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Abstract

Deep learning models are computationally intense, and implementations often have
to be highly optimized by experts or hardware vendors to be usable in practice.
The DL compiler, together with Learning-to-Compile has proven to be a powerful
technique for optimizing tensor programs. However, a limitation of this approach
is that it still suffers from unbearably long overall optimization time. In this
paper, we present a new method, called AdaTune, that significantly reduces the
optimization time of tensor programs for high-performance deep learning inference.
In particular, we propose an adaptive evaluation method that statistically early
terminates a costly hardware measurement without losing much accuracy. We
further devise a surrogate model with uncertainty quantification that allows the
optimization to adapt to hardware and model heterogeneity better. Finally, we
introduce a contextual optimizer that provides adaptive control of the exploration
and exploitation to improve the transformation space searching effectiveness. We
evaluate and compare the levels of optimization obtained by AutoTVM, a state-
of-the-art Learning-to-Compile technique on top of TVM, and AdaTune. The
experiment results show that AdaTune obtains up to 115% higher GFLOPS than
the baseline under the same optimization time budget. Furthermore, AdaTune
provides 1.3-3.9x speedup in optimization time over the baseline to reach the same
optimization quality for a range of models across different hardware architectures.

1 Introduction

The enormous computational intensity of Deep Neural Network (DNN) models has attracted great
interest in optimizing their performance. In particular, popular deep learning (DL) frameworks such
as TensorFlow [6] and PyTorch [32] adopt custom optimized kernels such as Nvidia cuDNN [15] or
Intel MKL-DNN [2] as back-end. However, given the increasing complexity of tensor operations in
DNN s and the volatility of DL algorithms, it calls for developing fast and automated compilation
frameworks to handle the unprecedented amount of innovations. To imitate or even surpass the
success of hand-optimized libraries, recent research has developed neural network compilers, such
as XLA [4], Halide [36], Glow [37], Tensor Comprehension [40], and TVM [13]. Among them,
TVM has shown superior performance improvements using a technique called Learning-to-Compile
(AutoTVM) [14]. AutoTVM optimizes the code by generating many versions of a tensor program
and chooses the best through simulated annealing search over a large space of code transformation
choices. Furthermore, it employs a learned cost model trained by actual hardware performance
measures to predict the performance of diverse inference computations on real hardware targets.

While the Learning-to-Compile approach produces highly optimized code of DNN models, they
may suffer from excessively long optimization time. As an example, although AutoTVM is able to
demonstrate close to 2x performance improvement over TensorFlow on ResNet-18, the compilation
time can still take several hours or even tens of hours [14]. With the active research that has been
pushing the model size to millions or even billion-scale parameters with a training time of only a
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few hours or less than one hour [46, 19, 47, 29, 38, 48], it makes reducing the DL compilation time
for inference of the current solution even more prominent. Furthermore, since many of these DL
compilers have been adopted by major players in the industry [43, 44, 26, 30], many users of these
pipelines, including deployment engineers, would have to go through the optimization numerous
times. Finally, as new neural architectures [18, 41, 16, 34] come out in rapid speed, and with deeper
or wider networks [45, 38, 35, 5] on various hardware platforms [3, 22, 28], we are forced to optimize
the networks more frequently. The excessive long optimization time hinders the turnaround time and
even puts the practical utility of the current compiler-based solutions into question.

We aim at accelerating innovations by developing an automatic and efficient optimization process
for DNN models. For this purpose, we introduce AdaTune, a method that achieves similar or
better optimization quality but with shorter optimization time. Furthermore, AdaTune improves the
adaptivity of LTC and reduces the hyperparameter tuning required, accelerating the productivity
and agility of DNN model deployment. Specifically, the contributions of our paper consist of (1) a
preliminary analysis that reveals the inefficiency and challenges of the existing approaches, (2) an
adaptive evaluator that statistically determines the number of runs for performance measurement, (3)
a surrogate modeling with uncertainty quantification that allows to better capture hardware and model
heterogeneity, and (4) a contextual optimizer that provides control of exploration and exploitation
dynamically to improve the transformation space searching effectiveness. We conduct extensive
experiments to show that the proposed approach consistently outperforms the previous method on
various models and hardware. It not only allows us to optimize DNN models 1.3-3.9x faster than the
baseline to reach the same optimization quality but also obtains up to 115% higher GFLOPS under
the same time budget. We conduct ablation analysis to study the effects of the proposed techniques,
and we will make the source code publicly accessible to encourage further research.

