systems, the individual front end module benefits mul-
tiple acoustic component including speech recognition, diarization
and speaker verification. Secondly, the industrialized acoustic model
is often trained with large amount of data and highly engineering
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optimized, thus changing the training scheme might potentially in-
troduce performance disturbance and will result in long developing
cycle.

In [19], the author introduced the application of speech sepa-
ration in an advanced conversation transcription system, where a
multi-channel separation network, namely speech unmixing net-
work, is trained with permutation-invariant training (PIT) criteria
[1]. The speech unmixing continuously separate the input audio
stream into two channels, ensuring each channel only contain at
most 1 activate speaker. The mask based MVDR is introduced as
post processing, for better speech recognition performance.

Although the speech unmixing significantly boosts the transcrip-
tion accuracy, it requires long processing latency, i.e. more than
1.2s in [19], as MVDR beamformer usually requires long context
for accurate estimation of spatial statistics for each frequency. To
overcome this, a solution named unmixing-fixbeam-extraction (UFE)
was introduced in [20]. In UFE, the adaptive beamformer in speech
unmixing system was replaced by a set of pre-defined beamformer
and a sound source localization (SSL) based beam selection algo-
rithm. To further increase the separation power, the speech extrac-
tion model introduced in [9] was applied to post filter the selected
beams. The UFE system has been shown to have comparable perfor-
mance, while significantly reduce the processing latency from 1.20s
to 0.38s.

As a subsequent work of [20], in this paper, we propose a novel
end-to-end structure of UFE (E2E-UFE) model for robust ASR,
which possess the low latency natural of the UFE, but achieved
improved performance by an end to end optimization scheme of the
whole UFE processing.

The E2E-UFE model follows the same “separation-selection-
filtering” scheme as original UFE, with several updates introduced to
enable the end to end training. Firstly, as the original sound source
localization step was not differentiable, which is replaced by a set
of pre-calculated angle feature sampling across the space. Then we
propose an attentional selection module between the pre-separation
mask embedding, and the pool of fixed beamformer output and an-
gle feature pool. Finally, the PIT training is applied on the filtering
output, to enhance the performance of close speaker pairs.

The performance of the E2E-UFE is evaluated in both online
and offline mode. The experiments conducted on the simulated and
semi-real two-speaker mixtures show comparable results with the
UFE system and mask based MVDR beamformer in the offline eval-
uation while yield significant WER reduction in the online mode,
respectively.

The rest of the paper is organized as follows. In Section 2, we
briefly reviewed the cascaded UFE system. In Section 3, the E2E-
UFE structure is proposed to joint model source localization, un-
mixing and extraction network. The experimental settings, training
details, evaluation scheme, performance results and analysis will be
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Fig. 1. Overview of the UFE system. F , B, A and SSL denote
short-time Fourier transform (STFT), fixed beamforming, angle fea-
ture computation and SSL algorithm, respectively. MU

i and ME
i

represent the TF-masks of the i-th speaker generated by unmixing
(U) and extraction (E) network. Ai and BM

i denote the angle feature
and the selected beam given the speaker direction θi. The unmixing
and extraction model are trained independently.

discussed in Section 4.

2. OVERVIEW OF UFE SYSTEM

The outline of the UFE pipeline is depicted in Figure. 1, which con-
sists four major components, the fixed beamformer, sound source
localization (SSL), speech unmixing and location based speech ex-
traction.

The Xc,tf is firstly processed by the speech unmixing module,
resulting two speaker masks, denoted as Mi,tf , where i indexes the
speaker, c refers the channel index, t, f index the time and frequency
axes.

Then the sound source localization module is applied to estimate
the spatial angle corresponding to each separated source, which is
achieved with TF-masks weighted maximum likelihood estimation
[20]. The direction of the i-th speaker is estimated via finding a
discrete θ sampled from 0◦ to 360◦ that maximizes the following
log likelihood function:

L(θ, i) = argmax
θ

−∑
t,f

Mi,tf log(1−
|yHt,fhθ,f |2

1 + ε
)

 (1)

where hθ,f is the normalized steer vector on each frequency band f
given for each angle θ.

Meanwhile, a set of fixed beamformer wn,f is pre-defined,
where n index the beam, the beam center is sampled uniformly
across the space. For each speaker, the closest beam is selected
from the estimated angle, and the beamfored signal is obtained by
equation xxx

B(θ, f) = wH
θ,fyt,f , (2)

where wθ,f ∈ CM×1 represents the beam weight that covers
the look direction θ and yt,f ∈ CM×1 denotes STFT of the mixture
signal yM at frame t.

