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ABSTRACT

Item-to-item recommendation (e.g., “People who like this also

like. . . ”) is a ubiquitous and important type of recommendation in

real-world systems. Observational data from historical interaction

logs abound in these settings. However, since virtually all observa-

tional data exhibit biases, such as time-in-inventory or interface

biases, it is crucial that recommender algorithms account for these

biases. In this paper, we develop a principled approach for item-

to-item recommendation based on causal inference and present

a practical and highly effective method for estimating the causal

parameters from a small annotated dataset. Empirically, we find

that our approach substantially improves upon existing methods

while requiring only small amounts of annotated data.
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• Information systems → Recommender systems; Similarity

measures; •Computingmethodologies→ Learning from implicit
feedback.
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1 INTRODUCTION

Item-to-item recommendation, also known as related item recom-

mendation, is a core part of real-world recommender systems. In

item-to-item recommendation, the task is to provide users with

a list of relevant items around a so-called seed item. This enables

users to do item-centric exploration of inventories when browsing.

Online retailers like Amazon and Ebay, for example, show cus-

tomers a panel with items under “People who viewed this item also

viewed” on product pages [21]. Other prominent examples are job

suggestions of “People Also Viewed” when viewing a job opening
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on LinkedIn, or news websites that show related articles with each

story [1]. The other advantage of item-to-item recommendations

is that they require no additional user context or history. This is

in contrast to the more common blended recommendations task

which bases recommendations on an established user profile and

thus suffers from cold start problems [6, 38]. Note also that item-

to-item recommendations refers to the task of finding related items

and is distinct from item-based recommendation techniques that

can be used to solve the former.

With engagement signals such as clicks or views being readily

available, many existing approaches for item-to-item recommen-

dation leverage collaborative filtering (CF) techniques. CF-based

techniques effectivelymine observed co-occurrences of items across

different user sessions, for example by extracting items that are

often bought together. Disappointingly, current CF-based models

yield only item-to-item recommendations of mediocre quality as

user-centric evaluations show [38]. In this paper, we argue that

item-to-item recommendation is fundamentally a counterfactual

problem – the question we try to answer is whether a user would

have engaged with (e.g., clicked or converted) an item if he or she

had been aware of it. However, the latter is confounded by factors

such as item popularity [32] or the time the item has been in the

inventory [7], leading to biased data. As we will demonstrate in

this paper, this causes approaches which do not account for these

biases to have suboptimal performance.

To make this more concrete, Table 1 shows an example from the

well-known MovieLens 25M dataset where we retrieve the top 10

movies for the animated movie j = “Toy Story (1995)” using the

co-occurrences counts count(i, j) of candidate movies. Intuitively,

we would expect that at least some of the returned movies would

also be animated movies. However, no such movies appears in the

list. In fact, as the last column shows, a candidate movie’s rank

is highly correlated with its overall popularity in the MovieLens

dataset. Even worse, all of the returned movies are among the top

25 most frequent movies in the dataset.

This paper’s contributions are three-fold. First, we provide a

rigorous formulation of item-to-item recommendation as a coun-

terfactual estimation problem inspired by recent work [4, 30]. We

then show how to use a propensity scoring model to adjust for

biases. Second, we innovate by providing a highly practical method

for estimating the propensity model from a small set of annotated

data under mild assumptions. This is a departure from previous

work assuming access to uniformly sampled and rated per-user

data [4] which can be difficult to obtain in practice. Instead, we only

require relative judgements of relevance for pairs of seed items and

candidate items. Our framework allows us to use this small anno-

tated dataset to debias a much larger observational dataset, yielding
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propensity scores that could in principle be re-used for learning

more sophisticated models [30]. As such, our estimation framework

can be seen complementary to latter approaches, opening up excit-

ing avenues for future research. Finally, we show empirically that

our proposed approach outperforms a large variety of baselines on

a real-world movie-to-movie recommendation task.

2 ITEM-TO-ITEM RECOMMENDATION

We start by introducing the item-to-item recommendation task in

an ideal, full-information setting where we get to observe every

user’s complete preferences. We later relax this assumption to the

more realistic, partial information setting which we will study in

the rest of this paper.

2.1 Full information setting

Let I denote our item inventory and let us assume that we get to

observe a sample of N session vectors (S1, . . . , SN ). These session

vectors can be thought of as having been induced by an underlying

sample of user contexts (u1, . . . ,uN ) drawn from a user population

P(U ). Each session vector has |I | entries with each entry in i in Sk
indicating whether user uk would engage with item i (for example,

purchase, like or share an item). The session vectors themselves

can be viewed as having been generated from the user contexts via

a deterministic mapping function, i.e.,

Sk [i] = engage(uk , i) for i ∈ I.

Note that requiring determinism in the mapping function is not

an unrealistic assumption to make, since we can always encode

additional information in the user context uk to make this process

deterministic. For notational convenience, let us use the equivalent,

but more abstract view of each Sk being drawn directly and i.i.d.

from an overall distribution of session vectors P(S). We will also use

S[i] to denote the i-th entry in S corresponding to user engagement

with item i . Note that S[i] is now a single binary random variable

whose randomness is due to the sampling of different user contexts.

