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Abstract—The early-to-late reverberation energy ratio is an
important parameter describing the acoustic properties of an
environment. C50, i.e., the ratio between the first 50 ms and
the remaining late energy, affects the perceived clarity and
intelligibility of speech, and can be used as a design parameter in
mixed reality applications or to predict the performance of speech
recognition systems. While established methods exist to derive
C50 from impulse response measurements, such measurements
are rarely available in practice. Recently, methods have been
proposed to estimate C50 blindly from reverberant speech
signals. Here, a convolutional neural network (CNN) architecture
with a long short-term memory (LSTM) layer is proposed to
estimate C50 blindly. The CNN-LSTM operates directly on the
spectrogram of variable-length, noisy, reverberant utterances. A
feature comparison indicates that log Mel spectrogram features
with a frame size of 128 samples achieve the best performance
with an average root-mean-square error of about 2.7 dB, outper-
forming previously proposed blind C50 estimators.

Index Terms—Early-to-late reverberation ratio, direct-to-
reverberant ratio, clarity

I. INTRODUCTION

In enclosed spaces, surface reflections and reverberation
alter the temporal and spectral characteristics of sound prop-
agating from a source to a receiver. This filtering effect is
significant for both human and machine listeners. The human
auditory system analyses reverberant sound to estimate the
distance of the sound source [1] or to understand certain
properties of the acoustic environment [2], [3]. Reverberation
may negatively impact speech intelligibility, resulting in lower
speech recognition scores for both humans and automated
systems [4], [5]. Two metrics commonly used to characterize
reverberation are the reverberation time (T60), that is, the
time it takes for the reverberant energy to drop by 60 dB
after the sound source stops, and the direct-to-reverberant ratio
(DRR), that is, the ratio between the direct path energy and the
reverberant energy. Knowledge of an environment’s acoustic
parameters can be useful in mixed reality scenarios or for
voice-enabled services and devices, as it allows enhancing
the fidelity of virtual content embedded into the real environ-
ment [6] or predicting the performance of automatic speech
recognition systems [5], [7].

A common way to derive these acoustic parameters is by
measuring the acoustic impulse response (IR). However, in

practice, IR measurements are rarely available for a specific
scenario. Recently, there has been an increased interest in
deriving acoustic parameters blindly, e.g., from reverberant
speech signals, with methods being proposed for blind T60
and DRR estimation [8]–[12]. It has been shown that the
energy ratio between the direct path including the first 50 ms
and the remaining reverberant energy, referred to as C50 or
clarity, is of particular importance for speech intelligibility,
for both humans and speech recognition systems [5], [7],
[13], [14]. Early reflections arriving within about 50–80 ms
of the direct path signal contribute to the clarity or definition
of a speech or music source, while late reverberant energy
decreases clarity [15]. Parada et al. show a high correlation
between C50 and the perceptual speech quality as well as the
phoneme error rate of a speech recognition model [5]. They
propose a blind C50 estimator based on a variety of high-
level features extracted from reverberant speech samples. The
best-performing model variant is based on a neural network
using Bidirectional Long Short-Term Memory (BLSTM) cells.
Xiong et al. train a multi-layer perceptron (MLP) on features
inspired by the human auditory system to estimate T60 and
C50 blindly from reverberant speech [16].

Here a convolutional neural network (CNN) is proposed
to estimate C50 of variable-length, reverberant, noisy speech
samples. Rather than relying on hand-crafted high-level fea-
tures, the CNN is used to extract data-driven features directly
from a spectrogram. The variable-length output of the CNN is
processed by a single LSTM layer that outputs an utterance-
level C50 estimate. The proposed CNN-LSTM network out-
performs previously proposed blind C50 estimators on two test
sets.

II. ACOUSTIC PARAMETERS AND EVALUATION METRICS

Assuming linearity and time-invariance, the acoustic path
form a source to a receiver can be described by its impulse
response. Given a measured impulse response, h, the direct-
to-reverberant ratio, DRR, is given in dB as:

DRR = 10 log10

(∑n0+nd

n=n0
h[n]2∑∞

n=nd
h[n]2

)
, (1)

where n0 denotes the sample corresponding to the arrival of
the first wave front, and nd is the number of samples of
the time window containing the direct path arrival. A typical
choice for the duration of this direct path window is 5 ms [8].978-1-7281-9320-5/20/$31.00 ©2020 IEEE



TABLE I
DATA SETS

Data set speakers utterances noise IRs total

Training 373 703 1 587 1 461 200 000
Validation 89 169 300 139 20 000
Evaluation [5] 24 24 201 160 49 920
ACE [8] 10 50 30 10 4 500

The clarity, or C50, is calculated via (1) with nd corresponding
to the number of samples of a 50 ms window [15].

