
Prediction-Based Power Oversubscription in Cloud Platforms
Alok Kumbhare, Reza Azimi, Ioannis Manousakis, Anand Bonde, Felipe Frujeri, Nithish Mahalingam,

Pulkit A. Misra, Seyyed Ahmad Javadi, Bianca Schroeder, Marcus Fontoura, and Ricardo Bianchini *

Microsoft Research and Microsoft Azure

Abstract
Prior work has used power capping to shave rare power

peaks and add more servers to a datacenter, thereby oversub-
scribing its resources and lowering capital costs. This works
well when the workloads and their server placements are
known. Unfortunately, these factors are unknown in public
clouds, forcing providers to limit the oversubscription and
thus the potential performance loss from power capping. In
this paper, we argue that providers can use predictions of
workload performance criticality and virtual machine (VM)
resource utilization to increase oversubscription. This poses
many challenges, such as identifying the performance-critical
workloads from opaque VMs, creating support for criticality-
aware power management, and increasing oversubscription
while limiting the impact of capping. We address these chal-
lenges for the hardware and software of Microsoft Azure. The
results show that we enable a 2× increase in oversubscrip-
tion with minimum impact to critical workloads. We describe
lessons from deploying our work in production.

1 Introduction
Motivation. Large Internet companies continue building dat-
acenters to meet the increasing demand for their services.
Each datacenter costs hundreds of millions of dollars to build.
Power plays a key role in datacenter design, build out, IT
capacity deployment, and physical infrastructure cost.

The power delivery infrastructure forms a hierarchy of
devices that supply power to different subsets of the deployed
IT capacity at the bottom level. Each device includes a circuit
breaker to prevent damage to the IT infrastructure in the event
of a power overdraw. When a breaker trips, the hardware
downstream loses power, causing a partial blackout.

To avoid tripping breakers, designers conservatively pro-
vision power for each server based on either its maximum
nameplate power or its peak draw while running a power-
hungry benchmark, such as SPEC Power [25]. The maximum
number of servers is then the available power (or breaker limit)
divided by the per-server provisioned value. This provisioning
leads to massive power under-utilization. As the IT demand
increases, it also requires building new datacenters even when
there are available resources (space, cooling, networking) in
existing ones, thus incurring huge unnecessary capital costs.

To improve efficiency and avoid these costs, prior work
has proposed combining power capping and oversubscrip-
tion [12, 43]. The idea is to leverage actual server utilization
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and statistical multiplexing across workloads to oversubscribe
the delivery infrastructure by adding more servers to the data-
center, while ensuring that the power draw remains below the
breakers’ limits. This is achieved by continuously monitoring
the power draw at each level and using power capping (via
CPU voltage/frequency and memory bandwidth throttling),
when necessary. As throttling impacts performance, these ap-
proaches carefully define which workloads can be throttled
and by how much. For example, Facebook’s Dynamo relies
on predefined workload priority groups, and throttles each
server based on the priority of the workload it runs [43].

This oversubscription approach works well when work-
loads and their server placements are known. However, pub-
lic cloud platforms violate these assumptions. First, each
server runs many VMs, each with its workload, performance,
and power characteristics. Hence, throttling the entire server
would impact performance-critical (e.g., interactive services)
and non-critical (e.g., batch) workloads alike. Second, VMs
dynamically arrive and depart from each server, producing
varying mixes of characteristics and preventing predefined
server groupings or priorities. Third, each VM must be treated
as a black box, as customers are often reluctant to accept deep
inspection of their VMs. Thus, the platform does not know
which VMs are performance-critical and which ones are not.
For these reasons, oversubscription in public clouds has been
limited so that performance is never impacted.

Our work. In this paper, we argue that cloud providers can in-
crease oversubscription substantially by carefully scheduling
VMs and managing power, based on predictions of workload
performance criticality and VM CPU utilization. Our insight
is that there are many non-critical workloads (e.g., batch jobs)
that can tolerate a slightly higher rate of capping events and/or
deeper throttling; the capping of performance-critical work-
loads must be controlled more tightly. Using predictions to
identify these workloads and place them carefully across the
datacenter provides the power slack and criticality-awareness
needed to increase oversubscription.

Accurately predicting workload criticality from outside
opaque VMs is itself a challenge. Prior work [9] associated a
diurnal utilization pattern with user interactivity and the criti-
cal need for high performance. Here, we present an accurate
and robust pattern-matching algorithm to infer criticality, and
a machine learning (ML) model that uses the algorithm’s out-
put during training. We also propose a model for predicting
the 95th-percentile CPU utilization over a VM’s lifetime.



With these predictions, we increase the power slack in the
datacenter by balancing the expected power draw and our
ability to lower it via throttling when a power budget is ex-
ceeded (causing a capping event). We accomplish this with a
criticality- and utilization-aware VM placement policy. When
events occur, we must cap power intelligently as well. So,
we propose a system that protects performance-critical VMs
from throttling when capping a server’s power draw.

Using the above contributions and the history of power
draws, we devise a new strategy for selecting the amount of
oversubscription. The strategy limits the impact of capping on
the two VM types to predefined acceptable values, thereby en-
abling significant but controlled increases in oversubscription.
Providers that prefer to treat all external (i.e., third-party)
VMs the same can simply assume them all to be critical, and
classify only the internal (i.e., first-party) VMs into the two
types at the cost of a lower increase in oversubscription.

We implement our work for the infrastructure of Microsoft
Azure. The evaluation shows that our criticality algorithm and
ML models are very accurate. We also show that our system
and policy lower the performance impact of a capping event,
while our policy produces fewer events. Overall, we can in-
crease oversubscription by 2× (from 6 to 12%), compared
to the state-of-the-art approach. This increase would save
$75.5M in capital costs from each datacenter site (128MW).
Assuming that all external VMs are performance-critical
would lower the savings to a still significant $28.1M. We
have also started deploying our work in production in Azure
and mention some lessons in Section 5.
Related work. The prior work on power capping [16, 19, 26,
27, 29–31, 34, 36, 45] and oversubscription [12, 14, 18, 28, 38,
39, 42, 43] produced major advances in server and datacenter
power management. Unfortunately, it falls short for real public
clouds. For example, it has capped server power using inputs
that are typically not available in the public cloud, such as
application-level metrics or operator annotations. Moreover,
it has employed reactive and expensive VM migration in
clusters, instead of leveraging predictions for capping and
capping-aware scheduling. Prior oversubscription works have
focused on non-cloud datacenters and full-server capping
when workloads and their priorities are known.
Summary. We make the following main contributions:

1. An algorithm and ML model for predicting performance
criticality, and a model for predicting VM utilization.

2. A VM placement policy that uses these predictions to
minimize the number of capping events and their impact.

3. A per-VM power capping system that uses predictions
of criticality to protect certain VMs.

4. A strategy that leverages the contributions above to
increase the amount of oversubscription.

5. Implementation and results for Azure’s infrastructure,
showing large potential cost savings.

6. Lessons from production deployment of our work.
Though we build upon Azure’s infrastructure, our concep-

tual contributions (e.g., predicting criticality; using predic-
tions in VM placement, power budget enforcement, and over-
subscription) apply directly to any cloud platform. Similarly,
although we focus on VMs, our contributions also apply to
containers running on bare-metal servers. As providers want
to maximize the use of their servers via multi-tenancy, each
container typically runs on a lightweight VM for security
isolation [3, 32]. We can treat these VMs like any other. For
scenarios where isolation between containers is not required,
we can treat the whole server as a single workload or adapt
our software to treat containers as we treat VMs.