Then, the location based speech extraction[9] is applied on each
selected beam, which takes spectrogram of selected beam, the inter-
microphone phase difference(eqn xx) (IPD) among all channels and
angle feature(eqnxx) as input, where xxx The angle feature, also
known as location based bias, differentiates the target and interfering
speaker, avoiding the permutation problem in multi-speaker system.
Note that the speech extraction is applied on each beam indepen-
dently. Finally each mask estimated by the speech extraction mod-
ule is applied on corresponding beam, to obtain the final enhanced
speech, as shown in eqn.xxx.

A(θ, f) =
∑
i,j∈ψ

cos(oij,f − rθ,ij,f ). (3)

A(θ, f) =
∑
i,j∈ψ

cos(oij,f − rθ,ij,f ). (4)

3. END-TO-END UFE

To enable the end-to-end training and improve the speech separation
quality, four updates to the original UFE model are proposed to each
component, while the whole processing sequence operates similarly.
The system workflow is depicted in figure xx. In e2e frame work, the
whole process is largely simplified, where the input of xx. Inside, a
similar four processing blocks can be still roughly divided.

3.1. Speech unmixing

In E2E frame work,

3.2. Feature and beamformer

We include fixed beamformer (subnet B) and angle feature extractor
(subnet A) as a part of the network, as depicted in Fig.2.The complex
multiplication of the fixed beamformer in Eqn.2 can be easily imple-
mented using the multiplication of two real matrices [21], while the
linear parameters are initialized with the fixed beam weights. Dif-
ferent from UFE system, the fixed beamformer in E2E-UFE always
generate NB beams. STFT and iSTFT are realized using 1D con-
volutional operations. A is a special network that is responsible for
computing ND candidate angle feature matrices on ND directions
sampled from 0◦ to 360◦, following Eqn.4. It this work, we freeze
the beamformer weight during training and NB = 18, ND = 36.
However, as a neural network layer, the beamformer can be also
jointly learnt during training, as suggested in [22].

3.3. Attention based angle selection

Since the SSL based beam selection in original UFE model is non-
differentiable, to enable the joint optimization, we introduce an at-
tention module in the E2E-UFE which selects the beam based on
similarity metric. Firstly, two sets of embedding EUi ,E

B
d ∈ RT×D

for each unmixing output MU
i and fixed beam Bd are estimated

through linear mapping

EUi = MU
i Wm, (5)

EBg = |Bg|Wb, (6)

where i, g denote speaker and beam index, respectively. D is the
embedding size and Wm,Wb ∈ RF×D are transform matrices.
We add absolution in Eqn.5 because Bg is a complex-valued ma-
trix. Then the pair-wise dot-product distance between each mask
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Fig. 2. Overview of the E2E-UFE structure. A and B are two spe-
cial network, using for angle feature extraction and fixed beamform-
ing. The whole network including U, E and attention network can
be jointly optimized.

embedding and beam embedding are computed to form the similar-
ity matrix:

si,g,t = (
√
D)−1

(
EUi,t

)T
EBg,t (7)

The similarity matrix is then averaged along time axis, followed by
a softmax activation, to generate the weight wi,g for each acoustic
source

ŝi,g = (T )−1
∑
t

si,g,t, (8)

wi,g = softmaxg(ŝi,g) (9)

The output beam BM
i is calculated by the weighed average with each

beam and its corresponding attention weights for each source, as
shown in Eqn.9

BM
i =

∑
g

wi,gBi (10)

The similar progress is also applied to obtain the angle features A1,2

as depicted in Fig.2, replacing the SSL based angle feature genera-
tion in original UFE. And the weighted combination of angle feature
is used in the neural filtering step.

3.4. Joint speech extraction

In E2E-UFE model, two beams are jointly optimized. Therefore
the post filtering network takes both combined beams and angle fea-
tures as input, outputting the two beams simultaneously. We use the
Si-SNR [4] as the loss function to optimize the network. Represent-
ing the expected beam signal as r1,2, the loss function is given in a
permutation-free form

Lbeam = −max
i,j∈φ
{Si-SNR(bi, rj)}, (11)

where bi = iSTFT(BM
i �ME

i ) and φ is a set of permutations over
two speakers. To better direct the training of the unmixing network,
we add an additional loss for unmixing part as a regular term:

Lch0 = −max
i,j∈φ
{Si-SNR(ci, sj)}, (12)

where ci = iSTFT(Ych0 �MU
i ) and s1,2 denotes the clean signal

at the reference channel (0 used in our experiments). The final ob-
jective function is a combination of those two forms with a weight
α

L = (1− α)Lch0 + αLbeam. (13)

Note that, although we still use signal reconstruction as neu-
ral network training criteria, it is straightforward to jointly optimize
with the acoustic model, as suggested in [22].