In item-to-item prediction, our goal is to find the most likely

item i in our inventory I for a user to engage with given a seed

item j was engaged with in a session. In other words, we want

arg max

i ∈I\j
P(S[i] = 1 | S[j] = 1). (1)

Note also that even though we refer to Sk as a session vector

here, the term session is meant to refer to an interesting segment

of user behavior in general and not only to short and coherent

periods of user activity. Depending on the application and domain,

it may for example be defined to be all items in a purchase order or

even a user’s entire consumption history. Also, the goal of finding

only the most likely item can easily be extended to find the top-K
most likely items, for example by iteratively applying Equation (1)

or scoring all items and sorting them by P(S[i] = 1 | S[j] = 1) in

descending order.

2.2 Partial information setting

The full information setting above is clearly unrealistic. In it, we ef-

fectively assumed that users give us feedback on all items, meaning

that users are aware of all items when making their decisions to

engage. In reality, however, it is very unlikely that all items receive

full consideration, for example due to cognitive biases like recency

effects, as well as presentation limitations arising from the screen

or interface [30]. Hence, we adopt the following partial information

setting motivated by the potential outcomes framework [15]. En-

tries in Sk are only observed when a binary and latent observation

variable Ok [i] is true:

Sobsk [i] = Sk [i] ·Ok [i]. (2)

This essentially is a masking process – only entries i in Sk with

Ok [i] = 1 will be observed.Ok ∈ {0, 1} |I |
is a binary vector drawn

from a observation distribution P(O | Xk ), where Xk is the set of

variables that the observation probability depends on. Note that

Xk can also include the current session or user context uk which

is why the subscript is used. However, we will make the following

mild independence assumption about the observation probabilities

throughout this paper. Given the set Xk , the observation probabili-

ties of any pair of items i and j are conditionally independent.

P(O[i] = 1,O[j] = 1 | Xk ) = P(O[i] = 1 | Xk ) P(O[j] = 1 | Xk ).

This, in essence, says that we assume the set Xk is rich enough

to capture any dependencies between the likelihood of getting to

observe the true entries S[i] and S[j]. We will discuss more details

of specifying Xk in the next section.

3 ESTIMATORS FOR ITEM-TO-ITEM

RECOMMENDATION

We start this section by discussing a straight-forward approach to

item-to-item recommendation based on counting co-occurrences,

an approach resulting from maximum likelihood estimation (MLE)

of the conditional probability.

3.1 Estimation via MLE

Applying standard MLE to P(S[i] = 1 | S[j] = 1), we obtain:

P̂

MLE
(S[i] = 1 | S[j] = 1) =

P̂

MLE
(S[i] = 1, S[j] = 1)

P̂

MLE
(S[j] = 1)

= ��
1

N
∑
k 1[Sk [i] = 1 ∧ Sk [j] = 1]

��
1

N
∑
k 1[Sk [j] = 1]

. (3)

In other words, we simply need to count all session contexts in

which i and j occur together and divide that by the total number of

sessions that item j occurs in. Throughout this paper, we assume

that the denominator is non-zero, i.e., count(j) =
∑
k 1[S

obs

k [j] =

1] > 0, which can easily be achieved by eliminating items that were

never engaged with.

Note, however, that this estimator assumes that we have access

to and use the samples Sk from the full information setting. What

could go wrong if we ignored this fact and just used the observa-

tional samples Sobsk in the estimator as is typically done [10, 31]?

As Table 1 showed, the ranking was heavily influenced by a

movie’s overall popularity. Counterfactual inference is able to ex-

plain this observation by helping us understand the risk of using

data from a partial information setting, often also referred to obser-
vational data. Since the data we used was observational, we are at

risk of over- or under-estimating any effect when there are so-called

confounders present that govern whether or not we get to observe
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Table 1:Most likelymovies to co-occurwith “Toy Story (1995)" in theMovieLens 25Mdataset. Overall popularmovies dominate

the list of recommended movies.

rank title P̂MLE (S[i] | S[j]) popularity rank

1. Forrest Gump (1994) 0.634 2

2. Star Wars: Episode IV - A New Hope (1977) 0.610 6

3. Shawshank Redemption, The (1994) 0.593 1

4. Pulp Fiction (1994) 0.578 3

5. Silence of the Lambs, The (1991) 0.554 4

6. Matrix, The (1999) 0.554 5

7. Jurassic Park (1993) 0.537 8

8. Star Wars: Episode VI - Return of the Jedi (1983) 0.520 16

9. Star Wars: Episode V - The Empire Strikes Back (1980) 0.506 11

10. Back to the Future (1985) 0.500 23

an entry of Sk in Sobsk . In our setting above, popularity is a con-

founder that affects whether or not a user would rate a movie and

makes us over-estimate j’s effect on i . Other confounders could be

time in inventory, promotions or presentation biases. Fortunately,

counterfactual inference also provides us with a variety of tech-

niques that help us correct confounding. We will demonstrate how

to employ inverse propensity scoring (IPS) [15] in the context of our

problem in the next section.