2 Background and context
2.1 Typical power delivery, server deployment
At the top of the power delivery hierarchy, the electrical grid
provides power to a sub-station that is backed up by a gener-
ator. An Uninterruptible Power Supply (UPS) unit provides
battery backup while the generator is starting up. The UPS
feeds one power distribution unit (PDU) per row of servers.
Each row PDU supplies power to several rack PDUs, each
of which feeds a few server chassis. Each chassis contains a
few power supplies (PSUs) and dozens of blade servers.1 A
PDU trips its circuit breaker when the power draw exceeds
the rated value (budget) for the unit, causing a power outage.

Designers deploy servers so that breakers never trip, leading
to wasted resources (chiefly space, cooling, and networking).
Combining hierarchical power capping and oversubscription
enables more capacity to be deployed and better utilizes re-
sources [12, 43]. For example, if designers find that the his-
torical per-row power draw is consistently lower than the
row PDU budget, they can “borrow” power from each row
to add more rows (until they run out of row space) under the
UPS budget. The extra rows oversubscribe the power at the
UPS level. The servers downstream from the oversubscribed
PDUs/UPS must be power-capped, whenever they are about
to draw power that has already been borrowed.

2.2 Azure’s existing capping mechanisms
For clarity and ease of experimentation, in this paper we ex-
plore power budget enforcement at the chassis level.

Azure sets power budgets for each chassis, where each
blade in the chassis is allocated its even share of the chas-
sis budget; uneven blade budgets are infeasible due to the
overhead of dynamically reapportioning and reinstalling bud-
gets. No capping takes place under normal operation, i.e. each
blade is free to draw more power than its even share, as long
as the total chassis draw is below the budget. The PSUs alert
the board management chip (BMC) on blades directly when
the chassis budget is about to be exceeded. Upon an alert,
the blade power must be brought below its even-share cap.
The BMC splits the cap evenly across its sockets and uses
Intel’s Running Average Power Limit (RAPL) [10] to lower

1We refer to “blades” and “servers” interchangeably throughout the paper.



the blade power. RAPL throttles the entire socket (slowing
down all cores equally) and memory using a feedback loop
until the cap is respected. Typically, RAPL brings the power
below the cap in less than 2 seconds. This reaction time is suf-
ficient for power safety because leaf-level PDUs have a high
(e.g., 7x) overdraw tolerance over 2 seconds, according to
their breaker-trip curves [40]. Such overdraws are impractical
even with aggressive oversubscription.

2.3 Azure’s existing VM scheduler
A cloud platform first routes an arriving VM to a server cluster.
Within each cluster, a VM scheduler is responsible for placing
the VM on a server. The scheduler uses heuristics to tightly
pack VMs, considering the incoming VM’s multiple resource
requirements and each server’s available resources.

Azure’s scheduler [17] implements its heuristics as two sets
of rules. It first applies constraint rules (e.g., does the server
have enough resources for the VM?) to filter invalid servers,
and then applies preference rules, each of which orders the
candidate servers based on a preferred metric (e.g., a packing
score derived from available resources). It then weights each
candidate based on its order on the preference list for each rule
and the rule’s pre-defined weight. Finally, it picks a server
with the highest aggregate weight for allocation. No rules
currently consider power draws or capping.

2.4 Azure’s existing ML system
To integrate predictions into VM scheduling in practice, we
use Resource Central [6], the existing ML and prediction-
serving system in Azure. The system provides a REST service
for clients (e.g., the VM scheduler) to query for predictions. It
can receive input features (e.g., user, VM size, guest OS) that
are known at deployment time from the scheduler, execute
one of our ML models (criticality or CPU utilization), and
respond with the prediction and a confidence score. Model
training is done in the background, e.g. once a day.

3 Prediction-based oversubscription
Cloud providers provision servers conservatively, and have
full-server capping mechanisms and capping-oblivious VM
schedulers. We propose to provision servers more aggres-
sively by making the infrastructure smarter and finer-grained
via VM behavior predictions. Key challenges include having
to create or adapt certain components (e.g., scheduler, chassis
manager) to the predictions, while controlling the tradeoff
between oversubscription and performance tightly.

Next, we overview our design and detail its main compo-
nents. Then, we describe our strategy for provisioning servers
to balance cost savings and performance impact.

3.1 Overview
Figure 1 overviews our system and its operation, showing
the existing and new/modified components in different colors.
We modify the VM scheduler to use predictions of VM per-
formance criticality and resource utilization. We implement

Figure 1: System overview.

our ML models so they can be managed and served by Re-
source Central. We modify the chassis manager to query the
chassis power draw and interact with our new per-VM power
controller. The controller manages its server’s power draw
during a capping event.

A request to deploy a set of VMs arrives at our VM sched-
uler (arrow #1). The scheduler then queries the ML system for
predictions of workload performance criticality and resource
utilization (#2). Using these predictions, it decides on which
servers to place the VMs (#3). After selecting each VM’s
placement, the scheduler tags the VM with its predicted work-
load type and instructs the destination server to create it. Each
chassis manager polls its local PSUs to determine whether
the power draw for the chassis crosses a threshold just below
the chassis budget. (This threshold enables the controller to
perform per-VM capping and hopefully avoid needing full-
server RAPL.) When this is the case, the manager alerts the
controller of each server in the chassis (#4).

Upon receiving the alert, our controller at each server man-
ages the server’s (even) share of the chassis budget across the
local VMs based on their workload types. It does this by first
throttling the CPU cores used by non-performance-critical
VMs (#5). Throttling these VMs may be enough to keep the
power below the chassis budget, and protect the performance-
critical VMs. If it is not enough, the PSUs alert the servers’
BMCs (#6), which will then use RAPL as a last resort to lower
the chassis power below the budget (#7).
Limiting impact on non-critical VMs. Though we protect
critical VMs from throttling, we also limit the performance
impact on non-critical VMs in three ways. First, for long-term
server provisioning, our oversubscription strategy carefully
selects chassis budgets to limit the number of capping events
and their severity to predefined acceptable values (e.g., no
more than 1% events for non-critical VMs, each lowering the
core frequency to no less than 75% of the maximum). Second,
for medium-term management, our scheduler places VMs
seeking to minimize the number of events and their severity.
Finally, in the shortest term, our per-VM controller increases
the core frequency of non-critical VMs as soon as possible,
to keep a server’s power close to (but below) the limit during
a capping event (Section 3.4).
Treating external VMs as performance-critical. Providers



who prefer to treat all paying customers the same can easily
do so by assuming that all external VMs are performance-
critical; only internal VMs (e.g., running the provider’s own
managed services) would be classified into the two criticality
types. We explore this assumption in Section 4.6.

