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ABSTRACT
In order to match shoppers with desired products and pro-
vide personalized promotions, whether in online or offline
shopping worlds, it is critical to model both consumer pref-
erences and price sensitivities simultaneously. Personalized
preferences have been thoroughly studied in the field of rec-
ommender systems, though price (and price sensitivity) has
received relatively little attention. At the same time, price
sensitivity has been richly explored in the area of economics,
though typically not in the context of developing scalable,
working systems to generate recommendations. In this study,
we seek to bridge the gap between large-scale recommender
systems and established consumer theories from economics,
and propose a nested feature-based matrix factorization fra-
mework to model both preferences and price sensitivities.
Quantitative and qualitative results indicate the proposed
personalized, interpretable and scalable framework is capable
of providing satisfying recommendations (on two datasets of
grocery transactions) and can be applied to obtain economic
insights into consumer behavior.

Keywords
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1. INTRODUCTION
Modeling consumer preferences and price sensitivities at

scale is useful in both online and offline shopping worlds:
Matching shoppers with the most desired products can help
improve overall satisfaction, while providing appropriate pro-
motions may lead to increased basket sizes (and revenue).
Grocery shopping is one of the most frequent and regular
shopping patterns in an individual or household’s day-to-day
activities. As a result, incredible volumes of data including
transaction logs, product meta-data, and consumer demo-
graphics, can be collected from a number of offline (e.g. Wal-
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Figure 1: General workflow of the proposed three-stage pur-
chase decision model.

mart, Kroger, Whole Foods) and online (e.g. AmazonFresh,
walmart.com) grocery stores and supermarkets.

Our goal in this paper is to study the problem of modeling
consumer preferences and price sensitivities from large-scale
grocery shopping data in order to support personalized and
scalable recommendation and demand-forecasting systems.

Recommender & Demand Systems. The general work-
flow of the type of hybrid, large-scale recommendation and
demand system we are considering is shown in Figure 1. We
feed large transaction logs including product prices, meta-
data, and consumer information to our behavioral model
which generates feedback in the form of purchase predic-
tions. On top of this model, we apply different optimization
rules to provide user-specific results. For example, person-
alized ranked lists can be provided by matching preferences,
or customized promotion strategies can be provided based
on estimated price elasticity. Or hybrid personalized coupon
lists can be provided by combining preference-matching and
price-matching criteria. To achieve these goals, we need to
consider consumer preferences in concert with price sensi-
tivities in our behavioral model.

Preferences & Price Sensitivities. Product preferences
are reflected by purchase incidence or purchase quantity in a
consumer’s shopping history. From item-based collaborative
filtering [33] to matrix factorization techniques [21], various



methods for consumer preference matching have been devel-
oped in the field of recommender systems. However, there
are few studies where price is considered as a factor, let alone
the relationship between preferences and price sensitivity.

On the other hand, price sensitivity has been richly stud-
ied in the areas of economics and marketing, from classic de-
mand systems [13] to customized promotion models [37,38].
Demand systems are used to explore the relationship be-
tween product prices and quantities sold. In this context,
price sensitivity is measured by the ‘price elasticity’ value
obtained from a demand system, which is defined as the unit
change of purchase quantity (or probability) given a unit
fluctuation in price [24]. In practice, elasticity-based con-
sumer segments are considered and separate demand mod-
els are constructed for different consumer segments. Such
segments can be regarded as useful signals for retailers and
manufacturers to identify consumer groups to target. How-
ever, there are two limitations in current demand systems:
1) the data volumes involved are typically limited in terms
of the number of products, categories and shopping trips1

and 2) classic demand models are not able to be updated
efficiently.

Therefore the major goal of this study is to construct
an interpretable framework to model consumer preferences
and price sensitivities at scale, by connecting well-developed
techniques in recommender systems and well-established be-
havioral economic theories.

Three-Stage Purchase Decision Model. Different from
modeling user preferences as a whole process, we follow the
three-stage framework from recent customized promotion
studies [37, 38]. We notice that in real-world grocery shop-
ping scenarios, products can be categorized either based on
an existing commodity hierarchy or by clustering their asso-
ciated characteristics (e.g. text descriptions). Each category
should consist of some kind of products where consumers’
purchase decisions share similar patterns. For example, one
category might be ‘organic milk’ and two products in this
category could be ‘horizon organic whole milk’ and ‘organic
valley whole milk.’ As shown in Figure 1, we assume that for
a given category, consumers’ purchase decisions can be de-
composed into three stages: 1) category purchase incidence,
2) product choice, and 3) purchase quantity. In a complete
purchase decision-making process, stages are heterogeneous
and consumers may behave quite differently across them.
Given the fact that there are more than ten thousand dis-
tinct products in a typical grocery store [1], this three-stage
model is more efficient compared with a flat model without
fine-grained product categorization [2, 14], since it can be
constructed in parallel across product categories and explic-
itly interpreted across different purchase stages.

Specifically, we first consider whether a consumer will
make a purchase from a particular category in a certain
shopping trip,2 which can be regarded as a binary predic-
tion problem. If so, we model their purchase from this cate-
gory following a multinomial distribution. Third, we deter-
mine what quantity of the product will be purchased, which
leads to a numeric prediction problem. This combination

1Typical demand system studies [13, 18, 37, 38] usually in-
volve only several products, categories and several hundred
transactions.
2A ‘shopping trip’ in this study is represented as a (con-
sumer, timestamp) pair.

of binary, categorical, and numeric prediction is quite dif-
ferent from that used by traditional recommender systems,
requiring new approaches to be developed. In particular,
we develop a nested framework and extend state-of-the-art
feature-based matrix factorization models to include price
as a factor; this framework is embedded in the above pre-
diction tasks with different link functions. We evaluate our
model on two real-world grocery shopping datasets where
our experiments reveal that the proposed framework is ca-
pable of providing high-quality preference predictions and
personalized price sensitivity estimates.