3.2 Estimation via Inverse Propensity Scoring

As mentioned in the previous section, inverse propensity scoring

offers a way to adjust for bias due to confounding in our estimators.

Let pk,i > 0 be item i’s marginal probability of being observed in

session k :

pk,i = P(Ok [i] = 1 | Xk ).

This is also called the propensity of an observation, giving rise to

the inverse propensity p−1k,i = 1/pk,i . Equipped with this, the IPS

estimator [15, 22] then gives us the conditional probability as

P̂

I PS
(S[i] = 1|S[j] = 1) =

∑
k p

−1
k,ip

−1
k, j1

[
Sobs[i] = 1 ∧ Sobsk [j] = 1

]∑
k p

−1
k, j1

[
Sobs[j] = 1

]
= Z j

∑
k

p−1k,ip
−1
k, j1

[
Sobs[i] = 1 ∧ Sobsk [j] = 1

]
, (4)

where in the last line we define Z j as the normalization constant

(the denominator). Following the analogous steps of [16], one can

easily show that both the numerator as well as the denominator

are unbiased and consistent estimators of P(S[i] = 1, S[j] = 1) and

P(S[j] = 1) respectively. Slutsky’s theorem then implies that the

ratio estimator in Equation (4) is also consistent estimator of the

true conditional probabilities. In other words, given enough data, we

are guaranteed to recover the correct value of P(S[i] = 1, S[j] = 1).

Even though the IPS estimator allows us to address biases cor-

rectly, the big challenge in implementing this estimator is estimating

the unknown propensities pk,i accurately. Existing approaches ei-
ther rely on randomization or experimentation [16], both of which

are often infeasible in practice, or make strong and unverifiable

assumptions about the confounding process. In this paper, we pro-

pose a novel approach of inferring the propensities pk,i from a

small set of hand-labeled training examples. This allows us to ac-

curately learn propensities in practice and also enables us to use

standard validation procedures during training. In what follows,

we will parameterize the propensities via a model

pk = fθ (Xk ),

where θ are the parameters of the model. We will use P̂

I PS
θ (S[i] |

S[j]) from hereon to denote the IPS estimator that uses a propensity

model with parameters θ .

4 LEARNING PROPENSITIES FROM SMALL

ANNOTATED DATASETS

Besides formulating item-to-item recommendation as a counterfac-

tual inference problem, the core innovation of this paper is that we

provide a method for inferring propensities from only a small set

of hand-labeled data. We start by introducing the general frame-

work for learning propensities before demonstrating how it can be

instantiated with a specific propensity model.

4.1 General Framework

As mentioned in the last section, the main challenge in making the

IPS estimator practical is coming up with accurate estimates for

the propensities in it. The main idea of our framework is to learn

these propensities from a small amount of labeled data and then

using that data to debias the larger observational dataset.

A straight-forward source of labeled data comes from relevance

judgements [33, 38], where people are asked to rate how relevant

they perceive an item i to be given a seed item j , yielding relevance
score rel(i | j). Since it is challenging to assign absolute relevance

scores to pairs [5], we only assume that we get a set of pairwise

judgements for each seed item j,

Cj =
{
(i1, i2) : rel(i1 | j) > rel(i2 | j)

}
.

In practice, one can also construct these pairs also from a set

of positive judgements with rel(i1 | j) > 0 by sampling from the

remaining items in the inventory under the assumption that those

are less relevant. Our idea is to relate these pairwise judgements

to the true probabilities P(S[i] = 1 | S[j] = 1) by establishing the
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following relationships between two candidate items i1, i2:

rel(i1 | j) > rel(i2 | j)

⇐⇒ P(S[i1] = 1 | S[j] = 1) > P(S[i2] = 1 | S[j] = 1)

⇐⇒ log P
I PS (S[i1] = 1 | S[j] = 1)

> log P
I PS (S[i2] = 1 | S[j] = 1)

⇐⇒ log P
I PS (S[i1] = 1 | S[j] = 1)

− log P
I PS (S[i2] = 1 | S[j] = 1) > 0. (5)

This says that when an candidate item i1 is more relevant given

j than i2 is, it also means that this candidate item i1 should have a

higher full information conditional probability. Note also that we

used the consistency of the IPS estimator going from the first to the

second line. The definition of relevance should try to capture the

major factors governing which items people would engage with

in an idealized full information setting where they would consider

the entire set of items. For example, if the engagement signal is

whether or not an item was purchased, one could ask annotaters:

“Which of these items would be relevant to a buyer given <item
j>?”.

The constraints above essentially define a ranking problem that

we can optimize to find the parameters θ for the propensity model.