2 Background and Related Work

DL compilation pipeline. DL compilers like TVM [13] have recently become popular for auto-
matically optimizing DL programs [37, 4, 36, 40]. A typical DL compiler contains multiple passes
to optimize a model trained by popular DL frameworks such as TensorFlow [6], PyTorch [32], or
MXNET [12], as shown in Fig. 1. In the first pass (box with dotted line), the compiler frontend applies
target-independent and white-box target-dependent optimizations that do not include a measure of
actual execution time. The target-independent passes perform optimizations such as operator fusion
and data layout transformation and the while-box target-dependent optimizations apply heuristic rules
for code transformation based on domain knowledge, both of which do not need a specification of the
target hardware. Recent work such as AutoTVM [14] extends the pipeline with another pass, which
is a black-box target-dependent pass, which uses learning machinery to perform optimizations.
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Table 1: Example of TVM knobs.

Knobs Definition Example values
: Frontend tile_f Loop tile decisions on the 84
! tile_y number of filters, and height 140
—————————— tile_x and weight of feature maps 140
tile_rc Loop tile reduction decision on 2
_Il ; tile_r the number of channels, height 2
a tile_ri and weight of filters ¢ 2
: auto_unroll The threshold of iterations a
3
max_step loop to be unrolled
Figure 1: DL compilation unroll_explicit Explicitly unroll loop 2

pipeline.

Black-box target-dependent pass. In this pass, the compiler converts code transformation deci-
sions as code templates, and it makes use of an auto-tuner (with optimization algorithm) and real
hardware measurements to efficiently find the best transformation on target hardware (e.g., CPU,
GPU, ARM, or IoT devices). Table 1 lists the knobs for code transformation of a convolution block
on GPUs as example , which control various aspects of the optimization and determine whether the
code (1) fully utilizes the internal parallelism within processors, (2) uses the shared memory wisely,
and (3) maximizes data locality. Auto-tuning has been studied for generic program compilation



using domain-specific search techniques [9, 10, 42, 7]. Later, [14] builds on top of prior work by
using a cost model and simulated annealing to search the transformation space for DNN models.
However, there are certain limitations, as described in Section 3. Subsequently, [8] proposes to use
reinforcement learning for efficient search space exploration. However, their approach involves a
non-trivial amount of additional hyperparameter tuning as well as additional domain-knowledge on
the validity of potential solutions on specific hardware.

Problem formulation. Given the vastness of the transformation space, if we denote the space as S,
and function Per f(-) as the performance (i.e., GFLOPS — Giga floating point operations per second)
of one transformation plan p on a given hardware target h, the goal of the black-box target-dependent
pass is to find a transformation plan px in S, that maximizes Per f(-) on h over S, efficiently.

3 Preliminary Analysis
This section presents several studies that guided the design of the approach introduced in Section 4.

Observation 1. DL compiler generates highly optimized code but results in prolonged opti-
mization time. Prior work [13, 14] uses an auto-tuner to select a plan p from the transformation
space, calls a code generator as a subroutine to generate machine code for that plan on a specific
hardware, and then executes the generated code on the target hardware n times to obtain an estimated

cost of p as avg(p) = L 31" | Perf(p,q;), where g; represents an input of inference. Existing

~ n
methods require the number of repeats n as an input. However, for a fixed n, it is not clear a priori
whether we should (a) run many repeats (large n) with more accurate measurement but also large
measurement cost; or (b) consider a small number of repeats (small n) with inaccurate measurement

but small measurement cost. n cannot be too small, because then even if a transformation plan with

low average cost is chosen, its variance, std(p) = \/ LS (Perf(p,¢;) — avg(p))? can be high.

This is undesirable because then the measured average cost could deviate from its true performance
due to the variance in the measurement, and we may end up choosing a suboptimal plan. Therefore,
the general practice is to use a large conservative number for n to achieve accurate estimates of the
true cost, which is why it takes a very long time for existing auto-tuning methods to find a good
solution. Figure 2 shows the execution time (on CPU) breakdown on 12 tasks from ResNet-18 [20].
As can be seen, the majority of time is spent on hardware measurement. Therefore, it is important to
cut down the expensive cost of hardware measurements that examine the goodness of a plan.
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Figure 2: Performance breakdown

of AutoTVM on ResNet-18. Figure 3: Performance measurement variance and coefficient-of-variation
on different hardware.