3.2 Predicting VM criticality and utilization
Our approach depends on predicting VM performance criti-
cality and utilization at arrival time, i.e. just before the VMs
are deployed. We train supervised ML models to produce
these predictions based on historical VM arrival data and
telemetry that was collected after those VMs were deployed.
Since VMs are black boxes, our telemetry consists of CPU
utilization data only, as deep inspection is not an option.
Inferring criticality. Predicting criticality requires a method
to determine the VM labels, i.e. whether the workload of
each VM is performance-critical or not, before we can train a
model. As in prior work [9], we consider a workload critical
if it is user-facing, i.e. a human is interacting with the work-
load (e.g., front-end webservers, backend databases), and less
critical otherwise (e.g., batch, development and testing work-
loads). As user-facing workloads exhibit utilization patterns
that repeat daily (e.g., high during the day, low at night), the
problem reduces to identifying VMs whose time series of
CPU utilizations exhibit 24-hour periods [9].

Although some background VMs may exhibit 24-hour pe-
riods, this is not a problem as we seek to be conservative (i.e.,
it is fine to classify a non-user-facing workload as user-facing,
but not vice-versa). Moreover, some daily batch jobs have
strict deadlines, so classifying them as user-facing correctly
reflects their needs. Importantly, focusing on the CPU utiliza-
tion signal works well even when the CPU is not the dominant
resource, as the CPU is always a good proxy for periodicity
(e.g., network-bound interactive workloads exhibit more CPU
activity during the day than at night). This is true even for
workloads that use load-based auto-scaling [2, 33], as auto-
scaling impacts VM utilization but does not create or destroy
periodicity, e.g. a VM deployment that receives diurnal load
will show periodicity whether auto-scaling is enabled or not.

We considered but discarded other approaches for inferring
whether a VM’s workload is user-facing. For example, ob-
serving whether a VM exchanges messages does not work
because many non-user-facing workloads communicate exter-
nally (e.g., to bring data in for batch processing).
Identifying periodicity. There are statistical methods for
identifying periods in time series, such as FFT or the auto-
correlation function (ACF). For example, [9] assumes a work-
load is user-facing if the FFT indicates a 24-hour period. We
evaluated ACF and FFT methods on 840 workloads. Sur-
prisingly, we find that both methods lead to frequent mis-
classifications. We identify three culprits:

1. The diurnal patterns in user-facing workloads often have
significant noise and interruptions. For example, we observe
user-facing workloads with clear 24-hour periods for many

days, interrupted by a period of constant or random load,
causing them to be mis-classified as non-user-facing.

2. The diurnal patterns often exhibit increasing/decreasing
trends (e.g., the workload becomes more popular over time),
and varying magnitudes of peaks/valleys across days. These
effects cause some user-facing workloads to be mis-classified.

3. There are many machine-generated workloads with pe-
riods of 1 hour, 4 hours or other divisors of 24 hours, which
therefore also have 24-hour periods, leading to machine-
generated workloads that are mis-classified as user-facing.

Part of the problem is that ACF and FFT are very general
tools with different goals, e.g. decomposing a signal for com-
pact representation and capturing general correlations, not
solutions for our specific problem of 24-hour periods.
Criticality algorithm. Thus, we devise a new algorithm that
is more robust and targeted at our specific problem. Our idea
is to extract from a VM’s utilization time series a template
for a typical 24-hour period and then check how well this
template captures most days in the series. We design the
template extraction and comparison to be robust to noise and
interruptions to deal with issue #1 above. We pre-process the
data using methods from time series analysis to address #2.
To deal with #3, we extract templates for shorter periods (8
and 12 hours) and ensure that the 24-hour template is the best
fit. These periods subsume the other short periods.

More precisely, the input to our pattern-matching algorithm
is the average CPU utilization for each 30-minute interval
over 5 weekdays; this duration is long enough to unearth
any periodicity in a VM’s CPU utilization signal. (Shorter
workloads cannot be classified and should be conservatively
assumed user-facing.) For each utilization time series, the
algorithm does the following:

1. It de-trends and normalizes the time series, so that all
days exhibit utilizations within the same rough range. De-
trending scales each utilization based on the mean of the
previous 24 hours, whereas normalization divides each uti-
lization by the standard deviation of the whole time series.

2. It extracts the 24-hour template by identifying, for each
time of the day (in 30-minute chunks), its “typical” utilization
computed as the median of all utilizations in the pre-processed
series that were reported at this time of the day.

3. It overlays the template over the pre-processed series
for each day and computes the average deviation for each
utilization, after excluding the 20% largest deviations.

4. It repeats steps 2 and 3 to compute average deviations
for 8-hour and 12-hour templates, and then computes two
scores: 24-hour average deviation divided by 8-hour average
deviation (called Compare8), and 24-hour average deviation
divided by 12-hour average deviation (called Compare12). If
the scores are close to 0, the workload is likely to be user-
facing. Ultimately, it classifies a time series as user-facing, if
its Compare8 value is lower than a threshold (Section 4.2).
Criticality prediction. The algorithm above produces labels
that we use to train an ML model to classify arriving VMs as



user-facing or non-user-facing. Specifically, we train a Ran-
dom Forest using the labels and many features (pertaining
to the arriving VM and its cloud subscription) available at
arrival time: the percentage of user-facing VMs in the sub-
scription, the percentage of VMs that lived at least 7 days
in the subscription, the total number of VMs in the subscrip-
tion, the percentage of VMs in each CPU utilization bucket,
the averages of the VMs’ average and 95th-percentile CPU
utilizations in the subscription, the arriving VM’s number of
cores and memory size, and the arriving VM’s type.
Utilization prediction. For utilization predictions, we train
a two-stage model to predict 95th-percentile VM CPU uti-
lization based on labels produced by previous VM executions
(actual 95th-percentile utilizations over the VMs’ lifetimes)
and the same VM features we use in the criticality model.
Since predicting utilization exactly is hard, our model pre-
dicts it into 4 buckets: 0%-25%, 26%-50%, and so on. The
first stage is a Random Forest that predicts whether or not the
95th-percentile utilization is above 50%. In the second stage,
we have a Random Forest for buckets 1-2 and another for
buckets 3-4. We train these latter forests with just the VMs we
can predict with high-confidence (≥ 60%) in the first stage.

We experimented with single-stage models, but they did
not produce accurate predictions with enough confidence.
Model training and inference. Resource Central trains our
prediction models in the background once a day. It also moni-
tors prediction accuracy; we do not find significant improve-
ments from more frequent training. The models exhibit sub-
millisecond prediction latency, which is a small fraction of
VM creation times [1].

3.3 Modified VM scheduler
Our ability to increase oversubscription and the efficacy of the
per-VM power controller depend on the placement of VMs
in each cluster. Better placements have a balanced distribu-
tion of power draws across the different chassis to reduce the
number of capping events (Goal #1); and a balanced distribu-
tion of cap-able power (drawn by non-user-facing VM cores)
across servers, so the controller can lower the power during an
event without affecting critical VMs (Goal #2). The scheduler
must remain effective at packing VMs while minimizing the
number of deployment failures (Goal #3).

