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ABSTRACT 

We present Capacitivo, a contact-based object recognition 

technique developed for interactive fabrics, using capacitive 

sensing. Unlike prior work that has focused on metallic 

objects, our technique recognizes non-metallic objects such 

as food, different types of fruits, liquids, and other types of 

objects that are often found around a home or in a workplace. 

To demonstrate our technique, we created a prototype 

composed of a 12 x 12 grid of electrodes, made from 

conductive fabric attached to a textile substrate. We designed 

the size and separation between the electrodes to maximize 

the sensing area and sensitivity. We then used a 10-person 

study to evaluate the performance of our sensing technique 

using 20 different objects, which yielded a 94.5% accuracy 

rate. We conclude this work by presenting several different 

application scenarios to demonstrate unique interactions that 

are enabled by our technique on fabrics. 
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CSS Concepts 

•Human-centered computing → Human computer 

interaction (HCI); Interaction devices. 

INTRODUCTION 
Interactive fabrics enable numerous applications for smart 

everyday “things” and beyond (e.g., garments, furniture, and 

toys) [1, 7, 23, 40]. However, with existing sensing 

techniques, input through a fabric is primarily carried out by 

a user performing an action, such as touching [1, 23, 30] or 

deforming [6, 25, 36]. This means that the fabric lacks 

awareness of its context of use, such as what types of objects 

it is in contact with. Thus, there are several opportunities 

missing for new applications and interaction techniques.  

In this paper, we present a contact-based object recognition 

technique on interactive fabrics using capacitive sensing. 

Our technique senses and recognizes non-metallic objects 

that are common in homes or workspaces, such as food 

items, dinnerware, plastic, and paper products. When an 

object is in contact with the fabric, our technique recognizes 

the object based on its capacitance footprint. Consequently, 

a desired action can be triggered. For example, a smoothie 

recipe can be suggested to a user based on what fruit or 

vegetable the user has inside a basket, detected through its 

cloth lining (Figure 1b). Aside from recognizing the 

contacted object, our system can also sense the change of 

what is inside a container. For example, a tablecloth can 

detect whether the soil of a table plant is wet or dry, enabling 

the system to remind a user to water the plant (Figure 1c).  

We demonstrate the technical feasibility of our approach 

through the implementation of a proof-of-concept prototype 

called Capacitivo. Our prototype is composed of a grid of 12 

× 12 electrodes made of conductive fabric that is attached to 

a textile substrate (Figure 1a). The electrodes are connected 
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Figure 1 (a) Capacitivo is an interactive fabric, capable of sensing a wide variety of non-metallic daily objects it is in contact with. 

(b)  For example, the fabric sensor can sense different types of fruits. (c) It can also sense if the soil of a table plant is wet or dry. 
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by rows and columns, allowing a contacted object to be 

recognized based on its material as well as the shape of the 

contact area using mutual and self-capacitive sensing. We 

carefully designed the size of the electrodes and the distance 

between them, to maximize the sensitivity of our prototype 

when placed flat on a tabletop. In a controlled experiment, 

we tested the recognition accuracy of our approach with 20 

daily objects, ranging from food to plastic and dinnerware 

(empty or filled with water or soup). Our results suggested 

that the prototype could achieve a real-time recognition 

accuracy of 94.5%.  

The contributions of this work include: (1) a non-metallic 

object recognition technique on interactive fabrics using 

capacitive sensing; (2) the result of an experiment measuring 

the accuracy of our technique; and (3) usage scenarios 

demonstrating unique applications enabled by Capacitivo.  

RELATED WORK 

We briefly discuss the literature for input on fabrics, object 

recognition using capacitive sensing, and the sensing 

techniques for context-aware applications.  

Input on Interactive Fabrics 

There are two types of input: explicit and implicit input. 

Explicit input refers to the input carried out in the fore of the 

user’s consciousness [12]. Research on interactive fabrics 

has been primarily focused on explicit input using touch [1, 
24, 33] or deformation gestures [6, 28, 36]. The earliest 

exploration of this space was the Musical Jacket [23], which 

allows a user to interact with a computer using a fabric-based 

touch keypad embroidered on a jacket. Jacquard [34] from 

Levi's and Google is one of the first commercial products in 

this space. It allows touch gestures to be carried out on the 

sleeve cuff of a jacket made of touch sensitive fabric using 

conductive yarn. Recent work from Wu, et al. [40] shows that 

touchless hand gestures, like swipe, are also possible on 

interactive fabrics using Doppler motion sensing. Aside from 

touch and touchless gestures, deformation gestures have also 

been studied for explicit input on fabrics. StretchEBand [36], 

for example, allows a user to interact with computing devices 

by stretching, folding, and pressing a soft fabric band made 

of a textile stretch sensor. SmartSleeve [25] enables even an 

even wider range of deformation gestures on the sleeve using 

a pressure-sensitive textile sensor. 

In contrast to explicit input, implicit input does not require 

explicit action from a user to interact with a computer. It is 

widely used for activity tracking or for contextual 

interactions. In comparison to explicit input, there is little 

research on implicit input for interactive fabrics. eCushion 

[41] is one of them. The technique uses a pressure sensitive 

fabric developed in the form of a seat cushion to infer a user’s 

seated posture. Rofouei et al.’s work [28] uses the pressure 

footprint (e.g., weight and shape) to distinguish objects 

placed on the fabric. No evaluation was conducted to inform 

how well this technique works. Tessutivo [7] is the most 

relevant work to our research, but the technique only works 

on metallic objects. In contrast, our work focuses on non-

metallic objects that are also common in daily life. It 

complements existing research in the literature with a new 

sensing technique based on capacitance.  