Observation 2. Existing methods perform measurement without considering model diversity
and hardware heterogeneity. Prior study [14] claims that considering variance does not help.
Therefore, they use a regression model (e.g., XGBoost) to learn and predict the performance of
a transformation plan. Different from their observations, we find that in practice, based on the
scenario, a model might need to be optimized against different hardware, including x86 CPU [43, 49],
GPUs [21], ARM, and various ML accelerators [31, 25], all of which have very different architectures
(e.g., memory hierarchy, instruction level parallelism, hardware prefetching, branch prediction, etc),
which appear to have very different variance behaviors. Figure 3a and Figure 3b show the mean-
variance range under x86 CPU and GPU for different n. As n increases, the variance (bar) decreases



as expected. Although the absolute variance on GPU is higher than that on CPU, the coefficient of
variation (curve) on CPU is much larger than that on GPU, especially when n is relatively small.
Furthermore, different models may also have diverse execution patterns, e.g., small/large model,
regular/irregular computations, inter-op/intra-op parallelism, data dependencies, all of which can
affect the run-to-run variance. Since existing work assumes the uncertainty is low by using a large n,
if we reduce n, it is more likely that a regression model without accounting for the uncertainty can
lead to suboptimal trials.

Observation 3. Existing approaches employ static exploration-vs-exploitation, which limits
the adaptivity of the compiler optimization. Existing works [13, 14] employ the genetic algorithm
or simulated-annealing to guide the transformation space searching process. To balance exploration
and exploitation, they apply e—greedy in each searching iteration by selecting eb candidates randomly
to ensure exploration, where b is the batch size and € is a fixed value 0.05. This decision appears
suboptimal for several practical reasons. As shown in Fig. 4, a small € (e.g., 0.01, 0.05) tends to be
overly greedy, as it focuses in an area where the model believes the optimum to be, without efficiently
exploring additional areas of the transformation space which may turn out to be more optimal in the
long run. On the other hand, a large € (e.g., 0.2, 0.5) induces a large distraction into the searching
process and slows down the searching process. However, having a constant €, determined at the start
of the beginning, introduces an additional hyperparameter that needs to be tuned. Furthermore, even
with a tuned e, its value is going to remain the same during the entire optimization for all tasks, which
is sub-optimal. The effectiveness of the existing approach is, therefore, significantly affected by the
degree of trade-off between exploration and exploitation. Given that the general goal is to make the
optimization fast and more usable, this is clearly not desirable. Thus, we need a more principled way
to control the balance between exploration and exploitation.
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Figure 4: Exploration-vs-exploitation: choice of € in epsilon-greedy.

4 The Elements of AdaTune

In this section, we present the design decision for AdaTune, and we provide quantified comparisons
against corresponding configurations of the original AutoTVM [14] in Section 5. We illustrate the
high-level design of AdaTune in Figure 5. There are three main contributions that AdaTune makes
over the design choices of AutoTVM.

Transformation Hardware measurements Best optimized code
Random Forest Regressor Monitor ———
Space
&-samplin i predicted cost
¢ pling query (mean, variance)

. Adaptive Surrogate | Candidates)  Code Adaptive
T 1 1
DNN modet—) Code Template (7o Modeling and Optimizer Generator Evaluator | Hardware

Figure 5: Overall design and optimization overview of AdaTune.

4.1 Adaptive Evaluator: Early Termination by Coefficient of Variation Counting

The adaptive evaluator (AE) is the module in charge of steering the dynamic reconfiguration process
of batch measurement for getting the performance. The key challenge in the design of this component
is to gather measurements in an accurate and timely way, so as to maximize accuracy (i.e., reduce
variance) and minimize the cost for different hardware measurements.



In AdaTune, we use AE to automatically adjust the iterations of measurements n in a model diversity
and hardware heterogeneity aware way. This adaptive mechanism is based on the idea of estimating
the statistical uncertainty associated with the current performance (e.g., GFLOPS) measurement on
the basis of coefficient of variation (CV). More precisely, for a given n, we divide it into micro-
batches of size B, and we evaluate the performance upon the finish of each micro-batch since the
beginning of the hardware measurement (time = 0). If we denote T'ime(i) (i € {1,2, ..., B}) as the
time elapsed since the beginning of the measurement of plan p and the occurrence of the i-th micro-

batch, the GFLOPS upon the i-th micro-batch would be Per f(p); = W. We then

use it to estimate the accuracy of the measurement after i micro-batches with the CV of Per f(p);,

i.e., CV(Perf(p);) = ji”;((f{?ee:?((’; ))iiz:ﬁ;((z ))221;2:?((2 ))%)) . If the CV value is smaller than a certain

threshold (e.g., 10%), AdaTune adaptively terminates a measurement. AE, therefore, automatically
adjusts the hardware measurement costs in a robust and model/hardware-independent way.