Given these goals, we modify Azure’s VM scheduler to
become criticality- and utilization-aware, using predictions
at VM arrival time. Our policy is a preference rule that sorts
the feasible servers based on a “score”. Each server’s score
considers the predicted 95th-percentile CPU utilization of the
VMs already placed in the same chassis (targets Goal #1), and
the predicted criticality and 95th-percentile CPU utilization
of the VMs already placed on the same server (targets Goal
#2). The policy only considers CPU utilization because the
CPUs are the dominant source of dynamic power in Azure’s
servers. Moreover, throttling the CPUs typically reduces the
power of other resources (e.g., memory, storage) because of

Algorithm 1 Criticality- & utilization-aware VM placement
1: function SORTCANDIDATES(V , ζ)

. V : VM to be placed, ζ: list of candidate servers
2: ω←V PredictedWorkloadType

3: for ci in ζ do
4: κi← SCORECHASSIS(ci.Chassis)
5: ηi← SCORESERVER(ω,ci)
6: ci.score← α×κi +(1−α)×ηi

7: return ζ.SORTDESC(ci.score)
8: function SCORECHASSIS(C)
9: for ni in C.Servers do

10: for v j in nV Ms
i do

11: ρPeak ← ρPeak + vPredictedP95Util
j × vcores

j

12: ρMax← ρMax +ncores
i

13: return 1−
[

ρPeak

ρMax

]
14: function SCORESERVER(ω, N)
15: for vi in NUF_V Ms do
16: γUF ← γUF + vPredictedP95Util

i × vcores
i

17: for vi in NNUF_V Ms do
18: γNUF ← γNUF + vPredictedP95Util

i × vcores
i

19: if ω =UF then
20: return 1

2 ×
(

1+ γNUF−γUF

Ncores

)
21: else
22: return 1

2 ×
(

1+ γUF−γNUF

Ncores

)

the reduced number of accesses per second coming from the
CPUs. As Section 4.5 shows, our policy does not degrade
the packing of VMs onto servers, nor does it increase the
percentage of VM deployment failures (achieves Goal #3).

Algorithm 1 shows our rule (SortCandidates) and two sup-
porting routines. We show the predictions with the Predict-
edWorkloadType and PredictedP95Util superscripts. The rule
ultimately computes the score for each candidate server (line
#6). The higher the score, the more preferable the server. The
score is a function of how preferable the server (line #5) and
its chassis (line #4) are for the VM to be placed. Both server
and chassis intermediate scores range from 0 to 1. We weight
the intermediate scores to give them differentiated importance.
We select the best value for the α weight in Section 4.5.

Function ScoreChassis computes the chassis score for a
candidate server by conservatively estimating its aggregate
chassis CPU utilization, i.e. assuming all VMs scheduled
to the chassis are at their individual 95th-percentile utiliza-
tion at the same time. This value is the sum of the predicted
95th-percentile utilizations for the VMs scheduled to the
chassis, divided by the maximum core utilization (#cores
in chassis×100%). This ratio is proportional to utilization.
We subtract it from 1, so that chassis with low utilization get
higher values and are preferred (line #13).

Function ScoreServer scores a candidate server differently
depending on the type of VM that is being deployed. First,
it sums up the predicted 95th-percentile utilizations of the
user-facing VMs (lines #15-16) and non-user-facing VMs
(lines #17-18) independently. When a user-facing VM is being
deployed, we compute how much more utilized the non-user-



facing VMs on the server are than the user-facing ones. We
do the reverse for a non-user-facing VM. The reversal is the
key to balancing the cap-able power on servers. Adding 1 and
dividing by 2 ensures that the score will be positive between
0 and 1 (lines #20 and #22), while higher values are better.

Each run of the algorithm is for a single cluster with a few
thousand homogeneous servers (heterogeneity is across clus-
ters). Overall, the algorithm takes only 7 milliseconds to run,
which is negligible as VM creation takes many seconds [1].

3.4 Per-VM power capping controller
To protect performance-critical VMs without losing power
safety, we augment Azure’s out-of-band (i.e., independently
of software on the server) full-server capping mechanism with
an in-band (i.e., software-only) controller to cap only non-
user-facing VMs when necessary. In our modified system, the
chassis manager polls the PSUs every 200ms and alerts the in-
band controller on each server when the chassis power draw
is close to the chassis budget. Upon an alert, each controller
uses per-core DVFS to power-cap the cores running non-user-
facing VMs. To account for (1) high power draws between
polls or (2) the inability of the controller to bring power below
the budget, we keep the out-of-band mechanism that uses
RAPL to throttle all cores equally as a backup.

To manage power per VM, we use the hypervisor’s core-
grouping feature (e.g., cpupools in Xen, cpugroups in Hyper-
V) to split the cores into high- and low-priority classes. We
assign the user-facing VMs and the I/O VM (e.g., Domain0 in
Xen, Root VM in Hyper-V) to run on cores in the high-priority
class, and the non-user-facing VMs on the low-priority one.

Upon receiving an alert from the chassis manager, the per-
VM power controller compares the server’s power draw to its
budget. If the current draw is higher than the budget, the con-
troller immediately lowers the frequency of the low-priority
cores to the minimum p-state, i.e. half of the maximum fre-
quency; the lowering of the frequency may entail a lower volt-
age as well. The goal is to quickly bring the server’s power
draw below the limit and thereby avoid having to engage
RAPL, which throttles all cores and impacts performance
of all the VMs on the server. However, this large frequency
reduction may overshoot the needed power reduction. To re-
duce the impact on the non-user-facing VMs, the controller
then enters a feedback loop where each iteration involves (1)
checking the server power meter and (2) increasing the fre-
quency of N low-priority cores to the next higher p-state (100
MHz step), until the power is close to the budget. It selects the
highest frequency that keeps the power below this threshold.
N = 4 works well in our experiments. The feedback loop also
adapts to changes in workload behavior on the VMs, which
ends up impacting the server power draw.

It is possible that cutting the frequency of the low-priority
cores in half is not enough to bring the power below the
server’s budget. For example, a VM placement where there are
not enough non-user-facing VMs in the workload mix, non-

user-facing VMs exhibiting lower utilization than predicted,
or a controller bug can cause this problem. In this case, the out-
of-band mechanism will kick in as backup. More aggressive
mechanisms to reduce power, such as core sleep states (c-
states) or shutting down the non-user-facing VMs, can also be
leveraged before resorting to using RAPL. We will add such
capability to our production system (Section 5).

The controller lifts the cap after some time (30 secs by de-
fault), allowing all cores to return to maximum performance.

3.5 Oversubscription strategy
We now describe our oversubscription strategy, which uses
our per-VM capping system and placement policy, historical
VM arrivals, and historical power draws, to increase server
density. We considered using the placement policy along with
Azure’s existing full-server capping system for oversubscrip-
tion. However, without per-VM throttling, the only way to pro-
tect performance-critical VMs is to avoid capping events on
servers/chassis running these VMs. This drawback severely
limits the level of oversubscription.

Our strategy uses the algorithm below for computing an
aggressive power budget for all the chassis of each hardware
generation. Adapting it to find budgets for larger aggregations
(e.g., rack, row) is straightforward. We refer to the uncapped,
nominal core frequency as the “maximum” frequency.

