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Abstract
Non-contact video-based physiological measurement has many applications in health care

and human-computer interaction. Practical applications require measurements to be accurate
even in the presence of large head rotations. We propose the first end-to-end system for video-
based measurement of heart and breathing rate using a deep convolutional network. The sys-
tem features a new motion representation based on a skin reflection model and a new attention
mechanism using appearance information to guide motion estimation, both of which enable ro-
bust measurement under heterogeneous lighting and major motions. Our approach significantly
outperforms all current state-of-the-art methods on both RGB and infrared video datasets. Fur-
thermore, it allows spatial-temporal distributions of physiological signals to be visualized via
the attention mechanism.

1 Introduction
Subtle changes in the human body, “hidden” to the unaided eye, can reveal important information
about the health and wellbeing of an individual. Computer analysis of videos and images can
be used to recover these signals [30, 25, 3] and magnify them [40, 14]. Non-contact video-based
physiological measurement is a fast growing research domain as it offers the potential for unobtrusive,
concomitant measurement and visualization of important vital signs using ubiquitous sensors (e.g.
low-cost webcams or smartphone cameras) [20].

Imaging Photoplethysmography (iPPG) is a set of techniques for recovering the volumetric change
in blood close to the surface of the skin, the resulting signal is known as the blood volume pulse
(BVP). The principle is based on measurement of subtle changes in light reflected from the skin.
In a similar fashion, Imaging Ballistocardiography (iBCG) uses motion information extracted from
videos to recover the Ballistocardiogram [3]. These small motions of the body, due to the mechanical
flow of blood, provide complementary cardiac information to the PPG signal. Respiratory signals
(breathing) can also be recovered using color [24] and motion-based [31] analyses. If the physiological
parameters (i.e., heart and/or breathing rate) of an individual are known, magnification of the color
change and/or motion can be performed [40, 14], which provides a very intuitive visualization of the
physiological changes.
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Figure 1: We present DeepPhys a novel approach to video-based physiological measurement us-
ing convolutional attention networks that significantly outperforms the state-of-the-art and allows
spatial-temporal visualization of physiological information in video. DeepPhys is an end-to-end
network that can accurately recover heart rate and breathing rate from RGB or infrared videos.

Based on the techniques above, a number of algorithms have been proposed to enable recover-
ing vital signs from only a webcam video. However, early solutions among them were either not
amenable to computation [30, 35] or lacked rigorous evaluation across a range of motion and ambient
lighting conditions [25, 1]. Recent approaches that have presented improved results under such video
conditions are often complex multi-stage methods that are hard to tune and implement. Almost
all methods require face tracking and registration, skin segmentation, color space transformation,
signal decomposition and filtering steps.

In computer vision end-to-end deep neural models have out-performed traditional multi-stage
methods that require hand-crafted feature manipulation. An end-to-end learning framework for
recovering physiological signals would be desirable. However, to date convolution neural networks
(CNNs) have only been applied to skin segmentation in iPPG [5] and not for recovering vital signs.
This motivated our design of DeepPhys - a novel convolutional attention network (CAN) for video-
based physiological measurement, which significantly outperforms the state-of-the-art and allows
spatial-temporal visualization of physiological signal distributions (e.g., blood perfusion) from RGB
videos. Fig. 1 shows how DeepPhys compares to traditional methods.

An end-to-end network for video-based physiological measurement should be a model that reads
motion information from video frames, discriminates different motion sources and synthesizes a
target motion signal. However, no existing deep learning models are suited to this task. First, deep
neural networks used in similar tasks commonly rely on motion representations such as optical flow
or frame difference as input, but they are either contradictory to the principle of iPPG or sensitive
to different lighting conditions or skin contours. Thus, in DeepPhys, we propose a new motion
representation calculating normalized frame difference based on the skin reflection model, which
can better capture physiological motions under heterogeneous illumination. Second, the appearance
information in video such as the color and texture of the human skin can guide where and how the
physiological motions should be estimated, but there is currently no way to jointly learn auxiliary
appearance representations along with motion estimators in neural networks. Therefore, we propose
a new mechanism that acquires attention from the human appearance to assist the motion learning.
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To summarize, we present the first end-to-end method for recovering physiological signals (HR,
BR) from videos. DeepPhys is a novel convolutional attention network that simultaneously learns
a spatial mask to detect the appropriate regions of interest and recovers the BVP and respiration
signals. Below we describe the theoretical underpinning of our approach, the model, and validation
on four datasets each recorded with different devices, of different subjects, and under different
lighting configurations. We perform a thorough comparison against the state-of-the-art approaches,
the results of which illustrate the benefits of our proposed model.

