
HACLxN: Verified Generic SIMD Crypto
(for all your favorite platforms)

Marina Polubelova
Inria Paris

Karthikeyan Bhargavan
Inria Paris

Jonathan Protzenko
Microsoft Research

Benjamin Beurdouche
Inria Paris and Mozilla

Aymeric Fromherz
Carnegie Mellon University

Natalia Kulatova
Inria Paris

Santiago Zanella-Béguelin
Microsoft Research

ABSTRACT
We present a new methodology for building formally verified cryp-
tographic libraries that are optimized for multiple architectures. In
particular, we show how to write and verify generic crypto code in
the F★ programming language that exploits single-instructionmulti-
ple data (SIMD) parallelism.We show how this code can be compiled
to platforms that support vector instructions, including ARM Neon
and Intel AVX, AVX2, and AVX512. We apply our methodology to
obtain verified vectorized implementations on all these platforms
for the ChaCha20 encryption algorithm, the Poly1305 one-time
MAC, and the SHA-2 and Blake2 families of hash algorithms.

A distinctive feature of our approach is that we aggressively
share code and verification effort between scalar and vectorized
code, between vectorized code for different platforms, and between
implementations of different cryptographic primitives. By doing
so, we significantly reduce the manual effort needed to add new
implementations to our verified library. In this paper, we describe
our methodology and verification results, evaluate the performance
of our code, and describe its integration into the HACL★ crypto
library. Our vectorized code has already been incorporated into
several software projects, including the Firefox web browser.

1 VERIFIED HIGH-PERFORMANCE CRYPTO
Modern cryptographic algorithms are evaluated not just for their
security, but also for their performance on various platforms. Slow
algorithms, even if provably secure, are rarely deployed at scale.
For example, the Diffie Hellman key exchange remained largely
unused for decades in mainstream protocols like TLS, even though
it provided strong guarantees like forward secrecy, until the advent
of fast Elliptic Curve Diffie Hellman implementations. Even today,
powerful constructions like homomorphic encryption and post-
quantum crypto are awaiting faster implementations before they
can be considered for widespread deployment.

When a new cryptographic algorithm is standardized, the de-
signers usually describe (and sometimes include as an appendix) a
reference implementation that would work on any 32-bit computer.
However, the algorithm and its parameters are often chosen care-
fully to admit platform-specific optimizations. For example, new
authenticated encryption schemes like ChaCha20-Poly1305 and
hash algorithms like Blake2 were deliberately designed to enable

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Single Instruction Multiple Data (SIMD) vectorization. Since most
desktops and smartphones are now equipped with SIMD-enabled
processors capable of computing over 4, 8, or 16 32-bit integers in
parallel, the performance impact of vectorization can be dramatic.
SIMD Parallelization for Crypto Code. Consider ChaCha20, a
counter-mode (CTR) encryption algorithm standardized in IETF
RFC 7539. The OpenSSL library includes a reference implementa-
tion of ChaCha20 (written by D.J. Bernstein) in 122 lines of portable
C code. When compiled with GCC, this code takes between 4-9
cycles to encrypt a byte on modern processors. For better perfor-
mance, OpenSSL also includes a dozen other hand-written assembly
implementations of ChaCha20 (totaling over 10K lines), for various
generations of Intel and ARM processors. Each implementation ex-
ploits platform-specific SIMD instructions to parallelize ChaCha20
for maximum speed. For example, encryption takes just 0.56 cycles
per byte on a server with an AVX512-enabled Intel processor.

The task of writing such optimized vectorized implementations
can conceptually be divided into three stages. First, we apply high-
level algorithmic transformations that rearrange the cryptographic
computation in a way that allows multiple arithmetic operations
to be performed in parallel. Some transformations are algorithm-
specific while others are generic patterns that apply to multiple
algorithms. In ChaCha20, for example, we can parallelize the inner
block cipher (as intended by the designers), or we can tranform
the generic CTR loop to process multiple blocks at a time, or both.
Once the algorithm has been parallelized, we implement it using
low-level platform-specific SIMD instructions, relying on custom
SIMD routines for commonly-used crypto operations like integer
rotations and matrix transpositions. Finally, we can hand-optimize
the assembly code for a target platform by reusing registers to avoid
spills, rearranging instructions to exploit pipelining, etc.

Unfortunately, the optimized assembly code at the end of this
process no longer reflects the high-level structure of the parallelized
algorithm, making it unreadable and hard to audit. Furthermore,
code reuse is minimal: we need to rewrite code for each platform
from scratch, even if we are implementing the same algorithmic
ideas, increasing the chances of unintended bugs. Hence, we end up
with 10K lines of assembly code for ChaCha20 that only a few devel-
opers can audit and safely modify. Efficient implementations of al-
gorithms like Poly1305 are evenmore complex and error-prone [17],
since they have to interleave bignum arithmetic with SIMD vector-
ization, and hence have to account for the subtleties of both.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

How can we be sure that all these platform-specific implemen-
tations are correct? Testing helps, but does not give complete cov-
erage, and it requires significant resources to maintain test envi-
ronments for multiple platforms. The challenge is to build high-
assurance cryptographic libraries that are mechanically verified to
be correct, memory safe, and secret independent (“constant-time”).
Cryptographic SoftwareVerification. Several recentworks have
explored different approaches towards building verified crypto-
graphic software (see [13] for a more complete survey.)

Vale [21, 27], Jasmin [8, 9], and CryptoLine [28] can directly
verify hand-optimized assembly implementations. Consequently,
they do not need to sacrifice any performance or trust any compiler.
Conversely, the assembly code they verify is neither portable nor
reusable. One must rewrite and reverify new code for each platform,
and the tool may not support all platforms (Vale and Jasmin do not
currently support ARM or AVX-512.) More generally, verifying low-
level assembly involves quite a bit of work and becomes challenging
for large cryptographic constructions and libraries. Consequently
these tools are best suited to verify a few optimized implementations
of important crypto primitives on chosen target platforms.

A different approach is to verify portable code written in a high-
level language and rely on a compiler to convert it to assembly. The
Verified Software Toolchain [11, 18] and the Cryptol/SAW frame-
work [42] can prove the functional correctness of C (and Java) code
against a high-level mathematical specification. HACL★ [44] and
Fiat-Crypto [26] verify cryptographic code written in verification-
oriented high-level languages and compile it to portable C code.
The advantage of this approach is that the target C code is read-
able, auditable, and portable. In addition, these frameworks can use
high-level programming mechanisms to share code and proofs be-
tween different algorithms. The disadvantage is that the compiled
code can be significantly slower than hand-written assembly [44].
Moreover, we either need to trust the C compiler or use a verified
compiler like CompCert [31], which produces even slower code.

These approaches are not mutually exclusive. EverCrypt [34] is a
cryptographic provider that composes verified C code from HACL★

with verified Intel assembly code from Vale to obtain best-in-class
performance on Intel platforms for elliptic curves like Curve25519
and authenticated encryption schemes like AES-GCM.
OurApproach. In this paper, we present a new hybrid approach to-
wards building a multi-platform library of vectorized cryptographic
algorithms, by following the high-level programming methodol-
ogy of HACL★ but compiling it to multiple platform-specific C
implementations that rely on compiler intrinsics for SIMD vector
instructions. Hence, we seek to preserve the portability, auditabil-
ity, code and proof reuse enabled by high-level source code, while
closing the performance gap with assembly implementations.

The main insight guiding our approach is that the high-level
algorithmic tranformations needed for SIMD vectorization can be
implemented and verified generically, without relying on details
of the underlying platform, and then automatically specialized for
a given target platform. Our second observation is that modern
C compilers are good enough (and constantly improving) at in-
struction scheduling and register allocation, so hand-optimizing
assembly for each platform is often not necessary for performance.

Figure 1: HACL×N programming and verification workflow.
Wewrite SIMD crypto code in Low★ [35] and prove it memory-safe,
secret independent, and functionally correct with respect to a high-
level formal spec in F★ [41], before compiling it to target-specific C
code linked with compiler intrinsics. (Code components in green
are verified; those in yellow are trusted and carefully tested.)

HACL×NWorkflow. Figure 1 depicts our high-level methodology
as a sequence of programming, verification, and compilation tasks:
High-Level Spec We first write a succinct formal specification
for each crypto algorithm in the F★ language [41], by carefully
transcribing the corresponding IETF or NIST standard. This spec-
ification is trusted but executable; it serves as a testable, readable,
reference implementation that can be audited by cryptographers.

Generic Vector Library We extend HACL★ with libraries for ma-
chine integers and vectors of integers, designed to enable generic
SIMD programming.We implement the vector library as a trusted
C header file that maps each vector operation to platform-specific
vector instructions for ARMNeon, Intel AVX, AVX2, and AVX512.

SIMD Patterns for Crypto We identify, implement, and verify a
series of reusable SIMD programming patterns commonly used
in crypto algorithms, including generic constructions for multi-
buffer parallelism, CTR encryption, and polynomial evaluation.