Prior studies on hyperparameter tuning such as Hyperband [27] and BOHB [17] define approximate
versions of the objective function (e.g., classification tasks) that are parameterized by a concept called
budget. They prioritize promising configurations with larger budgets as the optimization progresses.
Our approach is similar to the budget concept in the sense that we also create a cheap-to-evaluate
version of the hardware measurement function. However, different from their goal, which is to
eventually optimize with the largest budget, we collect a stream of measurements of micro-batches
and timely stops when the likelihood of getting very different measurement results is low. [8] uses
so-called adaptive sampling by performing non-uniform sampling through clustering. Different from
their method, our approach cuts the cost of hardware measurement of individual samples. The two
methods can be combined to maximize the gains.

4.2 Adaptive Surrogate Modeling and Optimizer

For AdaTune, we propose another two improvements: (1) We create a surrogate model with uncer-
tainty quantification, which takes both mean and variance into consideration to adapt performance
modeling and drives the exploration of the transformation space by continuously gathering feedback
on the quality of the explored transformation plans; (2) We introduce the contextual simulated
annealing optimizer, which dynamically balances the trade-off between exploration and exploitation
based on the expected improvement from the surrogate model.

4.2.1 Surrogate modeling with uncertainty quantification

Given the very different variance behaviors (Section 3), in order to make the optimization process
more adaptive to different hardware and models, we consider constructing a surrogate model by
accounting for uncertainty. In particular, we consider an ensemble model f of black-box learners,
each of which is built on m measurements randomly sampled with repetitions from the entire
hardware measurements {(p1, Perf(p1)), -..; (Pm, Per f(pm))}, where a transformation plan p; =
(pis - Pi,a) is a complete instantiation of the code template’s d knobs. Given a new plan p,, 41, the

model predicts the mean p and variance o for its performance f (Pm+1) through the ensemble.

Among many options, a useful tool for quantifying the uncertainty in a given prediction is random for-
est, which has proven to be valuable in Sequential Model-based Bayesian Optimization (SMBO) [11]
method such as SMAC [23]. We choose random forest as our surrogate model because it enjoys
advantages, such as better handling of discrete features. It also has a training time complexity of
O(m -log(m) - d - H) where H is the number of decision trees, which is more efficient than models
like Gaussian Processes, which exhibit O(m?) training complexity in the number of data points (see
comparison results in Appendix B).

Expected positive improvement. We use the same diversity-aware cost function as the one used
in AutoTVM [14] to select a list of promising plans for hardware measurements. In particular, we
replace the run time cost estimate part with expected positive improvement (EI) and keep the other

term unchanged. We compute EI(p) = E[maz(f(p) — Perf(p*),0)] [11] over the best known
measured performance Per f(p*) so far (p* is the best plan so far), while taking into account the
possible uncertainty in that prediction. Given the predictive mean y and standard deviation o of a



plan p, we have:

_ (W) = Perf(p))®(2) + o(f(p)$(Z) if o(f(p)) >0
1) = {0 u(F) ~ Perf(v)) ifotfon=0
;o {u(f(pl)(}g)i;f(p ) if U(]i(p)) >0 o
if o(f(p)) =0

where ® and ¢ are the CDF and PDF of the standard normal distribution. EI is possibly large for
configurations with high predicted performance and for those with high predicted uncertainty.

4.2.2 Adaptive control of exploration and exploitation via contextual simulated annealing

Based on the analysis in Section 3, we propose a modification to the e-greedy sampling in the
simulated annealing based optimizer. Instead of using a fixed value for €, we replace € with a
contextual factor e;, which is implicitly tied to the task and the underlying model and changes
dynamically as the optimization proceeds. In particular, we define:
g

“” Perf(p) ®
where Per f(p*) is the best seen plan, and & is the mean of the standard deviations from a set of yet
unsampled plans from posterior distribution (rather than the prior). Note that it should be distinguished
from o, which is the individual standard deviation of a prediction from f(-) for a particular plan in
the posterior. This allows AdaTune to dynamically adjust the exploration—exploitation trade-off based
on the surrogate model’s state at any time point. We call the resulting optimizer contextual simulated
annealing.