Capacitive Sensing for Object Recognition  

Capacitive sensing is a well-known technique that has been 

used in prior research for numerous applications, including 

sensing touch input [5, 18, 19, 29, 48], mid-air hand gesture 

and postures [8, 22, 34, 48], differentiating people [11, 29], 

sensing the distance or displacement of an object [14, 31, 39],  

and analyzing the material of an object [8, 32, 38, 43]. An 

overview of capacitive sensing and its applications was 

described by Grosse-Puppendahl, et al. [10].  

For object recognition, a common approach is to tag the 

target object. For example, TUIC [46] identifies tagged 

objects through a commodity touchscreen (i.e. mutual 

capacitive sensing) by recognizing the geometrical pattern of 

the tag. With Capacitive NFCs [9], target objects are 

instrumented using an active tag. Aside from detecting them, 

the motion of the objects can also be tracked using self-

capacitive sensing. Zanzibar [35] uses both mutual and self-

capacitive sensing in a single device to sense touch and 

touchless hand gestures. Object recognition was 

implemented using NFC tags. While tagging can be an 

effective approach in some applications (e.g., tangible 

interaction), usability can be a concern in contextual 

applications if it is a requirement for a user to tag every 

object involved in an application.  

This has led to numerous techniques being developed to 

sense untagged objects. One of the more common techniques 

in this body of research is Electrical Capacitance 

Tomography (ECT) [43, 44]. The technique measures the 

distribution of capacitance across sensor electrodes affected 

by the target object. Unlike the other approaches, where the 

electrodes can be connected by rows or columns, systems 

using ECT require each individual electrode to be connected 

to the sensor board separately. This may increase the 

complexity of the system. Our technique is also based on 

capacitive sensing, but with a simpler structure suitable for 

interactive fabrics. In comparison to existing work, our 

approach is unique in that we combined both mutual and self-

capacitance in a single package, to recognize an object based 

on the material and shape of the contact area of the object.  

Sensing Techniques for Context Awareness 

Aside from capacitance, implicit input can also be sensed 

using GPS or motion sensors on a smartphone [12], 

millimeter wave radar [45], computer vision [20], acoustics 

for objects that emit a sound [15], electromagnetic noises in 

the environment [17], and contact vibrations when people 

use their hands [16]. Within existing research, techniques 

like EM-Sense [17] and ViBand [16] leverage the intrinsic 

electric or mechanical properties of home appliances (e.g., 

electromagnetic noises or mechanical vibrations) to infer a 

user’s activities and how devices are used by users. Other 

lines of research in this space focus on the recognition of 

objects based on the difference in the material of the objects, 



and thus work with a large variety of passive objects or even 

liquids. Radarcat [45], for example, is a technique based on 

millimeter wave radar. It can recognize passive and active 

objects as well as different parts of the body. Furthermore, 

TagScan [37] identifies different types of liquids using 

RFID. Unlike the existing work, where objects can only be 

detected at a single location of a rigid sensor, our technique 

is designed for soft fabrics to cover a broader surface area. 

CAPACITIVO SENSING TECHNIQUE 

Our object recognition technique is based on sensing the 

change in the capacitance of electrodes, affected by the 

presence of an object. For example, when a non-metallic 

object is in contact with the electrodes, the electric field 

applied from the electrodes causes an electric displacement 

within the object. The amount of the electric displacement 

varies among different objects, depending on the permittivity 

of the objects. The electric displacement changes the charge 

stored in the electrodes, and in turn alters the capacitance. It 

is thus possible to detect or recognize an object based on how 

much of a shift is observed in the measured capacitance. 

When a metallic object is in contact with the electrodes, the 

shift in the measured capacitance is primarily caused by short 

circuit or the dielectric (e.g. air) in the tiny spaces between 

the uneven contact surfaces of the object and the electrode. 

The change in the capacitance is thus not related to the 

material and cannot be used for recognition of objects.  

Unlike sensing gestural input from fingers, object 

recognition relies on precise sensor readings from different 

types of objects. Traditional methods, like time-based 

capacitance measurement, lack precision. We employed a 

resonance-based approach, where the sensing unit is 

composed of an LC resonant circuit [33], including an 

inductor and capacitor (sensor electrodes). By precisely 

measuring the resonant frequency (𝑓)  of the circuit, the 

capacitance (𝐶) of the electrodes can be calculated using the 

following formula:  

                                      𝐶 =
1

4𝜋2𝑓2𝐿
                                    (1) 

where 𝐿 is the known inductance. The capacitance measured 

using this approach is composed of the capacitance of 

different types occurring in the circuit, primarily the mutual 

and self-capacitance in our case (details provided later).  

Unlike alternative methods, the resonance-based approach 

has two major advantages that are essential for robust object 

recognition. First, it is less susceptible to EMI noises, thus 

having a better signal-noise-ratio (SNR). Second, it allows 

the capacitance to be measured in a wider range (1pF to 

250nF) with an ultra-high resolution (0.08fF) [32].  