Verified Vectorized Implementations We build vectorized im-
plementations of Blake2s, Blake2b, SHA-224, SHA-256, SHA-384,
SHA-512, ChaCha20, and Poly1305, in Low★ [35] (a subset of
F★). These generic implementations are parameterized over a
target vector size and can be instantiated with vectors of any
size: 1, 2, 4, 8, etc. (Vectors of size 1 correspond to scalar code.)

Target-Specific Compilation We exploit themeta-programming
and compile-time specialization features of F★ to translate our
generic Low★ implementations to custom C implementations
for each target platform. The compiler generates both portable
32-bit C code and vectorized C code for ARM Neon and Intel
AVX/AVX2/AVX512. Each C implementation can be compiled
via GCC or CLANG to machine code.

Contributions.We apply this workflow on four families of crypto-
graphic algorithms, but our methodology is more generally applica-
ble to other algorithms, and even to non-cryptographic code. To the
best of our knowledge, ours are the first verified vectorized crypto

2

implementations on ARM Neon and AVX512, and the first verified
implementations of vectorized Blake2 and SHA-2. The proof over-
head of our method is significantly less than that of HACL★. Our
vectorized ChaCha20-Poly1305 code is deployed in Mozilla Firefox
Nightly, and our Blake2 code is used in Tezos.

Our goal is to build a usable library of verified crypto algorithms,
not just verify a few isolated algorithms. We show how we can
embed our vectorized algorithms into HACL★ and safely compose
them with previously verified C and assembly code [21, 34, 44].
The resulting library provides optimized verified code for many of
the ciphersuites used in modern protocols like TLS 1.3, WireGuard,
and Signal. We further show how to use our methodology to build
optimized implementations of agile cryptographic applications,
such as the upcoming HPKE standard [15].
Trusting the C Compiler. The chief limitation of our approach,
compared to works that directly verify assembly, is the considerable
trust we place in the C compiler. MainstreamC compilers frequently
have bugs [43], and even if the code they generate is functionally
correct, they may introduce side-channels that were not present in
the original source [40], which can be dangerous for crypto code.

A natural alternative is to rely on a verified compiler like Com-
pCert [31] which has been extended with side-channel preservation
guarantees [16]. However, support for SIMD instructions in Com-
pCert is still ongoing [10], and so we cannot use CompCert for this
work. Another direction could be to develop a specialized compiler
that can directly compile our crypto implementations to assem-
bly code, say by building on a recent compiler from Low★ to web
assembly [33], and extending it with SIMD instructions [7].

In this work, we make the pragmatic design decision to trust
mainstream C compilers like GCC and CLANG, while waiting for
these future improvements in verified compilation. In exchange,
we obtain portability, performance, and the ability to scale up veri-
fication to an entire library of vectorized algorithms. In practice,
the libraries and applications that use our cryptographic code (e.g.
Firefox, Tezos) already place a large amount of trust in the C com-
piler. From their viewpoint, compiler bugs are an inevitable cost of
large-scale software development; they are much more concerned
by security and functionality bugs in the source C code.

2 BACKGROUND: HACL★, F★, LOW★

The HACL★ cryptographic library [44] contains verified implemen-
tations formany popular cryptographic algorithms. The source code
for each algorithm is written in the F★ programming language [41]
and verified using the F★ typechecker for memory safety, for func-
tional correctness against a high-level specification also written in
F★, and for a side-channel guarantee called secret independence,
which states that secret data cannot be used in branches or to com-
pute memory addresses. The F★ code is then compiled to fast C
code that can be easily integrated into existing software. We briefly
review the languages and tools used in HACL★.

F★ is a state-of-the-art verification-oriented programming lan-
guage [41]. It is a functional programming language with dependent
types and an effect system, and it relies on SMT-based automation
to prove properties about programs using a weakest-precondition
calculus. We primarily write code in two subsets of F★. All speci-
fications (and proofs) are written using the pure subset of F★ (i.e.

no side-effects). Crypto implementations are written in Low★, a
effectful subset of F★ that can be compiled to C.

HACL★ specifications use high-level concepts, such as mathe-
matical (unbounded) integers, sequences, lists, and loop combina-
tors. For instance, our F★ specification for the Poly1305 algorithm
(see §4.4) relies on arithmetic modulo the prime 2130 − 5:

let prime = pow2 130 − 5
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x ∗ y) % prime

The prime modulus is a mathematical constant, and the type
of field elements felem is defined using a refinement type, as the
type of natural numbers (nat) less than the prime. Field operations
are then defined using the mathematical operators for addition,
multiplication and modulo. The full Poly1305 MAC is specified as
the evaluation of a polynomial over this field. The specification is
then compiled to OCaml and subjected to a substantial amount of
testing, to detect specification bugs.

Low★ is a stateful subset of F★ which models the C memory lay-
out of the heap and stack. Using Low★, the programmermanipulates
arrays, reasoning about their liveness, disjointness and location
in memory. Low★ uses machine integers (instead of mathematical
integers), which forces the programmer to reason about their over-
flow semantics and to choose low-level data representations for
abstract values. For example, field elements in Poly1305 have 130
bits, which does not fit in a machine integer, but we can encode it
as an array of five 32-bit integers (written lbuffer uint32 5).

Each stateful function is defined using one of the Low★ effects:
Stack for functions that are only allowed to allocate memory on
the stack (hence trivially ensuring there are no memory leaks), ST
for all other Low★ functions. For example, we present the signature
of a function poly1305_load that takes an 16-byte input block b,
converts it into a field element, and writes the result in f:

let poly1305_felem = lbuffer uint32 5
val poly1305_load (f:poly1305_felem) (b:lbuffer uint8 16ul): Stack unit
(requires 𝜆h→ live h f ∧ live h b ∧ disjoint f b)
(ensures 𝜆h0 _h1→modifies (loc f) h0 h1 ∧

as_felem h1 f == Spec.Poly1305.load (as_seq h0 b))

The pre-condition (requires) of poly1305_load talks about the
liveness and disjointness of the input arrays, needed for memory
safety. The post-condition (ensures) has amodifies clause: only the
field element f is modified, leaving b or any other disjoint object
unchanged, and a functional correctness guarantee relating the
output to the corresponding function in the Poly1305 specification.
F★ verifies that the implementation of poly1305_load meets this
specification. Furthermore, since the types uint32 and uint8 may
potentially hold secret data, the typechecker ensures that they are
only used in secret-independent (“constant-time”) operations.

KreMLin compiles Low★ code, once typechecked, to auditable,
readable C, using a series of many small, composable passes. The
Low★ preservation theorem [35] states that the translated C code
exhibits the same execution traces as the original verified Low★

program. Hence, we obtain C code that is functionally correct,
memory safe, and secret independent. This approach was used
by several verified software projects, such as HACL★, but also a

3

cryptographic provider [34], a parsing library [36], and a QUIC
implementation [23].

Although Low★ is a C-like first-order language, a programmer
can use the higher-order features of F★ to write generic code param-
eterized by constants, types, and functions. At compile time, such
functions (ormeta-programs) are inlined at each call site and aggres-
sively simplified (or specialized) to yield first-order Low★ code that
can be translated to C. In particular, function definitions annotated
with inline_for_extraction are always inlined by the compiler. §3.4
illustrates the full power of the meta-programming features of F★
on a detailed cryptographic example.

Meta-F★ refers to the discipline of relying on the F★ compiler
to generate or transform existing code before compilation. Some
simple meta-programming is built into F★, through keywords.

inline_for_extraction let pow4 (x: uint32 { x < 256 }) =
[@inline_let] let pow2 = x ∗ x in
pow2 ∗ pow2

At compile-time, F★, seeing that pow4 is “inline for extraction”,
replaces any call to pow4, say pow4 2ul, with its definition and
further simplifies it, since it is a pure computation, to 16ul.

In addition, Meta-F★ provides a general-purpose framework [32],
where the meta-language is F★ itself, an approach known as elabo-
rator reflection (pioneered by Idris [22].) Essentially, one can write
program and proof transformations (called tactics) in F★ that are
executed by F★ at compile-time and the result is re-typechecked,
ensuring that tactics cannot generate ill-typed terms.

3 WRITE & VERIFY ONCE; COMPILE N TIMES
HACL×N is a new SIMD-oriented extension of HACL★, where the
motto is to verify once, but compile and specialize many times, in
order to maximize programmer productivity. For example, when im-
plementing SHA-2, we write a single generic implementation for all
four variants and specialize it to obtain both scalar and vectorized
implementations for each variant on each platform, yielding six-
teen verified C implementations in total. This aggressive approach
towards code and proof reuse relies on an intentional, careful scaf-
folding of verified libraries and compilation techniques. This section
describes how this methodology is implemented in HACL×N.