Contributions. Specifically, our contributions are as fol-
lows:
• We model consumer preferences and price sensitivities for

grocery shopping scenarios at scale, bridging a gap be-
tween large-scale recommender systems and established
economic theories.
• We propose a nested feature-based matrix factorization

framework, which is flexible enough to include a range of
features, to fit different prediction scenarios (for different
stages of purchase behavior), to be applied with scalable
learning algorithms (e.g. stochastic gradient descent) and
can be updated efficiently.
• By applying matrix factorization techniques, separate con-

sumer segments no longer need to be extracted in advance
and personalized price elasticity can be obtained from the
model directly.
• By applying the proposed framework, we can provide eco-

nomic insights from the results in our experiments. These
insights include: 1) price does not significantly affect cat-
egory purchase decisions, suggesting that if the general
category of interest is not known, then ‘deal’ based pro-
motions will be ineffective; 2) price is an important fac-
tor in the product choice stage while there is wide vari-
ance of price elasticities across categories, products and
consumers, which indicates that if the category of a con-
sumer’s interest is known, it is effective to target appro-
priate products and consumers in order to improve the
fruitfulness of promotions.

2. RELATED WORK
Preference matching has been richly studied in the area

of recommender systems, where two kinds of approaches of
interest have been developed: 1) content-based approaches
[23, 29], where explicit user profiles or item information are
used as features, and 2) collaborative filtering approaches
where preference predictions mainly rely on users’ previous
behavior [21,33]. By combining multiple techinques, hybrid
recommender systems can be developed to handle a variety
of complex scenarios [8,17]. Matrix factorization techniques
have been widely applied for recommender systems due to
their accuracy and scalability [6, 16, 21, 35]. Of particular
interest, feature-based matrix factorization techniques have
been proposed [3,4,27,28,30] and efficient tools (e.g. SVD-
feature, libFM) have been developed [9, 31]. Such ideas
have been included in a recently proposed generalized lin-
ear mixed model (GLMix) [39], which has been deployed in
the LinkedIn job recommender system with a scalable paral-
lel block-wise coordinate descent algorithm. We build upon
GLMix and adapt it to fit different prediction settings, such
as multi-class classification.



Demand systems and price sensitivity have been an ongo-
ing focus of economists [2,13,14]. Three-stage purchase deci-
sion decomposition (i.e., category purchase; product choice;
purchase quantity), such as we consider here, has been ex-
plored in several studies [5, 10, 18, 37, 38]. Customized pro-
motion techniques have been recently proposed for offline
and online shopping behavior [12, 37, 38] where individual
purchase behavior is considered and optimal promotions are
derived. However, these are not completely personalized
demand systems and consumer segmentation is required be-
forehand. In addition, none of these models is considered in
the context of large-scale predictive systems.

The idea of price sensitivity in recommender systems for
e-commerce has been mentioned as a potential direction in
a classic survey [34], though surprisingly we find that this
factor has received relatively little attention. Optimiza-
tion of online promotions in the context of recommenda-
tion has been recently studied [19,20], where the reservation
price (i.e., the highest price a customer is willing to pay) is
assumed as known information and a complete behavioral
model is missing. The most related work is perhaps the
price-sensitive recommender system developed in [36]. In
their study, however, price is discretized into different lev-
els rather than evaluated numerically and personalization is
not thoroughly explored. Such a system thus struggles when
quantitatively estimating personalized price sensitivities and
cannot effectively support customized promotion strategies.

3. BACKGROUND
In this section, we introduce a generalized feature-based

matrix factorization approach, which can be adjusted and
applied in different purchase prediction stages. The basic
notation used in this paper is provided in Table 1.

3.1 A Unified Feature-Based Matrix Factor-
ization Model

We extend the state-of-art GLMix approach [39] and con-
sider a generalized Feature-Based Matrix Factorization
(FMF) model:

link(Y (t)) = L(t) ≈ Φ(t)TΨ(t). (1)

Here Y (t) is the time-aware label matrix, where each ele-
ment yi,u(t) indicates the label for an item i and a user u at
timestamp t. yi,u(t) could be a binary label when predict-
ing category purchase or product choice, or a numeric label
when predicting purchase quantity. By applying a link func-
tion link(·) (e.g. the logit function, or logarithm function),
we can transform the original label matrix into a numeric
matrix L(t) and decompose L(t) as a product of Φ(t) and
Ψ(t). Here Φ(t) and Ψ(t) capture both explicit features and
latent factors from items and users. Specifically for each el-
ement li,u(t) in L(t), we have

li,u(t) ≈ 〈φi(t),ψu(t)〉

=
〈
w ,

global features︷ ︸︸ ︷
g̃i,u(t)

〉
︸ ︷︷ ︸

global effect

+
〈item features︷ ︸︸ ︷
φ̃

(o)
i (t), ψ

(o)
u

〉
+

〈
φ

(o)
i ,

user feature︷ ︸︸ ︷
ψ̃

(o)
u (t)

〉
︸ ︷︷ ︸

observed item/user-specific effect

+
〈
φ

(l)
i ,ψ

(l)
u

〉
︸ ︷︷ ︸

latent item-user interaction

,

(2)

where 〈·, ·〉 indicates the inner product. Here we decom-
pose each prediction into three components: global effects,

Notation Description

i, u, t item, user, timestamp

(u, t) shopping trip associated with user u at time t

g̃i,u, w explicit global feature, global coefficient

φ̃
(o)
i (t), ψ̃

(o)
u (t) explicit item feature, explicit user feature

φ
(o)
i , φ

(l)
i item random coefficient, item latent factors

ψ
(o)
u , ψ

(l)
u user random coefficient, item latent factors

µu(t) probability of user u selecting a category

ηi,u(t) conditional prob. of user u purchasing product i

q̂i,u(t) u’s conditional expected quantity of product i

β
(·)
i,u(t) coefficient associated with i’s price

e
(cate)
i,u (t) price elasticity in the category purchase stage

e
(prod)
ii,u (t) self price elasticity in the product choice stage

e
(quant)
i,u (t) price elasticity in the purchase quantity stage

Table 1: Notation.

observed item/user-specific effects and latent item-user in-
teractions.

