AdaTune: Adaptive Tensor Program Compilation
Made Efficient

Menghao Li* Minjia Zhang® Chi Wang Mingqin Li
Microsoft Corporation
{t-meli,minjiaz,wang.chi,minggli}@microsoft.com

Abstract

Deep learning models are computationally intense, and implementations often have
to be highly optimized by experts or hardware vendors to be usable in practice.
The DL compiler, together with Learning-to-Compile has proven to be a powerful
technique for optimizing tensor programs. However, a limitation of this approach
is that it still suffers from unbearably long overall optimization time. In this
paper, we present a new method, called AdaTune, that significantly reduces the
optimization time of tensor programs for high-performance deep learning inference.
In particular, we propose an adaptive evaluation method that statistically early
terminates a costly hardware measurement without losing much accuracy. We
further devise a surrogate model with uncertainty quantification that allows the
optimization to adapt to hardware and model heterogeneity better. Finally, we
introduce a contextual optimizer that provides adaptive control of the exploration
and exploitation to improve the transformation space searching effectiveness. We
evaluate and compare the levels of optimization obtained by AutoTVM, a state-
of-the-art Learning-to-Compile technique on top of TVM, and AdaTune. The
experiment results show that AdaTune obtains up to 115% higher GFLOPS than
the baseline under the same optimization time budget. Furthermore, AdaTune
provides 1.3-3.9x speedup in optimization time over the baseline to reach the same
optimization quality for a range of models across different hardware architectures.

1 Introduction

The enormous computational intensity of Deep Neural Network (DNN) models has attracted great
interest in optimizing their performance. In particular, popular deep learning (DL) frameworks such
as TensorFlow [6] and PyTorch [32] adopt custom optimized kernels such as Nvidia cuDNN [15] or
Intel MKL-DNN [2] as back-end. However, given the increasing complexity of tensor operations in
DNN s and the volatility of DL algorithms, it calls for developing fast and automated compilation
frameworks to handle the unprecedented amount of innovations. To imitate or even surpass the
success of hand-optimized libraries, recent research has developed neural network compilers, such
as XLA [4], Halide [36], Glow [37], Tensor Comprehension [40], and TVM [13]. Among them,
TVM has shown superior performance improvements using a technique called Learning-to-Compile
(AutoTVM) [14]. AutoTVM optimizes the code by generating many versions of a tensor program
and chooses the best through simulated annealing search over a large space of code transformation
choices. Furthermore, it employs a learned cost model trained by actual hardware performance
measures to predict the performance of diverse inference computations on real hardware targets.

While the Learning-to-Compile approach produces highly optimized code of DNN models, they
may suffer from excessively long optimization time. As an example, although AutoTVM is able to
demonstrate close to 2x performance improvement over TensorFlow on ResNet-18, the compilation
time can still take several hours or even tens of hours [14]. With the active research that has been
pushing the model size to millions or even billion-scale parameters with a training time of only a

*Both authors contributed equally. Order of appearance is random.
34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

few hours or less than one hour [46, 19, 47, 29, 38, 48], it makes reducing the DL compilation time
for inference of the current solution even more prominent. Furthermore, since many of these DL
compilers have been adopted by major players in the industry [43, 44, 26, 30], many users of these
pipelines, including deployment engineers, would have to go through the optimization numerous
times. Finally, as new neural architectures [18, 41, 16, 34] come out in rapid speed, and with deeper
or wider networks [45, 38, 35, 5] on various hardware platforms [3, 22, 28], we are forced to optimize
the networks more frequently. The excessive long optimization time hinders the turnaround time and
even puts the practical utility of the current compiler-based solutions into question.

We aim at accelerating innovations by developing an automatic and efficient optimization process
for DNN models. For this purpose, we introduce AdaTune, a method that achieves similar or
better optimization quality but with shorter optimization time. Furthermore, AdaTune improves the
adaptivity of LTC and reduces the hyperparameter tuning required, accelerating the productivity
and agility of DNN model deployment. Specifically, the contributions of our paper consist of (1) a
preliminary analysis that reveals the inefficiency and challenges of the existing approaches, (2) an
adaptive evaluator that statistically determines the number of runs for performance measurement, (3)
a surrogate modeling with uncertainty quantification that allows to better capture hardware and model
heterogeneity, and (4) a contextual optimizer that provides control of exploration and exploitation
dynamically to improve the transformation space searching effectiveness. We conduct extensive
experiments to show that the proposed approach consistently outperforms the previous method on
various models and hardware. It not only allows us to optimize DNN models 1.3-3.9x faster than the
baseline to reach the same optimization quality but also obtains up to 115% higher GFLOPS under
the same time budget. We conduct ablation analysis to study the effects of the proposed techniques,
and we will make the source code publicly accessible to encourage further research.

2 Background and Related Work

DL compilation pipeline. DL compilers like TVM [13] have recently become popular for auto-
matically optimizing DL programs [37, 4, 36, 40]. A typical DL compiler contains multiple passes
to optimize a model trained by popular DL frameworks such as TensorFlow [6], PyTorch [32], or
MXNET [12], as shown in Fig. 1. In the first pass (box with dotted line), the compiler frontend applies
target-independent and white-box target-dependent optimizations that do not include a measure of
actual execution time. The target-independent passes perform optimizations such as operator fusion
and data layout transformation and the while-box target-dependent optimizations apply heuristic rules
for code transformation based on domain knowledge, both of which do not need a specification of the
target hardware. Recent work such as AutoTVM [14] extends the pipeline with another pass, which
is a black-box target-dependent pass, which uses learning machinery to perform optimizations.