Given |Cj | pairs of relevance judgements for an item j, we define
the empirical loss for Cj by summing over all pairs and applying a

Hinge loss:

ℓ(Cj ;θ ) =
∑

(i1,i2)∈Cj

max

(
0,− log P̂

I PS
θ (S[i1] = 1 | S[j] = 1)

+ log P̂
I PS
θ (S[i2] = 1 | S[j] = 1)

)
. (6)

Again, θ is the set of parameters of our propensity model spec-

ifying p−1k,i in the IPS estimator. For this loss to be well-specified,

we need to have P̂

I PS
θ > 0 which we ensure by filtering out invalid

pairs in Cj in practice. The final empirical risk of an entire dataset

of judgements C = (C1, . . . ,CL) is then simply the average of over

all judgements,

argmin

θ

1

L

L∑
j=1
ℓ(Cj ;θ ). (7)

Optimizing this loss is typically fast in practice as it is both

linear in the number of seed items L and their sizes Cj , i.e., is in

O(L ·max |Cj |). The the number of seed items L is typically small

(e.g., L < 100 in our experiments) and sampling can be used to

reduce the sizes of each setCj . After learning, the recommendation

step simply involves ranking all candidate items by P(S[i1] = 1 |

S[j] = 1).

4.2 Exponential item-based propensity model

Even though we only detail one specific propensity model here, our

approach can be used with virtually all differentiable models. We

will discuss alternative models and tradeoffs in Section 7.1. For our

experiments, we chose an exponential model with a linear scoring

function for the inverse propensity, naturally giving us valid values

in the interval of [0,∞],

p−1k,i = exp

(
θT · ϕ(Xk )

)
.

Here, ϕ(Xk ) is a feature map taking in the current context and map-

ping it to a representation. Furthermore, we restrict the mapping

function ϕ to only use information about the current candidate item

i and the seed item j which is why we refer to it as an item-based
model. This let’s us drop the subscript k with a slight abuse of

notation:

p−1i j = exp

(
θT · ϕ(i, j)

)
. (8)

Plugging this propensity model into the IPS estimator then results

in the following simplified estimator:

log P̂

I PS
θ (S[i] = 1 | S[j] =1) = Z j + θ

T · ϕ(i, j)

+ log
∑
k

1
[
Sobs[i] = 1 ∧ Sobsk [j] = 1

]
︸                                    ︷︷                                    ︸

:=count(i, j)

.

(9)

Using this with the loss in Equation (6) causes the normalization

terms Z j to cancel gives us

ℓ(D j ;θ ) =
∑

(i1,i2)∈Cj

max

(
0,−θT · ϕ(i1, j) + log count(i1, j)

+ θT · ϕ(i2, j) + log count(i2, j)
)
. (10)

This loss function only involves co-occurrence counts of pairs of

items in the data as well as item features; both of which only have

to be computed once before learning. After learning, we then score

items by their IPS estimate in Equation (9).

4.2.1 ItemKNN as a special case. ItemKNN with cosine similarity

is a common and competitive baseline [31] which turns out to be a

special case of IPS estimator with the item-based propensity model

above.

log cosine(i, j) = log

S[i]T · S[j]

∥S[i]∥α ∥S[j]∥1−α

= − (1 − α) log count(j)︸                  ︷︷                  ︸
=Z j

−α log count(i)︸           ︷︷           ︸
=θT ·ϕ(i, j)

+ log count(i, j). (11)

Comparing (9) and (11) we can see the equivalence – itemKNN

with a generalized cosine similarity corresponds to using the IPS

estimator with an item-based model where the feature map only

considers item i’s popularity. This helps explain why it has been

observed to remove some popularity bias in practice.

5 EXPERIMENTAL SETUP

For our experiments, we compare our method against a wide ar-

ray of competitive baselines on the well-known MovieLens 25M

dataset. For the relevance labels, we use similarity judgements that

have been collected previously [38] as similarity is a big driver of

engagement [39]. To the best of our knowledge, this is only rec-

ommendation dataset for which both observational data as well as

explicit judgements is available for.
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5.1 Data

For the similarity judgements, we used the dataset collected by Yao

and Maxwell [38]. For it, the authors chose 100 seed movies j from
the MovieLens 25M dataset, balanced by popularity, and generated

recommendations by various algorithms for it. MovieLens users

who watched these movies were asked to assign a rating from 1-

5 to them. We processed the raw ratings as follows. To decrease

noise [26], we required judgements to be made by at least two

users and binned the judgements by their average score. Following

the process we mentioned in Section 4.1, we induced pairwise

judgements by treating all samples that had an average score of

greater than three as relevant. To ensure that sufficiently many

movies had been judged, we only kept seed movies j which had

more than four pairs with a positive similarity score. This resulted

in 67 seed movies with 10.3 relevant candidates on average which

where split into a training, validation and test dataset (34 / 17 / 16

seed movies respectively). For training, we assumed that all other

items were less relevant and used this to induce preference pairs.

For evaluation, since absolute labels of relevance had to be used

with the evaluation metrics and not all positive items had been

annotated, we carefully designed our setup as outlined in the next

subsection.