• Global effects. Here g̃i,u(t) includes a set of provided
features for (i, u, t) and w includes a set of global coeffi-
cients which need to be estimated and should be consis-
tent for ∀(i, u, t). Such features may include general tem-
poral and spatial factors, such as day-of-week and store
location.

• Observed item/user-specific effects. The next term
can be regarded as an analogy of the random coefficient
model [22,25,36,39], which involves explicit features whose

coefficients are item- or user-dependent. Here φ̃
(o)
i (t) and

ψ̃
(o)
u (t) are explicit item- and user-related features (such

as item information, user demographics) while φ
(o)
u and

ψ
(o)
i are (latent) item- and user-dependent coefficients.

• Latent item-user interactions. The last component is
designed to capture the remaining latent effects in terms

of low-rank user and item factors, where both φ
(l)
i ,ψ

(l)
u

are latent parameters that need to be estimated.

Note that considering the identity link function link(x) = x,
and discarding explicit features and timestamps, the above
formulation extends typical matrix factorization formula-
tions:

yi,u = b0 + bi + bu +
〈
φ

(l)
i ,ψ

(l)
u

〉
. (3)

4. METHODOLOGY
As discussed, we assume that purchase decisions can be

predicted in three stages: category purchase incidence, prod-
uct choice, and purchase quantity. In this section, we pro-
pose a nested framework to holistically model the interde-
pendence of these three stages, adopting the above FMF
model as a building block in each stage.

4.1 A Nested Factorization Framework
We notice that in different categories, consumers’ pur-

chase patterns are different, which requires us to establish a
distinct behavioral model for each category. Given a product
i in category c, a consumer u, and a timestamp t, suppose



we have the following definitions:

Cu(t) : consumer u selects the category c at time t;

Bi,u(t) : consumer u purchases product i at t;

Qi,u(t) = q : consumer u’s purchase quantity of i at t is q.

Thus if we focus on the category c, a consumer’s preferences
can be represented by the joint probability of buying a cer-
tain quantity of a particular product in category c, i.e.,

P (Qi,u(t) = q,Bi,u(t), Cu(t))

=P (Cu(t))︸ ︷︷ ︸
category

preference

×P (Bi,u(t)|Cu(t))︸ ︷︷ ︸
conditional

product preference

×P (Qi,u(t) = q|Bi,u(t), Cu(t))︸ ︷︷ ︸
conditional quantity preference

.

(4)

This joint probability can be regarded as a product of three
conditional probabilities which represent the preferences in
previous purchase stages. By adopting different link func-
tions in the previous FMF formulation, these three prefer-
ences can be estimated by Logistic, Categorical, and Quant-
ity-based FMF models.

• Category Purchase (L-FMF). For a given category c,
we have the following logistic probability

µu(t) := PΘcate (Cu(t)) = σ(s
(cate)
u (t)), (5)

where σ(·) is the sigmoid function. Here s
(cate)
u (t) is a

category preference score, factorized using (2), where we
have only one general ‘item,’ i.e., the category c.

• Product Choice (C-FMF). Next we estimate the prob-
ability of selecting a product within a category as a multi-
nomial distribution via a softmax formulation:3

ηi,u(t) := PΘprod
(Bi,u(t)|Cu(t)) =

exp(s
(prod)
i,u (t))∑

i′ exp(s
(prod)
i′,u (t))

. (6)

Similarly, we apply (2) to factorize the product preference

score s
(prod)
i,u (t).

• Purchase Quantity (Q-FMF) Purchase quantity can
be represented as a positive integer in {1, 2, . . .} and fol-
lows a shifted Poisson distribution:

PΘquant (Qi,u(t) = q|Bi,u(t), Cu(t)) =
zi,u(t)q−1 exp(−zi,u(t))

(q − 1)!
,

(7)

where zi,u(t) = exp(s
(quant)
i,u (t)). Again we apply (2) to

factorize the quantity preference score s
(quant)
i,u (t). Notice

that the conditional expectation of purchase quantity can
be calculated as

q̂i,u(t) := EΘquant (Qi,u(t)|Bi,u(t), Cu(t)) = zi,u(t) + 1, (8)

which can be regarded as an estimate of Qi,u(t).

Finally, we let Θcate ,Θprod ,Θquant denote the sets of parame-
ters involved in category purchase incidence, product choice
and purchase quantity prediction respectively.

3Note that given the fine-grained categories in our data
(e.g. ‘organic milk’), the multinomial assumption can be jus-
tified in most cases. If this were badly violated when users
purchase several different products in the same category, this
formulation is still helpful as providing the preference-based
product ranked list is sufficient in the personalized promo-
tion and recommendation scenario.

4.2 Inference
Since the three purchase stages are heterogeneous, we as-

sume Θcate ,Θprod ,Θquant are separate parameter sets. Mod-
els for each stage can then be inferred independently. The
proposed framework inherits the scalability of matrix factor-
ization techniques, where efficient algorithms such as stochas-
tic gradient descent can be applied [7]. We optimize all
terms following the principle of maximum likelihood esti-
mation (MLE). For a given category, we have the following
likelihood functions for category purchase, product choice
and purchase quantity:

LLcate =
∑
u,t

[cu(t) log µu(t) + (1− cu(t)) log(1− µu(t))],

LLprod =
∑
i,u,t

bi,u(t) log ηi,u(t),

LLquant =
∑
i,u,t

[(qi,u(t)− 1) log zi,u(t)− zi,u(t)] + const ,

(9)

where const is a term independent of the parameters Θquant ,
cu(t), bi,u(t) and qi,u(t) are corresponding labels for Cu(t),
Bi,u(t) and Qi,u(t).4