3.1 Generic integer and array libraries
Low★ provides builtin types and operators for all the machine
integers (from 8 to 128 bits) supported by mainstream C compilers.
However, if we wanted to define a new operator or function that
works generically for all machine integers, such as rotate-left or
constant-time comparison, wewould have to implement (and verify)
it for each kind of machine integer, which is both tedious and
unproductive. In a language like C++, we would usually use a
template to define such functions; and in Cwewould use an untyped
macro. To recover the convenience of templates within the strong
type system and semantics of F★, we define a generic machine
integer module Lib.IntTypes for use in crypto code:

type inttype = | U8 | U16 | U32 | U64 | U128 | S8 | S16 | S32 | S64
type secrecy_level = | SEC | PUB
val sec_int_t: inttype→ Type
let int_t (t:inttype) (l:secrecy_level) : Type =

match l, t with
| PUB, U8→ LowStar.UInt8.t
| SEC, _→ sec_int_t t | ...

inline_for_extraction val (+.): #t:inttype→ #l:secrecy_level
→ a:int_t t l→ b:int_t t l→ int_t t l

The type int_t is parameterized over two indices: inttype enumer-
ates all known variants of integer types, while secrecy_level dis-
tinguishes public data from secret data. The former allows hiding
the proliferation of integer models under a single type. The latter
enforces the secret independent coding discipline of HACL★ [44]
and unifies secret and public integers under a single abstraction,
thus relieving the programmer from having to deal with yet another
set of operators for secret data. The type int_t hence has 18 variants.
Our library defines several abbreviations for convenience, such as
let uint32 = int_t U32 SEC or uint8, which we use in this paper.

The operator +. for modular addition is parameterized (over-
loaded) over all integer types and secrecy levels (# denotes implicit
arguments, inferred automatically by F★.) Its definition performs a
case analysis on the integer type t and calls the appropriate builtin
machine integer operation. Thanks to inlining, whenever +. is ap-
plied to (say) a public (PUB) 32-bit unsigned integer (U32), F★ will
simplify away all the non-matching cases and replace it by a call to
native 32-bit addition (LowStar.UInt32.add).

The type of secret integers sec_int_t is abstract, hence nothing
is revealed about the nature of secret integers, and the only oper-
ations over them are those offered by Lib.IntTypes. In particular,
operations that are known to be non constant-time (e.g. division)
have a precondition that the arguments be public. Any attempt to
use a secret integer for branching or memory access is a type error.

To add a new integer type (e.g. S128) to Lib.IntTypes, we need
to extend inttype and define a new case for each operator that this
integer type supports. Adding new operators is similar. This style of
defining parameterized types with selectively enabled overloaded
operators is a lightweight form of (bounded) type classes [39]. Full
type classes were not available in F★ when we began this work, but
we plan to experiment with their use in future work.
Generic arrays. Low★ also supports many different kinds of ar-
rays: mutable, immutable, and const pointers to either mutable or
immutable arrays. We apply the same idea of defining overloaded,
universal operators for various array types by defining a library
module Lib.Buffer that defines a generic array type: lbuffer #b t n,
where the parameter b is either MUT, IMMUT or CONST, t is the
type of each element, and n is the length of the array.

Using these overloaded operators, we can concisely define func-
tions like the dereference-then-add operation below that generically
works for all 54 combinations of array and integer types:

let deref_add #b #t #s (x y: lbuffer #b (int_t #t #s) 1ul): Stack (int_t #t #s) =
x.[0ul] +. y.[0ul]

3.2 Abstract integer vectors for SIMD code
SIMD programming in C usually requires dealing with a patch-
work of headers and compiler builtins, depending on the target
instruction set (e.g. ARM Neon, Intel AVX2).

4

In order to establish clear interfaces and abstraction bound-
aries, we introduce a low-level machine vector library dubbed
Lib.IntVector.Intrinsics that hides platform differences behind a
shared interface. This module selects and axiomatizes vector op-
erations that are general enough to be implemented using, say,
both Neon and AVX. For example, it defines arithmetic and bitwise
operations for 128-bit, 256-bit, and 512-bit vectors. We carefully
audit its semantics, and perform rigorous testing to ensure that our
specifications carefully capture the intrinsics’ expected behavior.

At compile-time, calls to this library are diverted to a hand-
written C implementation that calls the corresponding SIMD in-
trinsics provided by the underlying platform. For example, the F★
module defines vec128_xor; and its C implementation either calls
_mm_xor_si128 (on Intel AVX) or veorq_u32 (on ARM Neon).

As the next step, in order to enable programmers to write generic
vectorized code that works for any platform, we define a more ab-
stract vector library of overloaded operators over all vector widths:

val vec_t: t:inttype→w:width→ Type
inline_for_extraction val (+|): #t:inttype→ #w:width→
v1:vec_t t w→ v2:vec_t t w→ vec_t t w

val vec_v: #t:inttype→ #w:width→ vec t w→ lseq (uint_t t SEC) w
val vec_add_mod_lemma: #t:inttype→ #w:width→
v1:vec_t t w→ v2:vec_t t w→ Lemma (ensures (
vec_v (v1 +| v2) == map2 (+.) (vec_v v1) (vec_v v2)))

The type vec_t is parametric over its width w, and the type t of
its elements. The module only offers constructors for valid combina-
tions of width and t, and defines abbreviations for commonly-used
types like uint32x4 and uint32x8.

Similarly to the integer operator +., we define the overloaded op-
erator +| which is the point-wise lifting of modular integer addition
to vectors of any width. Just like with integers, both the type (vec_t)
and the operations (+|) are reduced away by F★ at compile-time,
and replaced with calls to the low-level SIMD intrinsics. In order
to reason about the semantics of vector operations, we use the
vec_v function, which reflects a vector as a sequence of integers.
For example, we specify vector addition +| in terms of point-wise
addition (map2 (+.)) on the sequences returned by vec_v.
Towards Generic Code and Proofs. The design of our generic
libraries is a key technical device that allows us to attain greater
productivity when authoring verified code inHACL×N. By bringing
together all variants of integers, arrays, and vectors into a few,
well-documented, extensible libraries, we provide both newcomers
and experts with intuitive yet poweful APIs that they can use to
implement new crypto algorithms. Moreover, these APIs encourage
programmers to write generic code that is succinct, readable, and
easy to maintain.

For example, both Blake2 and SHA-2 have multiple variants,
differing mainly in their internal integer representation (uint32 vs.
uint64). Most cryptographic libraries contain independent code for
each variant, with only the more popular variants (e.g. SHA-256)
being optimized for SIMD platforms. Using our libraries, however,
we write and verify generic implementations for Blake2 and SHA-
2 which we instantiate to obtain optimized SIMD code for each
variant.

We believe that our use of generic strong-typed integers and
vectors is generally applicable as a software engineering pattern

for crypto code, even in other languages like Rust and verification
frameworks like Jasmin. Within Low★, we anticipate building many
more such generic libraries in the future.

3.3 Representation-agnostic crypto code
We now illustrate how we can use our abstract integer and vector
libraries to write generic implementations for algorithms, even
when their internal data representations on different platforms
are different. (We leave a detailed discussion of SIMD algorithmic
techniques to §4 and discuss here only the compilation aspects.)

For example, our vectorized implementation of Poly1305 (§4.4)
supports multiple vector architectures, identified by a type varch:

type varch = |M32 | M128 | M256 |M512
let poly1305_ctx (s: varch) = match s with
| M32→ lbuffer MUT (vec_t U64 1) 25ul
| M128→ lbuffer MUT (vec_t U64 2) 25ul | ...

All the types and code in the Poly1305 implementation are param-
eterized by a target varch value s. However, only a few of these
definitions need to inspect s. The Poly1305 internal state repre-
sentation (poly1305_ctx s) is defined as a mutable buffer holding
five vectors where the width of these vectors depends on s. On
scalar 32-bit machines (s=M32), each vector has one element (i.e.
is a uint64), on ARM Neon and Intel AVX (s=M128), each vector
has two elements, etc. Similarly, the number of blocks processed in
parallel is different on each vector architecture:

inline_for_extraction let blocklen (s:varch): int_t U32 PUB =
match s with
| M32→ 16ul
| M128→ 32ul | ...

Scalar code processes 1 block (16 bytes) at a time, 128-bit vectorized
code processes 2 blocks (32 bytes) at a time, etc.

Once we have set up these basic definitions, however, the vast
bulk of the Poly1305 implementation is generic and works uni-
formly on all four architectures. It never needs to do a case analysis
on s, except if we wanted to implement some platform-specific
optimization. This code will not need to be updated even if we
extend varch to support another vector size. For example, the
poly1305_update function loops over the input data in blocklen-
sized chunks, then processes each chunk to update the state:

inline_for_extraction val poly1305_update: #s:varch→
ctx:poly1305_ctx s→ len:size_t→ text:lbuffer uint8 len→ Stack unit

Although the length of each chunk and the internal state represen-
tation both depend on s, the code and proof for poly1305_update
is fully generic; it never relies on the actual value of s.

To compile poly1305_update to C, we must first instantiate its s
parameter for a target architecture:

let update32 = poly1305_update #M32

At compile-time, F★ processes the inline_for_extraction annotation
on poly1305_update end replaces the call site with the function def-
inition. It then repeatedly simplifies the code by partially applying
functions whose s parameter is known, inlining types and functions,
propagating constants, evaluating case analyses, and discarding
unreachable branches, until all mentions of s have been eliminated.