To configure the algorithm, we need to select the maximum
acceptable rate of capping events (e.g., #events per week) for
user-facing (emaxUF ) and non-user-facing (emaxNUF ) VMs,
and the minimum acceptable core frequency (e.g., half the
maximum frequency) for user-facing ( f minUF ) and non-user-
facing ( f minNUF ) VMs. If we want no performance impact
for user-facing VMs, we set emaxUF = 0 and f minUF =
maximum frequency. As we describe next, our 5-step al-
gorithm finds the lowest chassis power budget that satisfies
emaxUF ,emaxNUF , f minUF , and f minNUF .
Estimate future behaviors based on history:

1. Estimate the historical average ratio of user-facing vir-
tual cores in the allocated cores (β). Estimate the historical
average P95 utilization of virtual cores in user-facing (utilUF )
and non-user-facing (utilNUF ) VMs.
Profile the hardware:

2. Estimate how much server power can be reduced by
lowering core frequency at utilUF and utilNUF , given f minUF
and f minNUF , respectively. This step produces two curves
for power draw (one curve for each average utilization), as a
function of frequency.
Compute power budgets based on historical draws:

3. Sort the historical chassis-level power draws (one read-
ing per chassis per unit of time) in descending order.

4. Start from the highest power draw as the first candidate
budget and progressively consider lower draws until we find
Pmin. For each candidate power budget, we check that the rate
of capping events would not exceed f maxUF or f maxNUF
(considering the higher draws already checked), and the at-



tainable power reduction from capping is sufficient (given β

and the curves from step 2).
5. To compute the final budget, add a buffer (e.g., 10%) to

the budget from step 4 to account for future variability of β

or substantial increases in chassis utilization.
We can use the difference between the overall budget com-

puted in step 5 and the provisioned power to add more servers
to the datacenter. Because we protect user-facing VMs and
use our VM scheduling policy, this difference is substantially
larger than in prior approaches, as we show in Section 4.6.
Example. Suppose (1) we are willing to accept rates of 0.1%
and 1% capping events for user-facing and non-user-facing
VMs, respectively; (2) upon a capping event, we are will-
ing to lower the core frequencies to 75% and 50% of the
maximum, respectively; (3) we have 10000 historical chas-
sis power draws (collected from every chassis); and (4) the
highest draws have been 2900W, 2850W, and 2850W. We
first consider 2900W. If we were to set the chassis budget to
just below that value to say 2890W, there would be 1 capping
event out of 10000 observations, i.e. a rate of 0.01%, and
we would have to shave 10W during the event. Given the
acceptable capping rates and minimum frequencies, we can
operate with the data from step 1 and the curves from step 2 to
determine (a) whether we could reduce power by 10W, and (b)
whether there would be an impact on user-facing VMs. If we
can achieve the reduction, we count 1 event out of 10000 that
would affect non-user-facing VMs. If the user-facing VMs
would also have to be throttled, we would count 1 event out of
10000 that would affect those VMs. Since both rates are lower
than 0.1% and 1%, we can now check a budget just below
2850W, say 2840W. We repeat the process for this budget,
then the next lower budget and so on, until we violate the
desired capping rates and minimum frequencies.

4 Evaluation
4.1 Methodology
Data analysis. We evaluate our criticality algorithm and ML
models (Section 4.2) using standard metrics, such as precision
and recall from predictions. We compute the metrics based
on Azure’s entire VM workload in April 2019.
Real experiments. We run experiments on the same hard-
ware that Azure uses in production. We use a chassis with 12
servers, each containing 40 cores split into two sockets. At
their nominal frequency, each server draws between 112W
(idle) and 310W (100% CPU utilization). At half this fre-
quency, each server draws from 111W to 169W.

Our single-server experiments (Section 4.3) explore our
per-VM capping controller and resulting VM workload perfor-
mance for a combination of user-facing and non-user-facing
VMs and various power budgets. For comparison, we use the
existing full-server capping controller (RAPL) in Azure. Our
chassis-level experiments (Section 4.4) explore our system
on 12 servers, including PSU alerts. For comparison, we use
Azure’s existing chassis-level mechanisms.

Parameter Value
Cluster configuration 20 racks × 3 chassis × 12 blades
Blade configuration 2x20 cores
VM size dist. (cores) 1 (33%), 2 (27%), 4 (21%), 8 (10%), 16

(5%), 24 (3%), >=32 (1%)
Deployment size dist. (#VMs) 1 (39%), 2 (14%), 3-5 (16%), 6-10 (9%),

11-15 (8%), 16-25 (5%), >25(9%)
VM lifetime dist. (hours) 1 (52%), 2 (5%), 3-5 (10%), 6-10 (9%),

10-25(7%), 26-720 (8%), >720 (9%)
Workload type buckets user-facing (UF), non-user-facing (NUF)
P95 utilization buckets 0-25%, 26-50%, 51-75%, 76-100%
Avg UF:NUF core ratio 4:6
Avg UF and NUF P95 util 65% (bucket #3), 44% (bucket #2)
# simulation days 30

Table 1: Simulation parameters.

Figure 2: Algorithm compared to manual classification.

For both sets of experiments, we use instances of a latency-
critical transaction processing application (similar to TPC-E)
for the user-facing workload, and instances of a batch Hadoop
computation (Terasort) for the non-user-facing workload. For
the user-facing workload, we use real inputs from the team
responsible for it, whereas we use synthetic input data for the
non-user-facing computation.
Simulation. We evaluate our modified VM scheduler in simu-
lation (Section 4.5), leveraging the same simulator that Azure
uses to evaluate changes to the VM scheduler before putting
them in production; our only extension is to simulate calls to
Resource Central. An event generator drives the simulation
with a sequence of VM arrivals. For each arrival, it invokes
the production scheduling algorithm (or the scheduling algo-
rithm with the addition of our policy) for server placement
decisions. Running the actual scheduler code in the simulator
ensures that simulations are faithful to reality.

We simulate a cluster of 60 chassis in 20 racks. The simu-
lator produces VM arrivals based on distributions matching
Azure’s load in April 2019. Table 1 lists the main statistics.

4.2 Criticality algorithm and ML models
Criticality algorithm. To evaluate our algorithm (Sec-
tion 3.2), we first compare its classifications to our own man-
ual labeling of 840 workloads. Figure 2 shows one dot for
each workload with coordinates corresponding to its Com-
pare8 and Compare12 values. The colors indicate whether we
deem the workload clearly user-facing, possibly user-facing,



Technique Recall Recall Precision
target achieved achieved

Pattern-matching 99% 99% 76%
ACF 99% 99% 54%
FFT 99% 99% 48%

Pattern-matching 98% 98% 77%
ACF 98% 98% 56%
FFT 98% 98% 50%

Table 2: Pattern-matching vs ACF vs FFT.

Prediction Model % High Bucket 1 Bucket 2 Bucket 3 Bucket 4 Accuracy
Conf. R | P R | P R | P R | P

Criticality GB 99% 67% | 77% 99% | 99% NA NA 98%
RF 99% 69% | 78% 99% | 99% NA NA 98%

P95 util GB 68% 95% | 85% 47% | 77% 51% | 79% 94% | 80% 82%
RF 73% 93% | 87% 61% | 76% 65% | 81% 92% | 83% 84%

Table 3: Random Forest (RF) and Gradient Boosting (GB) models recall (R),
precision (P), and accuracy for high-confidence predictions.

clearly machine-generated, or clearly non-user-facing. The
figure shows that Compare8 can separate the first two groups,
which the algorithm should conservatively classify as user-
facing, from the last two. A vertical bar at Compare8=0.72
gets all important workloads to the left of the bar, and the vast
majority of unimportant ones to the right. Compare12 does
not separate the classes well.