2 Related Work

2.1 Remote Physiological Measurement
Minute variations in light reflected from the skin can be used to extract human physiological signals
(e.g., heart rate (HR) [30] and breathing rate (BR) [24]). A digital single reflex camera (DSLR)
is sufficient to measure the subtle blood volume pulse signal (BVP) [30, 35]. The simplest method
involves spatially averaging the image color values for each frame within a time window, this is
highly susceptible to noise from motion, lighting and sensor artifacts. Recent advancements have
led to significant improvements in measurement under increasingly challenging conditions. Fig. 1
shows a traditional approach to remote physiological measurement that involves skin segmentation,
color space transformation and signal decomposition.

Color Space Transforms: The optical properties of the skin under ambient illumination mean
that the green color channel tends to give the strongest PPG signal and this was used in initial
work [35, 17]. However, the color channels can be weighted and combined to yield better results.
The CHROM [13] method uses a linear combination of the chrominance signals by assuming a
standardized skin color profile to white-balance the video frames. The Pulse Blood Vector (PBV)
method [12] leverages the characteristic blood volume changes in different parts of the frequency
spectrum to weight the color channels.

Signal Decomposition: It has been demonstrated that blind-source separation can be used to
improve the signal-to-noise ratio of the PPG signal from webcam videos [25]. Leveraging information
from all three color channels and multiple spatial locations makes the approach more robust to
changes in illumination with head motion. More rigorous evaluation demonstrated it was possible
to recover heart rate variability (HRV) and breathing rate (BR) estimates [24]. A majority of the
work on video-based physiological measurement has relied on unsupervised learning. Independent
component analysis (ICA) [25, 24, 19] and principal component analysis (PCA) [37] are two common
approaches for combining multiple color or location channels. More advanced signal decomposition
methods have resulted in improved heart rate measurement, even in the presence of large head
motions and lighting variation [39, 38, 16, 34].

Supervised Learning Approaches: Few approaches have made use of supervised learning for
video-based physiological measurement. Formulating the problem is not trivial. Template matching
and Support Vector approaches [23] have obtained modest results. Linear regression and Nearest
Neighbor (NN) techniques have been combined with signal decomposition methods [21] to solve
the problem of selecting the appropriate source signal. However, these are still limited by the
performance of the decomposition method (e.g., ICA or PCA).
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2.2 Deep Learning
Motion Analysis plays a significant role in deep-learning-based video processing. First, deep
learning has achieved remarkable successes in explicit motion analysis tasks, such as optical flow
estimation [9, 15] and motion prediction [11, 43]. Different from images, videos have both spatial
information (appearance) and temporal dynamics (motion). Therefore, solving any video-related
problem using machine learning should benefit from implicit motion modeling. In contemporary
techniques, both appearance and motion representations can be learned in parallel (two-stream
methods [27]), in cascade (CNN connected with RNN [8, 4]) or in a mixed way (3D CNN [33]).
Commonly, for more efficient learning, several motion representations are manually calculated from
videos to serve as the input of learning models, including optical flow [27, 22] and frame differ-
ence [43].

Attention Mechanisms in neural networks are inspired by the human visual system, which
can focus on a certain region of an image with high resolution while perceiving the surrounding
image in low resolution. To put it simply, they confer more weight on a subset of features. As one of
the latest advancements in deep learning, attention mechanisms have been widely used in machine
translation [2], image captioning [41] and many other tasks. In learning-based video analytics,
attention mechanisms also show great power, either by temporally focusing on different frames of a
video [44] or by spatially focusing on different parts of a frame [26]. It has been shown that attention
can be derived from motions to guide appearance representation learning [18, 32]. In this work, we do
exactly the opposite, acquiring attention from appearance to guide motion representation learning,
which has never been done before to our knowledge.

3 Skin Reflection Model
Video-based physiological measurement involves capturing both subtle color changes (iPPG) and
small motions (iBCG and respiratory movement) of the human body using a camera. For modeling
lighting, imagers and physiology, previous works used the Lambert-Beer law (LBL) [16, 42] or
Shafer’s dichromatic reflection model (DRM) [39]. We build our learning model on top of the DRM
as it provides a better framework for modeling both color changes and motions. Assume the light
source has a constant spectral composition but varying intensity. We can define the RGB values of
the k-th skin pixel in an image sequence by a time-varying function:

CCCk(t) = I(t) · (vvvs(t) + vvvd(t)) + vvvn(t) (1)

where CCCk(t) denotes a vector of the RGB values; I(t) is the luminance intensity level, which changes
with the light source as well as the distance between the light source, skin tissue and camera; I(t)
is modulated by two components in the DRM: specular reflection vvvs(t), mirror-like light reflection
from the skin surface, and diffuse reflection vvvd(t), the absorption and scattering of light in skin-
tissues; vvvn(t) denotes the quantization noise of the camera sensor. I(t), vvvs(t) and vvvd(t) can all be
decomposed into a stationary and a time-dependent part through a linear transformation [39]:

vvvd(t) = uuud · d0 + uuup · p(t) (2)

where uuud denotes the unit color vector of the skin-tissue; d0 denotes the stationary reflection strength;
uuup denotes the relative pulsatile strengths caused by hemoglobin and melanin absorption; p(t) de-
notes the BVP.

vvvs(t) = uuus · (s0 + Φ(m(t), p(t))) (3)
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where uuus denotes the unit color vector of the light source spectrum; s0 and Φ(m(t), p(t)) denote the
stationary and varying parts of specular reflections; m(t) denotes all the non-physiological variations
such as flickering of the light source, head rotation and facial expressions.