HARDWARE IMPLEMENTATION 

We present the implementation details of Capacitivo using 

conductive fabrics and customized hardware.  

Sensor Design  

Our sensor is composed of coplanar electrodes connected by 

rows and columns and a ground plane (Figure 2). With this 

setup, two types of capacitance occur primarily: mutual and 

self-capacitance. Mutual capacitance is the capacitance 

between the adjacent electrodes while self-capacitance is the 

capacitance between the electrodes and the ground plane. 

Both are affected by a contacted object. We used the 

aggregation of them to allow the signal to be more 

pronounced in response to the small change in the 

capacitance. For each capacitance measurement, one row 

and one column are selected to form a mutual capacitor. The 

selected electrodes also act as capacitors coupling to the 

ground, so the changes in both types of capacitance together 

affect the sensor readings (oscillation frequency). The impact 

caused by a contacted object can thus be measured by 

scanning all the row and column electrodes. However, the 

challenge with this approach is that due to the coupling of the 

electrodes to the ground (self-capacitance), sensor readings 

at a location are interfered with all electrodes connected in 

the same row or column, which we call a crossing effect 

(Figure 3b). This affects the sensing accuracy due to the 

noise outside the object’s contact area.  

 

Figure 2. An illustration of the mutual and self-capacitance 

formed by our sensor. 

 

Figure 3. (a) A credit card placed on our textile sensor. (b) The 

footprint of it measured by the resonance-based approach. (c) 

The footprint of it measured by the mutual capacitive sensing. 

One approach in solving this problem is to connect each 
individual electrode to the sensor board separately, but it 

comes at the cost of system complexity and scalability. We 

addressed the crossing effect issue by additionally measuring 

the contour of the contact area of the object and gathering 

sensor readings from only inside of the contour. The shape 

of the contact area of the object can also be useful for object 



recognition. With our sensor setup the shape of the contact 

area of the object can be roughly captured using mutual 

capacitive sensing (Figure 3c). The issue, however, is that 

the current resonance-based approach cannot measure the 

mutual capacitance in isolation. We thus had to use a separate 

circuit, employing a method commonly used for mutual 

capacitive sensing by measuring the displacement current 

from a transmitter to a receiver (discussed later). In 

comparison to the resonant-based approach, this method is 

less sensitive to the difference in object material, so it was 

only used for sensing shape of the contact area of the object. 

Fabricating Sensor Electrodes  

We describe the fabrication approach to create the fabric 

sensor using three layers of conductive and non-conductive 

(substrate) fabric. 

With our approach, electrodes are created using conductive 

fabric attaching to a layer of non-conductive substrate. We 

began by attaching conductive fabric (we used Adafruit 

conductive woven fabric) to a cotton substrate using an iron-

on adhesive [2]. After the adhesive dried, we used a low-cost 

cutting machine (Cricut Air Explorer) to cut the conductive 

layer into diamond shaped electrodes (Figure 4a). In 

principle, the electrodes can be made in any shape. We used 

the diamond shape to maximize the sensing region in a 2D 

space. We carefully adjusted the cutting force of the cutting 

machine so that it only cuts the conductive layer without 

damaging the substrate. Once the cut was completed, we 

heated the fabric again to soften the adhesive to allow the 

unwanted piece to be peeled off the substrate (Figure 4b). We 

designed the electrode pattern using graphics programming 

software (e.g., Processing) and then saved into an SVG file 

that was readable by the cutting machine. In comparison to 

alternative methods like embroidering [26], knitting [13], 

weaving [27], our approach creates electrodes that are 

precise in shape and location, while keeping the costs low. 

For the electrodes on rows, we also cut the connection lines 

between them. Column electrodes were connected from the 

back using conductive threads so that they are electrically 

disconnected from the row electrodes. This can be done by 

hand or using a home sewing machine (Figure 4c). When 

using a sewing machine, the standard stitching process 

pushes the threads through the substrate and electrode layer. 

This connects the front and back of the sensor, which is 

needed to route the column connection lines to the back. The 

issue, however, is that the conductive threads left on the front 

may cross the connection lines of the row electrodes, which 

causes short circuits between the rows and columns.  

We solved this problem by controlling when the conductive 

thread could be pushed to the front side of the sensor. This 

was done by fine-tuning the tension and speed of the sewing 

machine. We first adopted the method discussed in Dunne et. 

al.’s work [10], and carefully tuned the tension of the top 

thread (e.g., non-conductive thread) to ensure that when the 

machine is sewing at a high speed, the conductive thread ( 

LIBERATOR 40) on the back only floated on the surface of 

the substrate without penetrating it. Adjusting the machine to 

sew at a low speed allowed the conductive thread to be 

pushed through and land on the front side of the sensor (e.g., 

connecting to an electrode). To force the machine to sew at 

a low speed, we let it turn at a sharp angle (90˚) at the location 

where the penetration of the conductive thread was needed. 

Like similar products in the consumer market, our sewing 

machine sews at a low speed at the corners 

Finally, we added a grounded shielding layer (i.e. ground 

plane) made of a knit conductive fabric (Adafruit knit jersey 

conductive fabric) on the back side of the sensor (Figure 4d). 