Particularly for product choice, consumer purchase behav-
ior is a kind of implicit feedback, in the sense that not pur-
chasing a particular product does not necessarily indicate
that a consumer dislikes it. Thus rather than predicting
if a product is selected via MLE, we can instead optimize
a criterion that says purchased products are simply ‘more
preferred’ than non-purchased ones. This type of optimiza-
tion criterion is captured by Bayesian Personalized Ranking
(BPR) [32], a state-of-the-art technique that approximately
optimizes the area under the curve in terms of product rank-
ings, i.e.,

AUC∗ =
1

N

∑
u,t

1

|P+
u,t||P

−
u,t|

∑
i∈P+

u,t,i
′∈P−u,t

δ(s
(prod)
i,u (t) > s

(prod)
i′,u (t)),

(10)

where N is the total number of shopping trips for all con-
sumers, P+

u,t is composed of the products selected by con-

sumer u at timestamp t and P−u,t includes (a random sam-
ple of) products which were not selected. Here δ(·) is an
indicator function (δ(x) = 1 if x is true; δ(x) = 0 other-

wise). δ(s
(l)
i,u(t) > s

(l)

i′,u(t)) = 1 indicates that the consumer

u prefers product i to product i′ (at timestamp t). In prac-
tice, we maximize following objective function

LLBPR =
∑
i,u,t

bi,u(t)
∑
i′ 6=i

log pi>i′,u(t) (11)

where pi>i′,u(t) = σ(s
(prod)
i,u (t)− s(prod)

i′,u (t)).
When optimizing the parameters above we adopt a simple

`2 regularization procedure in order to avoid overfitting.

4.3 Price Elasticity Estimation
We introduce the concept of ‘price elasticity’ to model

the product price sensitivity, which is a popular measure
in economics and can be defined as the responsiveness of a
product’s purchase quantity (or probability) to changes in
its price (‘self elasticity’) or another product’s price (‘cross
elasticity’) [11, 18]. Self elasticity values are usually neg-
ative. Larger absolute values of elasticity indicate higher

4cu(t) = 1 indicates the incidence of Cu(t) and bi,u(t) = 1
indicates the incidence of Bi,u(t)



price sensitivity, which means if the product price drops, its
purchase probability or purchase quantity will increase ac-
cordingly. Since products within a category are often the
same kind of commodities (and likely to be substitutes),
the cross elasticity values in the product choice stage are
usually positive, which indicates that if the product price
drops, purchase probabilities of other products within the
same category will decrease.

Suppose product prices are involved in previous FMF
models by logarithmic transformations, and Pi(t) is defined
as the price of product i at timestamp t. Due to the linear
representation of FMF, for a product i, we can represent

the previous preference scores s
(cate)
u (t), s

(prod)
i,u (t), s

(quant)
i,u (t)

as

s
(cate)
u (t) = r

(cate)
u (t) + l

(cate)
u +

∑
i

β
(cate)
i,u (t) logPi(t),

s
(prod)
i,u (t) = r

(prod)
i,u (t) + l

(prod)
i,u + β

(prod)
i,u (t) logPi(t),

s
(quant)
i,u (t) = r

(quant)
i,u (t) + l

(quant)
i,u + β

(quant)
i,u (t) logPi(t).

(12)

where β
(·)
i,u(t) is the coefficient associated with the price of

product i, r
(·)
·,u(t) captures (temporal and spatial) contextual

information of the shopping trip (e.g. day-of-week, store lo-

cation) and l
(·)
·,u captures consumer u’s category loyalty or

product loyalty which is independent of the product’s price
and the environment of the shopping trip.5 Then we can
define the price elasticity of demand in different purchase
stages.

• Category Purchase. For the probability of category
purchase incidence and the price of product i in this cat-
egory, we can define the elasticity as6

e
(cate)
i,u (t) :=

dµu(t)

µu(t)

/
dPi(t)

Pi(t)
≈ (1− µu(t))β

(cate)
i,u (t). (13)

Based on (13), if we assume that β
(cate)
i,u (t) does not have

significant variations and e
(cate)
i,u (t) < 0, the absolute value

of e
(cate)
i,u (t) will decrease as the preference prediction µu(t)

increases.

• Product Choice. An advantage of our choice-based
model is that product competition within a category can
easily be modeled. That is, we can model the effect of a
product’s price change not just to its own purchase prob-
ability but other products’ purchase probabilities. To do
so we define the self elasticity of i as

e
(prod)
ii,u (t) :=

dηi,u(t)

ηi,u(t)

/
dPi(t)

Pi(t)
≈ (1− ηi,u(t))β

(prod)
i,u (t). (14)

As with (13) if β
(prod)
i,u (t) does not vary significantly and

e
(prod)
ii,u (t) < 0, the absolute value of e

(prod)
ii,u (t) will decrease

as the associated preference prediction increases. For two
products i and i′, we have the cross elasticity (how a price
change for i affects the sales of i′)

e
(prod)
ii′,u (t) :=

dηi′,u(t)

ηi′,u(t)

/
dPi(t)

Pi(t)
≈ −ηi,u(t)β

(prod)
i,u (t). (15)

5Notice that r
(·)
·,u(t), l

(·)
·,u and β

(·)
i,u(t) can be composed of both

implicit parameters and explicit features.
6This equation can be derived based on the fact that
d(log(x)) ≈ dx/x.

Notice that ηi,u(t)e
(prod)
ii,u (t) +

∑
i′ 6=i ηi′,u(t)e

(prod)

ii′,u (t) = 0,
which indicates that total choice shares must be conserved
at the product selection level regardless of price fluctua-
tions.

• Purchase Quantity. If we use the conditional expec-
tation (8) as the estimation of the conditional purchase
quantity, we have the following elasticity definition:

e
(quant)
i,u (t) :=

dq̂i,u(t)

q̂i,u(t)

/
dPi(t)

Pi(t)
≈ (1−

1

q̂i,u(t)
)β

(quant)
i,u (t).