I(t) = I0 · (1 + Ψ(m(t), p(t))) (4)

where I0 is the stationary part of the luminance intensity, and I0 · Ψ(m(t), p(t)) is the intensity
variation observed by the camera. The interaction between physiological and non-physiological mo-
tions, Φ(·) and Ψ(·), are usually complex non-linear functions. The stationary components from the
specular and diffuse reflections can be combined into a single component representing the stationary
skin reflection:

uuuc · c0 = uuus · s0 + uuud · d0 (5)
where uuuc denotes the unit color vector of the skin reflection and c0 denotes the reflection strength.
Substituting (2), (3), (4) and (5) into (1), produces:

CCCk(t) = I0 · (1 + Ψ(m(t), p(t))) · (uuuc · c0 + uuus · Φ(m(t), p(t)) + uuup · p(t)) + vvvn(t) (6)

As the time-varying components are much smaller (i.e., orders of magnitude) than the stationary
components in (6), we can neglect any product between varying terms and approximate CCCk(t) as:

CCCk(t) ≈ uuuc · I0 · c0 + uuuc · I0 · c0 ·Ψ(m(t), p(t)) + uuus · I0 · Φ(m(t), p(t)) + uuup · I0 · p(t) + vvvn(t) (7)

For any of the video-based physiological measurement methods, the task is to extract p(t) from
CCCk(t). To date, all iPPG works have ignored p(t) inside Φ(·) and Ψ(·), and assumed a linear
relationship between CCCk(t) and p(t). This assumption generally holds when m(t) is small (i.e., the
skin ROI is stationary under constant lighting conditions). However, m(t) is not small in most
realistic situations. Thus, a linear assumption will harm measurement performance. This motivates
our use of a machine learning model to capture the more general and complex relationship between
CCCk(t) and p(t) in (7).

4 Approach

4.1 Motion Representation
We developed a new type of normalized frame difference as our input motion representation. Optical
flow, though commonly used, does not fit our task, because it is based on the brightness constancy
constraint, which requires the light absorption of objects to be constant. This obviously contradicts
the existence of a varying physiological signal p(t) in (2). The first step of computing our motion
representation is spatial averaging of pixels, which has been widely used for reducing the camera
quantization error vvvn(t) in (7). We implemented this by downsampling every frame to L pixels by
L pixels using bicubic interpolation. Selecting L is a trade-off between suppressing camera noise
and retaining spatial resolution ([37] found that L = 36 was a good choice for face videos.) The
downsampled pixel values will still obey the DRM model only without the camera quantization
error:

CCCl(t) ≈ uuuc · I0 · c0 + uuuc · I0 · c0 ·Ψ(m(t), p(t)) + uuus · I0 · Φ(m(t), p(t)) + uuup · I0 · p(t) (8)

where l = 1, · · · , L2 is the new pixel index in every frame.
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Figure 2: The architecture of our end-to-end convolutional attention network. The current video
frame at time t and the normalized difference between frames at t+1 and t are given as inputs to
the appearance and motion models respectively. The network learns spatial masks, that are shared
between the models, and features important for recovering the BVP and respiration signals.

Then we need to reduce the dependency of CCCl(t) on the stationary skin reflection color uuuc · I0 · c0,
resulting from the light source and subject’s skin tone. In unsupervised learning approaches, the
frames processed usually come from a short time window, in which the term uuuc · I0 · c0 is relatively
constant. However, in a supervised learning data cohort, the term will vary between subjects and
lighting conditions, which will explain the majority of the variance in CCCl(t). This will not only make
it harder to learn to discriminate the real variance of interest p(t), but also depend the learned model
on specific skin tones and lamp spectra in the training data. In (8) uuuc · I0 · c0 appears twice. It is
impossible to eliminate the second term as it interacts with Ψ(·). However, the first time-invariant
term, which is usually dominant, can be removed by taking the first order derivative of both sides
of (8) with respect to time:

CCC ′l(t) ≈ uuuc · I0 · c0 · (
∂Ψ
∂m

m′(t) + ∂Ψ
∂p

p′(t)) + uuus · I0 · (
∂Φ
∂m

m′(t) + ∂Φ
∂p

p′(t)) + uuup · I0 · p′(t) (9)

One problem with this frame difference representation is that the stationary luminance intensity
level I0 is spatially heterogeneous due to different distances to the light source and uneven skin
contours. The spatial distribution of I0 has nothing to do with physiology, but is different in every
video recording setup. Thus, CCC ′l(t) was normalized by dividing it by the temporal mean of CCCl(t) to
remove I0:

CCC ′l(t)
CCCl(t)