The knit conductive fabric is attached to the back of the 

sensor on its non-conductive side to avoid shorting the 

column electrodes. An optional layer of fabric can be used to 

cover the electrodes for the aesthetic sake. Our prototype 

employed a 12×12 grid layout of electrodes (15.6 × 15.6 cm), 

taking 20 minutes to complete the fabrication process, with 

a total material cost under $30 USD.  

Customized Sensing Board 

Our customized sensing board (Figure 5) uses an LC circuit 

with a FDC2214 chip from Texas Instruments. The 

FDC2214 chip measures the joint effect of mutual and self-

capacitance. To capture the contour of the contact area of an 

object and to mitigate the crossing effect, we used a separate 

mutual capacitive sensing circuit, similar to the one 

described in prior work [47]. On the transmitter side (column 

electrodes), the circuit is composed of a wave generator 

(AD5930, Analog Device) and an amplifier (AD8066ARZ, 

Analog Device), which generates an excitation signal using 

a 100k Hz sine wave with a 5V peak-to-peak voltage. The 

excitation signal is routed to the row electrodes via 

Figure 4. Fabrication process of sensor electrodes. (a) The electrodes are being cut using a low-cost cutting machine. b) Unwanted 

piece is being peeled off the substrate. (c) Connecting the column electrodes from the back using a sewing machine. (d) A grounded 

shielding layer is being attached to the back side of the sensor. 



multiplexers. On the receiver side (row electrodes), the 

displacement current from the column electrodes was 

converted and filtered to an amplified voltage signal using 

two amplifiers. The system then reports the capacitance by 

calculating the RMS value of the voltage signal using a 

window size of 100 samples with a sampling rate of 1MHz.  

Aside from the two capacitive sensing circuits, our sensing 

board also has an ARM-based flash micro-controller 

(ATSAM3X8EA-AU) powered by Arduino Due Firmware, 

a Bluetooth module (RN42, Microchip) for wireless 

communication, and eight 4:1 multiplexers (FSUSB74, ON 

Semiconductor) to drive the electrode arrays. Each 

multiplexer further connects to two switches 

(TMUX154EDGSR, Texas Instruments) to allow the system 

to switch between the two capacitive sensing circuits. Note 

that we used two switches instead of one, because we found 

that the sensor readings interfered with each other if the two 

circuits are connected to the same switch.  

Note that when the system is in one of the two capacitive 

sensing modes (e.g., resonance-based or mutual), the circuit 

for the other mode is turned off to avoid crosstalk. With our 

current implementation, the prototype runs at 3 - 4 Hz for the 

12×12 layout of electrodes. The speed bottleneck is in our 

mutual capacitive sensing. But this issue can be mitigated in 

the future using better sensing chips (e.g. MTCH6303 [21] ). 

 

Figure 5. Capacitivo sensing board. The button and header pins 

are used for debugging.  

Wire Connection 

The sensor board is connected to the fabric electrodes 

through electric wires and conductive threads. We used a 

method similar to the one suggested in prior research [7] to 

connect the lead threads  and wires together using twist 

splice. We used hot glue to strengthen and fixed the 

connection. Although it is clunky, this type of wire 

connection is stable and performed well in our experiments.  

DETERMINING ELECTRODE SIZE AND SEPARATION 

For a given input voltage (e.g., 5V in our case), the size of 

the electrodes and the distance between two adjacent 

electrodes (called separation as shown in Figure 6), may 

affect the intensity of the electric field [42], thus affecting 

sensor sensitivity to the small changes in the capacitance 

caused by objects of different materials. In theory, increasing 

the size of the electrodes increases the intensity of the electric 

field. The tradeoff, however, is that larger electrodes reduce 

the sensing resolution in 2D. The effect of separation adds 

more complexity. For example, reducing the separation may 

increase the intensity of the electric field for mutual 

capacitance since the electrodes become closer. However, an 

opposite trend may be observed for self-capacitance since the 

space between the electrodes becomes smaller. We 

conducted two experiments to determine the proper size and 

separation for our implementation.  

Electrode Size  

For the study about electrode size, we created three sensors 

with different electrode sizes (7mm, 14mm, and 21 mm in 

diagonal distance). 7mm was chosen to be the smallest size 

for our study because it was nearly the smallest electrode that 

could be robustly fabricated using the low-cost cutting 

machines that are widely available to the research and maker 

communities. The electrodes of the sensors were made in a 

2×2 grid with a fixed 2 mm separation. For each electrode 

size, we also created five replications of the same sensor for 

data collection, to accommodate any potential variations in 

sensor readings caused by inconsistency in fabrication.  

 

Figure 6. An illustration of electrode size and separation. 

To acquire the sensor data for comparison, we used a thin 

plastic sheet as a dummy object (60 mm ×60 mm ×1 mm), 

3D printed using PLA filament. We chose PLA because it 

has a relatively low permittivity (e.g., ~3.5 F/m [4]), 

allowing us to better measure the size effect of the electrodes 

in reaction to a small change in capacitance. For each trial, 

we placed the plastic sheet on top of the sensor and covered 

all electrodes. We measured the sensor readings for each 

column-row pair of the electrodes to calculate a SNR. The 

average SNR was then calculated for all the pairs of the 

sensor and then all the five replications of the same sensor.  