Thus, the algorithm accurately classifies workloads based
on their Compare8 value. For a quantitative assessment, we
compare it to two well-known approaches for finding periodic-
ity in a time series, ACFs and FFTs, for the same set of work-
loads. For both approaches, we do the same pre-processing
and disambiguate between user-facing and machine-generated
workloads using the same methods as in our algorithm.

As we want to protect user-facing VMs, we must achieve
high recall for this class as the recall indicates the probability
of correctly identifying these VMs. Table 2 shows the preci-
sion and recall, for two high recall targets (0.99 and 0.98) for
whether a workload is user-facing. Our algorithm achieves
the target recall with much higher precision, i.e. it classifies
many more non-user-facing VMs correctly. This reduces per-
formance degradation during capping events, as more of those
VMs can be throttled to lower power.
ML models. We now evaluate our models for Azure’s entire
VM workload. Table 3 lists the percentage of predictions
with confidence score higher than 60% (3rd column), and
the per-bucket recalls and precisions (4th-7th columns) and
the accuracy (rightmost column) for those high-confidence
predictions. The VM scheduler disregards predictions with
lower confidence and conservatively assumes the VM being
deployed will be user-facing and will exhibit 100% 95th-
percentile utilization. For comparison, we show results for
the equivalent Gradient Boosting (GB) models.

The table shows that our criticality model achieves 99%
recall for user-facing VMs (Bucket 2), which is critical for
protecting these VMs. The most important features for our
model are the percentage of user-facing VMs observed in the
cloud subscription, the percentage of VMs that live longer
than 7 days in the subscription, and the total number of VMs
in the subscription. The GB model achieves similar results.

Our utilization model also does well with good recall and
precision (83-93%) for the most popular buckets (1 and 4),
and good accuracy (84%) for the 73% of high-confidence
predictions. Here, the most important features are the average
of the VMs’ 95-percentile CPU utilizations in the subscrip-
tion, the average of the VMs’ average CPU utilizations in
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Figure 3: Server power dynamics.

the subscription, and the percentages of VMs in each CPU
utilization bucket in the subscription. The GB model achieves
similar accuracy, but with fewer high-confidence predictions
and lower recall for the two middle (least popular) buckets.

4.3 Per-VM capping controller experiments
We run experiments on a server with our user-facing appli-
cation running on a VM with 20 virtual cores and our non-
user-facing application running simultaneously on another
VM with 20 virtual cores. Each execution takes 10 minutes.

Figure 3 plots the dynamic power behaviors and core fre-
quencies of full-server and per-VM capping with caps at
230W. In the bottom graph, we plot the lowest frequency of
any non-user-facing core. The experiments have capping en-
abled throughout their executions. For comparison, we show
the power profile of an experiment without any cap.

When unconstrained (no cap), the power significantly ex-
ceeds 250W. In contrast, full-server and per-VM capping keep
the power draw below 230W. Because of the lower target of
our controller (225W for the 230W cap), its draws are slightly
below those of full-server capping most of the time. The
frequency curve depicts the adjustments that our controller
makes to the performance of the non-user-facing VM. The
steep drop to the lowest frequency occurs when the controller
abruptly lowers the frequency to the minimum value when
the power first exceeds the target. After that, its feedback
component smoothly increases and decreases the frequency.

Figure 4 shows the impact of capping in these experiments
on the 95th-percentile latency of the user-facing application
(10 leftmost bars) and the running time of the non-user-facing
application (10 rightmost bars). Results are normalized to
the unconstrained performance of each application. We also
include bars for capping at 250W, 240W, 220W, and 210W.
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Figure 4: Performance impact of power capping.

The results show that full-server capping imposes a large
tail latency degradation, especially for the lower caps. When
the cap is 230W, the degradation is already 18%, which is of-
ten unacceptable for user-facing applications. For lower caps,
full-server capping provides even worse tail latency (35%
degradation for 210W). In contrast, our controller keeps tail
latency very close to the unconstrained case, until the cap is
so low (210W) that it becomes impossible to protect the user-
facing application and RAPL needs to engage. This positive
result comes at the cost of performance loss for the non-user-
facing application. While full-server capping keeps running
time fairly close to the unconstrained case, our controller de-
grades it by 28% for the 230W cap. This is the right tradeoff,
as non-user-facing workloads have looser performance needs.

4.4 Chassis-level capping experiments
We now study the power draw at the chassis level, and the
impact of different capping granularities (full-server vs per-
VM) and VM placements. We experiment with a 12-server
chassis running 36 copies of our user-facing application (each
on a VM with 4 virtual cores), and 36 copies of our non-user-
facing application (each running on a VM with 6 virtual cores).
In terms of VM placement, we explore two extremes: (1)
balanced placement, where we place the user-facing and non-
user-facing VMs in round-robin fashion across the servers,
i.e. 3 VMs of each type on each server; and (2) imbalanced,
where we segregate user-facing and non-user-facing VMs on
different sets of servers. Each experiment runs for 26 minutes.

Figure 5(left) plots the dynamic behavior of the chassis for
an overall budget of 2450W for the two capping approaches.
For comparison, we also plot the no-cap case. In these experi-
ments, we use the balanced placement as an example.

As expected, both capping granularities are able to limit the
power draw to the chassis budget, whereas the no-cap experi-
ment substantially exceeds this value. We observe the same
trends under the imbalanced placement approach. The place-
ment does not matter in terms of the power profiles because
the capping enforcement ensures no budget violations.

However, VM placement has a large impact on application
performance. Figure 5(right) plots the impact of VM place-
ment and capping granularity on the average 95th-percentile
latency of the user-facing applications (4 leftmost bars) and on
the average running time of the non-user-facing applications
(4 rightmost bars). We normalize to the no-cap results.
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Figure 5: Chassis dynamics and performance vs placement.

Per-VM capping under balanced placement keeps the aver-
age tail latency the same as the no-cap experiment, despite the
tight 2450W budget. In contrast, per-VM capping degrades
performance as much as full-server capping when the place-
ment is imbalanced. These results show that our controller
protects user-facing VMs when the placement allows it.

Full-server capping provides slightly better performance
than per-VM capping for the non-user-facing applications.
More interestingly, the results for balanced placement are
slightly worse than for imbalanced placement, regardless of
the capping granularity. For per-VM capping, the reason is
that servers with only non-user-facing VMs need to reduce
the frequency of fewer cores. For full-server capping, the rea-
son is that servers with only non-user-facing VMs tend to
have higher utilization, so a smaller reduction in frequency is
enough for a large power reduction. Comparing the two right-
most bars, we see that full-server capping hurts performance
slightly less than per-VM capping in the imbalanced case, as
RAPL lowers frequency more slowly than our controller.