≈ 111 · ( ∂Ψ
∂m

m′(t) + ∂Ψ
∂p

p′(t)) + diag−1(uuuc)uuup ·
1
c0
· p′(t)+

diag−1(uuuc)uuus ·
1
c0
· ( ∂Φ
∂m

m′(t) + ∂Φ
∂p

p′(t)) (10)

where 111 = [1 1 1]T . In (10), CCCl(t) needs to be computed pixel-by-pixel over a short time window
to minimize occlusion problems and prevent the propagation of errors. We found it was feasible to
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compute it over two consecutive frames so that (10) can be expressed discretely as:

DDDl(t) = CCC ′l(t)
CCCl(t)

∼ CCCl(t+ ∆t)−CCCl(t)
CCCl(t+ ∆t) +CCCl(t)

(11)

which is the normalized frame difference we used as motion representation (∆t is the sampling
interval). In the computed DDDl(t), outliers are usually due to large m′(t) or occlusion. To diminish
these outliers, we clippedDDDl(t) by three standard deviations over each video and all color channels.To
summarize, the clipped DDDl(t) will be the input of our learning model, and the first order derivative
of a gold-standard physiological signal p′(t) = p(t + ∆t) − p(t) will be the training label. To align
DDDl(t) and p′(t), the physiological signals were interpolated to the video sampling rate beforehand
using piecewise cubic Hermite interpolation. For higher convergence speed of stochastic gradient
descent, DDDl(t) and p′(t) were also scaled to unit standard deviation over each video.

4.2 Convolutional Neural Network
The foundation of our learning model is a VGG-style CNN for estimating the physiological signal
derivative from the motion representation, as shown in Fig. 2 (motion model). The last layer has
linear activation units and a mean square error (MSE) loss, so the outputs will form a continuous
signal p̃′(t). Since most physiological signals are frequency-bounded, the output was band-pass
filtered to remove noise outside the frequency range of interest. Finally, the power spectrum was
computed from the filtered signal with the location of the highest peak taken as the estimated HR
or BR.

Different from classical CNN models deigned for object recognition, we used average pooling
layers instead of max pooling. The reasoning was that for physiological measurement, combining
an important feature with a less important feature can often produce a higher signal-to-noise ratio
than using the more important feature alone. We also compared multiple activation functions and
found the symmetry seemed to help with performance. Thus, we used hyperbolic tangent (tanh)
instead of rectified linear units (ReLU) as hidden layer activation functions. Besides, our attention
mechanism uses gating schemes similar to those in long short-term memory (LSTM) networks, which
help prevent the main problem with tanh, vanishing gradients.

The loss function of our model is the MSE between the estimated and gold-standard physiological
signal derivative, but our final goal is to compute the dominant frequency of the estimated signal
(i.e., HR or BR). Though the temporal error and frequency error generally have high correlation, a
small temporal error does not guarantee a small frequency error. It is also hard to directly use the
frequency error as the loss function of a CNN, because the calculation of the dominant frequency
involves a non-differentiable operation argmax. Thus we adopted ensemble learning over training
checkpoints. Specifically, we trained CNN models for an extra 16 epochs after convergence. These
models were applied to the training data with frequency errors computed, and the model with the
smallest error was chosen. We found that this strategy consistently achieved smaller frequency errors
than simply using the last checkpoint model.

4.3 Attention Mechanism
Naively our motion representation in (10) and (11) assumes every pixel l is part of a body, and
more specifically skin. Using normalized frame difference helps reduce the impact of background
pixels; however, any movement will add noise. To reduce this effect, previous methods usually reply
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on preprocessing such as skin segmentation to select a region of interest (ROI). In our end-to-end
model, a new attention mechanism can be added to achieve similar functionality. Also, the distri-
bution of physiological signals is not uniform on the human body, so learning soft-attention masks
and assigning higher weights to skin areas with stronger signals should improve the measurement
accuracy.

Whether a pixel patch belongs to the skin and exhibits strong physiological signals can be partly
inferred from its visual appearance. However, the derivation and normalization operations in (10)
removed appearance information. To provide a basis for learning attention, we created a separate
appearance model (see Fig. 2). This model has the same architecture as the motion model without
the last three layers, and has the raw frames (centered to zero mean and scaled to unit standard
deviation) as input. Soft-attention masks were estimated using a 1×1 convolution filter right before
every pooling layer so that masks were synthesized from different levels of appearance features. Let
x

j
m ∈ RCj×Hj×Wj and x

j
a ∈ RCj×Hj×Wj be the feature maps of convolution layer j right before

pooling in the motion model and the appearance model respectively, with Cj , Hj and Wj being the
number of channels, height and width. The attention mask q

j ∈ R1×Hj×Wj can be computed as:

q
j = HjWj · σ(wwwjT

x
j
a + bj)

2‖σ(wwwjT
x

j
a + bj)‖1

(12)

wherewwwj ∈ RCj is the 1×1 convolution kernel, bj is the bias, and σ(·) is a sigmoid function. Different
from softmax functions commonly used for generating soft-attention probability maps, we used a
sigmoid activation followed by l1 normalization, which is even softer than softmax and produces less
extreme masks. Finally, the mask was multiplied with the motion model feature map to output:

z
j
m = (111 · qj)� xj

m (13)

where zj
m ∈ RCj×Hj×Wj is the masked feature map passed on to the next layer, 111 ∈ RCj is a vector

with all ones, and � is element-wise multiplication. The motion model and the appearance model
were learned jointly to find the best motion estimator and the best ROI detector simultaneously.