5

The resulting C code corresponds to a scalar implementation of
Poly1305 that operates over arrays of uint64 values:

void Poly1305_32_update32(uint64_t ∗ctx, uint32_t len, uint8_t ∗text);

There is no verification cost associated to performing a partial
application of poly1305_update to a concrete argument: the three
other cases, for 128, 256 and 512-bit specialized variants of Poly1305,
also come for free, needing no new code or proofs.

3.4 Large-scale program specialization
The technique described above suffers from one caveat: the entire
algorithm must be inlined into the top-level function in order to
get fully applied matches to appear and be reduced away by F★.
While this is fine for a mid-size algorithm such as Poly1305, for
a larger piece of code such as HPKE (§5.2), this would generate
prohibitively large and unreadable C code.

We now address very-large scale genericity, and use the full
power of Meta-F★ to solve this problem. We have written a tactic
(i.e. a meta-program) that takes an algorithm written in a normal
style and transforms its entire call-graph, rewriting the algorithm
in a form similar to C++ templatized code. After rewriting, the
programmer can generate specialized versions of their code like we
did above for Poly1305, with the added benefit that the structure of
the call-graph is preserved, rather than inlined away.

The tactic takes upon the burden of rewriting the code in a
slightly more convoluted form (described below), meaning there is
no extra cost for its users. It is flexible, and allows the programmer
to annotate their code to specify which functions should be inlined
away and which ones should remain at extraction-time. At the time
of writing, our tactic is the second largest Meta-F★ program written
(> 600 LoC), and is used in almost every algorithm in HACL×N.
Overview.We now illustrate the inner workings of our tactic on
HPKE, a composite cryptographic construction described in §5.2.
HPKE calls into a Diffie-Hellman (DH), an AEAD and a hash algo-
rithm. HPKE is agile over the choice of these algorithms, and so
our generic HPKE code is parameterized by a triplet of algorithms:

type hpke_index = dh_alg & aead_alg & hash_alg

To instantiate HPKE, the programmer first chooses a triplet of al-
gorithms, and then chooses an implementation of each algorithm.
For example, fixing aead_alg to be Chacha20Poly1305 still allows
four possible ChaCha-Poly implementations, one for each degree of
vectorization. By mixing and matching algorithms and implementa-
tions, we can build 54 combinations of HPKE. Our tactic allows us to
verify HPKE once, for each possible triplet of algorithms, and enjoy
specialization for free for any combination of implementations.

hpke
calls→ hpkehelper

calls→ AEAD.encrypt

The (simplified) call-graph of HPKE is described above, where
hpke_helper was split out for proof modularity, but should not
appear in the generated C code, as it would be too verbose.

Using F★’s custom annotations, the programmer decorates both
hpke and AEAD.encrypt with [@@Specialize], and hpke_helper
with [@@Inline]. Doing so, they indicate to the tactic that hpke
and AEAD.encrypt should both remain in the call-graph, while
hpke_helper is to be inlined in its callers’ bodies.

Upon executing, the tactic traverses the call-graph, starting from
hpke, and proceeds as follows. First, inlined functions are elim-
inated, leaving a call-graph only made up of specialized nodes.
Then, hpke is rewritten to take as extra parameters function point-
ers for every specialized function that it calls into. We call this the
convoluted form: the user could have written it manually, but the
syntactic overhead would have been substantial. After rewriting,
the signature of hpke becomes as follows:

let snd3 (_, x, _) = x
val hpke #i:hpke_index→ encrypt:AEAD.encrypt_t (snd3 i)→ ...

Here,AEAD.encrypt_t a stands for the type of an AEAD encryption
function for algorithm a, and ... stands for the original arguments
of the hpke function before the rewriting.

In addition to being applied to an index specifying the algo-
rithms it depends on, hpke needs to also be applied to specialized
implementations of these algorithms:

inline_for_extraction let aead_alg = Chacha20Poly1305
let encrypt_cp32: encrypt_t aead_alg = ChachaPoly.encrypt #M32
let hpke_cp32 = HPKE.hpke (..., aead_alg, ...) encrypt_cp32

The encrypt_cp32 function above is a specialized implementation
of Chacha-Poly admissible for any index (..., Chacha20Poly1305, ...).
The application of the tactic-rewritten hpke to a concrete index and
encrypt_cp32 generates an implementation that calls the Chacha-
Poly algorithm, specifically its scalar implementation.

The shape of the call-graph is preserved, as hpke_cp32 calls into
encrypt_cp32; furthermore, this technique allows swapping out
encrypt_cp32 for any other variant, giving e.g. hpke_cp256.

Using our tactic, the proof of HPKE is exclusively concerned with
algorithmic agility, leaving implementation choices entirely up to
the module that performs concrete instantiations. This enforces
strong modularity, as HPKE need not be aware of the current or
future implementations for a given algorithm.

The methodology applies, naturally, to all possible combinations
of choices for DH, AEAD and hash, meaning we can obtain up
to 54 specialized implementations of HPKE for free; 15 of these
implementations are currently packaged within HACL×N.
Verification and Debugging. As mentioned in §2, the tactic is
not part of the TCB, since whatever code the tactic generates is
type-checked again by F★. This is by design: unlike, say, MTac2 [30],
Meta-F★ [32] does not allow the user to prove properties about tac-
tics. This is a pragmatic design choice, trading provable correctness
for ease-of-use and programmer productivity.

Tactics are just one tool in the utility belt of the F★ programmer.
We experimented with other strategies, such as type classes, but
found that they imposed a lot of overhead on the user: if the call-
graph has depth 𝑛, then the user needs to materialize 𝑛 − 1 type
classes for each level of specialized functions. We thus found our
“templatization” tactic to be simpler to use, and therefore better for
proof productivity.

Debugging tactics and tactic-generate code is straightforward.
Either the tactic itself fails, and F* points to the faulty line in the
meta-program; or the generated code is ill-typed, in which case we
can examine it like any other F* program. In practice, after some

6

let g (alg:blake2_alg) (st:state alg) (a b c d:idx) (x y:word alg): state alg =
let st = st.[a]← (st.[a] +. st.[b] +. x) in
let st = st.[d]← (st.[d] ^. st.[a]) >>>. (rotc alg 0) in
let st = st.[c]← (st.[c] +. st.[d]) in
let st = st.[b]← (st.[b] ^. st.[c]) >>>. (rotc alg 1) in
let st = st.[a]← (st.[a] +. st.[b] +. y) in
let st = st.[d]← (st.[d] ^. st.[a]) >>>. (rotc alg 2) in
let st = st.[c]← (st.[c] +. st.[d]) in
let st = st.[b]← (st.[b] ^. st.[c]) >>>. (rotc alg 3) in
st

let mixing_core (alg:blake2_alg) (st:state alg) (m:state alg): state alg =
let st = g alg st 0 4 8 12 m.[0] m.[1] in
let st = g alg st 1 5 9 13 m.[2] m.[2] in
let st = g alg st 2 6 10 14 m.[4] m.[5] in
let st = g alg st 3 7 11 15 m.[6] m.[7] in
let st = g alg st 0 5 10 15 m.[8] m.[9] in
let st = g alg st 1 6 11 12 m.[10] m.[11] in
let st = g alg st 2 7 8 13 m.[12] m.[13] in
let st = g alg st 3 4 9 14 m.[14] m.[15] in
st

Figure 2: F★ spec for the core Blake2 computation.

initial debugging, our tactic never generated ill-typed code (in over
20 use cases) and was used successfully by other collaborators.

4 SIMD CRYPTO PROGRAMMING PATTERNS
We now identify a series of SIMD parallelization strategies and
apply them to build and verify generic vectorized implementations
for four families of cryptographic algorithms. The patterns we detail
here are not meant to be exhaustive; for example, we do not cover
bit- and byte-slicing. However, these patterns cover most of the
standard vectorization strategies that we have seen used in popular
cryptographic libraries. Although we apply each pattern only to a
single algorithm family, we provide verified generic libraries that
can be used to apply these patterns to other similar algorithms.