Results 

As we expected, increasing the size of the electrodes 

increases SNR. The SNR achieved from size 21mm is nearly 

five times as high as that achieved from size 7mm. The 

tradeoff is of course sensing resolution in 2D. To consider 

both SNR and 2D resolution, we calculated an overall score 

for each electrode size, using the following equation. The 

higher the score is, the better the size is for the electrode to 

satisfy our sensing needs. 



𝑆𝑐𝑜𝑟𝑒 =
𝑆𝑁𝑅 

𝑆𝑁𝑅ℎ𝑖𝑔ℎ𝑒𝑠𝑡  
+  

 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑆𝑐𝑜𝑟𝑒

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑆𝑐𝑜𝑟𝑒ℎ𝑖𝑔ℎ𝑒𝑠𝑡  
 

where Resolution_Score represents the number of electrodes 

per square meter. The result is shown in Table 1. Among all 

the tested electrode sizes, 7 mm scored the highest despite 

being the lowest on SNR. We thus used 7 mm in our 

implementation.  

Electrode Separation  

For the separation study, we created three sensors each with 

different separation distances (2mm, 3mm, and 4 mm). The 

sensors were created using 7mm electrodes. 2mm was 

chosen to be the smallest separation for our study because 

again it was approximately the smallest separation that can 

be robustly fabricated using the low-cost cutting machines. 

Similar to the size study, we also created five replications of 

the same sensor for data collection. All other study protocols 

remained the same. 

Results 

Interestingly, increasing the distance between two adjacent 

electrodes also increases SNR. This suggests that self-

capacitance may have dominated the sensor signal. 

Regardless, using the joint effect from both types of 

capacitance leads to higher SNR. The overall scores shown 

in Table 1 suggest that the separation of 4 mm has the highest 

score amongst the tested values. It increases SNR for about 

twice as high without significantly impacting 2D resolution. 

We thus used the 4mm separation in our implementation. 

Note that it was not our goal to identify the most optimal size 

or separation, thus we left them for future research. 

 

Table 1. The results of our size and separation experiment. The 

columns shaded in grey were used in our implementation. 

OBJECT RECOGNITION 

Our system recognizes non-metallic objects based on the 

capacitance footprint of the object’s contact area. This 

section presents our object recognition pipeline. 

Data Processing  

When an object is in contact with the fabric sensor, the sensor 

reports two 12 × 12 arrays of capacitance values, one from 

the LC circuit (more precise for sensing material) and the 

other from the mutual capacitive sensing circuit (more 

precise for sensing shape). Before the raw sensor data was 

used for object recognition, we subtracted background noise 

from the sensor readings for all the column and row electrode 

pairs. To handle this in an efficient way, we created a 2D 

noise profile, which represents the background noise across 

the entire sensor. The noise profile was constructed by 

averaging the sensor readings at all locations within a sliding 

window of size 5. It was updated automatically when no 

object was detected and when no location reported a delta in 

sensor value (current value minus initial value) exceeding a 

preset threshold (e.g., 3000 units of FDC2214’s raw sensor 

reading). When an object was in contact with the sensor, our 

system detected the presence of the object if the average of 

the sensor data across all the locations is over a threshold 

(5000) while the standard deviation is below a threshold 

(1000). We then extracted the 2D capacitive footprint of the 

object by taking the LC circuit data from the contact area of 

the object. The contact area of the object is determined by 

getting the locations, whose sensor data is above 30% of the 

maximum value of the mutual capacitive sensor. The 

footprint data was then smoothed using a median filter to 

reduce the fluctuations in sensor readings. In addition, by 

placing the objects on the sensor one by one, the footprints 

of multiple objects can be detected. To get a high-resolution 

visualization of the counter image, we multiplied the data 

from the LC circuits with the normalized data from the 

mutual capacitive sensing at each location and scaled up the 

resulting data map using linear interpretation.    

Machine Learning 

Object recognition was carried out using the Random Forest 

technique. In comparison to the alternative methods (e.g., 

Hidden Markov Models and Convolutional Neural 

Networks), Random Forest is accurate, robust, and more 

efficient in computation, thus suitable for real-time 

applications in low-power embedded platforms. Features 

used for training and testing are primarily based on two types 

of information, the material and shape of the contact area of 

the objects, where the shape data was acquired using the 

interpolated image of the data map. Based on our observation 

and initial tests, we derived 33 material-related features and 

53 shape-related features (Table 2). 

Shape-

related 

Features 

(53) 

• Local Binary Pattern (36) 

• Hu Moments (7)  

• Object Area (1): Number of pixels the object covers  

• Object Edge (1): Number of pixels on object's edge  

• Average Distance (4): Average distance from object's 

pixels to object's center of gravity and geometric center 

(2), average distance from object's edge pixels to object's 

center of gravity and geometric center (2)  

• Number of Blobs (1),   

• Average Diameter of Blobs (1)  

Material-

related 

Features 

(33) 

• Statistical Functions (13): Mean per mode (2),  Max (1), 

Binned Entropy (1), Local Maximum Numbers (1), 

Median (1), Quantiles (3), Count above/below mean (2), 

Variance(1), Absolute energy of the object's pixel values 
(1) 

• Ten-Fold Stats (20): Sort and divide the object's pixel 

values into 10 folds and average for each fold (10), 

Divide grayscale values (e.g., 0~255) into ten intervals 

and count the number of the pixels in each interval (10) 

Table 2. The feature set extracted for training our machine 

learning model. 