The proposed CNN-LSTM network is trained to estimate
the C50 value of a reverberant speech sample. The model
performance for a set of speech samples is assessed in terms
of the root-mean-square error, RMSE, between the ground-
truth, C50, and the utterance-level estimate, Ĉ50, and given
in dB as [5]:

RMSE =

√√√√ 1

U

U∑
u=1

(
C50u − Ĉ50u

)2
, (2)

where C50 and Ĉ50 are given in dB, and U denotes the
number of utterances in the set. As an alternative performance
metric, the Pearson correlation coefficient, ρ, between the
ground-truth, C50, and the estimate, Ĉ50, is used [5].

III. DATA GENERATION

A. Training and validation sets

Data sets for training the proposed neural network model
and validating performance during training are generated by
convolving clean speech samples with impulse responses (IRs)
with known C50 and adding background noise. For each
data sample, one random IR, one random speech sample, and
one random noise sample are selected to generate a total of
200 000 training samples and 20 000 validation samples. The
sampling rate of all samples is 16 kHz. Clean speech samples
are taken from the “train” portion of the TIMIT set [17],
with speakers randomly assigned to either the training or the
validation set. For each speaker, two utterances are randomly
selected, excluding “SA” sentences [5]. Impulse responses are
randomly selected from the Open Acoustic Impulse Response
database [18], as well as a proprietary database of impulse
response measurements and simulations [19]. The resulting
T60 and C50 distribution is shown in Figure 1.

Three different types of background noise are simulated:
white Gaussian noise, ambient noise, and babble noise. To
generate ambient noise, random segments of proprietary sound
field recordings are used, as well as Gaussian noise shaped to
match the average spectrum of random noise segments. The IR
parameters of the sound field recordings are unknown, which
may result in conflicting acoustic parameters, e.g., when a
clean speech sample is convolved with an IR recorded in a
small room and combined with ambient noise recorded in a
large hall. Babble noise samples are generated by selecting
and mixing 50 random utterances from the LibriSpeech “dev-
clean” corpus [20]. For each data sample, a noise sample is

randomly selected from one of the three noise classes and
added to the reverberant speech sample. The noise levels
are chosen to yield a uniform signal-to-noise ratio (SNR)
distribution between -3 and 30 dB, as shown in Figure 1.

B. Evaluation sets

Two data sets are used to evaluate model performance on
unseen data. One evaluation set is generated following the
specifications by Parada et al. [5]. It contains 24 random
utterances from 24 speakers taken from the TIMIT “test”
set [17]. Four impulse response data sets not contained in
the training and validation sets are used to reverberate the
clean speech samples: MARDY [21], the REVERB Chal-
lenge database [22], the QMUL Room Impulse Response
Data Set [23], and SMARD [24]. 160 impulse responses are
drawn randomly from these sets to yield a near-uniform C50
distribution between -3 and 30 dB, as shown in Figure 1.

Babble noise and white Gaussian noise are used to simulate
SNRs between 2 and 27 dB in 5 dB steps. A condition
without background noise is included as well. Babble noise is
generated as described in Section III-A, using random speakers
from the LibriSpeech “test-clean” set [20]. The resulting data
set contains 49 920 samples.

As a second evaluation set, the evaluation corpus of the ACE
challenge is used, which consists of 4 500 reverberant speech
samples with recorded ambient, babble, and fan noise [8].

All data sets are sampled at 16 kHz. The T60, C50, and
SNR distributions for all sets are shown in Figure 1. Table I
summarises the data set parameters.

C. Feature extraction

The proposed neural network operates directly on spectro-
temporal features extracted from the variable-length input
utterances. The feature extraction is performed in frames
with a 50% overlap using a Hann window. Two types of
features are compared: the log power spectrogram obtained
using a short-time Fourier transform (STFT); and the log Mel
spectrogram derived from the power spectrogram. The result
of the feature extraction is a M × N feature matrix, where
M denotes the number of frequency bins, and N the number
of frames in the input sample. Both M and N depend on
the frame size, F , used in the feature extraction. For the
log power spectrogram, M = F/2 + 1; for the log Mel
spectrogram, M = F/4. The choice of feature type and
frame size is sometimes driven by practical considerations,
e.g., computational complexity, memory requirements, or real-
time constraints for the maximum frame duration. To assess
the effect of the feature choice on model performance, various
combinations of feature type and frame size are compared. The
resulting input feature variations are referred to as STFTL
for the log power spectrogram, and MelL for the log Mel
spectrogram, with L ∈ [64, 128, 256, 512]. This corresponds
to a frame duration of [4, 8, 16, 32] ms at a sampling rate of
16 kHz.