4. EXPERIMENTS

4.1. Dataset

We create a large-scale close-talk dataset including Librispeech [23]
and three internal dataset from Microsoft for far-field mixture data
simulation. The sampling rate is 16kHz and the training mixture ut-
terances are simulated and segmented into 4s chunks on-the-fly. The
simulation details of each epoch is configured by a specific file inde-
pendently. Geometry of the microphone array and the fixed beam-
former are some as the work [20], and the room impulse responses
(RIRs), isotropic noise are generated in advance. The T60 value,
signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) for
each utterance is randomly sampled from the range [0.1, 0.5] s, [10,
20] dB and [-5, 5] dB, respectively. The two speakers are put at least
20◦ apart from each other and 1 meter away from the center of mi-
crophones. The overlapping ratio is controlled in 50∼100% during
training.

For model evaluation we create two types of the test set, simu
and semi-real and each set contains two subsets which overlapping
ratios are distributed in the range of 20∼50% and 50∼100%, de-
noted as S and L, respectively. The simu set uses the close-talk
data from the dev set of the Librispeech with simulated RIRs that
is different from the training stage and semi-real is mixed using
single-speaker real recordings. Each subset in simu contains 3000
utterances and semi-real contains 2000 utterances. Additional noise
is only added in simu set as the semi-real already contains real-
recording background noise. Similar with the training settings, the
speakers are kept at least 20◦ apart from each other in each dataset.

4.2. Baseline systems

The mask based MVDR beamformer we used follows the equation

wMVDR
f =

(Rn
f )
−1df

dHf (Rn
f )
−1df

(14)

and the steer vector df is estimated using the principal eigenvec-
tor of the Rs

f . Two spatial correlation matrices Rk
f , k ∈ {s, n} is

estimated via

Rk
f =

∑
tm

k
t,fy

H
t,fyt,f∑

tm
k
t,f

. (15)

As the unmixing network do not predict noise masks here, we use
mn
t,f = 1−ms

t,f instead.
During experiment, we found that the UFE trained with PIT cri-

teria, i.e. joint optimizing two beams, yields significantly better re-
sults than original UFE. Therefore we use PIT-UFE instead of sepa-
rately trained components as the baseline to the proposed E2E-UFE
model. SSL from Eqn.1 was used to estimate the DoA for the PIT-
UFE system and we tested it with the mask from both unidirectional
and bidirectional unmixing network. An oracle DoA result was also
calculated for reference and a layer trajectory LSTM acoustic model
introduced in [24] with a trigram language model was used to gen-
erate recognition result.

4.3. Training details

Our experiments take log magnitude spectrum as spectral features
and the chunk-level mean-variance normalization is used during
training. The frame length in STFT is 32ms long with 16ms hop
size. For unmixing network, cosIPDs between three microphone
pairs (1, 4), (2, 5), (3, 6) are concatenated as spatial features and
δ is set as 2 in uni-directional structure. The angle feature used in



Table 1. WER (%) performance in the offline evaluation.

Method DoA simu (S/L) semi-real (S/L)

Mixed Beam Oracle 67.40/52.40 70.92/57.63
Clean Beam Oracle 10.67/10.56 20.34/19.71

IRM + MVDR × 21.69/20.04 28.52/26.75

PIT-UFE
Oracle 16.15/18.22 31.22/33.38

bid-U + SSL 16.41/18.43 32.91/36.02
uni-U + SSL 16.44/18.55 35.60/37.54

E2E-UFE × 16.85/18.98 33.89/35.92

bid-U + MVDR × 23.43/21.52 35.89/34.72
uni-U + MVDR × 24.65/23.39 40.29/38.27

extraction network is summarized over six microphone pairs (p, 0)
where p ∈ [1, 6]. We use Adam optimizer and train both network
for a maximum of 80 epochs with a weight decay value of 1e−5 and
the early stopping strategy. Initial learning rate is set to 1e−3 and
will halve if no validation improvement in 2 consecutive epochs.