4.1 Exploiting Internal Parallelism (Blake2)
We first consider algorithms that are explicitly designed to allow
their core operations to be parallelized. We illustrate this pattern
for the Blake2 hash algorithm, but similar strategies apply to other
crypto algorithms like ChaCha20 and Salsa20.
Formally Specifying Blake2. The Blake2 cryptographic hash al-
gorithm [12] is standardized in IETF RFC 7693 [38]. We formalized
this RFC in F★ and the main types in the resulting spec are:

type blake2_alg = | Blake2s | Blake2b
let word_t (alg:blake2_alg) = match alg with
| Blake2s→U32
| Blake2b→U64

let word (alg:blake2_alg) = int_t (word_t alg) SEC
type state (alg:blake2_alg) = lseq (word alg) 16

Blake2 has two variants, Blake2s and Blake2b; the first uses 32-
bitwords, whereas the latter uses 64-bit words. We specify theword
type as an algorithm-dependent machine integer that is labeled
as secret (SEC), which enforces that all operations on these words
must be secret independent (“constant-time”). The Blake2 state, also

let g_vec (alg:blake2_alg) (st:vec_state alg) (x y: vec_row alg) =
let (a,b,c,d) = (0,1,2,3) in
let st = st.[a]← (st.[a] +| st.[b] +| x) in
let st = st.[d]← (st.[d] ^| st.[a]) >>>| (rotc alg 0) in
let st = st.[c]← (st.[c] +| st.[d]) in
let st = st.[b]← (st.[b] ^| st.[c]) >>>| (rotc alg 1) in
let st = st.[a]← (st.[a] +| st.[b] +| y) in
let st = st.[d]← (st.[d] ^| st.[a]) >>>| (rotc alg 2) in
let st = st.[c]← (st.[c] +| st.[d]) in
let st = st.[b]← (st.[b] ^| st.[c]) >>>| (rotc alg 3) in
st

let diagonalize (alg:blake2_alg) (st:vec_state alg) : vec_state alg =
let st = st.[1]← vec_rotate_right_lanes st.[1] 1ul in
let st = st.[2]← vec_rotate_right_lanes st.[2] 2ul in
let st = st.[3]← vec_rotate_right_lanes st.[3] 3ul in
st

let mixing_core_vec (alg:blake2_alg) (st:vec_state alg)
(m:vec_state alg) : vec_state alg =

let st = g_vec alg st m.[0] m.[1] in
let st = diagonalize alg st in
let st = g_vec alg st m.[2] m.[3] in
let st = undiagonalize alg st in
st

Figure 3: 4-way vectorized spec for Blake2.

called a working vector, is a 4 × 4 matrix of words, represented in
the RFC as a sequence (lseq) of 16 words, laid out row-by-row.

To hash an input message, Blake2 first splits it into state-sized
blocks (64 bytes for Blake2s, 128 bytes for Blake2b), and processes
each block in sequence by calling a compression function. The core
computation of the compression function is a loop that repeatedly
loads a message block, permutes it according to a table, and then
calls the mixing_core function depicted in Figure 2.

The mixing_core function in turn calls a shuffling function g 8
times. Each call takes 2 words from the message (x,y), and reads,
shuffles, and writes four words in the Blake2 state (at indexes
a,b,c,d), using a combination of modular addition (+.), xor (^.), and
right-rotate (>>>.). We use overloaded operators that work for both
uint32 and uint64, and this allows us to write a single generic, yet
strongly-typed, formal specification for both Blake2s and Blake2b.

The resulting F★ specification is executable and can be seen as
a reference implementation of the RFC. We tested it against test
vectors from the RFC and more comprehensive tests we added
ourselves. Interestingly, our tests revealed a bug in a corner case of
our specification when processing the last block. This bug was not
exercised by the RFC test vectors, and this serves to reemphasize
the need for mechanized specifications and formal verification.
Rearranging Code for 4-way Vectorization. Each of the first
four calls to g in themixing_core function read and modify a differ-
ent column of the state matrix ((0, 4, 8, 12), (1, 5, 9, 13), . . .). Hence,
these calls can be executed in parallel [12]. The next four calls pro-
cess different diagonals of the state and can also be executed in
parallel. To exploit this 4-way parallelism inherent in Blake2, we
rearrange the state to use vectors:
type vec_row (alg:blake2_alg) = vec_t (word_t alg) 4
type vec_state (alg:blake2_alg) = lseq (vec_row alg) 4
val to_vec (alg:blake2_alg) (st:state alg) : vec_state alg
val from_vec (alg:blake2_alg) (st:vec_state alg) : state alg

7

The state is now explicitly a matrix with four rows, and each
row is a vector with four words. Based on this vectorized state, we
can define a vectorized spec for Blake2 in F★. We will relate the
two specs using functions (to_vec, from_vec) that inter-convert
between the original scalar state and its vectorized form.

The core Blake2 computations are rewritten as shown in Fig-
ure 3. The function g_vec applies the function g to each column
in parallel. Using our vector library, the code for this function is
remarkably similar to that of g; we simply replace the integer op-
erations (+.,^.,>>>.) with their vector counterparts (+|,^|,>>>|) and
we set the indexes 𝑎, 𝑏, 𝑐, 𝑑 to column numbers 0, 1, 2, 3.

The benefit of vectorization becomes clear in themixing_core_vec
function; it now calls g_vec only twice, since each call processes
four columns at a time. If each vector operation has the same cost
as a scalar operation, this transformation can provide up to a 4x
performance improvement. However, one must account for the cost
of loading, storing, and transforming vectors. For example, before
the second call to g_vecwe need to diagonalize the state, by rotating
three of the row vectors, and undiagonalize it after.

The vectorized F★ spec acts as an intermediate step between the
original F★ specification and the vectorized Low★ implementation.
We prove that the two specs are equivalent via a series of lemmas.
For example, we prove that mixing_core_vec computes the same
function as mixing_core, but on the vectorized state:

∀(alg:blake2_alg) (st:state alg) (m:state alg).
mixing_core alg st m ==
from_vec (mixing_core_vec alg (to_vec alg st) (to_vec alg m))

Implementing andVerifyingVectorizedBlake2.Our Low★ im-
plementation of Blake2 closely follows the vectorized specification,
but generalizes it further. On machines that support sufficiently
wide vector instructions (128-bit for Blake2s, 256-bit for Blake2b),
the implementation uses 4-way vectorization. On all other plat-
forms, it defaults to scalar 32-bit code. By carefully structuring our
code, we are able to define a single generic implementation for all
four variants: scalar and vector, Blake2b and Blake2s.

The only other difference between the vectorized spec and our
Low★ code is that the code modifies the state in-place, instead of
copying the state at each modification. We prove that this code is
memory-safe (it does not read or write arrays outside their bounds)
and we prove that it is functionally correct with respect to the
vectorized F★ specification, and by composing this with spec equiv-
alence, we prove that it conforms to the original Blake2 spec.
Compiling to C with Vector Intrinsics. We compile the Low★

code using KreMLin to obtain 4 C files: Blake2s_32.c, Blake2b_32.c,
Blake2s_128.c, and Blake2b_256.c, each offering the same interface.
The first two contain portable code that runs on any 32-bit platform.

The C code in Blake2s_128.c is essentially a sequence of calls to
128-bit vector operations. This code can be linked with our library
of vector intrinsics, and executed on any machine that supports
Arm Neon or Intel AVX/AVX2/AVX512. For example, on Intel AVX,
the C code for the first two shuffling operations of g_vec looks like:

st[0U] = _mm_add_epi32(st[0U], st[1U]);
st[0U] = _mm_add_epi32(st[0U], x);

let sha2 (a:sha2_alg) (in_len:size_nat) (input:lseq uint8 in_len)
: lbytes (hash_len a) =

let st0 = init a in
let blocks = in_len / blocksize a in
let st = repeati blocks (𝜆 i st→

let b = sub input (i ∗ blocksize a) (blocksize a) in
compress_block a b st)

st0 in
let last_len = in_len % blocksize a in
let last = sub input (in_len − last_len) last_len in
let st = pad_compress_last a in_len last_len last st in
emit a st

Figure 4: F★ spec for generic SHA-2 hash function.

st[3U] = _mm_xor_si128(st[0U], st[3U]);
st[3U] = _mm_xor_si128(_mm_slli_epi32(st[3U],32U−rotc0),

_mm_srli_epi32(st[3U],rotc0))

Similarly, Blake2b_256 relies on AVX2 intrinsics and can be exe-
cuted on any Intel AVX2/AVX512 machine. Performance numbers
for all these implementations are given in §6. On Intel processors,
vectorization speeds up Blake2 by about 30%.
Further Platform-Specific Optimizations.We have focused on
writing generic code to avoid duplication of coding and verification
effort. However, one can sometimes get even better performance
by writing platform-specific code for some operations.

Blake2 requires each input message block to be permuted mul-
tiple times according to a known permutation schedule. In our
generic code, we implement these permutations naively, using vec-
tor loads. However, AVX512 offers more powerful gather instruc-
tions, so we implemented a special case of the message loading
functions for AVX512. On our test machines, these instructions did
not provide any performance benefit, but it is expected that these in-
structions will get faster in future processors. Another optimization,
used by other Blake2 implementations, is to write custom AVX2
permutation code. This code is tedious and non-generic (about
300 lines of C), but can result in a significant speedup. We did not
implement this optimization in our code, leaving it for future work.

4.2 Multiple Input Parallelism (SHA-2)
The next pattern generally applies to any cryptographic algorithm
when it is applied to a number of independent inputs (of the same
size). We extensively use this pattern throughout our library. Here,
we illustrate its use in our implementation of multi-buffer SHA-2.
Specifying the SHA-2 Family. The SHA-2 family of hash func-
tions [2] is perhaps the most widely used cryptographic construc-
tion today. It is used as a core component within method authenti-
cation codes (HMAC), key derivation (PBKDF2, HKDF), signature
schemes (Ed25519, ECDSA), and Merkle trees.