4.5 Cluster VM scheduler simulation
In the previous section, we explored extreme and manually-
produced VM placements in controlled experiments. How-
ever, in practice, placements are determined by the VM sched-
uler. Consequently, we implement our placement policy (Al-
gorithm 1) as a preference rule in Azure’s VM scheduler, and
simulate a cluster using 30 days of VM arrivals (Section 4.1).
The simulator runs the same rules as in production, along with
our added preference rule. It reports four main metrics:

• Deployment failure rate: percent of VM deployment re-
quests rejected due to resource unavailability or fragmentation.
This rate impacts users, so our policy should not increase it;

• Average empty server ratio: percent of servers without
any VMs averaged over time. Empty servers can host the
largest VM sizes, so our policy should not decrease this ratio;

• Standard deviation of the average chassis score, i.e. 1−
(ρPeak/ρMax) (Algorithm 1, line 13), for each chassis. This
metric reflects how balanced the chassis are with respect to
their power loads. Lower values are better and mean better
balance and fewer power capping events;

• Standard deviation of the average server score, i.e.
(1/2)× (1 + (γNUF − γUF)/Ncores) (Algorithm 1, line 20),
for each server. This metric reflects how balanced the servers
are in terms of UF and NUF core 95th-percentile utilizations.
Lower values mean better balance and that we are more likely
to only need to cap NUF VMs.



Figure 6: Key scheduler metrics, as a function of α.

Results. Figure 6 shows the results for these metrics, as a
function of the α weight in our policy (Algorithm 1, line 6).
α = 1 means that the server score is irrelevant, whereas α = 0
means that the chassis score is irrelevant. From left to right in
each graph, the “NoRule” (black) bar represents the existing
scheduler; the leftmost (blue) bar in each group represents our
modified scheduler using our policy and ML predictions; the
next (green) bar shows the modified scheduler using oracle
predictions; and the rightmost (orange) the modified scheduler
using criticality predictions, but no utilization predictions.

Comparing the black and blue bars illustrates the benefit
of our policy and predictions. Figures 6(a) and (b) show that
our modified scheduler impacts the failure rate slightly for
low values of α (not at all for high values), while slightly
decreasing the percentage of empty servers regardless of α.
The reason is that our policy may use a few more servers in
the interest of better balancing the load. In fact, Figures 6(c)
and (d) confirm that the load is more balanced using our policy
and predictions. These latter graphs also show that the value
of α is important. α = 0 produces much worse utilization
balancing across chassis than other values. At the same time,
α = 1 produces as poor server utilization balancing as the
existing scheduler, whereas other values produce much better
server balancing. These observations confirm that it is key
to balance both across chassis and servers, as in our policy.
α = 0.8 strikes a good compromise between the importance
of these types of balancing.

Impact of prediction accuracy. Comparing the blue and
green bars illustrates the impact of mispredictions and pre-
dictions with low confidence. Figures 6(c) and (d) show that
oracle predictions produce only slightly better balancing than
our real predictions for certain values of α.

Impact of criticality and utilization predictions. Compar-
ing the orange and blue bars with the black bar illustrates
the impact of having criticality only, and both criticality and
utilization predictions, respectively. Clearly, it is critical to
predict the workload type of each VM, as we want to protect
the performance of user-facing VMs during capping events
(black vs orange bars). The results demonstrate that having
utilization predictions is also important (orange vs blue bars).
The lack of such predictions degrades the balancing substan-
tially for most values of α, and thus increases the capping
rate and limits the power reduction during an event (thereby

decreasing the potential for oversubscription).

4.6 Oversubscription increases
We now estimate the amount of oversubscription and dollar
savings that result from our lower chassis power budgets. To
do so, we translate the amount of budget we can reduce in
each 60-chassis cluster into the infrastructure cost we would
avoid. Oversubscription allows servers to be added to an
existing datacenter (assuming space, cooling, and networking
are available, as it is often the case), avoiding the cost of
building a corresponding fraction of a new datacenter.

We instantiate our 5-step oversubscription strategy (Sec-
tion 3.5) with power telemetry from 1440 of Azure’s chassis
over 3 months in 2018. We also use VM statistics from April
2019. Specifically, the 95th-percentile core utilizations for
non-user-facing (utilNUF ) and user-facing (utilUF ) VMs were
44% and 65%, respectively, and the ratio of user-facing cores
in the allocated cores (β) was 40%. Although user-facing
VMs dominate in absolute count over the month, a majority
of such VMs are short-lived – 52% of VMs last for less than
1 hour (Table 1). In contrast, all non-user-facing VMs last for
at least 5 weekdays (Section 3.2). Consequently, a snapshot at
various points in time in the month indicates an average value
of 40% for β. We add a buffer of 10% to the chassis budget
(step 5). For the results where providers treat external (i.e.,
third-party) VMs differently than internal (i.e., first-party)
VMs, we adjust these parameters accordingly, while keeping
the same amount of buffer.

Table 4 lists results for several types of provisioning:
1. “Traditional” provisioning (no oversubscription);
2. State-of-the-art full-server capping without VM insights.

In this approach, the power capping events need to be rare
and the throttling has to be light to prevent performance
loss to user-facing VMs. To model this approach with our
provisioning strategy, we use emaxUF + emaxNUF = 0.1%,
f minUF = f minNUF = 75%;

3. Predictions-based per-VM capping and scheduling,
without impact on user-facing VMs. We use emaxUF = 0,
f minUF = 100%, emaxNUF = 1% and f minNUF = 50%;

4. Predictions-based per-VM capping and scheduling, with
minimal impact on user-facing VMs. To make this approach
comparable to the others, we set the overall rate of capping
events at 1%. Specifically, we use emaxUF = 0.1%, f minUF
= 75%, emaxNUF = 0.9% and f minNUF = 50%;



Approach Chassis budget Savings
delta (%) ($10/W)

Traditional 0 0
State of the art 6.2% $79.4M

Predictions for all VMs,
no UF impact 11.0% $140.8M

Predictions for all VMs,
minimal UF impact 12.1% $154.9M

Predictions for internal VMs,
no UF impact 8.4% $107.5M

Predictions for internal VMs,
minimal UF impact 10.3% $131.8M

Predictions for internal and
non-premium external VMs,

no UF impact 10.6% $135.7M
Predictions for internal and
non-premium external VMs,

minimal UF impact 12.1% $154.9M

Table 4: Comparison between provisioning approaches.

5. Predictions-based per-VM capping and scheduling for
internal VMs only (all external VMs considered user-facing),
without impact on user-facing VMs;

6. Predictions-based per-VM capping and scheduling for
internal VMs only, with minimal impact on user-facing VMs;

7. Predictions-based per-VM capping and scheduling for
internal and non-premium external VMs, without impact on
user-facing VMs; and

8. Predictions-based per-VM capping and scheduling for
internal and non-premium external VMs, with minimal impact
on user-facing VMs.

The state-of-the-art approach achieves 6.2% oversubscrip-
tion. This amount is comparable to that (8%) achieved by
Facebook [43], which knows the (single) workload that runs
on each server. Public cloud platforms do not have this luxury.

In contrast, our approach (#3 and #4) can almost double
the oversubscription and savings. We achieve more than 12%
oversubscription with minimal impact on user-facing VMs.
Assuming a datacenter campus of 128MW and an infrastruc-
ture cost of $10/W [4], 12.1% oversubscription translates into
$154.9M in savings; an increase in savings of $75.5M over
the state of the art. As providers can oversubscribe many
campuses, the savings would be much higher in practice.

When providers prefer to treat external and internal VMs
differently (approaches #5-#8), they can do so at the cost
of a lower increase in oversubscription. For example, when
treating all external VMs as user-facing and protecting the
performance of user-facing VMs (#5), the increase in savings
becomes $28.1M. At the other extreme, where we treat the
premium external VMs as user-facing and allow minimal im-
pact on user-facing VMs (#8), the increase in savings returns
to $75.5M. The reason is that this provisioning approach has
enough non-critical VMs, and oversubscription is limited only
by the rate of capping events.