For the observational data, we converted the MovieLens 25M

dataset [11] into binary engagements by treating all ratings of

greater or equal to three as positive engagements, following prior

work (e.g., [35]). We defined sessions to comprise a user’s entire rat-

ing history but note that other definitions are possible as discussed

in Section 2.1. We also removed movies with fewer than 30 positive

engagements from the inventory because there were no similarity

judgements available for those. This left us with 20,314,297 ratings

for 13,987 movies from 162,542 users.

5.2 Task and Metrics

Given the bias that exists in observational datasets, we cannot follow

the standard hold-out procedure [30] as it would not allow us to

test the counterfactual performance of our models. For example, in

hold-out testing, a model would still be rewarded for recommending

popular movies as they frequently co-occur.

We instead use the following simple ranking task, based on the

fact that we have a set of positively labeled similarity judgements

rel(i, j) for each target item j. Given a target movie j, we rank

the entire inventory I of movies with the goal of retrieving all
positively labeled candidate movies as far up in the ranking as

possible.

We measure performance via two metrics. Recall@K , which is

simply the fraction of relevant movies ranked in the top K results.

We chose higher values of K = 25, 50 and 100 to mitigate the

difficulties that missing positively labeled movies pose – a model

can still rank other candidate movies at the top if it feels confident

in them. We also report the average ranks of all relevant movies in

each ranking to understand performance beyond the topK . We also

note that other ranking measures such as nDCG or MAP are too

heavily focused on the few top results and therefore not appropriate

in our case.

5.3 Baselines

We considered awide range of baselines, including both factorization-

based as well as count-based methods. Despite having been in ex-

istence for at least multiple years, they remain state-of-the-art on

many datasets [8, 29].

• Random. Randomly shuffles all movies in the inventory to

produce a ranking.

• Pop. A static baseline that ranks items according to their

popularity in the observational dataset, i.e., the number of

sessions that the item occurred, count(i). Though simple,

popularity has been found to be a competitive baseline in

many domains.

• Supervised. Here, we train a supervised gradient-boosted

decision tree on the same features that Ours receives, plus

we add the count(i, j) to the features so that both methods

have the same amount of information. The classification task

is to correctly predict the label of rel(i | j) as 0 or 1.
• Cooccur. Estimates the probability of engaging with a

movie i given a seed movie j via the MLE estimator in Equa-

tion 3. This essentially corresponds to ranking items i by the
number of times they occur together, count(i, j).

• ItemKNN. We used the item-based k-nearest neighbors

method with a generalized cosine similarity presented in

Equation (11) as proposed in [13].

• PureSVD. Simply factorizes the entire user-item matrix

without any reweighing.

• WmRF [14].Weighted regularizedmatrix factorizationwhere

zero entries are receive a lower weight.

• Bpr [28]. Bayesian personalized ranking is a current and

well-performing method for pairwise matrix factorization

from implicit feedback. It departs from classic matrix factor-

ization by treating entries in the user-item matrix as relative

preferences instead of absolute targets.

• Slim [25]. Treats recommendation as a multivariate regres-

sion problem, predicting each item column S[i] given all

other item columns while encouraging for the regression

weights to be sparse. We use the weights given to each of

the other items directly as ranking scores.

5.4 Implementation Details

For all methods, we chose the optimal hyperparameter settings with

respect to Recall@100 performance on the validation set. We used

the implementation of the implicit library
1
for Bpr and WmRF

with offsets being disabled to make scoring during training and in-

ference more consistent. For both methods, we tuned the number of

factors as well as the amount of L2 regularization. Slim was imple-

mented via the ElasticNet procedure provided by scikit-learn
and we considered both the amount of L1 and L2 regularization
during hyperparameter tuning. Similarly, the gradient-boosted de-

cision tree was also implemented via scikit-learn and we tuned

the number of trees and the maximum depoth. For ItemKNN, we

optimized its weighing term α .
For our method, we implemented the objective of Equation (7) in

pyTorch and did batch optimization via the Adam algorithm [18].

Because the number of pairs inCj can grow quadratically in general,

1
https://github.com/benfred/implicit/
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Table 2: Ranking performance on the test set under various

metrics. The best numbers of each column are in bold.Ours

achieves the highest recall under all cutoff points k , as well

ranks relevant items closest to the top.

method Recall@25 Recall@50 Recall@100 mean ranks

Random 0.000 0.000 0.000 6959.3

Pop 0.000 0.016 0.025 1850.4

Supervised 0.399 0.539 0.646 520.7

Cooccur 0.058 0.123 0.268 676.3

ItemKNN 0.436 0.529 0.594 450.9

PureSVD 0.356 0.450 0.532 673.8

WmRF 0.361 0.469 0.539 890.5

Bpr 0.365 0.455 0.515 785.8

Slim 0.487 0.639 0.657 2191.5

Ours 0.532 0.652 0.761 213.5

we constructed sampled versions of the training set D̃ j where we

kept all relevant items ofD j and sampledT irrelevant items from the

remaining inventory I \ {(i, j) ∈ D j : rel(i, j) = 1}. For the features

of a pair (i, j), we used the release year of i , the year when the first

ratings were recorded for i in MovieLens, and the log-transformed

popularity of i , the proportion of engagement with respect to i’s
popularity (count(i, j)/count(i)). We also used relative versions of

the first three features we computed the absolute difference of the

feature values between i and j . The hyperparameters we optimized

were the number of negative samples T and the learning rate.