DNN models
¢ O PyTorch ¢§
mxnet owx

Table 1: Example of TVM knobs.

Knobs Definition Example values
: Frontend tile_f Loop tile decisions on the 84
! tile_y number of filters, and height 140
—————————— tile_x and weight of feature maps 140
tile_rc Loop tile reduction decision on 2
_Il ; tile_r the number of channels, height 2
a tile_ri and weight of filters ¢ 2
: auto_unroll The threshold of iterations a
3
max_step loop to be unrolled
Figure 1: DL compilation unroll_explicit Explicitly unroll loop 2

pipeline.

Black-box target-dependent pass. In this pass, the compiler converts code transformation deci-
sions as code templates, and it makes use of an auto-tuner (with optimization algorithm) and real
hardware measurements to efficiently find the best transformation on target hardware (e.g., CPU,
GPU, ARM, or IoT devices). Table 1 lists the knobs for code transformation of a convolution block
on GPUs as example , which control various aspects of the optimization and determine whether the
code (1) fully utilizes the internal parallelism within processors, (2) uses the shared memory wisely,
and (3) maximizes data locality. Auto-tuning has been studied for generic program compilation

using domain-specific search techniques [9, 10, 42, 7]. Later, [14] builds on top of prior work by
using a cost model and simulated annealing to search the transformation space for DNN models.
However, there are certain limitations, as described in Section 3. Subsequently, [8] proposes to use
reinforcement learning for efficient search space exploration. However, their approach involves a
non-trivial amount of additional hyperparameter tuning as well as additional domain-knowledge on
the validity of potential solutions on specific hardware.

Problem formulation. Given the vastness of the transformation space, if we denote the space as S,
and function Per f(-) as the performance (i.e., GFLOPS — Giga floating point operations per second)
of one transformation plan p on a given hardware target h, the goal of the black-box target-dependent
pass is to find a transformation plan px in S, that maximizes Per f(-) on h over S, efficiently.

3 Preliminary Analysis
This section presents several studies that guided the design of the approach introduced in Section 4.

Observation 1. DL compiler generates highly optimized code but results in prolonged opti-
mization time. Prior work [13, 14] uses an auto-tuner to select a plan p from the transformation
space, calls a code generator as a subroutine to generate machine code for that plan on a specific
hardware, and then executes the generated code on the target hardware n times to obtain an estimated

cost of p as avg(p) = L 31" | Perf(p,q;), where g; represents an input of inference. Existing

~ n
methods require the number of repeats n as an input. However, for a fixed n, it is not clear a priori
whether we should (a) run many repeats (large n) with more accurate measurement but also large
measurement cost; or (b) consider a small number of repeats (small n) with inaccurate measurement

but small measurement cost. n cannot be too small, because then even if a transformation plan with

low average cost is chosen, its variance, std(p) = \/ LS (Perf(p,¢;) — avg(p))? can be high.

This is undesirable because then the measured average cost could deviate from its true performance
due to the variance in the measurement, and we may end up choosing a suboptimal plan. Therefore,
the general practice is to use a large conservative number for n to achieve accurate estimates of the
true cost, which is why it takes a very long time for existing auto-tuning methods to find a good
solution. Figure 2 shows the execution time (on CPU) breakdown on 12 tasks from ResNet-18 [20].
As can be seen, the majority of time is spent on hardware measurement. Therefore, it is important to
cut down the expensive cost of hardware measurements that examine the goodness of a plan.

40
B Hardware measruement 0.06 175 0.06
0.30- W Space searching 35 o o
- (SR 5]
- % 00sC (150 005 &
£0.25 Q. 30] o a K]
3 Q g Qus 3
_8020 izs, 0.04> ﬁ 0.04>
=z [C] 6 Qoo k3
] 20 003E @ 0.03%
o] 3 c
5015 2. g g o
o @ v ® 9]
2 o2 -2 0,022
£0.10- & 10l L 5 5
= = s ~ oS
ool | [11 [-)
& | Lo
0.00 T S T TS T6 17 T8 To Tio ™12 5 10 50 500 3000 5 10 50 500 3000

Task Numbers Numbers

. (a) Intel Xeon x86 CPU E5-2690 v3 (b) Nvidia Tesla P100
Figure 2: Performance breakdown

of AutoTVM on ResNet-18. Figure 3: Performance measurement variance and coefficient-of-variation
on different hardware.

Observation 2. Existing methods perform measurement without considering model diversity
and hardware heterogeneity. Prior study [14] claims that considering variance does not help.
Therefore, they use a regression model (e.g., XGBoost) to learn and predict the performance of
a transformation plan. Different from their observations, we find that in practice, based on the
scenario, a model might need to be optimized against different hardware, including x86 CPU [43, 49],
GPUs [21], ARM, and various ML accelerators [31, 25], all of which have very different architectures
(e.g., memory hierarchy, instruction level parallelism, hardware prefetching, branch prediction, etc),
which appear to have very different variance behaviors. Figure 3a and Figure 3b show the mean-
variance range under x86 CPU and GPU for different n. As n increases, the variance (bar) decreases

as expected. Although the absolute variance on GPU is higher than that on CPU, the coefficient of
variation (curve) on CPU is much larger than that on GPU, especially when n is relatively small.
Furthermore, different models may also have diverse execution patterns, e.g., small/large model,
regular/irregular computations, inter-op/intra-op parallelism, data dependencies, all of which can
affect the run-to-run variance. Since existing work assumes the uncertainty is low by using a large n,
if we reduce n, it is more likely that a regression model without accounting for the uncertainty can
lead to suboptimal trials.