Both unmixing and extraction network contain 3 layers, each
with 512 units and a dropout rate of 0.2. For the better convergence,
we use the well-trained unmixing and extraction network to initialize
the corresponding parts in E2E-UFE and train the network with a
smaller learning rate 1e−4 for 20 epochs. The training data and other
configurations are kept same as UFE. α in Eqn.12 was adopt 0.8 in
our experiments.

4.4. Evaluation scheme

The proposed system and baseline were evaluated in both offline and
online setup. In offline evaluation, the MVDR, SSL and attentional
selection weight was averaged over the whole utterance. And in on-
line evaluation, we use the double buffering scheme which is similar
to [20]. Each time the network processes Tc seconds audio segment
with a look-back length of Tb seconds. The Tb seconds buffer is used
to initialize the inner states of the unidirectional recurrent network as
well as to align the output orders. The look-back buffer in the SSL
aims to create a smooth estimation of the directions. Spatial correla-
tion matrices Rk

b,f used in online MVDR are recursively estimated
in each segment b with a forget factor β:

Rk
b,f = βRk

b−1,f +(1−β)
∑
t∈bm

k
t,fy

H
t,fyt,f∑

t∈bm
k
t,f

, k ∈ {n, s} (16)

We used Tc = 2s, β = 0.8 and the unidirectional unmixing layers
to reduce processing latency in the experiments.

4.5. Results

The offline evaluation result are shown in Table 1. The fixed beam-
former (Mixed Beam) brings a high WER even using the oracle DoA
and the result of the clean beam shows the upper bound performance
of the UFE system. The unidirectional unmixing structure achieved
similar performance with bidirectional model for both MVDR and
PIT-UFE baseline on simu set, as the spatial pattern is usually more
stable for simulated dataset, while for semi-real set, the bidirectional
unmixing model showed clear performance advantages. In compar-
ison, although using unidirectional unmixing layers, the E2E-UPE
achieved a comparable performance with bidirectional MVDR and
PIT-UFE and a significantly better performance than unidirectional
baselines, showing the efficacy of the end-to-end training scheme.

Table 2. WER (%) performance in the online evaluation.

Method Tb(s) simu (S/L) semi-real (S/L)

PIT-UFE

2/2/2 31.40/24.10 44.05/45.13
2/4/2 29.04/23.78 44.55/44.44
4/2/2 31.24/24.00 43.26/43.31
4/4/2 28.85/23.66 43.49/44.06

E2E-UFE 2 17.50/19.43 38.64/39.98
4 17.09/19.10 36.67/39.11

uni-U + MVDR 4 50.99/35.65 53.78/43.87

The online performance is shown in Table 2. The Tb for the UFE
system represents the look-back time of the unmixing network, SSL
and extraction network, respectively. E2E-UPE shows robust perfor-
mance for different look-back setup, achieving slightly worse result
than the offline evaluation on both dataset. On simu set, E2E-UFE
shows no significant degradation with the offline mode but the much
lower WER than UFE and MVDR method, especially in low over-
lapping scenario. On semi-real set it brings a 12.47% and 22.40%
average relative WER reduction compared with the UFE system and
the mask based MVDR, respectively. As contrast, both PIT-UFE
and MVDR baseline observed a severe performance degradation in
online evaluation. One hypothesis for the robustness of E2E-UFE
could be that during training, the E2E-UFE model already optimized
for the wrong beam selection, while for PIT-UFE, only the correct
beams were selected as input.

Online MVDR degrades seriously in low overlapping scenario
as the interfering speaker can not be suppressed well in the zero-
mask streams, which will increase the insertion errors in the final
transcriptions, an additional VAD suggested in [12] could be a po-
tential remedy for this challenge.

5. CONCLUSION

In this paper, we proposed an end-to-end structure of multi-channel
speech separation named E2E-UFE for robust ASR. It replaces the
SSL module in the previously proposed UFE system with a small
attention network and enables the joint optimization of the unmix-
ing and extraction network. The experiments are conducted on two
2-speaker dataset (simulated and semi-real mixtures) and the per-
formance is evaluated in both offline and online mode. Experimen-
tal results show that E2E-UFE gives comparable performance with
UFE and the mask based MVDR in the offline situations but shows
12.47% and 22.40% average relative WER reduction on two test sets
in the online mode, respectively.
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