SYSTEM EVALUATION 

We conducted an experiment to measure the recognition 

accuracy of our prototype for daily objects commonly found 

at home or in an office environment.  

Participants 

Ten right-handed participants (average age: 22.9, 6 males, 4 

females) were recruited for the study to reduce tested objects 

being placed at the same locations or orientations. 

Objects 

We tested our prototype using 20 everyday objects (Figure 

7), ranging from food, to personal items and things that are 

commonly seen in kitchens and offices. The tested objects 

vary in geometrical (e.g., size, shape) and material 

properties, which is useful for demonstrating the capability 

of our sensing technique. We also purposefully included 

container-like objects, such as a water glass and bowl, to test 

how reliable it is for our system to recognize the different 

statuses of containers. For example, we tested how well it 

could be recognized if a container was empty versus when it 

was filled with water (e.g., water glass filled with water) or 

soup (e.g., bowl filled with clam chowder). Similarly, we 

tested if the system can correctly differentiate between dry 

and wet soil for a small tabletop plant. This is to show the 

potential of our system in wider application scenarios. For 

food items, we bought two packs of the same type of food 

from different markets or brands. We used those from one 

pack for training and the other pack for testing. For example, 

we used cheese from Velveeta for training and cheese from 

Kraft for testing. We used 3 kiwis, 3 avocados, and 3 

grapefruit from one pack for training and same amount of 

them from another pack for testing.  

Data Collection 

Our study protocol was similar to that of prior work [7]. 

Three days before the study, a volunteer was invited to 

collect the training data for the machine learning model. The 

volunteer was asked to place each of the tested objects inside 

the sensing area in a random location, orientation, and order. 

No other instruction was given in terms of how the objects 

should be presented to the sensor. Fifty samples were 

collected for each object to train the model. During data 

collection, the sensor was placed in a horizontal position on 

a table to mimic a common tablecloth scenario. The device 

was powered by a wall outlet (earth ground). The same 

procedure was used for collecting the testing data, except that 

10 new participants were recruited for the task. Ten samples 

were collected per object for testing. Real-time recognition 

accuracy was recorded for analyzing the study results.  

Results 

Overall, our system yields an accuracy of 94.5% (SD = 4.5). 

The confusion matrix of the study result shows that 18 out of 

the 20 tested objects achieved an accuracy higher than 90% 

(Figure 8). This is a promising result considering that many 

of the tested objects are similar in shape, and in a few cases, 

also in material. For example, the Empty Water Glass, Empty 

Bowl, and Table Salt are all round in their contact area, but 

they could be recognized by the system with a relatively high 

accuracy. While the JCPenney Rewards Card scored lower 

than 90%, it was still differentiable from the Discover Credit 

Card, which is almost identical in shape and size. Since the 

two cards are both made of plastic, they are differentiable by 

the system through the difference in internal structure (e.g., 

with vs without the chip) and magnetic strip.  

 

Figure 8. The confusion matrix of the study result across 10 

participants. Results are shown in percentage.  

Figure 7. The full list of tested nonmetallic objects.  



The system also performed relatively well on food items. For 

example, the differences between the Kiwis and Avocados 

could be discerned with good accuracy despite their size and 

shape are not very much different from each other. 

Grapefruits have a unique capacitive footprint among all the 

tested objects, which allowed them to be recognized with a 

good accuracy of 98%. In addition to the objects, we found 

that the status of the container could also be well tracked. For 

example, the system could distinguish between the Empty 

Water Glass and the one filled with water with an accuracy 

of 94% and higher. It could also correctly recognize the 

Empty Bowl versus the one filled with clam chowder in all 

the 20 tested instances. Finally, the system was able to 

differentiate between wet and dry soil for the table plant with 

99% accuracy. This is a promising result considering that all 

the containers, despite their status, are well recognizable 

among all the other tested objects.  

Misclassifications typically occurred when an object failed 

to have a clear capacitance footprint in our current 

implementation, such as those with low permittivity (e.g., 

Credit Cards, Book). The JCPenney Rewards Card is an 

example, which is one of the two most difficult objects to 

recognize (85% accuracy). The problem was more 

pronounced when a part of the card lost contact with the 

sensor electrodes, which is a common scenario since the 

fabric sensor is not entirely flat. In this case, neither the shape 

nor the material could serve as a reliable indicator for the 

system to recognize the object. This is partially why the 

system can get confused between the JCPenney Rewards 

Card and the Apple AirPods Case. 

SUPPLEMENTARY STUDIES 

Aside from the main study, we conducted two supplementary 

studies to push the limit of this fabric sensor further. We first 

preliminarily evaluated how well the system can recognize 

different types of liquids. We then investigated how well the 

objects can be recognized by the sensor in a vertical 

placement (e.g., in a pocket form factor) to mimic another 

common use scenario. These two studies were carried out 

with a single participant (female, right-handed, 25 years old). 

Liquid Recognition 

To understand how well the proposed technique may work 

for a wider variety of drinks, we extended our apparatus to 

six liquids, including Cold Water, Hot Water, Coke, Apple 

Cider, Milk, and Beer (Pabst blue ribbon). According to prior 

work [3, 37], the permittivity of these liquids varies due to 

the difference in temperature and also in the concentration of 

sugar and salt. However, unlike the objects tested in the main 

study, liquids are different in a much more subtle way.  