5 Datasets
We tested our method on four datasets, each featuring participants of both genders, different ages,
a wide range of skin tones (Asians, Africans and Caucasians) and some had thick facial hair and/or
glasses.

RGB Video I [10]. Videos were recorded with a Scout scA640-120gc GigE-standard, color
camera, capturing 8-bit, 658x492 pixel images, 120 fps. The camera was equipped with 16 mm fixed
focal length lenses. Twenty-five participants (17 males) were recruited to participate for the study.
Gold-standard physiological signals were measured using a research-grade biopotential acquisition
unit.

Each participant completed six (each against two background screens) 5-minute tasks. The tasks
were designed to capture different levels of head motion.
Task 1: Participants placed their chin on a chin rest (normal to the camera) in order to limit head
motion.
Task 2: Participants repeated Task 1 without the aid of the chin rest, allowing for small natural
motions.
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(a)

(e)
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0
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Figure 3: Example frames from the four datasets: (a) RGB Video I, (b) RGB Video II, (c) MAHNOB-
HCI, (d) Infrared Video. The yellow bounding boxes indicate the areas cropped as the input of our
models. (e) shows exemplary attention weights of the left frame in (a) for HR measurement, and of
the right frame in (a) for BR measurement.

Task 3: Participants performed a 120-degree sweep centered about the camera at a speed of 10
degrees/sec.
Task 4: As Task 3 but with a speed of 20 degrees/sec.
Task 5: As Task 3 but with a speed of 30 degrees/sec.
Task 6: Participants were asked to reorient their head position once per second to a randomly
chosen imager in the array. Thus simulating random head motion.

RGB Video II [7]. Videos were recorded with an Intel RealSense Camera VF0800 and 18
participants (16 males, 2 females, 23-50 years) were recruited (data from 3 participants were elimi-
nated due to high collection error). Participant was seated still at a desk under ambient light for 30
s. All videos were recorded in color (24-bit RGB with 3 channels ÃŮ 8 bits/channel) at a floating
frame rate around 24 fps with pixel resolution of 1920x1080. Gold-standard physiological signals
were measured with a FlexComp Infiniti that recorded Blood Volume Pulse (BVP) from a finger
probe at a constant sampling frequency of 256 Hz. Respiration was not recorded in this study.

MAHNOB-HCI [28]. A multimodal dataset with videos of subjects participating in two
experiments: (i) emotion elicitation and (ii) implicit tagging. It contains 27 subjects (12 males and
15 females) in total, and all videos are in 61 fps with a 780x580 resolution. Following [17], we used
a 30-second clip (frames from 306 through 2135) of 527 sequences. To compute the ground truth
heart rate we used the second channel (EXG2) of the corresponding ECG waveforms.

Infrared Video [6]. To show that our approach generalizes to other datasets collected using
different imagers we performed similar analysis on a dataset of IR videos. Twelve participants (8
males, 4 females) between the ages of 23-34 years were recruited for this study. Participants were
seated at a desk and a Leap Motion controller was placed on the edge of the desk, parallel with it,
and facing upward. 640x240 pixel near-IR frames were recorded at a floating frame rate around 62
fps. Gold-standard physiological signals were measured with a FlexComp Infiniti that simultaneously
recorded BVP from a finger probe and respiration from a chest belt at a constant sampling frequency
of 256 Hz. Each experiment consisted of two 1 min recordings: 1) in a well-lit room (184 lux at the
camera), 2) in a completely dark room (1 lux at the camera).
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Table 1: Performance of heart rate and breathing rate measurement for RGB Video I. Participant
dependent (p.-dep.) and participant independent results are shown, as are task independent results
for the six tasks with varying levels of head rotation