6 RESULTS AND DISCUSSION

QuantitativeResults.Table 2 shows the performance of all method

under variousmetrics with best results in bold.Ours improves upon

all baselines and across all metrics. It improves recall scores by up

to 16% and achieves a substantially lower mean rank of relevant

movies.

Going through the individual methods, we can see that Random

and Pop only produce recall values close to zero, demonstrating the

high difficulty level of this task. Cooccur based on the MLE estima-

tor in Section 3.1 performs somewhat better than Pop, but still has

overall poor performance, reiterating the importance of accounting

for confounding properly. ItemKNN, as a special case of Ours, is

the third-best performing method in terms of recall, demonstrating

the impact that even addressing popularity bias has. It also has the

second-best mean rank score so that overall, ItemKNN provides

robust performance while being conceptually simple which helps

explain why it has been a popular choice among practitioners [21].

Supervised fairs slightly worse than ItemKNN on some dimensions

and slightly better on others. We hypothesize that this is because

it uses the co-occurrence counts as features which may generalize

worse. Interestingly, all methods relying on low-rank matrix factor-

ization, WmRF, PureSVD and Bpr, perform similarly. Albeit worse

than ItemKNN, they still improve upon Cooccur’s performance.

We believe part of the improvement comes from the smoothing

properties of low-rank matrix factorization which may dampen

some of the biases present in the data. However, fundamentally,

these factorization methods still are based on co-occurrences, and
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Figure 1: Test set performance with varying sizes of anno-

tated data for training (averages from 5 runs each). Close to

full performance is reached after learning from only about

200 annotated movie pairs.

so they all are also still subject to confounding of the latter. The

best performing baseline with regard to recall is Slim. It particularly

excels at higher ranks as is evidenced by the relative improvements

over other methods at Recall@25 and Recall@50. Slim is funda-

mentally different from the other low-rank factorization methods

since it uses regression coefficients directly as item similarities. This

apparently helps again address some of the biases in the data; for

example it likely de-emphasize the highly frequent but not very pre-

dictive co-occurrences. However, Slim fails to retrieve some items

at all at reasonable cutoffs; its mean rank score of 2191 is the second

worst overall. These results make sense given Slim’s underlying

L1 sparsity assumption which strongly encourages the model set

regression coefficients to zero. Finally, Ours shows superior per-

formance across all metrics. In particular, it shows relevant movies

higher up on average than any of the other models. Ours’s strong

performance is evidence for the importance of properly addressing

confounding in observational data. Moreover, withOurs only using

a few more features during scoring, it virtually possesses the same

computational cost as ItemKNN and Cooccur during inference,

making it a highly practical method.

Qualitative Results. To give more intuition for the recommen-

dations that the individual methods produce, Table 3 shows the top

ten recommendations for the animated movie “Toy Story (1995)”.

WhileOurs retrieves all animated movies in the top, the other three

baselines struggle to produce consistently good rankings. All three

baselines still contain popular movies but irrelevant movies, such

as “Star Wars IV (1977)” or “Back to the Future (1985)”, implying

that they have only insufficiently adjusted for confounders such

as candidate item popularity. Table 3 also illustrates why it is nec-

essary to use larger cutoff values when evaluating rankings; there

are typically many relevant movies for a target movie j, but only a

few are actually annotated in the data. With so many potentially

relevant items, we must give models the freedom to rank other

items at the top as long as they sufficiently recall the annotated

examples.

Performance vs. size of annotated data. One important ques-

tion for the practicality of our method is how much annotated data

would be needed to achieve an adequate performance level. For

this, we sampled a varying number of target movies j from the

annotated training set and report ranking performance on the test

set. Note that each target movie j came with around 10.3 annotated
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Table 3: Top ranked movies given the target movie ”Toy Story (1995) for three well performing baselines.

rank Ours ItemKNN Slim WmRF

1. Toy Story 2 (1999) Toy Story 2 (1999) Toy Story 2 (1999) Toy Story 2 (1999)

2. Toy Story 3 (2010) Willy Wonka & t... (1971) Toy Story 3 (2010) Toy Story 3 (2010)

3. Finding Nemo (2003) Back to the Future (1985) Willy Wonka & t... (1971) Muppet Treasure... (1996)

4. Incredibles, The (2004) Monsters, Inc. (2001) Aladdin (1992) James and the Gi... (1996)

5. Monsters, Inc. (2001) Lion King, The (1994) Star Wars IV (1977) Willy Wonka & t... (1971)

6. Shrek 2 (2004) Bug’s Life, A (1998) Monsters, Inc. (2001) Bug’s Life, A (1998)

7. Shrek (2001) Independence Day (1996) Independence Day (1996) 101 Dalmatians (1996)

8. Bug’s Life, A (1998) Star Wars IV (1977) Back to the Future (1985) Space Jam (1996)

9. Ratatouille (2007) Aladdin (1992) James and the Gi... (1996) Star Wars IV (1977)

10. Up (2009) Star Wars VI (1983) Finding Nemo (2003) Aladdin (1992)

candidates, and we report performance with respect to the total

number of annotated pairs of movies. The results are shown in Fig-

ure 1. Each marker represents the average of five repetitions with

the same size. We can see that performance quickly increases in the

beginning, reaching almost maximum performance at about 200

labeled movie pairs. Overall, this demonstrates the high efficiency

and practicality of our approach as even small amounts of labeled

data help in producing better recommendations.