The result of our initial testing revealed poor performance of 

our system on the tested liquids, primarily attributed to the 

small inconsistency in the sensor readings at different 

locations of the current prototype. We thus only report the 

performance of the system measured at a fixed location, 

picked randomly inside the sensor (Figure 9 right). While 

this setup clearly limits the utility of the system, some 

applications may still benefit from it, including the one 

related to the smart coaster described in the demo section. 

We see that this inconsistency issue can likely be resolved by 

using an industrial grade fabrication process.  

Data Collection 

The study had two sessions, one for training and one for 

testing. For the training session, data was collected by the 

participant putting the glass filled with one of the tested 

liquids anywhere inside a sensing region, made of 7 × 7 

electrodes. All the liquids were at room temperature (~ 23 

ºC) except the hot water, which was measured at 80º C. Aside 

from the liquids, we also included an empty glass in this 

study, resulting in a total of 8 conditions. The liquids were 

tested in a random order. We collected 20 samples for each 

type of liquid. The same procedure was used in the testing 

session, which took place six hours later.  

Result 

The study result was analyzed using a twofold cross-

validation. Overall, the system achieved an average accuracy 

of 90.71% (SD=14.6). Figure 9 (left) shows the confusion 

matrix of the result across all the tested liquids, amongst 

which, Beer had the lowest accuracy of 65%. It was confused 

by the system with several other liquids, such as Coke, Apple 

Cider, and Milk. This is likely because of the similarity in 

sugar concentration, but it must be confirmed with a careful 
study. The recognition accuracy increased to 96.67% 

(SD=6.0) after we removed the Beer from the tested objects.  

 

Figure 9. Left: the confusion matrix of the study result. Right: 

the sensor at a fixed location was used for this study. 

Vertical Sensor Placement 

The goal of the second preliminary study was to measure the 

performance of the sensor in a vertical placement. The study 

apparatus included the proposed fabric sensor implemented 

in a pocket form factor (15.6 × 15.6 cm; Figure 10 right), 

similar to the ones on used on winter jackets. When in a 

vertical position, the sensor deformed slightly due to gravity. 

We left it as is to simulate more realistic scenarios.  

Data Collection 

Out of the 20 objects tested in the main study, nine can be fit 

into the pocket prototype. These include an AirPods Case, 

Lipstick, Kiwis, Avocados, Cheese Slices in Plastic Wrap, a 

Discover Credit Card, a JCPenny Rewards Card, a Book, and 

a Portable External Hard Drive. We used all except the 



JCPenny card because its footprint was too weak to be 

recognized by the pocket prototype. Data was also collected 

in two sessions with one for training and the other for testing. 

Similar to the first preliminary study, the two sessions were 

set 6 hours apart. In each session, the volunteer randomly 

chose an object and placed it inside the pocket. No 

instruction was given regarding how the item should be 

placed inside the pocket in terms of location, or orientation. 

We collected 20 samples per item for training and testing. 

Result 

The study result was analyzed using a twofold cross-

validation. On average, the system could recognize the eight 

tested objects at an accuracy of 70% (SD = 15.5). That is 

nearly 25% lower than the accuracy achievable with even 

more items when the sensor is in the horizontal placement. 

This is understandable because our sensing technique is 

contact based. When the sensor is placed vertically, the 

contact between the object and the sensor cannot be 

guaranteed since the object may partially lean against the 

sensor or due to the deformation of the sensor itself.  

Figure 10 (left) shows the confusion matrix, which 

demonstrates that the system performed poorly with objects 

that had square edges (e.g., Book and Lipstick). This is 

because the contact area of the objects varied randomly 

depending on how they were placed and leaned against the 

sensor inside the pocket.  If we removed the Book and 

Lipstick from the dataset, the recognition accuracy increased 

to 80% (SD = 6.3). While Avocados were confused by the 

system with Kiwis for 10% of the tested instances, the 

accuracy was not worse than when the sensor was in the 

horizontal position. If Avocados were removed from the 

dataset, the system could recognize the remaining objects 

(e.g,, AirPods Case, Kiwis, Cheese Slices in Plastic Wrap, 

Discover Credit Card, and Portable External Hard Drive) at 

an accuracy of 87% (SD = 6.7). We think this is encouraging 

because the result suggests the potential of the sensor in a 

vertical placement in applications suitable for a small set of 

objects.  

 

Figure 10. Left: the confusion matrix of the study result. Right: 

the sensor in a pocket form factor  

DEMO APPLICATIONS  

In this section, we present eight usage scenarios of 

Capacitivo to demonstrate new applications enabled. 

Small devices, like AirPods, have become an important part 

of the ecosystem of the wearables people use in everyday 

life. However, despite being convenient to carry and use, 

their small and portable nature has made them easy to lose 

and hard to find. For example, people often forget where they 

leave their AirPods case when the headphones need to be 

charged. We implemented an interactive pocket on a jacket, 

which senses if the case is left inside the pocket (Figure 11-

a). The user can thus be notified where to find it when the 

battery of the headphones is low.  

At home or at a workspace, a table is another location where 

personal or shared items can be found. We implemented our 

sensor on a tablecloth, which detects the items that are placed 

on the table. Our system uses a smart speaker to remind a 

user if something important is left on the table for too long 

(e.g., credit card) or if they forget to take it before their day 

begins. In our implementation, we remind the user to take 

personal items (e.g., lipstick in our example) that are often 

forgotten when rushing out in the morning (Figure 11-b).  