As our results show, the amount of oversubscription and
savings depends upon the user-facing vs non-user-facing core
ratio (β) and the amount of power that can be recovered from

each type through frequency reduction ( f min), while satisfy-
ing the constraints (emax). Generally, a higher (lower) value
of β results in less (more) oversubscription. This analysis for
oversubscription has to be done on a per-cluster basis.

5 Lessons from production deployment
We have deployed our per-VM capping controller and ML
models on thousands of servers in multiple datacenters. Next,
we discuss some of the lessons from these deployments.
Hypervisor support for per-VM power capping. Our proto-
type controller (Section 3.4) leveraged the hypervisor’s core-
grouping feature to manage the frequency of each VM’s physi-
cal cores. In production, Azure typically prefers not to restrict
a VM to a subset of cores, so we could not rely on this feature.
Instead, we had to extend the hypervisor to (1) add the capa-
bility to dynamically specify the frequency for a VM, and (2)
carry the frequency to whichever cores it schedules the VM
on during the context switch (changing the frequency takes
tens of microseconds, whereas a scheduling quantum lasts 10
milliseconds). As most VMs are small (Table 1), there was
no need to manage frequency on a per-virtual-core basis.
Refresh VM criticality prediction on servers. Misclassifi-
cation of a VM’s criticality can result in unintended perfor-
mance degradation (Section 4.2). To address this problem,
we added the capability to periodically (e.g., daily) refresh
a VM’s criticality tag on a server. We change the tag after
Resource Central has observed the VM long enough to clas-
sify the criticality of the VM’s workload. As the prediction
models already provide good placements (Section 4.5), we
do not migrate VMs when their criticality changes.
Expanded workload criticality definition. Some first-party
customers were concerned about the impact of per-VM cap-
ping on their non-user-facing VMs. To alleviate their con-
cerns, we added a configurable prioritized throttling list to
our system. Using the list, we first consider all low-priority
and internal non-production VMs for throttling and throttle
production non-user-facing VMs as a last resort, i.e. when
throttling the other types is insufficient. Furthermore, our sys-
tem has a “do-not-throttle” list of highly-sensitive internal
workloads (e.g., gaming, repair) that are always considered
critical. Finally, the criticality of VMs can be also be dynami-
cally updated on servers based on changes to the static lists.
Metrics to measure capping impact. Since VMs are black
boxes, we cannot use any workload-specific metric in pro-
duction. Instead, our deployed system measures how long
and how hard VMs are being capped. The data shows that
our system is successful at protecting production user-facing
VMs, while prioritizing the VMs that do get throttled.
Increasing rack density with per-VM capping. While de-
ploying our system, we learned that Azure was installing
fewer servers per rack when deploying a new generation of
power hungrier servers. Having fewer servers per rack re-
duces the probability that the rack power draw will hit the
provisioned limit and cause capping using RAPL. With our



per-VM capping system in place, Azure can increase the
number of servers per rack. This is another type of power
oversubscription that per-VM capping enables.
Shutting down VMs. Some first-party customers indicated
that they would prefer their VMs to be shut down rather than
throttled, as their services can handle losing VMs but an un-
predictable impact due to throttling is not acceptable. Under
extreme power draws, shutting down these customers’ VMs
can help protect production user-facing VMs and throttle
fewer non-user-facing ones. We will soon add this capability
to our system.
Server support for per-VM management. Our production
experience has highlighted the drawbacks of managing VM
power per-component (e.g., core, uncore, memory). We ex-
pect that cloud providers would prefer to raise the level of
abstraction from individual components to entire VMs, even
if VM power would have to be approximated. This would
enable advances that have been too complex for production
use, such as power-aware VM placement, enforcing per-VM
power limits, and making throttling and shutting down de-
cisions based on VM power. We are working with silicon
vendors towards this end.

6 Related work
Our paper is the first to use ML predictions for increasing
power oversubscription in public cloud platforms. Next, we
discuss some of the most closely related works.
Leveraging predictions. Some works predict resource de-
mand, resource utilization, or job/task length for provisioning
or scheduling purposes, e.g. [7, 9, 13, 20, 23, 37]. In contrast,
we introduce a new algorithm and ML models for predict-
ing workload type and high-percentile utilization, seeking to
protect critical workloads from capping and place VMs in a
criticality- and capping-aware manner.
Server power capping. Most efforts have focused on select-
ing the DVFS setting required to meet a tight power budget as
applications execute, e.g. [16, 19, 21, 22, 26, 29–31, 34, 36, 45].
Both modeling/optimization and feedback techniques have
been used. The inputs to the selection have been either
application-level metrics (e.g., request latency), low-level per-
formance counters, or operator annotations (e.g., high priority
application). Our capping controller uses per-core DVFS and
feedback, so it adds to this body of work. However, it also
uses predictions about the VMs’ performance-criticality as its
inputs. Our approach seems to be the best for a cloud platform,
since criticality information and application-level metrics are
typically not available, and collecting and tracking low-level
counters at scale involves undesirable overhead.

Controlling CPU bandwidth (or utilization) to cap server
power has also been studied [8, 27]. Reducing CPU band-
width allows cores to go into sleep states. This approach is
complementary and can be used in conjunction with per-core
DVFS in our server power capping system.
Cluster-wide workload placement/scheduling. Many works

select workload placements to reduce performance interfer-
ence or energy usage, e.g. [5, 6, 11, 35, 41, 44]. Unfortunately,
they are often impractical for a cloud provider, relying on
extensive profiling, application-level metrics, short-term load
predictions, and/or aggressive resource reallocation (e.g., via
live migration). Live migration is particularly problematic, as
it retains contended resources, may produce traffic bursts, and
may impact VM availability; it is better to place VMs where
they can stay. Our scheduler uses predictions in VM place-
ment. Unlike prior work, it reduces the number and impact of
capping events, and increases power oversubscription.
Datacenter oversubscription. Researchers have proposed
to use statistical oversubscription, where one profiles the ag-
gregate power draw of multiple services and deploy them to
prevent correlated peaks [12, 14, 18, 38, 42]. Our work ex-
tends these works by using predictions to place the workload,
inform capping, and increase oversubscription. Our oversub-
scription strategy is also the first to carefully control the extent
and impact of capping on important cloud workloads. Also,
unlike [38], it does not affect workload availability.

Others have studied hierarchical capping in production
datacenters [12, 18, 43]. Our paper focuses on chassis-level
power budget enforcement to make our experimentation easier.
However, our techniques extrapolate directly. For example,
for row-level budget enforcement, we can place VMs across
rows trying to balance rows and servers.

Finally, researchers have proposed using energy storage
to shave power peaks in oversubscribed datacenters [15, 24].
When peaks last long, this may require large amounts of
storage, which our work does not require. Nevertheless, the
two approaches are orthogonal and can be combined.

7 Conclusions
We proposed prediction-based techniques for increasing
power oversubscription in cloud platforms, while protecting
important workloads. Our techniques can increase oversub-
scription by 2×. We discussed lessons from deploying our
techniques in production. We conclude that recent advances
in ML and prediction-serving systems can unleash further
innovations in cloud resource provisioning and management.
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