7 DISCUSSION AND FUTUREWORK

Both our quantitative and qualitative results show that even having

small amounts of annotated data to learn from can substantially

reduce the amount of bias in observational data. Common meth-

ods that are based on low-rank matrix factorization showed only

mediocre performance in item-to-item recommendation. This is

not surprising given that they are essentially factorizing the (coun-

founded) co-occurrence matrix [20]. Among the baselines, we found

that ItemKNN and Slim managed to compensate for some of the

confounding in the data, albeit not in a principled way. Our ap-

proach instead is grounded in counterfactual learning. With that

underpinning, we can leverage existing debiasing techniques as

well as reason about how propensity models should be chosen based

on the causal assumptions one has. We will discuss some of these

issues in Section 7.1.

An exciting consequence of adopting a counterfactual perspec-

tive is that our framework produces reusable propensities that could
be plugged into propensity-weighted risk minimizers for traditional

matrix factorization models [30]. This means that one could use a

small annotated dataset to estimate propensities once, and then not

only use them for item-to-item recommendation but also to debias

the empirical risk estimates of a factorization model [30]. We plan

to pursue this direction in future work.

Another interesting avenue for extensions is to examine other

modeling assumptions that link annotated data to an underlying

propensity model. For example, in this paper, we only considered

the pairwise ordering constraint that we introduce in Section 4.1.

However, many other choices may be viable too, for example an

assumption saying that the relevance score is proportional to the

full-information conditional probability, rel(i | j) ∝ P(S[i] = 1 |

S[j] = 1).

7.1 Considerations in choosing propensity

models

So far, we have only stated our choice for the propensity model

that we used in our experiments. Here, we want to discuss two key

aspects of a propensity model to consider – namely the statistical

efficiency of a propensity model and its causal validity. Statistical

efficiency is the number of annotated samples that we need to

estimate all parameters of a propensity model while causal validity

is the degree to which a model is able to capture the confounding

we suspect in the data. The two aspects do not necessarily have

to be trade-offs, but often are, as more complex models tend to be

less statistically efficient but have more capacity to model causal

relationships.

Inwhat follows, wewill compare two different propensitymodels

for a simplified version of the movie domain. Figure 2 shows the

causal graph for this scenario, focusing on only one item i . We

can see that item i’s time in inventory, its popularity and release

year not only determine the engagement Sobs[i], but also influence

whether we get to observe the engagement inO[i] through a latent

factor we call salience. The latter is what causes the confounding

of the data we observe. Causal inference now tells us that in order

to get an unbiased estimate, we need to have the propensity model

that uses the set of variables X such that this set fulfills the so-

called back-door criterion [27] with respect to O[i]. In our graph,

a set of variables X meets the back-door criterion if (i) X blocks

all paths from O[i] into Sobs[i]; and (ii) X contains no descendant

of O[i]. In our graph from Figure 2, there are two different, but

causally equivalent ways of meeting the back-door criterion. The

first option is to consider X = {i’s time in inventory, popularity of i ,
release year of i} and use it in an attribute-based model analogous

to what we did in Section 4.2. For a linear model, this would result

in three parameters to be estimated. The second option would be

to choose X = {salience of i}. One can verify that this too, blocks

all paths from O[i] into Sobs[i]. This then corresponds to learning

a propensity model that has a separate salience value for each item

pk,i = θi resulting in |I | many parameters to be estimated. So, in

terms of statistical efficiency the first propensity model is preferable

over the second one since it has fewer parameters to estimate. Both

models also have the same causal validity, thus making the first

model more preferable overall in this case. In what situations would

one choose the second model? One such situation is when we

79



RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Schnabel and Bennett

salience of i

popularity

of i

i’s time in

inventory

release

year of i

O[i] Sobs[i]

Figure 2: Causal graph for a simplified version of the par-

tial information setting in themovie domain. Amovies time

in the inventory, its popularity and release year are all con-

founding factors in the engagement data we get to observe

Sobs[i].

cannot observe all of the factors contributing to the salience of an

item, for example we may not know an item’s release year. In this

situation, the second propensity model is still causally valid while

the first one is not. In summary, we recommend to consider the

causal structure of a domain as well as the statistical properties of

a propensity model when choosing a model in practice.