When a user registers or shops at a website for the first time, 

the tablecloth recognizes the credit card placed on the table 

and automatically fills in the card information for the user 

(Figure 11-c). This is convenient for some users, as entering 

a card number can be error prone and tedious. Further, the 

tablecloth can detect if the user’s table plant needs watering, 

reminding a user when the soil is dry.  

Capacitivo can also be useful in a kitchen for cooking and 

eating. For example, cooking is a process which often relies 

on following a procedure. Thus, a smart kitchen capable of 

detecting the ingredients and seasonings available on a table, 

can be helpful for informing a user about the order and timing 

in which ingredients should be added to a dish that is being 

prepared. Our implementation can detect avocado, cheese, 

and salt on the table and provide a user with suggestions on 

how to make avocado soup (Figure 11-d).  

Sometimes cooking also needs spontaneity. When the user 

does not know what to make for dinner or to drink, it can be 

helpful to suggest the user recipes based on what is available 

at home. In our implementation, the system can suggest to 

the user a smoothie recipe based what fruit and vegetables 

they have in a basket (e.g., kiwis, avocados, grapefruits), 

detectable by the cloth lining of the basket. 

During dinner, the system infers what a user drinks based on 

sensing the liquid inside the glass. It automatically updates 

their diet tracking app (Figure 11-e). Finally, the system can 

remind the user to clean the table after the empty bowl used 

for soup was left on the table for several hours (Figure 11-f). 

LIMITATIONS AND FUTURE WORK 

We discuss the insights gained from this work, the 

limitations of our approach, and future research directions. 

Sensor Deformation. Our proposed fabric sensor is 

deformable, making it suitable for objects or containers with 

a curved surface (e.g., basket). To accommodate this, the 

machine learning model needs to be trained with the sensor 

in the corresponding curved form factor. This allows the 



sensor to be used in a wide variety of different application 

scenarios. However, the problem with the current 

implementation is that if the electrodes are deformed after 

the machine learning model is trained, sensor readings are 

affected, which consequently introduces false recognition. 

This is an issue with many of the existing fabric sensors and 

requires careful research in the future. We are investigating 

methods that can model the shape deformation of the sensor 

using the unique sensor readings introduced by folding the 

electrodes at different locations, degrees, and angles. 

However, many of the application scenarios foreseeable for 

the proposed sensor, (e.g. those in this paper) allow the 

sensor to work under relatively stable conditions without 

being prone to significant deformation.  

Touch Input. As our technique uses capacitive sensing, it is 

expected that finger touch gestures can be sensed. This 

enables new applications on top of what are proposed here in 

the paper. We left this part of research for future work 

because our prototype in its current form was developed with 

a focus on object recognition. Sensing the movement of the 

finger or a detected object requires a higher frame rate from 

a system than what is developed in the current prototype (3 

– 4 Hz). As mentioned earlier, the frame rate of our system 

is currently limited by the chip used for mutual capacitive 

sensing. It can be increased with better hardware.  

Contact-Based Sensing. Our technique requires the full 

contact area of the object to be presented to the sensor for the 

object to be correctly recognized. In some scenarios, a firm 

contact may not be guaranteed as shown in our preliminary 

study with the sensor in the vertical placement. This largely 

impacts sensing accuracy. A potential solution to this 

problem is to optimize sensitivity also in the Z direction so 

that objects can be sensed in the near field of the electrodes.  

Fabrication. With our current implementation, sensor 

readings vary slightly at different locations of the electrode 

array. This made it difficult for the system to sense small 

differences between the impact in the capacitance caused by 

the different types of liquids. Future work will focus on 

improving the fabrication process to assure the consistency 

in sensor readings across the surface of the sensor. Solving 

this means recognition accuracy of the system over other 

types of daily objects can be further improved.   

Sensing Metallic Objects. Our technique does not work with 

metallic objects. This is a limitation of capacitive sensing. 

We expect that a hybrid approach combining capacitive 

sensing with the other types of sensing techniques, such as 

inductive sensing, has the potential to solve this problem. 

This may require changing the geometry of the electrodes to 

accommodate both types of sensing. 

CONCLUSION 

This paper demonstrates a technique for contact-based object 

recognition on interactive fabrics, enabling them to detect 

everyday objects. We first discussed our sensing principle 

and investigations into the size and separation between 

electrodes that were optimal to enable our approach. We then 

built a prototype with a 12 x 12 grid of electrodes made from 

conductive fabrics, which was chosen based on our earlier 

investigations. Using a ten-participant study, we found our 

approach demonstrated a 94.5% real time classification 

accuracy with 20 different objects, enabling a new set of 

application scenarios. We believe our approach is a critical 

step for increasing the input space of interactive fabrics.   

Figure 11. The demo applications of Capacitivo. (a) A user can be notified that they’ve left their airpods inside their jacket pocket; 

(b) A tablecloth can remind a user to not forget a personal item through a smart speaker; (c) Credit card information can be auto 

filled while shopping, by placing it on a tablecloth; (d) Guided cooking instructions by detecting different food items; (e) A user can 

track the beverage they are consuming; (f) A user can be gently reminded to clean up after a meal.  
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