SHA-2 has four variants: SHA−224, SHA−256, SHA−384, and
SHA−512. The first two use 32-bit words, whereas the last two use
64-bit words. Like in Blake2, we define a generic F★ specification for
all four variants using our integer library. The SHA-2 state consists
of 8 words and each block consists of 16 words (i.e. 64 or 128 bytes).

Our F★ spec for the main sha2 hash function is depicted in Fig-
ure 4. It calls init to initialize the state (with some known constants);
it then goes into a loop (repeati) that calls compress to mix each

8

Figure 5: Transposing a 4×4 vectorized state. Each pair of vectors
is interleaved element by element, then each alternate pair is interleaved 2 at
a time. Transposing a 𝑛 ×𝑛 vectorized matrix needs 𝑛 log(𝑛) interleavings.

block of the input into the state; finally, it processes the last (partial)
block by calling pad_compress_last and emits the output hash.
Multi-Buffer SHA-2. The sha2 function is not obviously paral-
lelizable, since the output of each block is fed into the input of the
next. But if we were willing to hash 4, 8, or 16 independent equal-
sized inputs in parallel, performance could significantly improve.
This strategy is called multi-buffer SHA-2 [29] and has been applied
to other serial primitives like AES-CBC.

We write a generic vectorized specification for multi-buffer SHA-
2, defining the vectorized state as an array of𝑤-word vectors:

type vec_state (w:width) (alg:sha2_alg) = lseq (vec_t (word_t alg) w) 8
type multi_block (w:width) = lseq (vec_t (word_t alg) w) 16

Seen as a𝑤 × 8 matrix, each column of this state corresponds to
one input message, and hence the state represents the intermediate
SHA-2 state forw inputs. We process allw inputs block-by-block by
calling a vectorized version of the compress function, which takes
the vectorized state and a multi_block as input. Each multi_block
corresponds to the 𝑖th blocks of each of the w inputs; hence it is an
array of 16 vectors and can be seen as a𝑤 × 16 matrix.

Writing and verifying the vectorized compress function follows
a standard pattern. Like in the Blake2 g_vec function, we replace
each integer operation with the corresponding vector operation.
We then prove that this transformation results in a mapped version
of compress: it independently compresses each column in parallel.

The main remaining task for multi-buffer SHA-2 is functions for
loading the message blocks and then emitting the result. Both of
these operations require matrix transpositions.
A Library for Transposing Vectors. When we load an input
block using vector instructions, we naturally get these blocks loaded
in row-wise form. When implementing multi-buffer SHA-256 with
128-bit vectors, for example, we process 4 inputs in parallel. We
can efficiently load the 64-byte block from each input into 4 128-bit
vectors, hence obtaining 16 vectors where vectors 0..3 contain data
from input 0, 4..7 contain data from input 1 etc. To put this into the
column-wise multi_block format needed by vectorized compress,
we need to transpose vectors (0, 4, 8, 12) to obtain the first 4 vectors,
then transpose (1, 5, 9, 13) to obtain the next 4 vectors, and so on.

These kinds of transpositions are routinely needed in vectorized
cryptographic code (see ChaCha20 below) and so we implemented
and verified a generic library of vectorized transpositions called
Lib.IntVector.Transpose. For each transposition, we prove that the
result, seen as a matrix, is the transposition of the input.

A typical function provided by this library implements the 4 × 4
transposition depicted in Figure 5. It takes an array of 4 vectors
each with 4 words as input. It uses a vector interleaving operation

val sha256_4 (r0 r1 r2 r3: lbuffer uint8 32ul)
(len:size_t) (b0 b1 b2 b3: lbuffer uint8 len) : Stack unit

(requires (𝜆 h0→ all_live h0 [b0; b1; b2; b3; r0; r1; r2; r3] ∧
pairwise_disjoint [r0; r1; r2; r3]))

(ensures (𝜆 h0 _h1→
modifies (loc r0 |+| loc r1 |+| loc r2 |+| loc r3) h0 h1 ∧
as_seq h1 r0 == sha2 SHA2_256 (v len) (as_seq h0 b0) ∧
as_seq h1 r1 == sha2 SHA2_256 (v len) (as_seq h0 b1) ∧
as_seq h1 r2 == sha2 SHA2_256 (v len) (as_seq h0 b2) ∧
as_seq h1 r3 == sha2 SHA2_256 (v len) (as_seq h0 b3)))

Figure 6: Low★ API for 4-way vectorized multi-buffer SHA-
256.
to interleave each pair of vectors element-by-element, leaving the
low-half of the interleaved result in the first vector, putting the
high-half in the second vector. (Both Arm and Intel platforms offer
these kinds of interleaving instructions.) We then interleave each
pair of alternate vectors 2-by-2 to obtain the final result.

Other functions in this library extend this pattern to 8 × 8 and
16 × 16 transpositions, and also for non-square matrices. The main
complexity in writing and verifying these functions is in choosing
the right sequence of vector operations (some interleaving instruc-
tions can be much more expensive than others).
Implementing and Compiling Multi-Buffer SHA-2. We build
a generic implementation of SHA-2 in Low★ that can be instantiated
for all 4 SHA-2 algorithms and can be used with 4 or 8 inputs at
a time. Hence, SHA-256 can be run on 4 inputs at a time on ARM
Neon and 8 inputs at a time on Intel AVX2, while SHA-512 can be
run on 4 inputs at a time on AVX2, and 8 at a time on AVX512.

The main complexity in writing and verifying this Low★ code is
that each function needs to input and manipulate a large number
of buffers. For example, the Low★ type for 4-buffer SHA-256 is
depicted in Figure 6. It takes four equal-length buffers (𝑏0, 𝑏1, 𝑏2, 𝑏3)
as input and four hash-length buffers (𝑟0, 𝑟1, 𝑟2, 𝑟3) as output. We
require all 8 buffers to be live in the input heap, and we require
the four output buffers to be disjoint. F★ can then prove that the
code for this function is memory safe, that it only modifies the four
output buffers, and that the final value in each output buffer is the
expected hash value of the corresponding input. To make these
types easier to write and verify, we use a library of multi-buffer
predicates like all_live, pairwise_disjoint that are meta-evaluated
into conjunctions of base predicates.

The performance results for all variants of multi-buffer SHA-2
are given in §6. On Intel platforms, 4-buffer SHA-2 is about 2.5x
faster than scalar SHA-2, and 8-buffer SHA-2 is up to 7x faster.

4.3 Counter Mode Encryption (ChaCha20)
We next consider a SIMD pattern that applies to all counter-mode
encryption (CTR) algorithms, such as ChaCha20, AES, Salsa20, etc.
More generally, we present a loop combinator called map_blocks,
which maps a block-to-block function on some input data, and show
how to parallelize any program that uses this combinator.
SpecifyingGeneric CTR in F★.CTR is one of several block cipher
modes of operation standardized by [25]. It is notably used in the
two most popular authenticated encryption schemes: AES-GCM
and ChaCha20-Poly1305. We specify CTR as a generic construction
over any block cipher that meets the following interface:

9

type block = lbytes blocksize
val init: k:key→ n:nonce→ ctr0:nat→ state
val key_block: st:state→ i:nat→ block

The block cipher must define a constant blocksize, and types
for the key, nonce, and cipher state. It must define a function init
to initialize the state, given a key, nonce, and initial counter ctr0.
Finally, it must provide a function key_block that generates a block
of key bytes given a block number 𝑖 .

let encrypt_block (st0:state) (i:nat) (b:block) : block =
map2 (^.) (key_block st0 i) b

let encrypt_last (st0:state) (i:nat) (len:nat{len < blocksize})
(r:lbytes len) : lbytes len =

let b = create blocksize (u8 0) in
let b = update_sub b 0 len r in
sub (encrypt_block st0 i b) 0 len

let ctr_encrypt (k:key) (n:nonce) (ctr0:nat) (msg:bytes)
: cipher:bytes{length cipher == length msg} =

let st0 = init k n ctr0 in
map_blocks blocksize msg (encrypt_block st0) (encrypt_last st0)

Figure 7: Generic F★ Specification for CTR.

Given such a block cipher, we specify the CTR encryption algo-
rithm as depicted in Figure 7. The function encrypt_block encrypts
the 𝑖th message block by XORing it with the 𝑖th key block. The
function encrypt_last pads the last (partial) block with zeroes and
then encrypts it using encrypt_block.

Finally, the main encryption function ctr_encrypt (which is the
same as the decryption function) initializes the state and calls the
loop combinator map_blocks, which breaks the input msg into
blocks, sequentially calls encrypt_block for each block, and calls
encrypt_last for the last (partial) block.
Multi-Input Parallelism for theBlockCipher.Themap_blocks
combinator exposes the inherent parallelism in CTR: it processes
each block independently, and so can process any number of blocks
in parallel. To exploit this parallelism, we first have to write a
vectorized version of the block cipher:

type blocksize_v (w:width) = w ∗ blocksize
type multi_block (w:width) = lbytes (blocksize_v w)
type vec_state (w:width)
val init_v: w:width→ k:key→ n:nonce→ ctr0:nat→ vec_state w
val key_block_v: w:width→ vec_state w→ i:nat→multi_block w

Following the multi-input SIMD pattern, the vectorized block
cipher processes w blocks at a time. It has an internal vectorized
state vec_state that is initialized by the function init_v. The function
key_block_v generates w consecutive key blocks. The main proof
obligation is to show that these blocks correspond to the key blocks
numbered i∗w,i∗w+1,...,(i+1)∗w−1 in the original spec.