(16)

In this scenario, if the variance of β
(quant)
i,u (t) is limited and

e
(quant)
i,u (t) < 0, the absolute value of price elasticity will

increase as consumers’ preferences increase.

Notice that an advantage of the nested FMF framework is
that these three elasticities are additive. If we consider the
price elasticity for the whole shopping trip, since

EQi,u(t) =E(Qi,u(t)|Bi,u(t), Cu(t))P (Bi,u(t)|Cu(t))P (Cu(t))

=q̂i,u(t)ηi,u(t)µu(t)
(17)

then this elasticity can be decomposed as

e∗i,u(t) =
dEQi,u(t)

EQi,u(t)

/
dPi(t)

Pi(t)
= e

(cate)
i,u (t)+e

(prod)
ii,u (t)+e

(quant)
i,u (t).

(18)

5. EXPERIMENTS
We evaluate the proposed nested feature-based matrix fac-

torization framework for consumer preference prediction and
price sensitivity estimation on two real-world grocery store
transaction datasets. For consumer preferences, we evaluate
the proposed FMF model’s ability to make satisfying pur-
chase predictions in terms of category purchase incidence,
product choice and purchase quantity estimation. In addi-
tion, we provide analysis of the price elasticity estimations
and discuss the economic insights behind these observations.

5.1 Datasets
We consider two real-world datasets of supermarket trans-

actions. MSR-Grocery is a new dataset of convenience store
transactions from a grocery store in the Seattle area; since
this dataset is proprietary, we also evaluate our method on
the public Dunnhumby dataset to ensure the reproducibil-
ity and extensibility of our results. Note that both datasets
contain instances of variability in the price of a given prod-
uct due to promotions, making them an ideal platform to
study the effect of price variability on consumer behavior.

• Dunnhumby. The first dataset is the The Complete
Journey dataset published by Dunnhumby.7 This dataset
includes transactions over two years from around two thou-
sand households who are frequent shoppers at multiple
stores of a retailer. Three-level category information is
provided in this dataset: department, commodity descrip-
tion, and sub-commodity description. Here we regard
the most specific one as the category indicator. We fil-
ter out small stores, infrequent shoppers, rare products,
tiny categories, and finally obtain around 531 thousand
product transactions8 from 98 thousand shopping trips

7https://www.dunnhumby.com/sourcefiles
8Each product transaction is for a specific product in a shop-
ping trip.



#product
transactions

#shopping
trips

#users
#trips
per user

Dunnhumby 531,201 98,020 799 123
MSR-Grocery 152,021 53,075 1,228 43

#products #stores #categories
#products

per category

Dunnhumby 4,247 108 104 42
MSR-Grocery 1,929 1 55 35

Table 2: Basic dataset statistics.

by 799 consumers at 108 stores, across 4,247 products
and 104 categories. Consumer demographic information
(household age, marital status, income, homeowner de-
scription, household size, number of children, etc.) and
product related information (retailer price, coupon infor-
mation, manufacturer, brand, size, description, etc.) are
also included. We follow the dataset specification and cal-
culate the actual product price based on the retailer price
and promotion information. By comparing the actual
price and retailer price, we find that 62% of the products
in transaction logs associated with these frequent shop-
pers were sold on sale.

• MSR-Grocery . We collected eight months of transac-
tions from a single (anonymous) convenience/grocery store
in the Seattle area. After removing invalid transactions,
infrequent shoppers, rare products, tiny categories, we
keep about 152 thousand product transactions from 53
thousand distinct shopping trips by 1,228 frequent con-
sumers across 1,929 popular products in 55 categories.
Some product-related features (actual price, package size,
size, description) are included, though we cannot obtain
any consumer demographics due to the lack of a loyalty
program. Since the complete retailer price history is not
available, we regard the maximum price in the transaction
logs as the retailer price and compare it with the actual
price. Ultimately around 50% of the products were sold
on sale in this dataset.

Detailed statistics of above two datasets are included in Ta-
ble 2.

5.2 Feature Instantiation
Recall that in the general FMF representation in (2)

〈w, g̃i,u(t)〉︸ ︷︷ ︸
global effect

+
〈
φ

(o)
i , ψ̃

(o)
u (t)

〉
+

〈
φ̃

(o)
i (t),ψ

(o)
u

〉
︸ ︷︷ ︸

observed item/user-specific effects

+
〈
φ

(l)
i ,ψ

(l)
u

〉
︸ ︷︷ ︸

latent interaction

both observed features and latent variables are involved. In
this section, we will describe the general philosophy of fea-
ture design in the context of the consumer behavior model,
and the specific features used in each purchase stage for each
dataset.

• Category Purchase. For category purchase prediction,
three global features (g̃i,u(t)) are considered: 1) consumer
u’s previous category purchase frequency, which is used
to capture u’s category preference; 2) category purchase
quantity in u’s last shopping trip, which is included to
capture u’s inventory information; 3) prices of products
in the given category c. Since popular products may have
more significant effects compared with unpopular prod-
ucts from the same category, we transform product prices
into log-scale, weighted by their cumulative sold quan-

tities. Since we have only one general ‘item’ (i.e., the
selected category) at this stage, we only consider a simple
consumer bias term and ignore latent item-user interac-
tions.

• Product Choice. Similarly for a product i, we include
the following global features: 1) previous product pur-
chase frequency by the consumer u; 2) current price of the
product i (logPi(t)). Product biases and consumer biases
are included. logPi(t) is also considered in the item fea-

tures (φ̃
(o)
i (t)) such that each consumer and each product

has their own price-related coefficients. Latent item-user
interaction can be considered if provided product-related
and consumer-related features are not sufficient.

• Purchase Quantity. For a product i, we consider the
consumer u’s previous average purchase quantity of the
product and its current price as a global effect.

Besides the above mentioned features, additional feature
configurations on the Dunnhumby dataset and the MSR-
Grocery dataset can be found in Table 3.