HEART RATE Mean Absolute Error / BPM Signal-To-Noise Ratio / dB
Methods 1 2 3 4 5 6 Avg. 1 2 3 4 5 6 Avg.
Estepp et al. [10] 3.48 3.95 3.80 6.55 11.8 13.4 7.16 6.06 4.82 3.77 -0.10 -4.72 -9.63 0.03
McDuff et al. [19] 1.17 1.70 1.70 4.00 5.22 11.8 4.29 10.9 9.55 6.69 3.08 0.08 -6.93 3.90
Balakrishnan et al. [3] 4.99 5.16 12.7 17.4 18.7 14.2 12.2 -1.08 -0.34 -8.83 -12.6 -14.2 -12.1 -8.19
De Haan et al. [13] 4.53 4.59 4.35 4.84 6.89 10.3 5.92 1.72 1.38 3.97 3.63 2.02 -2.47 1.71
Wang et al. [39] 1.50 1.53 1.50 1.84 2.05 6.11 2.42 6.84 6.21 4.80 2.97 0.77 -4.33 2.88
Tulyakov et al. [34] 1.76 2.14 14.9 19.0 15.7 22.0 12.6 4.32 2.29 -11.8 -14.3 -12.3 -15.3 -7.85
OURS: Part. Dep.
Motion-only CNN 1.17 1.29 1.29 1.66 2.04 2.95 1.73 10.2 9.28 7.02 4.18 1.95 -1.00 5.28
Stacked CNN 1.18 1.30 1.26 1.51 1.82 2.62 1.61 10.7 9.60 8.28 5.59 2.84 0.29 6.22
CAN 1.17 1.26 1.16 1.61 2.04 1.78 1.50 10.9 9.66 8.20 5.69 3.57 1.33 6.55
OURS: Part. Ind.
Motion-only CNN 1.17 1.41 1.33 1.91 3.57 6.41 2.63 9.60 8.62 6.25 2.73 -0.15 -4.02 3.84
Stacked CNN 1.12 1.66 1.30 1.65 2.33 6.25 2.38 9.26 8.18 7.27 3.81 1.14 -2.84 4.47
CAN 1.16 1.45 1.23 1.72 2.42 5.59 2.26 9.52 8.82 7.36 3.90 1.10 -2.72 4.66
CAN (task 1) 1.16 3.01 3.43 4.85 7.92 13.9 5.70 9.52 5.74 2.01 -2.13 -5.77 -9.70 -0.06
CAN (task 2) 1.12 1.45 1.67 3.35 7.51 12.9 4.66 10.1 8.82 4.25 -0.90 -5.33 -8.96 1.33
CAN (task 3) 1.18 1.41 1.23 1.78 2.73 9.23 2.93 9.75 8.79 7.36 4.33 0.55 -5.88 4.15
CAN (task 4) 1.13 1.57 1.24 1.72 2.79 8.98 2.91 9.95 8.72 7.06 3.90 0.37 -5.68 4.05
CAN (task 5) 1.16 1.38 1.30 1.54 2.42 7.05 2.48 9.86 8.98 7.68 4.40 1.10 -4.15 4.65
CAN (task 6) 1.14 1.32 1.22 1.47 2.17 5.59 2.15 10.4 9.62 8.21 5.15 1.83 -2.72 5.41
CAN (all tasks) 1.13 1.34 2.45 1.64 1.83 6.32 2.45 9.88 7.21 1.46 8.48 4.11 -3.23 4.65
BREATH. RATE Mean Absolute Error / BPM Signal-To-Noise Ratio / dB
Methods 1 2 3 4 5 6 Avg. 1 2 3 4 5 6 Avg.
Tarassenko et al. [31] 2.51 2.53 3.19 4.85 4.22 4.78 3.68 -1.29 -1.82 -6.32 -8.55 -8.79 -10.6 -6.22
OURS: Part. Dep.
Motion-only CNN 2.03 2.47 3.21 3.04 3.11 4.27 3.02 -0.33 -1.91 -5.28 -4.83 -5.33 -9.64 -4.55
Stacked CNN 1.74 2.27 2.98 2.79 3.03 5.33 3.02 1.84 -0.93 -6.31 -5.18 -5.70 -11.2 -4.58
CAN 1.70 2.19 3.24 3.05 3.06 3.96 2.86 2.73 -0.02 -4.39 -4.47 -4.36 -7.97 -3.08
OURS: Part. Ind.
Motion-only CNN 1.70 2.31 4.09 4.85 4.60 4.06 3.60 0.75 -0.17 -6.03 -9.19 -9.05 -9.06 -5.46
Stacked CNN 2.00 2.10 5.67 5.55 6.34 5.76 4.57 0.19 -0.25 -12.0 -11.5 -12.7 -13.0 -8.20
CAN 1.28 1.64 4.15 4.37 3.77 4.37 3.26 4.45 2.96 -5.05 -6.72 -6.70 -8.93 -3.33
CAN (task 1) 1.28 1.72 6.34 7.28 6.28 4.01 4.48 4.45 2.37 -10.0 -13.5 -13.9 -9.02 -6.60
CAN (task 2) 1.21 1.64 5.73 5.65 4.92 3.82 3.83 4.39 2.96 -7.97 -12.3 -11.7 -8.54 -5.52
CAN (task 3) 1.62 1.71 4.15 4.57 4.16 3.56 3.30 3.38 2.74 -5.05 -7.05 -6.71 -6.23 -3.15
CAN (task 4) 1.74 1.85 3.80 4.37 4.60 3.42 3.30 2.69 2.56 -5.10 -6.72 -7.86 -6.63 -3.51
CAN (task 5) 1.65 1.74 4.37 4.45 3.77 3.37 3.22 2.90 3.18 -6.20 -7.02 -6.70 -5.69 -3.25
CAN (task 6) 2.06 1.76 5.89 5.92 5.21 4.37 4.20 1.11 1.54 -9.72 -11.9 -10.1 -8.93 -6.33
CAN (all tasks) 1.54 4.69 3.71 2.14 5.27 3.33 3.45 3.09 -6.45 -7.09 0.21 -10.7 -7.36 -4.71