Observation 3. Existing approaches employ static exploration-vs-exploitation, which limits
the adaptivity of the compiler optimization. Existing works [13, 14] employ the genetic algorithm
or simulated-annealing to guide the transformation space searching process. To balance exploration
and exploitation, they apply e—greedy in each searching iteration by selecting eb candidates randomly
to ensure exploration, where b is the batch size and € is a fixed value 0.05. This decision appears
suboptimal for several practical reasons. As shown in Fig. 4, a small € (e.g., 0.01, 0.05) tends to be
overly greedy, as it focuses in an area where the model believes the optimum to be, without efficiently
exploring additional areas of the transformation space which may turn out to be more optimal in the
long run. On the other hand, a large € (e.g., 0.2, 0.5) induces a large distraction into the searching
process and slows down the searching process. However, having a constant €, determined at the start
of the beginning, introduces an additional hyperparameter that needs to be tuned. Furthermore, even
with a tuned e, its value is going to remain the same during the entire optimization for all tasks, which
is sub-optimal. The effectiveness of the existing approach is, therefore, significantly affected by the
degree of trade-off between exploration and exploitation. Given that the general goal is to make the
optimization fast and more usable, this is clearly not desirable. Thus, we need a more principled way
to control the balance between exploration and exploitation.

0] =roee - 0] momw e . 0] =roree . o 0] memmm e e emee
0 50 100 150 0 50 100 150 0 50 100 150 [50 100 150
Number of Iterations Number of Iterations Number of Iterations Number of Iterations

(a) e = 0.01 (b) e =0.05 (©)e=0.2 (d)e=05

Figure 4: Exploration-vs-exploitation: choice of € in epsilon-greedy.

4 The Elements of AdaTune

In this section, we present the design decision for AdaTune, and we provide quantified comparisons
against corresponding configurations of the original AutoTVM [14] in Section 5. We illustrate the
high-level design of AdaTune in Figure 5. There are three main contributions that AdaTune makes
over the design choices of AutoTVM.

Transformation Hardware measurements Best optimized code
Random Forest Regressor Monitor ———
Space
&-samplin i predicted cost
¢ pling query (mean, variance)

. Adaptive Surrogate | Candidates) Code Adaptive
T 1 1
DNN modet—) Code Template (7o Modeling and Optimizer Generator Evaluator | Hardware

Figure 5: Overall design and optimization overview of AdaTune.

4.1 Adaptive Evaluator: Early Termination by Coefficient of Variation Counting

The adaptive evaluator (AE) is the module in charge of steering the dynamic reconfiguration process
of batch measurement for getting the performance. The key challenge in the design of this component
is to gather measurements in an accurate and timely way, so as to maximize accuracy (i.e., reduce
variance) and minimize the cost for different hardware measurements.

In AdaTune, we use AE to automatically adjust the iterations of measurements n in a model diversity
and hardware heterogeneity aware way. This adaptive mechanism is based on the idea of estimating
the statistical uncertainty associated with the current performance (e.g., GFLOPS) measurement on
the basis of coefficient of variation (CV). More precisely, for a given n, we divide it into micro-
batches of size B, and we evaluate the performance upon the finish of each micro-batch since the
beginning of the hardware measurement (time = 0). If we denote T'ime(i) (i € {1,2, ..., B}) as the
time elapsed since the beginning of the measurement of plan p and the occurrence of the i-th micro-

batch, the GFLOPS upon the i-th micro-batch would be Per f(p); = W. We then

use it to estimate the accuracy of the measurement after i micro-batches with the CV of Per f(p);,

i.e., CV(Perf(p);) = ji”;((f{?ee:?((’;))iiz:ﬁ;((z))221;2:?((2))%)) . If the CV value is smaller than a certain

threshold (e.g., 10%), AdaTune adaptively terminates a measurement. AE, therefore, automatically
adjusts the hardware measurement costs in a robust and model/hardware-independent way.

Prior studies on hyperparameter tuning such as Hyperband [27] and BOHB [17] define approximate
versions of the objective function (e.g., classification tasks) that are parameterized by a concept called
budget. They prioritize promising configurations with larger budgets as the optimization progresses.
Our approach is similar to the budget concept in the sense that we also create a cheap-to-evaluate
version of the hardware measurement function. However, different from their goal, which is to
eventually optimize with the largest budget, we collect a stream of measurements of micro-batches
and timely stops when the likelihood of getting very different measurement results is low. [8] uses
so-called adaptive sampling by performing non-uniform sampling through clustering. Different from
their method, our approach cuts the cost of hardware measurement of individual samples. The two
methods can be combined to maximize the gains.

4.2 Adaptive Surrogate Modeling and Optimizer

For AdaTune, we propose another two improvements: (1) We create a surrogate model with uncer-
tainty quantification, which takes both mean and variance into consideration to adapt performance
modeling and drives the exploration of the transformation space by continuously gathering feedback
on the quality of the explored transformation plans; (2) We introduce the contextual simulated
annealing optimizer, which dynamically balances the trade-off between exploration and exploitation
based on the expected improvement from the surrogate model.

4.2.1 Surrogate modeling with uncertainty quantification

Given the very different variance behaviors (Section 3), in order to make the optimization process
more adaptive to different hardware and models, we consider constructing a surrogate model by
accounting for uncertainty. In particular, we consider an ensemble model f of black-box learners,
each of which is built on m measurements randomly sampled with repetitions from the entire
hardware measurements {(p1, Perf(p1)), -..; (Pm, Per f(pm))}, where a transformation plan p; =
(pis - Pi,a) is a complete instantiation of the code template’s d knobs. Given a new plan p,, 41, the

model predicts the mean p and variance o for its performance f (Pm+1) through the ensemble.