5.3 Price History Recovery
In real cases, the complete product price history may be

unavailable. Given the transaction logs, we can only observe
the prices of those products sold at a certain timestamp.
However, as we claimed in the previous section, prices of
unsold products ought to be included in the model as well,
which requires us to attempt complete price history recov-
ery. Specifically, we applied a simple ‘hot deck’ method [26]
for imputing these missing prices, where the transactions are
sorted by timestamps and the last observed price of the same
product is carried forward to the current missing price. Note
that this approach can be implemented efficiently but may
generate biased values if people rarely buy products at their
original price. Thus we claim that developing stronger ap-
proaches to recover the complete price histories could be an-
other important problem which can potentially be explored
as future research.

5.4 Baselines and Evaluation Methodology

Baselines. Consumers’ previous category purchase frequen-
cies, product purchase frequencies and average purchase qua-
ntities can be adopted as three simple baselines – cateFreq,
prodFreq and avgQuant for category purchase, product
choice and purchase quantity predictions.

We also consider standard logistic regression (L-Reg) for
category purchase where all the global features in Table 3
are included. For product choice, matrix factorization as
in (3) (MF-mle) is applied to fit the multi-class classifica-
tion setting.9 L-Reg and MF-mle thus yield two learning-
based recommendation benchmarks for category purchase
and product choice.

Finally, we apply two sets of FMF-based methods for all
of these three prediction stages: 1) L-FMF-b, C-FMF-
b-mle and Q-FMF-b are three FMF baselines where all
features in Table 3 except for product prices are included and
the MLE optimization criterion is applied; 2) L-FMF-p,
C-FMF-p-mle and Q-FMF-p are three full FMF models
where product prices are added back. Comparing these two
sets of baselines, the importance of product prices can be

9The dimension of φ
(l)
i , ψ

(l)
u is set to 5.



Dataset global features (g̃i,u(t)) item features (ψ̃(o)
u (t))

Dunnhumby
category purchase freq., last purchase quant., day-of-week, storeID, household demographics,

prices of all products
intercept

MSR-Grocery category purchase freq., last purchase quant., day-of-week, prices of all products intercept

(a) Category Purchase

Dataset global features (g̃i,u(t)) item features (φ̃
(o)
i (t)) user features (ψ̃(o)

u (t))

Dunnhumby
product purchase freq., product price,

price*freq., price*day-of-week, price*storeID
intercept, product price,

product info. (brand, manufacturer, size description)
intercept, product price,
household demographics

MSR-Grocery
product purchase freq., product price,

price*freq., price*day-of-week
intercept, product price,

product info. (package size, size description)
intercept, product price

(b) Product Choice

Dataset global features (g̃i,u(t))

Dunnhumby
avg. purchase quant., day-of-week, storeID, product info., household demo., product price, price*(avg. quant.),

price*day-of-week, price*storeID, price*(product info.), price*(household demo.)

MSR-Grocery avg. purchase quant., day-of-week, product info., product price, price*quantity, price*day-of-week, price*product info.

(c) Purchase Quantity

Table 3: Specific features applied in FMF on the Dunnhumby and MSR-Grocery datasets. Notice that coefficients for the
item intercept and user intercept indicate consumer bias and product bias respectively.

evaluated. In addition to MLE, we adopt another method
C-FMF-p-bpr for product choice where the BPR criterion
(11) is used to optimize the personalized product ranking
(i.e., the AUC ∗) directly.

Evaluation Methodology. Note that the number of pur-
chase incidences for each category is usually much smaller
than the total of those for the remaining categories in the
complete transaction logs. Therefore we apply the area un-
der the curve (AUC) metric to evaluate the performance of
category purchase prediction, which is suited to imbalanced
binary prediction tasks [15].

For product choice, in real-world recommender systems,
one is often interested in providing satisfactory ranked lists
instead of simply predicting incidence. Thus we directly
adopt the AUC ∗ defined in (10), which measures if the se-
lected product is preferred to those products that were not
selected in each shopping trip.

Since purchase quantity estimation is a numeric prediction
task, we apply the mean absolute error (MAE) to evaluate
performance where

MAE =
1

N∗

∑
i,j,t

|q̂i,u(t)− qi,u(t)|, (19)

and N∗ indicates the total number of successful product
transactions in the given category. One advantage of this
measure is that the MAE is more robust to outliers than
the root mean squared error (RMSE).

5.5 Results
We chronologically partition shopping trips into 70/10/20

training/validation/test splits. Because of the number of
item- and user-related parameters is very large, we set two
different coefficients on the `2 regularizers of the global pa-
rameters (λ1) and the item-/user-related parameters (λ2).
These coefficients are selected on the validation set.10 All
results in this section are reported on the test data.

10λ1 is selected from {0.1, 0.5, 1, 5} and λ2 is selected from
{1, 5, 10, 50}.

5.5.1 Preference Prediction
We evaluate the performance for preference prediction

based on the measures described in the previous section.

• Category Purchase. Results of category purchase pre-
diction in terms of the AUC for binary classification are
shown in Table 4a. Compared with the baseline cate-
Freq, category prediction can be significantly improved
by incorporating additional features and consumer biases.
However, we notice that price has little impact on perfor-
mance, indicating that it may be difficult to drive con-
sumers’ category purchase decisions by altering product
prices.

• Product Choice. For product choice prediction, we
evaluate the product-ranking AUC (i.e., AUC ∗ in (10)).
Results across different categories are provided in Table
4b. Compared with prodFreq and MF-mle, perfor-
mance can be improved by incorporating more features
and latent factors. We particularly notice the significance
of the price feature on the Dunnhumby dataset by com-
paring the performance of C-FMF-b-mle and C-FMF-
p-mle. Also in general, C-FMF-p-bpr reliably outper-
forms other MLE-based methods by directly optimizing
ranking scores.

• Purchase Quantity. We include results for purchase
quantity prediction in Table 4c. Again, performance can
be improved by including additional features in the Q-
FMF model but product price features do not help sub-
stantially.