This is intuitive, as exploration is, on average, preferred when the model has high uncertainty, and
exploitation is preferred when the predicted uncertainty is low. Furthermore, if the optimization is
being overly greedy (i.e., getting stuck at a local optimum), f will produce a highly unbalanced
standard deviation distribution with small standard deviation close to the local optimum already being
sampled, and larger standard deviations elsewhere in the (unsampled) transformation space. This
results in a larger value for the standard deviation for the posterior, which is equivalent to an increase
of ¢; in Eqn. 3 and it increases the ratio of randomly sampled points in the next batch of hardware
measurements, presumably helping the search escape from local optimum.

4.3 AdaTune: Putting It Together

In previous sections, we describe how we make the optimization process more adaptive and reduce
the hardware measurement cost at each tuning step. In this part, we put everything together and call
the resulting target-dependent optimization pass AdaTune (Algorithm 1).

5 Evaluation

In this section, we evaluate AdaTune experimentally, seeking answers to how AdaTune helps
accelerate the optimization process. We integrate AdaTune with TVM [13] and use AutoTVM [14]
as our baseline for comparison. We implement AdaTune in Python, and we leverage scikit-learn [33]
and forestci [1] to implement the surrogate model and optimizer.

5.1 Comparison of AutoTVM and AdaTune for Searching Transformation Space

We compare the performance of AutoTVM and AdaTune on how much optimization speedup
we obtain as a function of the wall-clock time. Due to space limitations, we include four tasks:
one convolutional layer sampled from ResNet-18 [20] and one batched GEMM operator from
Transformer [41] on both CPU (Intel Xeon CPU E5-2690 v3 @ 2.60GHz 2600 MHz) and GPUs
(Nvidia Tesla P100). We use n=500 for all experiments and set micro-batch size B = 50 in AdaTune.
We use the default settings for other hyperparameters provided by AutoTVM. The detailed parameter
settings are included in Appendix A. We perform 15 independent runs of each configuration with
different random seeds and report the median together with a 95% confidence interval. Also note that
the predicted performance is only used in the transformation space searching process, and we report
real measured latency in the end-to-end evaluation results.



Algorithm 1

AdaTune

1: Input: Transformation space S,
Output: Selected transformation plan p*

D+ {}

f and EI in Section 4.2.1

while n_iterations < max_n_iterations do
Q < run contextual simulated annealing to collect candidates in .S, using the surrogate model

> Finding the next promising batch

> Measure the hardware cost with AE

> Update the model given new measurements

6: Random sample K plans py, ps, ..., px from S,
7. € — + Zi;l(stan}cjlz:;zzf;)iation(f(pk))
8: S < pick (1 - €)b subset from Q
9: S + S U {Randomly sample ;b candidates}
10: for p in S do do
11: foriin (1,..,B) do
. std({Perf(p)1,Perf(p)a,....Perf(p)i})
12: €U ug({Perf(p)1.Per f(p)2r..Per[(p):))
13: if cv < threshold then
14: break
15: D < DU (p, Perf(p))
16: update f using D
17: n_iterations < n_iterations + b

18: p* <« best found transformation plan
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Figure 6: Comparison of optimization levels under the same time budget on both CPU and GPUs.

Fig 6 visualizes the results. The x-axis denotes the wall-clock time of auto-tuning. The y-axis denotes
the GFLOPS of the best transformation plan found so far. We make the following observations. The
first observation is that the best plan AdaTune finds is similar to, and sometimes much better than the
baseline. The speedup is especially prominent when the transformation space is extremely large (e.g.,
Fig. 6d on GPUs), where AdaTune achieves up to 115% higher GFLOPS than the baseline under the
same time budget. This indicates that AdaTune is able to explore the transformation space in a more
efficient way. The second observation is that AdaTune is 1.3-3.9x faster than AutoTVM to find the
best plan (Fig. 6a—6¢). This improved speed to find the best plan is important for achieving better

anytime performance in optimizing new models.

These results confirm that AdaTune is capable of

finding good code transformation at a much faster speed than the baseline.