Among many options, a useful tool for quantifying the uncertainty in a given prediction is random for-
est, which has proven to be valuable in Sequential Model-based Bayesian Optimization (SMBO) [11]
method such as SMAC [23]. We choose random forest as our surrogate model because it enjoys
advantages, such as better handling of discrete features. It also has a training time complexity of
O(m -log(m) - d - H) where H is the number of decision trees, which is more efficient than models
like Gaussian Processes, which exhibit O(m?) training complexity in the number of data points (see
comparison results in Appendix B).

Expected positive improvement. We use the same diversity-aware cost function as the one used
in AutoTVM [14] to select a list of promising plans for hardware measurements. In particular, we
replace the run time cost estimate part with expected positive improvement (EI) and keep the other

term unchanged. We compute EI(p) = E[maz(f(p) — Perf(p*),0)] [11] over the best known
measured performance Per f(p*) so far (p* is the best plan so far), while taking into account the
possible uncertainty in that prediction. Given the predictive mean y and standard deviation o of a

plan p, we have:

_ (W) = Perf(p))®(2) + o(f(p)$(Z) if o(f(p)) >0
1) = {0 u(F) ~ Perf(v)) ifotfon=0
;o {u(f(pl)(}g)i;f(p) if U(]i(p)) >0 o
if o(f(p)) =0

where ® and ¢ are the CDF and PDF of the standard normal distribution. EI is possibly large for
configurations with high predicted performance and for those with high predicted uncertainty.

4.2.2 Adaptive control of exploration and exploitation via contextual simulated annealing

Based on the analysis in Section 3, we propose a modification to the e-greedy sampling in the
simulated annealing based optimizer. Instead of using a fixed value for €, we replace € with a
contextual factor e;, which is implicitly tied to the task and the underlying model and changes
dynamically as the optimization proceeds. In particular, we define:
g

“” Perf(p) ®
where Per f(p*) is the best seen plan, and & is the mean of the standard deviations from a set of yet
unsampled plans from posterior distribution (rather than the prior). Note that it should be distinguished
from o, which is the individual standard deviation of a prediction from f(-) for a particular plan in
the posterior. This allows AdaTune to dynamically adjust the exploration—exploitation trade-off based
on the surrogate model’s state at any time point. We call the resulting optimizer contextual simulated
annealing.

This is intuitive, as exploration is, on average, preferred when the model has high uncertainty, and
exploitation is preferred when the predicted uncertainty is low. Furthermore, if the optimization is
being overly greedy (i.e., getting stuck at a local optimum), f will produce a highly unbalanced
standard deviation distribution with small standard deviation close to the local optimum already being
sampled, and larger standard deviations elsewhere in the (unsampled) transformation space. This
results in a larger value for the standard deviation for the posterior, which is equivalent to an increase
of ¢; in Eqn. 3 and it increases the ratio of randomly sampled points in the next batch of hardware
measurements, presumably helping the search escape from local optimum.

4.3 AdaTune: Putting It Together

In previous sections, we describe how we make the optimization process more adaptive and reduce
the hardware measurement cost at each tuning step. In this part, we put everything together and call
the resulting target-dependent optimization pass AdaTune (Algorithm 1).

5 Evaluation

In this section, we evaluate AdaTune experimentally, seeking answers to how AdaTune helps
accelerate the optimization process. We integrate AdaTune with TVM [13] and use AutoTVM [14]
as our baseline for comparison. We implement AdaTune in Python, and we leverage scikit-learn [33]
and forestci [1] to implement the surrogate model and optimizer.

5.1 Comparison of AutoTVM and AdaTune for Searching Transformation Space

We compare the performance of AutoTVM and AdaTune on how much optimization speedup
we obtain as a function of the wall-clock time. Due to space limitations, we include four tasks:
one convolutional layer sampled from ResNet-18 [20] and one batched GEMM operator from
Transformer [41] on both CPU (Intel Xeon CPU E5-2690 v3 @ 2.60GHz 2600 MHz) and GPUs
(Nvidia Tesla P100). We use n=500 for all experiments and set micro-batch size B = 50 in AdaTune.
We use the default settings for other hyperparameters provided by AutoTVM. The detailed parameter
settings are included in Appendix A. We perform 15 independent runs of each configuration with
different random seeds and report the median together with a 95% confidence interval. Also note that
the predicted performance is only used in the transformation space searching process, and we report
real measured latency in the end-to-end evaluation results.

Algorithm 1

AdaTune

1: Input: Transformation space S,
Output: Selected transformation plan p*

D+ {}

f and EI in Section 4.2.1

while n_iterations < max_n_iterations do
Q < run contextual simulated annealing to collect candidates in .S, using the surrogate model

> Finding the next promising batch

> Measure the hardware cost with AE

> Update the model given new measurements

6: Random sample K plans py, ps, ..., px from S,
7. € — + Zi;l(stan}cjlz:;zzf;)iation(f(pk))
8: S < pick (1 - €)b subset from Q
9: S + S U {Randomly sample ;b candidates}
10: for p in S do do
11: foriin (1,..,B) do
. std({Perf(p)1,Perf(p)a,....Perf(p)i})
12: €U ug({Perf(p)1.Per f(p)2r..Per[(p):))
13: if cv < threshold then
14: break
15: D < DU (p, Perf(p))
16: update f using D
17: n_iterations < n_iterations + b

18: p* <« best found transformation plan

55 —— Baseline
AdaTune
500 100 200 300
Time (s)
(a) Conv2D (CPU)
75
L 70
o
]
™
O 65 -
—— Baseline
AdaTune
600 1000 2000 3000 4000
Time (s)
(c) Batched GEMM (CPU)

900 —
¥ 800
o
& 700
o ;
600 —— Baseline
AdaTune
500 200 400 600 800 1000
Time (s)
(b) Conv2D (GPU)
2500
v 2000
-8
O 1500
-
{5 1000
—— Baseline
500 AdaTune
1]

500 1000 1500 2000 2500
Time (s)

(d) Batched GEMM (GPU)

Figure 6: Comparison of optimization levels under the same time budget on both CPU and GPUs.