A-weighting is used to normalise the gain of all input
samples. To ensure the input features have approximately zero
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Fig. 1. Distribution of impulse response parameters and signal-to-noise ratio (SNR) in the data sets.
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Fig. 2. Frequency-dependent normalisation offset (a,b) and gain (c,d) for log
power spectrogram (a,c) and log Mel spectrogram (b,d), for the four evaluated
frame sizes, F .

mean and unit variance, a frequency-dependent normalisation
offset and gain, each of size F × 1, is derived by averaging
the spectrogram rows, that is, the individual spectra, of 20 000
randomly selected training samples. The resulting normali-
sation offset and gain for all feature types and frame sizes
is shown in Figure 2. The input features are normalised by
subtracting the normalisation offset from each spectrogram
row and multiplying it with the normalisation gain.

IV. NETWORK ARCHITECTURE

The proposed network architecture consists of a convolu-
tional neural network (CNN) with six layers, similar to a

TABLE II
CNN PARAMETERS

CNN1 CNN2 CNN3 CNN4 CNN5 CNN6

conv2D kernel 5×5 5×5 3×3 3×3 3×3 3×3
# conv2D kernels 16 16 24 24 32 32
pooling kernel 3×3 1 1 1 1 3×3
pooling stride 2×2 1 1 1 1 2×2

TABLE III
STRIDE OF CONV2D OPERATION

Feature CNN1 CNN2 CNN3 CNN4 CNN5 CNN6

STFT64 2×2 1×2 1×2 1 1 1
Mel64 1×2 1×2 1×2 1 1 1
STFT128 2×2 2×1 1×2 1 1 1
Mel128 1×2 2×1 1×2 1 1 1
STFT256 2×2 2×1 2×1 1 1 1
Mel256 1×2 2×1 2×1 1 1 1
STFT512 2×1 2×1 2×1 2×1 1 1
Mel512 1 2×1 2×1 2×1 1 1

previously proposed CNN for blind reverberation time esti-
mation [9], followed by a Long Short-Term Memory (LSTM)
layer. Each CNN layer performs a padded 2-D convolution
(conv2D) with rectified linear unit (ReLU) activation and batch
normalization. The first and last CNN layer contain a max-
pooling layer with a kernel size of 3×3 and a stride of 2×2.
Table II summarizes the CNN parameters.

The stride of the conv2D operation is chosen depending
on the input feature type and frame size such that the output
size of the final CNN layer depends only on the length of the
input sample, not the choice of input features. Table III lists
the stride parameters for all CNN layers and feature variations.
Table IV shows the input and output size of each CNN layer



TABLE IV
CNN INPUT AND OUTPUT SIZES FOR INPUT SAMPLE OF 1 S DURATION

Feature input CNN1 CNN2 CNN3 CNN4 CNN5 CNN6

STFT64 33×501 8×125 8×63 8×32 8×32 8×32 3×15
Mel64 16×501 7×125 7×63 7×32 7×32 7×32 3×15
STFT128 65×251 16×62 8×62 8×31 8×31 8×31 3×15
Mel128 32×251 15×62 8×62 8×31 8×31 8×31 3×15
STFT256 129×126 32×31 16×31 8×31 8×31 8×31 3×15
Mel256 64×126 31×31 16×31 8×31 8×31 8×31 3×15
STFT512 257×63 64×31 32×31 16×31 8×31 8×31 3×15
Mel512 128×63 63×31 32×31 16×31 8×31 8×31 3×15

given an input sample of 1 s duration. As can be seen, the
output size of the final CNN layer is identical for all feature
variations.

The variable-length CNN output is aggregated using a
recurrent layer containing 64 LSTM cells. A linear output
layer combines the final LSTM layer state to produce a C50
estimate. The proposed CNN-LSTM architecture has about
74k trainable parameters, irrespective of the input feature type
and frame size.