5.5.2 Price Elasticity Estimation
Next we consider price elasticity estimation. Table 5 shows

summary results (median, mean and standard deviation) of
the elasticity distribution across all shopping trips in each
purchase stage. Elasticity for product choice is calculated
from C-FMF-p-bpr.

Based on the results in Table 5, price elasticity for cate-
gory purchase prediction is limited. This indicates that it
is hard to drive consumers’ desire to purchase items from a



Dataset Dunnhumby MSR-Grocery
mean s.e. mean s.e.

cateFreq 0.661 0.006 0.643 0.009
L-Reg 0.722 0.006 0.657 0.009
L-FMF-b 0.782 0.005 0.747 0.008
L-FMF-p 0.783 0.005 0.746 0.007

(a) Category purchase prediction (AUC).

Dataset Dunnhumby MSR-Grocery
mean s.e. mean s.e.

prodFreq 0.726 0.006 0.727 0.008
MF-mle 0.723 0.006 0.641 0.006
C-FMF-b-mle 0.824 0.005 0.802 0.007
C-FMF-p-mle 0.830 0.005 0.802 0.007
C-FMF-p-bpr 0.832 0.005 0.808 0.007

(b) Product choice (AUC*).

Dataset Dunnhumby MSR-Grocery
mean s.e. mean s.e.

avgQuant 0.706 0.033 0.386 0.021
Q-FMF-b 0.372 0.023 0.123 0.022
Q-FMF-p 0.372 0.025 0.115 0.021

(c) Purchase quantity prediction (MAE).

Table 4: Mean and standard error of preference prediction results across different categories in different purchase stages on
the Dunnhumby and MSR-Grocery datasets.

Dunnhumby MSR-Grocery
Dataset median mean s.d. median mean s.d.

cate. purchase -0.001 -0.012 0.029 -0.025 -0.055 0.062
product choice -0.798 -0.842 0.683 -0.117 -0.242 0.551
purchase quant. -0.141 -0.196 0.213 -0.004 -0.024 0.067

Table 5: Summary of self price elasticity estimation.

particular category by a single product promotion (at least
for grocery shopping). Compared with category and quan-
tity prediction, product choice is the most price sensitive
stage (in terms of elasticity) in the decision making pro-
cess, while price still serves as an important, but less sig-
nificant, feature for quantity prediction (especially on the
Dunnhumby dataset). We also notice that consumers in the
Dunnhumby dataset are more price-sensitive than those in
the MSR-Grocery dataset in the product choice and pur-
chase quantity stages. One possible reason is that the MSR-
Grocery dataset is collected from a convenience store, where
people usually have certain targets in mind and are less likely
to seek a large inventory of products. On the other hand, the
Dunnhumby dataset is composed of household-level shop-
ping transactions where consumers may be more likely to
redeem promotions and purchase more products.

In Table 6, we provide details of the eight most price-
sensitive categories in each purchase stage. From Table 6b,
we notice that consumers tend to select the most inexpen-
sive products when shopping for meat (bacon, pork rolls,
tuna), eggs, drinks (water, juice, coffee), cereal and snacks
(potato chips, candy). In addition, from Table 6c we observe
that consumers are more likely to stock products which have
relatively long shelf lives (e.g. frozen food, soft drinks) if ap-
propriate promotions are offered. Some featured categories
(categories with promotions and located in designated ar-
eas) in the MSR-Grocery dataset appear in Table 6a and
Table 6b, which indicates that a combination of promotions
and advertisements may help to affect consumers’ purchase
decisions.

6. CASE STUDY: BACON
Besides showing the overall preference prediction perfor-

mance and the price elasticity distribution across the 104
categories in the Dunnhumby and 55 categories in the MSR-
Grocery dataset, we provide detailed explorations of the
most price sensitive category from the Dunnhumby dataset
in the product choice stage: ‘bacon (economy).’ A sum-
mary of product prices in this category is included in Table
7, where price variabilities can be observed for all products
except product 10. We also include the total quantity sold
for each product in Table 7, where we notice that products
with moderate prices are more popular than others.
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Figure 2: Heatmaps of consumer-specific price elasticity in
different purchase stages for the example category ‘bacon
(economy).’ Darker blocks indicate higher price sensitivity.

Preference vs. Representative Features. We find that
the estimated coefficient on ‘bacon (economy)’ for category
frequency in the category purchase stage is 0.28, which in-
dicates that a consumer’s previous category purchase fre-
quency is still positively related to the category preference.
Also the estimated coefficient for last purchase quantity is
−0.22, which means if consumers purchased a substantial
volume of economy bacon products in their previous shop-
ping trips, they may avoid making the same category pur-
chase in their current shopping trip. For the product choice
stage and the purchase quantity stage, we find that the es-
timated coefficients for product frequency and average pur-
chase quantity are 0.28 and 0.20, which indicates these two
features are positively correlated with preferences as well.

Personalized Product-Specific Price Sensitivity. Am-
ong the 11 products in the example category ‘bacon (econ-
omy)’ there are 448 consumers who have purchased prod-
ucts in this category. We randomly select 10 consumers and
calculate their average price elasticity for each ‘bacon (econ-
omy)’ product in terms of category purchase, product choice
and purchase quantity decisions. Heatmaps of the results
are shown in Figure 2. We notice that within the ‘bacon
(economy)’ category, different consumers and products may
have significantly different price sensitivities in each of the
three stages, though the personalized elasticity is not obvi-
ous in Figure 2a since the user-specific price coefficient is not
considered in the first stage. By setting appropriate thresh-
olds for price elasticity, we can easily uncover those price
sensitive consumer-product pairs in Figure 2 and customize
promotion strategies accordingly. In addition, we find that
in Figure 2a, consumers are more sensitive to the prices of
products 2–6 in the category purchase stage, which indeed
are popular products as we observed in Table 7. This implies
that while it is hard to increase the possibility of category
purchase incidence, promotions on popular products will be
more effective than others in terms of category purchase.