Fig 6 visualizes the results. The x-axis denotes the wall-clock time of auto-tuning. The y-axis denotes
the GFLOPS of the best transformation plan found so far. We make the following observations. The
first observation is that the best plan AdaTune finds is similar to, and sometimes much better than the
baseline. The speedup is especially prominent when the transformation space is extremely large (e.g.,
Fig. 6d on GPUs), where AdaTune achieves up to 115% higher GFLOPS than the baseline under the
same time budget. This indicates that AdaTune is able to explore the transformation space in a more
efficient way. The second observation is that AdaTune is 1.3-3.9x faster than AutoTVM to find the
best plan (Fig. 6a—6¢). This improved speed to find the best plan is important for achieving better

anytime performance in optimizing new models.

These results confirm that AdaTune is capable of

finding good code transformation at a much faster speed than the baseline.

Fig. 6d shows a much larger variance than the other figures because, for that workload, there are
lots of zero points (invalid knobs) in the search space; thus the modeling is highly dependant on the
nonzero points found at the beginning. If there is not enough exploration, the search tends to be
trapped in local optima.

5.2 Comparison on Optimization Time and Model Performance Improvements.

4
BN Baseline mmm Hardware measurement
m AdaTune mmm Space searching

4.5
. TVM

- AutoTVM
mmm AdaTune

4.0{ 3.953.863.86

@035

w

g
T30 2 o
£ o2
=25 o
i £
EX =
c 1 1
Y15
Q

Execution Time(hours)

g
Z10

ULLLI

T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14T15T16

T

3 E £
0.5 XGBoost+5A+\R“E\+5A+%FE\+CSA+3FE\+CSA+A

MMi]III

0.0

VGG16 SqueezenetV1ResNet18

Figure 8: Optimization wall-clock Figure 9: Breakdown comparison of

Figure 7: Inference time comparison. _. . .
time comparison. tuning cost.

We compare the end-to-end optimization results on ResNet-18 [20], VGG16 [39], and Squeezenet-
V1 [24]. Fig. 7 compares the final inference time from ResNet-18 optimized by TVM, AutoTVM, and
AdaTune respectively. Overall, AdaTune achieves up to 4.6% faster inference speed over AutoTVM,
and up to 78.8% faster speed over TVM, respectively. AutoTVM and AdaTune achieve much higher
speedup on SqueezeNet, presumably because the heuristic-based optimizations in TVM are sub-
optimal. In contrast, the Learning to Compile approach is able to quickly identify code transformation
leads to a significantly faster speed. While achieving comparable optimization quality as AutoTVM,
AdaTune significantly reduces the lengthy optimization time. Due to space limitations, Fig. 8 shows
the optimization time on ResNet-18 on GPU. AutoTVM takes 22.6 hours in total for the optimization,
whereas AdaTune takes only 9.6 hours to finish the optimization, which is a 2.35x speedup.

5.3 Ablation Analysis

In this section, we compare the effectiveness of design elements in AdaTune by comparing the
following schemes:

—— XGBoost+SA+DE —— RFEI+SA+DE —— RFEI+CSA+DE —— RFEI+CSA+AE
workload-1(Conv2D, CPU) workload-2(Conv2D, GPU)
75
9200
70
800
265
S
560 700
55 600
50 20 40 6 80 100 %0 150 200 250 300 350 400
Number of Iterations Number of Iterations
workload-3(BatchedGEMM, CPU) workload-4(BatchedGEMM, GPU)
75.0
2500
72.5
2000
70.0
67.5 1500
65.0 1000
62.5 500

6085 75 100 125 150 175 200 225 250 f£00 150 200 250 300 350 400 450 500
Number of Iterations Number of Iterations

Figure 10: Impact to search effectiveness in iterations.

o XGBoost + SA + DE: This is our baseline, which uses XGBoost as the performance model,
simulated annealing (SA) as the optimizer, and deterministic evaluator (DE).

—— XGBoost+SA+DE RFEI+SA+DE —— RFEI+CSA+DE —— RFEI+CSA+AE

workload-1(Conv2D, CPU) workload-2(Conv2D, GPU)

75

—— 9200

GFLOPS
-
@

a
=]

50 50 100 150 200 250 300 °°P0o0 200 300 400 500 600 700 800 900 1000

Time (s) Time (s)
workload-3(BatchedGEMM, CPU) workload-4(BatchedGEMM, GPU)
74 2500
72
= 2000
70
68 1500
66 1000
64 F
62 500 —
60 500 1000 1500 2000 2500 3000 3500 4000 ° 500 1000 1500 2000 2500
Time (s) Time (s)

Figure 11: Impact to search effectiveness in wall-clock time.

e RFEI + SA + DE: Like the baseline, but XGBoost is replaced with RFEIL RFEI stands for
random forest plus positive expected improvement.

o RFEI + CSA + DE: Like our approach but uses a deterministic evaluator instead of the
adaptive evaluator. CSA stands for the contextual simulated annealing.

o RFEI + CSA + AE: Our main algorithm as described in Section 4.3. AE stands for the
adaptive evaluator.