Fig. 6d shows a much larger variance than the other figures because, for that workload, there are
lots of zero points (invalid knobs) in the search space; thus the modeling is highly dependant on the
nonzero points found at the beginning. If there is not enough exploration, the search tends to be
trapped in local optima.

5.2 Comparison on Optimization Time and Model Performance Improvements.
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We compare the end-to-end optimization results on ResNet-18 [20], VGG16 [39], and Squeezenet-
V1 [24]. Fig. 7 compares the final inference time from ResNet-18 optimized by TVM, AutoTVM, and
AdaTune respectively. Overall, AdaTune achieves up to 4.6% faster inference speed over AutoTVM,
and up to 78.8% faster speed over TVM, respectively. AutoTVM and AdaTune achieve much higher
speedup on SqueezeNet, presumably because the heuristic-based optimizations in TVM are sub-
optimal. In contrast, the Learning to Compile approach is able to quickly identify code transformation
leads to a significantly faster speed. While achieving comparable optimization quality as AutoTVM,
AdaTune significantly reduces the lengthy optimization time. Due to space limitations, Fig. 8 shows
the optimization time on ResNet-18 on GPU. AutoTVM takes 22.6 hours in total for the optimization,
whereas AdaTune takes only 9.6 hours to finish the optimization, which is a 2.35x speedup.

5.3 Ablation Analysis

In this section, we compare the effectiveness of design elements in AdaTune by comparing the
following schemes:
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Figure 10: Impact to search effectiveness in iterations.

o XGBoost + SA + DE: This is our baseline, which uses XGBoost as the performance model,
simulated annealing (SA) as the optimizer, and deterministic evaluator (DE).
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Figure 11: Impact to search effectiveness in wall-clock time.

e RFEI + SA + DE: Like the baseline, but XGBoost is replaced with RFEIL RFEI stands for
random forest plus positive expected improvement.

o RFEI + CSA + DE: Like our approach but uses a deterministic evaluator instead of the
adaptive evaluator. CSA stands for the contextual simulated annealing.

o RFEI + CSA + AE: Our main algorithm as described in Section 4.3. AE stands for the
adaptive evaluator.

Searching effectiveness. The impact on the search effectiveness with respect to iterations is pre-
sented in Fig 10. When equipped with the uncertainty-quantifying surrogate model, the search
takes a relatively smaller number of iterations to find a better plan (as shown in workload-4 from
Fig. 10). In other cases, it performs similarly to the XGBoost model. Contextual simulated annealing
further improves the searching effectiveness in some cases (workload 2 and 4 in Fig. 10), presumably
because of its effect of regularizing the search to escape from local optima. Finally, with the adaptive
evaluator, there is a significant improvement in wall-clock time on all the tasks, as shown in Fig 11.

Cost breakdown. Fig 9 further shows the breakdown in the average time required for transforma-
tion space searching (ResNet-18 on CPU) and hardware measurement in one iteration. The other
components, such as program code generation, incur only a negligible amount of overhead. Overall,
our surrogate model and contextual optimizer add very minimal overhead over the baseline. AdaTune
effectively reduces the hardware measurement time by 2.5 <, which contributes to the speedup of the
end-to-end optimization time.

6 Conclusion

Although highly optimized code can be achieved through existing DL compilers, an obvious drawback
is their long code optimization time, required to generate many versions of a tensor program and to
profile these versions on hardware. In this paper we have introduced a method, called AdaTune, to
make the code optimization process in DL compilers more adaptive to different hardware and models.
The adaptive evaluator allows cut hardware measurement cost significantly without losing much
accuracy. The uncertainty-aware surrogate model and the contextual optimizer allow us to more
efficiently explore the transformation space. As a result, AdaTune achieves higher speedups in terms
of finding a good transformation plan on different types of hardware and models, outperforming
AutoTVM, a state-of-the-art approach.