Preference vs. Price Sensitivity. Recall we claimed that
if the variances of price-associated coefficients in (13), (14),
(16) are limited, then consumers with high preference scores
will be relatively insensitive to price changes as far as cat-



Dunnhumby MSR-Grocery

bacon (economy) -0.04 broth -0.19
soft drinks (20/24pk) -0.04 spices -0.17
beef (lean) -0.01 popcorn -0.15
garbage compactor -0.01 energy drinks -0.15
hot dogs -0.01 chocolate -0.14
pork rolls -0.01 pizza -0.11
salad -0.01 tortilla chips* -0.10
baby diapers -0.01 protein bars -0.10

(a) Category Purchase

Dunnhumby MSR-Grocery

bacon (economy) -2.59 eggs -1.65
milk (white) -1.96 coffee -1.18
butter -1.84 chips -1.07
cereal (family) -1.79 bottle water -1.06
juice -1.78 tortilla chips* -0.98
tuna -1.77 bottled dill -0.82
cereal (kids) -1.67 fresh bread -0.80
pork rolls -1.67 candy -0.80

(b) Product choice

Dunnhumby MSR-Grocery

mac & cheese -0.47 chocolate -0.12
soft drink (12/15/18pk) -0.44 candy -0.06
bacon (economy) -0.41 energy drinks -0.05
hot dogs -0.41 mac & cheese -0.04
milk (white) -0.34 sausage -0.04
pork rolls -0.33 frozen fruit -0.04
frozen dinner -0.32 spices -0.04
facial tissue -0.32 soft drinks -0.04

(c) Purchase Quantity

Table 6: The eight most price sensitive categories regarding three different purchase stages on the Dunnhumby and MSR-
Grocery datasets. Values are the median self-elasticities within each category. Categories marked with * are composed of
featured products at special locations of the store.

Product prod. 1 prod. 2 prod. 3 prod. 4 prod. 5 prod. 6 prod. 7 prod. 8 prod. 9 prod. 10 prod. 11

mean $1.95 $2.99 $2.88 $3.09 $3.02 $3.08 $3.38 $3.83 $3.90 $5.99 $5.66
standard deviation $0.14 $0.72 $0.62 $0.67 $0.71 $0.77 $0.86 $0.66 $0.54 $0.00 $0.53

minimum $1.49 $2.00 $2.00 $2.00 $1.50 $2.50 $2.50 $0.99 $2.49 $5.99 $3.99
maximum $1.99 $3.99 $3.99 $3.99 $3.99 $4.39 $4.39 $4.49 $4.99 $5.99 $5.99

# unique values 4 4 4 4 8 5 5 4 5 1 3

quantity sold 204 373 215 455 730 507 173 64 65 32 30

Table 7: Summary of product prices and sold quantities on ‘bacon (economy)’.

egory and product choice is concerned, but they tend to
be price sensitive with respect to purchase quantity. Again
taking ‘bacon (economy)’ as an example, in Figure 3 we
show the relationship between preferences and price sen-
sitivities in different purchase stages. We notice that all
elasticity values are negative, which is consistent with the
intuition that purchase probability will increase if product
price drops. Here absolute price elasticity values are gener-
ally negatively correlated with preferences in category pur-
chase and product choice, but positively correlated with
purchase quantity, which indeed verifies our previous argu-
ments about the relationship between preference and price
sensitivity. In Figure 3b, we notice that ‘low-preference’
consumers have larger variations in price sensitivity than
‘high-preference’ consumers. This is possibly because high-
preference consumers’ preferences dominate purchase deci-
sions (i.e., 1−ηi,u(t) is close to zero in (14)) and they tend to
purchase a product no matter its price. On the other hand,
if a product is not preferred by a consumer, this could be
either because the price is too high to trigger a purchase, or
because the consumer simply dislikes the product. In Figure
3c, we observe that those consumers with strong preferences
are not the most price-sensitive consumers. This observa-
tion is consistent with the intuition that aggressive buyers
are more likely to exhaust the potential of purchase quantity
due to budget limits so that it would be difficult to increase
their purchase quantities by adjusting price.

7. CONCLUSIONS AND FUTURE WORK
We systematically studied the problem of modeling con-

sumer preferences and price sensitivities, and proposed a
nested feature-based matrix factorization framework to sup-
port personalized and scalable recommendation and demand
systems. We verified that the proposed model is capable
of providing high quality preference predictions and specific
price elasticity can be appropriately estimated for each shop-
ping trip. By applying the proposed framework on two real-
world datasets, we provided economic insights which may
benefit both data mining and economics communities. Par-
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Figure 3: Scatter plots between preference prediction and
price elasticity estimation in different purchase stages for
the example category ‘bacon (economy)’. Note that axes
within each subfigure are scaled based on their own ranges.

ticularly, we noticed that price affects product choice but
has limited effects on category purchase or product quantity,
which means coupons are primarily effective “within cate-
gory”. Grocery shopping behavior is particularly explored
in this study but the nested multi-stage framework and the
relationship between preference and price sensitivities can
be translated to other domains (e.g. clothes shopping, on-
line advertising).

Price sensitivity in large-scale systems is an important
problem and a number of possible topics can be explored
along this trajectory. For example, temporally-aware mod-
els could be developed to allow long-term purchase patterns
to be carefully studied. Cross elasticity has been introduced
but not completely explored in this work; this could be stud-
ied in detail in future work where not only product substi-
tution but product complementarity could be modeled. In
addition, since the straightforward imputation method we
applied to recover price history will be problematic if people
rarely buy products at their original price, another possible
direction could be to develop more sophisticated approaches
for price history recovery by combining preference prediction
and missing price inference. In the context of hybrid recom-
mender and demand systems, we have so far only studied
consumer behavior in this work, but the optimization strate-
gies could be adapted to generate personalized coupons.
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