Searching effectiveness. The impact on the search effectiveness with respect to iterations is pre-
sented in Fig 10. When equipped with the uncertainty-quantifying surrogate model, the search
takes a relatively smaller number of iterations to find a better plan (as shown in workload-4 from
Fig. 10). In other cases, it performs similarly to the XGBoost model. Contextual simulated annealing
further improves the searching effectiveness in some cases (workload 2 and 4 in Fig. 10), presumably
because of its effect of regularizing the search to escape from local optima. Finally, with the adaptive
evaluator, there is a significant improvement in wall-clock time on all the tasks, as shown in Fig 11.

Cost breakdown. Fig 9 further shows the breakdown in the average time required for transforma-
tion space searching (ResNet-18 on CPU) and hardware measurement in one iteration. The other
components, such as program code generation, incur only a negligible amount of overhead. Overall,
our surrogate model and contextual optimizer add very minimal overhead over the baseline. AdaTune
effectively reduces the hardware measurement time by 2.5 <, which contributes to the speedup of the
end-to-end optimization time.

6 Conclusion

Although highly optimized code can be achieved through existing DL compilers, an obvious drawback
is their long code optimization time, required to generate many versions of a tensor program and to
profile these versions on hardware. In this paper we have introduced a method, called AdaTune, to
make the code optimization process in DL compilers more adaptive to different hardware and models.
The adaptive evaluator allows cut hardware measurement cost significantly without losing much
accuracy. The uncertainty-aware surrogate model and the contextual optimizer allow us to more
efficiently explore the transformation space. As a result, AdaTune achieves higher speedups in terms
of finding a good transformation plan on different types of hardware and models, outperforming
AutoTVM, a state-of-the-art approach.

Broader Impact

Machine learning and deep learning applications are becoming ubiquitous in large scale production
systems. With that growth and the scaling in model size and complexity, the focus on efficiently
executing DNN models has become even greater. The push for increased energy efficiency has led to
the emergence of diverse heterogeneous systems and hardware architectures. While it is possible
to hire deployment engineers to produce highly optimized code for diverse architectures, such an
approach is time-consuming. It requires significant manual effort, which is difficult to scale, as new
DNN models and operators are coming out on a regular basis. Compilers have historically been the
bridge between programming efficiency and high-performance code, which allows fast innovation
while producing high-performance code for diverse architectures. Auto-tuning techniques such as
AutoTVM modernize a compiler by automatically learning the compiler’s optimization decisions as
opposed to using heuristic rules. However, the actual cost of running such a tuning process is very
expensive. Our techniques speed up the auto-tuning process significantly. It improves the agility of
deploying DNN models, fostering fast innovations. It also reduces the amount of hardware resources
needed for optimizing DNN models, reducing the corresponding energy consumption and carbon
footprint produced.

Acknowledgments and Disclosure of Funding

The authors are grateful for the discussion with Silu Huang, Eric Zhu, and Jon Soifer. The authors
appreciate the anonymous NeurIPS reviewers for providing constructive feedback for improving the
quality of this paper. All authors are not funded by any other agency.

References
[1] Forest Confidence Interval. http://contrib.scikit-learn.org/
forest-confidence-interval/reference/forestci.html. Accessed:
31-May-2020.
[2] Intel(R) Math Kernel Library for Deep Neural Networks. https://github.com/0lorg/
mk1l-dnn.
[3] Nvidia A100 Tensor Core GPU Architecture. https://www.

nvidia.com/content/dam/en—-zz/Solutions/Data—-Center/
nvidia-ampere-architecture-whitepaper.pdf. Accessed: 31-May-2020.

[4] The Accelerated Linear Algebra Compiler Framework. https://www.tensorflow.
org/performance/xla/.

[5] Turing-NLG: A 17-billion-parameter language model by Mi-
crosoft. https://www.microsoft.com/en-us/research/blog/
turing-nlg-a-17-billion-parameter—language-model-by-microsoft/.

Accessed: 19-May-2020.

[6] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for
Large-scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’ 16, pages 265-283, 2016.

[7] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaél Gharbi,
Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and Jonathan Ragan-Kelley.

Learning to optimize halide with tree search and random programs. ACM Trans. Graph.,
38(4):121:1-121:12, 2019.

[8] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Esmaeilzadeh.
Chameleon: Adaptive code optimization for expedited deep neural network compilation. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020, 2020.

10

http://contrib.scikit-learn.org/forest-confidence-interval/reference/forestci.html
http://contrib.scikit-learn.org/forest-confidence-interval/reference/forestci.html
https://github.com/01org/mkl-dnn
https://github.com/01org/mkl-dnn
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/performance/xla/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom,
Una-May O’Reilly, and Saman P. Amarasinghe. Opentuner: an extensible framework for pro-
gram autotuning. In José Nelson Amaral and Josep Torrellas, editors, International Conference
on Parallel Architectures and Compilation, PACT ’14, Edmonton, AB, Canada, August 24-27,
2014, pages 303-316. ACM, 2014.

Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A
survey on compiler autotuning using machine learning. ACM Comput. Surv., 51(5):96:1-96:42,
2019.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical reinforcement
learning. CoRR, abs/1012.2599, 2010.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library
for Heterogeneous Distributed Systems. arXiv preprint arXiv:1512.01274, 2015.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishna-
murthy. TVM: an automated end-to-end optimizing compiler for deep learning. In /3th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, pages 578-594, 2018.

Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 3393—
3404, 2018.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cuDNN: Efficient Primitives for Deep Learning. arXiv preprint
arXiv:1410.0759, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019), pages 4171-4186, 2019.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter
optimization at scale. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmdissan, Stockholm, Sweden, July 10-15, 2018, pages 14361445, 2018.

Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xinyu Zhang, Ming-Hsuan Yang, and Philip H. S.
Torr. Res2net: A new multi-scale backbone architecture. CoRR, abs/1904.01169, 2019.

Priya Goyal, Piotr Dollar, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:
training imagenet in 1 hour. CoRR, abs/1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pages
770-778, 2016.

Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan, and Bo Wu. GRNN: low-latency
and scalable RNN inference on gpus. In Proceedings of the Fourteenth EuroSys Conference
2019, Dresden, Germany, March 25-28, 2019, pages 41:1-41:16, 2019.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

11

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization - 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers, pages 507-523, 2011.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and
Kurt Keutzer. SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and <IMB
Model Size. arXiv preprint arXiv:1602.07360, 2016.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,
Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. In-Datacenter Performance Analysis of a Tensor Processing
Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, pages 1-12, 2017.

Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle, Albert Cohen,
Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: A compiler
infrastructure for the end of moore’s law. arXiv preprint arXiv:2002.11054, 2020.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: Bandit-based configuration evaluation for hyperparameter optimization. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. FP-BNN: binarized
neural network on FPGA. Neurocomputing, 275:1072-1086, 2018.

Ji Lin, Chuang Gan, and Song Han. Training kinetics in 15 minutes: Large-scale distributed
training on videos. arXiv preprint arXiv:1910.00932, 2019.

Changxi Liu, Hailong Yang, Rujun Sun, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei
Qian. Swtvm: exploring the automated compilation for deep learning on sunway architecture.
arXiv preprint arXiv:1904.07404, 2019.

Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Krish-
namurthy. VTA: an open hardware-software stack for deep learning. CoRR, abs/1807.04188,
2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pages 8024-8035, 2019.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825-2830,
2011.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

12

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. CoRR, abs/1910.10683, 2019.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. Halide: A Language and Compiler for Optimizing Parallelism, Locality,
and Recomputation in Image Processing Pipelines. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI *13, pages 519-530,
2013.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James
Hegeman, Roman Levenstein, Bert Maher, Nadathur Satish, Jakob Olesen, Jongsoo Park,
Artem Rakhov, and Misha Smelyanskiy. Glow: Graph lowering compiler techniques for neural
networks. CoRR, abs/1805.00907, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. CoRR, abs/1909.08053, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary De-
Vito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor com-

prehensions: Framework-agnostic high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-

mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, pages 5998-6008, 2017.

Zheng Wang and Michael F. P. O’Boyle. Machine learning in compiler optimization. Proc.
IEEE, 106(11):1879-1901, 2018.

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan,
Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learning at facebook: Un-
derstanding inference at the edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 331-344. IEEE, 2019.

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan,
Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learning at facebook: Un-
derstanding inference at the edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 331-344. IEEE, 2019.

Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Wider or deeper: Revisiting the resnet
model for visual recognition. Pattern Recognit., 90:119-133, 2019.

Masafumi Yamazaki, Akihiko Kasagi, Akihiro Tabuchi, Takumi Honda, Masahiro Miwa, Naoto
Fukumoto, Tsuguchika Tabaru, Atsushi Ike, and Kohta Nakashima. Yet another accelerated
SGD: resnet-50 training on imagenet in 74.7 seconds. CoRR, abs/1903.12650, 2019.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui Hsieh. Reducing
BERT pre-training time from 3 days to 76 minutes. CoRR, abs/1904.00962, 2019.

Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, Elton Zheng, Olatunji Ruwase, Jeff Rasley,
Jason Li, Junhua Wang, and Yuxiong He. Accelerating large scale deep learning inference
through deepcpu at microsoft. In 2019 USENIX Conference on Operational Machine Learning,
OpML 2019, Santa Clara, CA, USA, May 20, 2019, pages 5-7, 2019.

13

A Hyperparameter Settings

We treat all feature inputs as numeric inputs to the Random Forest model. we set the batch size to 32
(i.e., updating the cost model once with 32 new hardware measured points). For the Random Forest
Regressor model, We set the number of trees to 10 to keep the computational overhead small. We set
max_features to 10 to avoid over-fitting and use the default values for other settings in scikit-learn.
When calculating the contextual e value, we randomly sample 20 plans from the transformation space
to obtain the prediction mean and variance.

B Additional Results

B.1 Comparison with Gaussian Process

We compare two uncertainty estimators: Gaussian Process Regressor and Random Forest Regressor.
Results show that Random Forest Regressor performs much better than Gaussian Process Regressor.
Therefore, we choose the Random Forest Regressor as our cost model.

900 900
2 800 2 800
9 9
. 700 . 700
() ()
600 — RF 600 — RF
Gauss Gauss
50(iOO 150 200 250 300 350 400 50200 300 400 500 600 700 800 900 1000
Number of Iterations Time (s)

Figure 12: Random Forest vs. Gaussian Process performance.

B.2 Additional Optimization Time Comparison Results

We include more results (Figure 2 and Figure 3) on the optimization time comparisons between
AutoTVM and AdaTune. Overall, AdaTune achieves 1.3-2.9X speedup in end-to-end optimization
time. The speedup on some GPU tasks is relatively lower because the hardware measurement on
GPUs is faster than that of the same task on CPU.

AutoTVM | AdaTune | Speedup AutoTVM | AdaTune | Speedup
Resnet-18 22.6h 9.6h 24X Resnet-18 2.0h 1.0h 2.0X
Resnet-50 20.0h 14.1h 14X Resnet-50 3.6h 1.7h 2.1X
VGG-16 21.%h 16.7h 1.3X VGG-16 18.9h 6.5h 2.9X
SqueezenetV1 7.6h 5.8h 1.3X SqueezenetV1 1.2h 0.7h 1.7X
Transformer (Enc.) 3.8h 2.8h 1.4X Transformer (Enc.) 8.4h 3.8h 2.2X
Table 2: Optimization time on GPU. Table 3: Optimization time on CPU.