8 RELATEDWORK

Our work touches on work from three different subareas of recom-

mender systems, item-to-item recommendation as a task, work on

estimating item similarities, and work on recommending from bi-

ased observational data. In this work, we use the term item-to-item

recommendation exclusively to refer to the task of finding related

items given a seed item. This is different from the technique of item-

item collaborative filtering which is not the subject of this paper

where ratings are predicted from items a user has consumed [23].

8.1 The task of item-to-item recommendation

The task of item-to-item recommendation, also referred to as “more
like this” or related item recommendation has a long standing in

real-world recommender systems. Even though the exact ways in

which those recommendations are surfaced differ, for example as

a side panel or at the end of a page, one common theme is that

they get shown in response to user having engaged or clicked on

an item. Online retailers use item-to-item recommendation as a

natural way to help people explore their inventory [17, 21]. Other

application domains are video streaming services [9] or news web-

sites [1]. The task of item-to-item recommendation may be solved

by using different techniques; for example by solving a classifica-

tion problem [7]. Instead of focusing only on one specific technique,

we formalize item-to-item recommendation as a general estimation

problem where we need to estimate the probability of an item being

engaged with given another seed item. This allows us to charac-

terize the observational biases that occur in a partial information

setting as well as adjust for the latter in a principled manner.

8.2 Estimating item similarities

Having a good understanding of similarities between items is an im-

portant part of real-world recommender systems [3, 39]. There are

roughly two approaches to estimating item similarities – attributed-

based (or content-based) methods leverage characteristics of item

themselves and collaborative filtering-based approaches which look

at how the interactions with the items from a crowd of users.

Attribute-based approaches for similarity estimation require that

items can be represented by a list of attributes that are thought to

be relevant for establishing relatedness. For example, Winecoff et

al. represent dresses by sleeve length, dress length, pattern style

and color family [36]. In the movie domain, Yao and Maxwell [38]

found in a user survey on MovieLens that users strongly consider

the genre, mood and plot of movies when assessing similarity. Trat-

tner and Janner [33] found similar results when comparing various

similarity functions via crowdsourcing. In both studies, however,

the similarity function that was best correlated with human judge-

ments was based on user-assigned tags for eachmovie [34]. Another

broader class of attributes explored is text associated with items, for

example user reviews [19]. The large limitation of attribute-based

methods is that they pose a substantial cost for cataloging all items

in the inventory, moreover, complex items such as art are hard to

encode. For this reason, we do not consider attribute-based methods

in this paper. Most propensity model require none of only some
information about items needs to be known, but this is only the

information that is involved in debiasing the data. In the movie

domain, the information needed to debias the observational data is

only coarse metadata, while for attribute-based models one would

need fine-grained genre, mood, and plot information [38].

Collaborative-filtering (CF) based methods rely on information

based on how a crowd of users interactions with the items. For ex-

ample, for movies, similarities are typically derived based on all the

ratings that users assigned to an item. CF-based approaches differ

in whether raw interaction signals are used or lower dimensional

embeddings. A prominent example of the former is ItemKNN [10]

which most often uses the cosine similarity between items’ interac-

tion vectors to compute similarity. Cosine similarity is only one pos-

sible similarity measure and others have been examined, however

it has been found to work best empirically [6, 31]. Other similarity

measures can be constructed from using the cosine similarity on

the resulting item embeddings of factorization methods [14, 28] or

embedding items directlyItem2Vec [2]. We compare against cur-

rent CF-based similarity measures such as similarities induced by

weighted regularized matrix factorization [14] and Bayesian person-

alized ranking [28], and show that their performance is substantially

impeded by biases in the data.

8.3 Recommendations from biased data

It has long been noted that virtually all data that collaborative fil-

tering methods is trained with suffers from selection bias, meaning

that the data we observe is missing not at random. For example,

it is well known that users are less likely to provide ratings for

movies they do not like [24]. Implicit data such as clicks is often

confounded by the time that an item is in the inventory [7], or inter-

face biases such as the position on the screen [16]. Older approaches

to dealing with these biases include choosing more robust target

metrics [32], or modeling the generative process of missing data

explicitly [12, 24]. Newer approaches [30, 37] take a counterfactual

perspective, resulting in a principled approach for adjusting for
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selection bias via propensities. We follow these steps by providing

a counterfactual view of item-to-item recommendation and com-

plement previous work by showing how to estimate propensities

from a small amount of annotated data alone.

9 CONCLUSIONS

Observational data abounds inmodern recommender systems. How-

ever, it is often confounded by a variety of factors, such as popularity

effects or presentation biases which can cause naive methods to fail.

In this paper, we treat item-to-item recommendation from observa-

tional data as a fundamentally counterfactual problem, making it

possible to adjust for confounding and biases in a principled manner

using propensity models. Our core contribution in this paper is to

provide a general framework leveraging small annotated datasets

for debiasing larger, observational datasets for item-to-item rec-

ommendation. Our key innovation is to use the small annotated

dataset to infer the parameters of a reusable propensity model.

Our experiments on real-world movie recommendation data show

that this substantially improves recommendation performance over

existing methods.
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