6 Results and Discussion
For our experiments, we used Adadelta [45] to optimize the models across a computing cluster. All
the optimizer parameters were copied from [45], and a batch size of 128 examples was used. To
overcome overfitting, three dropout layers [29] were inserted between layers 3 and 4, layers 6 and
7, and layers 8 and 9 in Fig. 2 with dropout rates d1, d2 and d3 respectively. Along with n8 the
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number of hidden units in layer 8 and Ne the number of training epochs, the five parameters were
chosen differently to adapt to different model complexities and different generalization challenges
(values can be found in Supplemental Materials).

Apart from the proposed CAN model, we also implemented a standalone CNN motion model
(top portion of Fig. 2) to verify the effectiveness of the attention mechanism. The input of the model
was either the normalized frame difference (Motion-only CNN) or the normalized frame difference
stacked with the raw frame (Stacked CNN). A 6th-order Butterworth filter was applied to the model
outputs (cut-off frequencies of 0.7 and 2.5 Hz for HR, and 0.08 and 0.5 Hz for BR). The filtered
signals were divided into 30-second windows with 1-second stride and four standard metrics were
computed over all windows of all the test videos in a dataset: mean absolute error (MAE), root
mean square error (RMSE), Pearson’s correlation coefficient (r) between the estimated HR/BR and
the ground truth HR/BR, and signal-to-noise ratio (SNR) of the estimated physiological signals [13]
averaged among all windows. The SNR is calculated in the frequency domain as the ratio between
the energy around the first two harmonics (0.2 Hz frequency bins around the gold-standard HR, and
0.05 Hz frequency bins around the gold-standard BR) and remaining frequencies within a range of
[0.5 4] Hz for HR, and a range of [0.05 1] Hz for BR. Due to limited space, the metrics RMSE and
r are shown in Supplemental Materials.

6.1 RGB Video I
Every video frame was center-cropped to 492x492 pixels to remove the lateral blank areas before
being fed into our processing pipeline. We compare our proposed approach to six other methods [10,
19, 3, 13, 37, 34] for recovering the blood volume pulse. For recovering the respiration, we compare
to the approach proposed by Tarassenko et al. [31]. The details about the implementation of these
methods are included in Supplemental Materials.

Participant-dependent Performance Each five-minute video was divided into five folds of
one minute duration. We trained and tested via cross-validation on the concatenated five folds
within each task, in which case every participant appeared in both the training set and the test set.
The evaluation metrics MAE and SNR are averaged over five folds and shown in Tables 1. Table 1
shows that our motion-only CNN, stacked CNN and CAN all outperform the prior methods for HR
measurement over task two to task six, both in terms of MAE and SNR. The benefit is particularly
strong for the tasks involving high velocity head motions. On task one, our MAE and SNR are
very close to the best results achieved by previous methods using hand-crafted features, probably
because task one simulates an ideal situation and there is nearly no space for improvement. Within
each of our three approaches, CAN shows superior performance on average and obvious advantages
for task six, which can be explained by the effectiveness of the attention mechanism in dealing with
the frequently changing ROI. The breathing rate results (Table 1) follow a similar pattern.

Participant-independent Performance. All the 25 participants were randomly divided into
five folds of five participants each. The learning models were trained and tested via five-fold cross-
validation within each task to evaluate how our models can be generalized to new participants.
The evaluation metrics MAE and SNR are also averaged over five folds and shown in Table 1.
Compared with the participant-dependent results, the participant-independent results have lower
performance to varying degrees. However, for heart rate measurement the Stacked CNN and CAN
still outperform all the previous methods. For breathing rate measurement, though motion-only
CNN and the stacked CNN have accuracies similar or inferior to Tarassenko et al. [31], the CAN
still shows improvement in five tasks and overall.
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Table 2: RGB Video II, MAHNOB-HCI and Infrared Video dataset results. (MAE = Mean Absolute
Error, SNR = Signal-To-Noise Ratio)

DATASET RGB VIDEO II MANHOB-HCI
Heart Rate Heart Rate

Methods MAE SNR MAE SNR
/BPM /dB /BPM /dB

Estepp et al. [10] 14.7 -13.2 - -
McDuff et al. [19] 0.25 -4.48 10.5 -10.4
Balakrishnan et al. [3] 11.3 -9.17 17.7 -12.9
De Haan et al. [13] 0.30 -2.30 5.09 -9.12
Wang et al. [39] 0.26 1.50 - -
Tulyakov et al. [34] 2.27 -0.20 4.96 -8.93
OURS: Transfer
Learning
CAN 0.14 0.03 4.57 -8.98