V. EXPERIMENTAL EVALUATION

The proposed CNN-LSTM model is implemented in Py-
Torch [25] and trained on a single GPU over 100 epochs, after
which point the validation error for all tested models seemed
to plateau. Each epoch consists of 20 000 randomly selected
training samples as well as 2 000 randomly selected validation
samples. During training, a random gain is applied to the input
features of each sample. The random gain is drawn from a
uniform distribution between -6 and 6 dB and serves as a form
of data augmentation to improve the network’s robustness to
gain variation of the input samples. Finally, the features are
normalised and combined into training batches with a batch
size of 128. Training is performed using stochastic gradient
descent on the mean-squared loss with an initial learning rate
of 0.01.

To assess the impact of input feature type and frame size
on the estimation performance, the CNN-LSTM model is
retrained for each feature variation, resulting in eight models
referred to as STFTL or MelL depending on the feature
type, with L ∈ [64, 128, 256, 512] corresponding to the frame
size. The trained models are evaluated on a set generated
according to the specifications given by Parada et al. [5] (cf.
Section III-B) as well as the ACE challenge evaluation set [8].
For both sets, the root-mean-square error (RMSE) is calculated
for each trained model and each unique combination of signal-
to-noise ratio (SNR) and noise type.

Figure 3 illustrates the effect of the feature type on model
performance. For the evaluation set, the log power (STFT)
and log Mel (Mel) features perform comparably. A one-way
analysis of variance (ANOVA) does not indicate a statistically
significant effect of the feature type on the RMSE (F1,102 =
0.2, p = 0.647). For the ACE set, a one-way ANOVA indicates
a statistically significant effect F1,70 = 5.6, p = 0.021,
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Fig. 3. Effect of feature type on RMSE for a) evaluation and b) ACE set.
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Fig. 4. Effect of frame size on RMSE for a) evaluation and b) ACE set.

indicating that STFT features may slightly outperform Mel
features on average.

The effect of frame size on RMSE is shown in Figure 4.
Again, a one-way ANOVA does not indicate a significant
effect for the evaluation set (F3,100 = 1.9, p = 0.138),
while indicating the effect to be significant for the ACE set
(F3,68 = 14.3, p < 0.001). It can be seen that a frame size
of 64, which results in features with a high temporal but
low spectral resolution, seems to perform worse than larger
frame sizes. A pairwise comparison using Tukey’s honestly
significant difference criterion (Tukey’s HSD) indicates that
the RMSE for a frame size of 64 is significantly higher than
larger frame sizes for the ACE set.

Figure 5 illustrates the effect of the noise type on model
performance. A one-way ANOVA indicates that the noise type
has a significant effect on RMSE for both the evaluation set
(F1,94 = 4.3, p = 0.040) and the ACE set (F2,69 = 6.9, p =
0.002). In both cases, babble noise seems to perform slightly
worse than other noise types. This is in line with results
reported in prior work [5], [16].

The effect of the SNR on the RMSE is shown in Figure 6.
For the evaluation set, performance seems to improve with
increasing SNR, as expected. For the ACE set, the performance
improvement is less clear, and a one-way ANOVA does not
indicate a statistically significant effect of the SNR (F2,69 =
2.4, p = 0.098). This is somewhat surprising, and may point
to the estimator possibly underperforming, especially at higher
SNRs.

Figure 7 shows C50 confusion matrices for the evaluation



babble white

noise type

3

4

5

6

[d
B

] 
R

M
S

E

a)

ambient babble fan

noise type

3

4

5

6

 
b)

Fig. 5. Effect of noise type on RMSE for a) evaluation and b) ACE set.
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Fig. 6. Effect of SNR on RMSE for a) evaluation and b) ACE set.

set. As can be seen, all models seem to perform quite similarly,
and quite well up to a C50 of about 12–15 dB. Above 15 dB,
performance seems to deteriorate, with models appearing to
underestimate C50 values above 20 dB. A possible explanation
may be a mismatch between the training and evaluation set in
terms of the distribution of C50 values. As seen in Figure 1, the
training set contains relatively few samples with a C50 above
12 dB, compared to the evaluation set which exhibits a near-
uniform distribution. The non-uniform training distribution
may introduce an estimation bias. While methods exist to
address the related problem of class imbalance [26], they are
not considered here.

Figure 8 illustrates the estimation performance of all tested
models for the ACE set. The estimation performance of
all models seems to be somewhat worse compared to the
performance on the evaluation set for the same C50 range.
One possible explanation is a mismatch between the noise
used in training and the noise present in the ACE set. The
ACE set contains realistic noise recorded in the actual test
environment, whereas the training set used here relies either
on synthetic and anechoic noise, or noise recordings with
unknown acoustic parameters. A better match between training
and test noise conditions may lead to improved performance
of the C50 estimator for the ACE set.