Broader Impact

Machine learning and deep learning applications are becoming ubiquitous in large scale production
systems. With that growth and the scaling in model size and complexity, the focus on efficiently
executing DNN models has become even greater. The push for increased energy efficiency has led to
the emergence of diverse heterogeneous systems and hardware architectures. While it is possible
to hire deployment engineers to produce highly optimized code for diverse architectures, such an
approach is time-consuming. It requires significant manual effort, which is difficult to scale, as new
DNN models and operators are coming out on a regular basis. Compilers have historically been the
bridge between programming efficiency and high-performance code, which allows fast innovation
while producing high-performance code for diverse architectures. Auto-tuning techniques such as
AutoTVM modernize a compiler by automatically learning the compiler’s optimization decisions as
opposed to using heuristic rules. However, the actual cost of running such a tuning process is very
expensive. Our techniques speed up the auto-tuning process significantly. It improves the agility of
deploying DNN models, fostering fast innovations. It also reduces the amount of hardware resources
needed for optimizing DNN models, reducing the corresponding energy consumption and carbon
footprint produced.
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A Hyperparameter Settings

We treat all feature inputs as numeric inputs to the Random Forest model. we set the batch size to 32
(i.e., updating the cost model once with 32 new hardware measured points). For the Random Forest
Regressor model, We set the number of trees to 10 to keep the computational overhead small. We set
max_features to 10 to avoid over-fitting and use the default values for other settings in scikit-learn.
When calculating the contextual e value, we randomly sample 20 plans from the transformation space
to obtain the prediction mean and variance.

B Additional Results

B.1 Comparison with Gaussian Process

We compare two uncertainty estimators: Gaussian Process Regressor and Random Forest Regressor.
Results show that Random Forest Regressor performs much better than Gaussian Process Regressor.
Therefore, we choose the Random Forest Regressor as our cost model.
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Figure 12: Random Forest vs. Gaussian Process performance.

B.2 Additional Optimization Time Comparison Results

We include more results (Figure 2 and Figure 3) on the optimization time comparisons between
AutoTVM and AdaTune. Overall, AdaTune achieves 1.3-2.9X speedup in end-to-end optimization
time. The speedup on some GPU tasks is relatively lower because the hardware measurement on
GPUs is faster than that of the same task on CPU.

AutoTVM | AdaTune | Speedup AutoTVM | AdaTune | Speedup
Resnet-18 22.6h 9.6h 24X Resnet-18 2.0h 1.0h 2.0X
Resnet-50 20.0h 14.1h 14X Resnet-50 3.6h 1.7h 2.1X
VGG-16 21.%h 16.7h 1.3X VGG-16 18.9h 6.5h 2.9X
SqueezenetV1 7.6h 5.8h 1.3X SqueezenetV1 1.2h 0.7h 1.7X
Transformer (Enc.) 3.8h 2.8h 1.4X Transformer (Enc.) 8.4h 3.8h 2.2X
Table 2: Optimization time on GPU. Table 3: Optimization time on CPU.

B.3 Additional Inference Time Comparison Results
We include more results (Figure 4 and Figure 5) on the inference time comparisons between AutoTVM

and AdaTune. Although being faster to optimize, AdaTune achieves comparable optimization quality
and sometimes outperforms AutoTVM in inference time.

B.4 Additional Optimization Cost Results
We include detailed optimization time breakdown results for all tasks in ResNet-18, ResNet-50,

VGG-16, Squeezenet-V1.1, and Encoder on both CPU and GPU (Figure 14 Figure 15, Figure 16,
and Figure 17). Overall, AdaTune improves the optimization time for individual tasks on both CPU
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TVM | AutoTVM | AdaTune TVM AutoTVM | AdaTune

Resnet-18 1.53ms 1.38ms 1.38ms Resnet-18 79.24ms 52.64ms 52.64ms
Resnet-50 4.82ms | 4.37ms 4.37ms Resnet-50 217.12ms | 115.76ms | 115.68ms
VGG-16 3.95ms | 3.86ms 3.86ms VGG-16 884.94ms | 442.01ms | 438.68ms
SqueezenetV1 293ms | 0.65ms | 0.63ms SqueezenetV1 14.41ms | 11.36ms | 11.25ms
Transformer (Enc.) | 78.15ms | 52.25ms | 47.46ms || Transformer (Enc.) | 2897.27ms | 1620.88ms | 1607.67ms

Table 4: Inference time comparison on GPU.

Table 5: Inference time comparison on CPU.

and GPU for the models being tested. On GPU, sometimes AdaTune takes a slightly longer time in
certain tasks (e.g., T18 in VGG-16 and T1 in SqueezeNet-V1.1). That is because the auto-tuning
process stops when it can no longer find a better solution. We find that AutoTVM sometimes stops
earlier because it quickly gets stuck at a local optimum. In contrast, the contextual optimizer in

AdaTune constantly pushes AdaTune out of local optimum, which yields a longer time for AdaTune
to trigger the stop condition.
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