B.3 Additional Inference Time Comparison Results
We include more results (Figure 4 and Figure 5) on the inference time comparisons between AutoTVM

and AdaTune. Although being faster to optimize, AdaTune achieves comparable optimization quality
and sometimes outperforms AutoTVM in inference time.

B.4 Additional Optimization Cost Results
We include detailed optimization time breakdown results for all tasks in ResNet-18, ResNet-50,

VGG-16, Squeezenet-V1.1, and Encoder on both CPU and GPU (Figure 14 Figure 15, Figure 16,
and Figure 17). Overall, AdaTune improves the optimization time for individual tasks on both CPU

14

TVM | AutoTVM | AdaTune TVM AutoTVM | AdaTune

Resnet-18 1.53ms 1.38ms 1.38ms Resnet-18 79.24ms 52.64ms 52.64ms
Resnet-50 4.82ms | 4.37ms 4.37ms Resnet-50 217.12ms | 115.76ms | 115.68ms
VGG-16 3.95ms | 3.86ms 3.86ms VGG-16 884.94ms | 442.01ms | 438.68ms
SqueezenetV1 293ms | 0.65ms | 0.63ms SqueezenetV1 14.41ms | 11.36ms | 11.25ms
Transformer (Enc.) | 78.15ms | 52.25ms | 47.46ms || Transformer (Enc.) | 2897.27ms | 1620.88ms | 1607.67ms

Table 4: Inference time comparison on GPU.

Table 5: Inference time comparison on CPU.

and GPU for the models being tested. On GPU, sometimes AdaTune takes a slightly longer time in
certain tasks (e.g., T18 in VGG-16 and T1 in SqueezeNet-V1.1). That is because the auto-tuning
process stops when it can no longer find a better solution. We find that AutoTVM sometimes stops
earlier because it quickly gets stuck at a local optimum. In contrast, the contextual optimizer in

AdaTune constantly pushes AdaTune out of local optimum, which yields a longer time for AdaTune
to trigger the stop condition.

== Baseline
= AdaTune

s nlll“lhi

T2 T3 T4 TS T6 17 T8 19 TI0TI1T12T13T14T15T16
Task

(a) ResNet-18, GPU

Execution Time(hours)
&5 58 L 8

T2 T3 T4 15 T6

£

3025
£

T 020/
To20
£
co1s|
s

So10

4

£

Bo.0s .
ol 1 19 I

= Baseline
e AdaTune

,-,“ul.

T8 T9 TI0 Tl T12

Task

(b) ResNet-18, CPU

sh

Figure 13: Optimization wall-clock time comparison for ResNet-18.

°

= Baseline
= AdaTune

20212223124

menmens

Execution Time(hours)
@ s

Task

(a) ResNet-50, GPU

0.3
5030
B
Bo2s
2

2020

£
go1s
20.10]
g
£
Doos . h i
0,000 T T4 15 Te 1) T 15 TI0 T iz T13 14 s Ti6 117 e 9 120

= Baseline
= AdaTune

Task

(b) ResNet-50, CPU

Figure 14: Optimization wall-clock time comparison for ResNet-50.

°

= Baseline
= AdaTune

il

TL T2 13 T4 T5 T6 17 18 T9T10T1ITI2T13T14TIST16T17T18
Task

(a) VGG-16, GPU

Execution Time(hours)
5 &

°

5

225

T

£20

E

515

210

2

o Ll
0,00

= Baseline
= AdaTune

[
TL T2 13 T4 15 T6 T/ 18 19 Ti0 Tl Ti2
Task

(b) VGG-16, CPU

Figure 15: Optimization wall-clock time comparison for VGG-16.

= Baseline
= AdaTune

Execution Time(hours)
o o o &
2 & @ o

s

= Hinsneltliad I,|.Iu,;
Task

(a) SqueezenetV1.1, GPU

Execution Time(hours)
= 8 2 2 @

s

= Baseline
= AdaTune

TL T2 T3 T4 T5 T6 17 18 T9 T10TIIT12T13T14T1STI6T17T18
Task

(b) SqueezenetV1.1, CPU

Figure 16: Optimization wall-clock time comparison for SqueezenetV1.1.

15

14
212

£o08

(a) Transformer (Enc.), GPU

T iz

= Baseline
= AdaTune

T T4 T 6
Task

20 - Baseline
7 - AdaTune
3
£15
3
£
£
10
§
3
- L L
&

00T T2 iE] T4 s o

Task

(b) Transformer (Enc.), CPU

Figure 17: Optimization wall-clock time comparison for Encoder.

16

	Introduction
	Background and Related Work
	Preliminary Analysis
	The Elements of AdaTune
	Adaptive Evaluator: Early Termination by Coefficient of Variation Counting
	Adaptive Surrogate Modeling and Optimizer
	Surrogate modeling with uncertainty quantification
	Adaptive control of exploration and exploitation via contextual simulated annealing

	AdaTune: Putting It Together

	Evaluation
	Comparison of AutoTVM and AdaTune for Searching Transformation Space
	Comparison on Optimization Time and Model Performance Improvements.
	Ablation Analysis

	Conclusion
	Hyperparameter Settings
	Additional Results
	Comparison with Gaussian Process
	Additional Optimization Time Comparison Results
	Additional Inference Time Comparison Results
	Additional Optimization Cost Results