The estimation results of all tested models are summa-
rized in Table V. Results from prior work are included for
comparison, as well as results for a dummy estimator. The
dummy estimator returns the mean ground-truth C50 value
for the evaluation set (Ĉ50dummy,eval = 12.82 dB) and the

STFT64

0 10 20 30

[dB] C50

0

10

20

30

[d
B

] 
C

5
0

 e
st

im
a
te

STFT128

0 10 20 30

[dB] C50

STFT256

0 10 20 30

[dB] C50

STFT512

0 10 20 30

[dB] C50

mel64

0 10 20 30

[dB] C50

0

10

20

30

[d
B

] 
C

5
0

 e
st

im
a
te

mel128

0 10 20 30

[dB] C50

mel256

0 10 20 30

[dB] C50

mel512

0 10 20 30

[dB] C50

Fig. 7. Confusion matrices for the evaluation set, for all tested models.
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Fig. 8. Confusion matrices for the ACE set, for all tested models.

ACE set (Ĉ50dummy,ACE = 10.1 dB). For the evaluation
set, all proposed models except STFT64 and Mel512 seem to
outperform previously reported results by Parada et al. [5].
It should be noted that while the evaluation set used here
is modelled after the one used by Parada et al., it is not
identical and does for example not include any simulated IRs.
Therefore, the results may not be directly comparable. The
Pearson correlation coefficient between the C50 estimates and
the ground-truth is 0.96 or higher for all tested models.

For the ACE set, while all proposed models outperform the
previously reported results by Xiong et al. [16], only three
models outperform the dummy estimator in terms of RMSE.
This is a further indication that the models are underperform-
ing on the ACE set. The Pearson correlation coefficient on the
ACE set ranges from 0.6 to 0.77, i.e., substantially lower than
for the evaluation set. Overall, the Mel128 model provides the
best average performance on both data sets.



TABLE V
BLIND C50 ESTIMATION RESULTS

evaluation set ACE [8]
RMSE [dB] ρ RMSE [dB] ρ

Parada et al. [5] 3.3∗ - - -
Xiong et al. [16] - - 4.81∗∗ 0.56∗∗
Dummy estimator∗∗∗ 9.94 0 3.03 0
STFT64 3.65 0.96 3.74 0.72
STFT128 3.18 0.96 2.89 0.70
STFT256 3.16 0.97 2.80 0.72
STFT512 2.82 0.97 3.05 0.77
Mel64 3.28 0.96 4.13 0.60
Mel128 2.68 0.97 2.73 0.73
Mel256 2.94 0.97 3.61 0.70
Mel512 3.67 0.96 3.42 0.72

∗Result for different data set with similar specifications.
∗∗Result for same data set, i.e., the ACE challenge evaluation corpus [8].

∗∗∗Estimator that simply returns the mean ground-truth C50.

VI. CONCLUSION

A convolutional neural network (CNN) with a long short-
term memory (LSTM) layer is proposed for estimating C50,
or clarity, blindly from variable-length, noisy speech samples.
The proposed CNN-LSTM operates directly on the speech
spectrogram and does not require hand-crafted features. Exper-
iments using a synthetic data set as well as the ACE challenge
evaluation set [8] indicate that a feature extraction frame size
of 64 samples may not provide sufficient spectral resolution,
and that babble noise may be more challenging than other
types of background noise, resulting in a higher root-mean-
square estimation error (RMSE). Comparisons with a dummy
estimator that outperforms some previously reported results
and model variations proposed here indicate that more work is
needed to improve the estimation performance in challenging
noise scenarios. The best-performing model uses a log Mel
spectrogram with a frame size of 128 samples at a sampling
rate of 16 kHz. It achieves a Pearson correlation coefficient
of 0.97 for the evaluation set and 0.73 for the ACE set, as
well as an RMSE of about 2.7 dB for both sets. Studying the
performance of different network architectures and improving
the training data diversity and fidelity is left for future work.

REFERENCES

[1] P. Zahorik, D. S. Brungart, and A. W. Bronkhorst, “Auditory distance
perception in humans: A summary of past and present research,” Acta
Acustica united with Acustica, vol. 91, no. 3, pp. 409–420, 2005.

[2] M. Yadav, D. A. Cabrera, L. Miranda, W. L. Martens, D. Lee, and
R. Collins, “Investigating auditory room size perception with autophonic
stimuli,” in Proc. Audio Engineering Society Convention, 2013.
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