DATASET IR Video
Heart Rate Breath. Rate

Methods MAE SNR MAE SNR
/BPM /dB /BPM /dB

Chen et al. [6] 0.65 3.15 0.27 5.71
OURS: Part. Ind.
Motion-only CNN 1.44 9.55 0.49 8.95
Stacked CNN 0.87 10.9 0.14 10.4
CAN 0.55 13.2 0.14 10.8

Task-independent Performance. Both the participant-dependent and par-ticipant-independent
results are from training and testing models within tasks. Next, we present task-independent per-
formance where the CAN model was trained on a specific task and then tested on other tasks. The
training set and test set were again participant-independent. In the HR results shown in Table 1,
there is a clear pattern that a model trained on tasks with less motion performs badly on tasks
with greater motion. Models trained on tasks with greater motion generalize very well across all
tasks. The CAN model trained on task six even has lower MAE and higher SNR than the model
trained and tested within each single task. This also explains why the model trained on all the tasks
achieves moderate performance, slightly better than the task five model but much worse than the
task six model. On the other hand, for breathing rate measurement, a model trained on one task
usually performs best on the same task, and does not generalize well to different tasks. As a result,
the distributions of the average MAE and SNR in Table 1 exhibit a symmetric pattern from the
task one model to the task six model.

6.2 RGB Video II and MAHNOB-HCI
As shown in Fig. 3, the video frames in the two datasets have complicated backgrounds, and the
facial ROI only occupies a small area. To ensure a sufficient number of physiology-related pixels after
downsampling, a face detector based on OpenCVâĂŹs Haar-like cascades [36] was applied to the
first frame of each video, and a square region with 160% width and height of the detected bounding
box was cropped as the input to our approach.

Transfer learning. To test whether our model can be generalized to videos with a different
resolution, background, lighting condition and sampling frequency, we tried transfer learning without
any fine-tuning. We trained the models on Task 2 of RGB Video I (the most similar task to RGB
Video II and MAHNOB-HCI) and applied them directly to these datasets. Since RGB Video II only
has blood volume pulse ground truth, we compare our approach with only the HR measurement
methods. For MAHNOB-HCI, as it is public, we evaluated our approach against only those methods
reported in previous studies on the dataset. The results are presented in Table 2. Without any prior
knowledge about the two datasets, our CAN model still attains the lowest MAE compared with any
previous method, and its SNR is only second to Wang et al. [37] on RGB Video II and Tulyakov et
al. [34] on MAHNOB-HCI.
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6.3 Infrared Video
For these videos we cropped a fixed 130x130 pixels bounding box against the lower boundary of
the frame as our model input (see Fig. 3d). Since the frames in the dataset are monochromatic, all
the previous methods we implemented for the RGB datasets are not applicable. We compare our
approach with a PCA-based algorithm [6], which has achieved the highest accuracy on the dataset,
for both HR and BR measurement.

Participant-independent Performance. In the dataset, each video is one minute in length,
which is too short to be split into multiple folds for participant-dependent evaluation. Thus we
only ran experiments in a participant-independent way: The 13 participants were randomly divided
into five folds, and the learning models were trained and tested via five-fold cross-validation. The
results are averaged over five folds and shown in Table 2. For both heart rate and breathing rate
measurement, the CAN model not only beats the previous best results but also beats the other
learning-based methods without an attention mechanism.

6.4 Visualization of Attention Weights
An advantage of utilizing the proposed attention mechanism is that the spatial-temporal distribu-
tions of physiological signals can be revealed by visualizing the attention weights. As shown in Fig.
3e, the attention of the heart rate model is commonly focused on the forehead, the earlobe and the
carotid arteries. The earlobe has a large blood supply and the carotid arteries have the most signif-
icant pulse-induced motions. For BR measurement, the attention maps are more scattered, because
respiration movement can transmit to any body part even including the hair. We also found high
attention weights around the nose on many subjects, which suggests our CAN model uses subtle
nasal flaring as a feature for respiratory tracking (see Supplemental Materials).

7 Conclusions
We have proposed the first end-to-end network for non-contact measurement of HR and BR. Our
convolutional attention network allows spatial-temporal visualization of physiological distributions
whilst learning color and motion information for recovering the physiological signals. We evaluated
our method on three datasets of RGB videos and a dataset of IR videos. Our method outperformed
all the prior state-of-the-art approaches that we compared against. The performance improvements
were especially good for the tasks with increasing range and angular velocities of head rotation.
We attribute this improvement to the end-to-end nature of the model which is able to learn an
improved mapping between the video color and motion information. The participant dependent vs.
independent performance as well as the transfer learning results shows that our supervised method
does indeed generalize to other people, skin types and illumination conditions.
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