For ChaCha20, writing and verifying the vectorized block cipher
code follows the same pattern as SHA-2. The ChaCha20 state is an
array of 16 32-bit words, and so the vectorized state is an array of 16
vectors with w words each (each column corresponds to one input
block). We replace each integer operation in the block cipher code
with its vector equivalent, and we need to transpose the state before

generating the output key blocks. By reusing library lemmas about
vector operations and transpositions, we prove the correctness of
the key_block_v function for ChaCha20 with relatively little effort.
Parallelizing CTR. Vectorizing the block cipher effectively yields
a new block cipher with a larger blocksize. Hence, we can run the
standard CTR algorithm over this vectorized block cipher, by pro-
cessing w sequential blocks at a time. This results in a vectorized
spec for the ChaCha20. Our loop combinator library includes gen-
eral lemmas aboutmap_blocks, which allow us to prove the generic
correctness of vectorized CTR (relying on a correctness lemma for
the vectorized block cipher.) We instantiate this generic proof for
vectorized ChaCha20, but the pattern can also be easily applied to
other counter-mode encryption algorithms like AES-CTR.
Implementing and Compiling Vectorized ChaCha20.We im-
plement Vectorized ChaCha20 in Low★ in two steps. We first write
a module for multi-block ChaCha20 that can process w blocks at
the same time, for w=1,4,8,16. We then write a generic CTR module
that uses the map_blocks to process w blocks at the same time.

The implementation introduces a new optimization in the vec-
torized code for encrypt_block, which loads w blocks of data from
an input message, XORs it with w key blocks, and stores these
blocks into the output ciphertext. Using vector instructions, we
can implement this load-XOR-store loop generically and more effi-
ciently than the byte-by-byte XOR in encrypt_block. In some cases,
it is also beneficial to unroll this loop a few (say 4) times to take
maximum advantage of instruction pipelining.

Because of our generic code structure, adding new platforms
requires modest effort. For example, to add AVX512, the main addi-
tional effort was to add the relevant vector intrinsics and to define
and verify a 16× 16 transpose function, which is now in the library
and can be used in other algorithms.

We note that this vectorization pattern is not the only one that
applies to ChaCha20. The inner block cipher in ChaCha20 is inher-
ently parallelizable (similarly to Blake2) and this parallelization has
been exploited in prior work [20] and even verified [44]. However,
in our experiments, we found that vectorizing CTR was generally
more effective on our target platforms.

4.4 Polynomial Evaluation (Poly1305)
We now describe a SIMD pattern used in cryptographic algorithms
like Poly1305 and GCM, which are written in terms of polynomial
evaluation over a (large) arithmetic field. We show that these algo-
rithms can be written using a loop combinator called repeat_blocks
and detail how this combinator can be parallelized if the body of
the loop satisfies some algebraic conditions.
Specifying Poly1305. The Poly1305 one-time MAC function [19]
is standardized in IETF RFC7539 [3]. It takes a 32-byte key as input
and splits into two 128-bit integers 𝑠 and 𝑟 . It then splits the input
message into 16-byte blocks, hence transforming it to a sequence
of 128-bit integers (𝑚1,𝑚2 . . .𝑚𝑛); if the last block is partial, it is
filled out with zeroes to obtain a full block.

The main computation in the Poly1305 MAC evaluates the fol-
lowing polynomial in the prime field Z𝑝 , where 𝑝 = 2130 − 5:

𝑎 = (𝑚1 × 𝑟𝑛 +𝑚2 × 𝑟𝑛−1 + . . . +𝑚𝑛 × 𝑟) mod 𝑝

10

let process_block (r:felem) (b:block) (acc:felem) : felem =
fmul (fadd acc (encode b)) r

let process_last (r:felem) (len:nat{len < blocksize}) (b:lbytes len)
(acc:felem) : felem =

if len = 0 then acc else process_block r (pad_last len b) acc
let poly_eval (msg:bytes) (acc0 r:felem) : felem =
reduce_blocks blocksize msg
(process_block r)
(process_last r)

acc0

Figure 8: F★ spec for Poly1305 polynomial evaluation.

let process_blocks_v (w:width) (r_w:felem_v w)
(b:lbytes (w∗blocksize)) (acc:felem_v w) : felem_v w =

fadd_v w (fmul_v w acc r_w) (encode_v w b)
let process_last_v (w:width) (r:felem) (len:nat{len < w ∗ blocksize})

(b:lbytes len) (acc:felem_v w) : felem =
poly_eval b (normalize_v w r acc) r

let poly_eval_v (w:width) (msg:bytes) (acc0 r:felem) : felem =
let r_w = pow_v w r in
let acc0_v = to_acc_v w acc0 in
reduce_blocks (w∗blocksize) msg (process_blocks_v w r_w)
(process_last_v w r) acc0_v

Figure 9: Generic vectorized spec for Poly1305.

In practice, this polynomial is evaluated block by block, by applying
Horner’s method to rearrange the polynomial as follows:

𝑎 = ((. . . ((0 +𝑚1) × 𝑟 +𝑚2) × 𝑟 + . . . +𝑚𝑛) × 𝑟) mod 𝑝

We maintain an accumulator 𝑎, initially set to 0, and to process
each new block 𝑚𝑖 , we first add it to the accumulator, and then
multiply the result by 𝑟 (all operations in Z𝑝). Once the final block
is processed, we compute 𝑠 + 𝑎 mod 2128 to obtain the MAC.

Figure 8 depicts our F★ specification for the polynomial evalua-
tion described above. It uses a loop combinator called repeat_blocks
that splits the input into block-sized chunks. For each block, it calls
process_block, which in turn calls the two field arithmetic opera-
tions in Z𝑝 : fadd to add an encoded block to the accumulator acc,
and fmul to multiply the result with r. The function process_last
pads and processes the last block. Our full F★ specification for
Poly1305 is not much larger than this; it only adds some concrete
details from the RFC about encoding blocks and keys.
Parallelizing Polynomial Evaluation. Several prior works have
observed (e.g. [20]) that the algebraic shape of polynomial evalua-
tion lends itself to SIMD vectorization. For example, we can process
blocks two-by-two by rewriting the polynomial as follows:
𝑎1 = (. . . ((𝑚1 × 𝑟2 +𝑚3) × 𝑟2 +𝑚5) × 𝑟2 + . . . +𝑚𝑛−1) mod 𝑝

𝑎2 = (. . . ((𝑚2 × 𝑟2 +𝑚4) × 𝑟2 +𝑚6) × 𝑟2 + . . . +𝑚𝑛) mod 𝑝

𝑎 = (𝑎1 × 𝑟2 + 𝑎2 × 𝑟) mod 𝑝

Let’s assume that 𝑛 is even. We split the polynomial evaluation
into two computations, one processes odd-numbered blocks, and
the other processes even numbered blocks, but both computations
are otherwise identical. We now have two accumulators (𝑎1, 𝑎2)
initialized to (𝑚1,𝑚2). We process two blocks (𝑚2𝑖−1,𝑚2𝑖) at a time
by multiplying both (𝑎1, 𝑎2) by 𝑟2 and adding the result point-wise
to (𝑚2𝑖−1,𝑚2𝑖). After processing 𝑛 blocks, a final normalization step
multiplies 𝑎1 by 𝑟2 and 𝑎2 by 𝑟 and adds them.

This refactored computation effectively computes two polynomi-
als in parallel and it is easy to informally see why it is correct. We
formalize and generalize this pattern as a vectorized specification
of Poly1305 in F★ that can process any number (e.g. 1/2/4/8) of
blocks in parallel. Figure 9 depicts the vectorized spec.

The accumulator nowhas the type felem_v w, which represents a
vector ofw field elements. The function process_blocks_v evaluates
w blocks in parallel by calling vectorized versions (fmul_v, fadd_v)
of the field arithmetic functions. If less than w blocks of input
are left, we call the process_last_v function that normalizes the
vectorized accumulator to get a regular field element (felem), then
calls the original (scalar) poly_eval function on the remaining input.

To set up the vectorized polynomial evaluation, poly_eval_v first
precomputes 𝑟𝑤 and stores it in a vector r_W whose elements all
hold 𝑟𝑤 . It then loads the initial accumulator acc0 into the 0th
element of the vectorized accumulator acc0_v (all other elements
are set to zero) and calls repeat_blocks to process the input.

We generically prove, for all choices of w, that this vectorized
spec is functionally equivalent to the original Poly1305 spec:

∀w msg acc0 r. poly_eval_v w msg acc0 r == poly_eval msg acc0 r

The proof relies on general lemmas about field arithmetic and the
repeat_blocks combinator. We apply this lemma here to Poly1305
but it also applies to other polynomial MACs like GCM.
Implementing Multi-Input Field Arithmetic. The main effort
of implementing and verifying (scalar or vectorized) Poly1305 is in
the field arithmetic modulo 𝑝 . Since Poly1305 uses a 130-bit field, a
typical way of implementing a field element in Low★ is as an array
of 5 26-bit limbs, where each limb can grow to at most 64-bits. We
then need to implement custom modular Bignum arithmetic (fadd,
fmul) for this representation and prove it correct. In the original
HACL★ release, Poly1305 was one of the largest developments with
4716 lines, most of it dedicated to field arithmetic [44].

To implement vectorized Poly1305, we need to implement and
verify a multi-input field arithmetic library that can add and multi-
ply (fadd_v, fmul_v) multiple field elements in parallel. We take the
original scalar Poly1305 code of HACL★ and generalize it using the
standard multi-input pattern. Each limb is represented by a 64-bit
word, and a vectorized field element is an array of vectors, each of
which has w words. All functions are parameterized by the vector
width w and integer operations are replaced with vector ones. The
correctness proofs are adapted for vectorized inputs and outputs.

While themulti-input algorithmic transformation is itself straight-
forward, applying it to thousands of lines of scalar Poly1305 was a
challenge and constitutes our largest case study for the SIMD coding
and verification patterns in this paper. This is, however, a one-time
cost. Once we vectorized all the field arithmetic in Poly1305, adding
a new platform (such as AVX512) required only a modest amount
of work. Furthermore, the verified vectorized bignum library we
built for Poly1305 has many reusable components that can be used
in other primitives like Curve25519 in future work.

5 CRYPTOGRAPHY FOR ALL YOUR NEEDS
While cryptographic algorithms are often designed, standardized,
and implemented as independent components, they are typically
deployed and used as part of composite constructions. For example,

11

Portable Arm A64 Intel x64
Algorithm C code Neon AVX AVX2 AVX512 Vale

AEAD
Chacha20-Poly1305 ✓ [44] (+) ✓ (*) ✓ (*) ✓ (*) ✓ (*)
AES-GCM ✓ [21]
Hashes
SHA-224,256 ✓ [44] (+) ✓ (*) ✓ (*) ✓ (*) ✓ (*) ✓ [21]
SHA-384,512 ✓ [44] (+) ✓ (*) ✓ (*) ✓ (*) ✓ (*)
Blake2s, Blake2b ✓ [34] (+) ✓ (*) ✓ (*) ✓ (*)
SHA3-224,256,384,512 ✓ [34]
HMAC and HKDF
HMAC (SHA-2,Blake2) ✓ [44] ✓ (*) ✓ (*) ✓ (*) ✓ (*)
HKDF (SHA-2,Blake2) ✓ [44] ✓ (*) ✓ (*) ✓ (*) ✓ (*)
ECC
Curve25519 ✓ [44] ✓ [34]
Ed25519 ✓ [44]
P-256 ✓ [34]
High-level APIs
Box ✓ [44]
HPKE ✓ (*) ✓ (*) ✓ (*) ✓ (*) ✓ (*) ✓ (*)

Table 1: Extending HACL★ with vectorized crypto.
Implementations marked with (*) were newly developed for this paper;
those marked with a (+) replaced prior C implementations from [44]. These
C implementations are composed with platform-specific Intel assembly
code from Vale [21] (verified agains the same specs) to build the EverCrypt
provider [34]. (Vale assembly relies on AES-NI for AES-GCM, SHAEXT for
SHA-2, and ADX+BMI2 instructions for Curve25519.)

the Chacha20 cipher is only safe to use in conjunction with a one-
time MAC like Poly1305. The SHA-256 hash algorithm is used
within HMAC, HKDF, and a number of signature schemes. So,
even if the code for an individual algorithm is verified for memory
safety, correctness, or side-channel resistance, these guarantees
become quickly meaningless if the code is composed with a buggy
algorithm, or if the API provided by the algorithm is easy for an
application to misuse. Consequently, it is important for verified
crypto code to be deployed as part of a comprehensive verified
library of cryptographic constructions with safe usable APIs.

5.1 Integration and Deployment with HACL*
We contributed all the verified code developed in this paper to
the HACL★ project, and helped to integrate it with the existing
constructions and APIs in the HACL★ library. Tab. 1 summarizes
our contributions. For Chacha20, Poly1305, Blake2, and SHA-2, our
scalar code replaces the previous portable C code [44] and our vec-
torized implementations are offered as platform-dependent alterna-
tives. For each platform, we also build verified implementations of
the Chacha20Poly1305 AEAD construction, and we integrated our
hash implementations into HMAC, HKDF, Ed25519, and ECDSA.

Crucially, for each algorithm, we ensure that each of our imple-
mentations meets the same high-level specifications as the original
HACL★ code, and retains the same API. Hence, verified applications
over HACL★, such as EverQuic [23], do not need to be re-verified.

For existing clients of the HACL★ C library, such as the Linux
Kernel, Mozilla Firefox, or the Tezos Blockchain, this means that the
newer C code is a drop-in replacement, with no new specification or
API to be reviewed. Indeed, some of the new vectorized code from
HACL×N has already been deployed in production: Firefox Nightly
now uses our vectorized Chacha20-Poly1305 code and Tezos uses
our vectorized Blake2, yielding measurable performance benefits.

HACL★ includes a verified provider called EverCrypt [34] that
offers an agile, multiplexing API on top of both HACL★ and Vale

code. It uses CPU autodetection to dynamically dispatch API calls
to the most efficient implementation for the platform the code
is running on. We worked with the HACL★ developers to make
our HACL×N code available through the agile EverCrypt API. We
strongly encourage clients use this verified, future-proof API: as
more efficient implementations get added to HACL★, users of Ever-
Crypt automatically get upgraded to faster variants.

5.2 HPKE: a verified application of HACL×N
We now illustrate how HACL×N serves as a platform for authoring
verified cryptographic constructions and applications. We focus
on Hybrid Public Key Encryption (HPKE), a new cryptographic
construction that is undergoing standardization at the IETF [15],
and is already being used in several upcoming protocols [14, 37].

HPKE is a public-key encryption scheme with optional sender
authentication: any sender who knows the HPKE public key of a
recipient can encrypt a sequence of messages under this key and
send it over the network; the recipient can use the corresponding
private key to decrypt the messages. Optionally, the sender may
also use a pre-shared symmetric key or a private Diffie-Hellman
key to authenticate the message, but we do not support this feature.

At its core, HPKE relies on three components: (1) A key encap-
sulation mechanism (KEM) that generates a fresh secret shared
between the sender and recipient and encapsulates (encrypts) it
for the recipient’s public key; (2) A key derivation function (KDF)
that derives an encryption context containing a key and a nonce
from the shared secret; (3) An authenticated encryption algorithm
(AEAD) that uses the encryption key to encrypt and decrypt a se-
quence of messages. Hence, computationally expensive public-key
cryptography is only needed to initialize the encryption context,
which can then be used to efficiently encrypt any amount of data.

HPKE is an agile scheme that supports multiple ciphersuites. The
RFC recommends four KEMs (P-256, P-521, Curve25519, Curve448),
two KDFs (HKDF-SHA256, HKDF-SHA512) and three AEADs (AES-
GCM-128, AES-GCM-256, Chacha20Poly1305). Any combination
is valid: HPKE thus has 24 possible ciphersuites, and many more
implementation combinations.

Individually verifying all these would be intractable. However,
using the integrated HACL★ library, we can build a generic imple-
mentation of HPKE in 800 lines of code, in a way that is abstract in
the choice of its KEM, KDF and AEAD implementation. To instanti-
ate this code for a specific ciphersuite on a particular platform, we
only need to provide implementations for KEM, KDF and AEAD
on that platform to perform program specialization (§3.4), so long
as these meet our agile specifications. We instantiate and compile
our code to obtain 15 verified variants of HPKE that build upon
our new implementations of Chacha-Poly and SHA-2, as well as
previously verified implementations of AES-GCM, Curve25519 and
P-256 from Vale and HACL★. Each instantiation consists of about
10 lines of F* code, and compiles to about 380 lines of C code.

To use our HPKE implementation, applications have two options.
They can rely on the full HACL★ library and call HPKE through
the agile EverCrypt API. This way, clients automatically obtain the
fastest implementation available on each platform, at the expense of
extra run-time checks and a large codebase. Alternatively, they may
directly use one of the 15 specialized HPKE variants distributedwith
HACL×N, packaged with just the code that it needs. For example,

12

Algorithm Intel Kaby Lake Laptop Intel Xeon Workstation ARM Raspberry Pi 3B+ Coding and Verification Effort
Our Code Other Our Code Other Our Code Other Scalar Vec Equiv Low★ Out.

Scalar AVX2 Fastest Scalar AVX512 Fastest Scalar Neon Fastest Spec Spec Proof Impl. C
Chacha20 3.73 0.77 0.75 (j) 5.74 0.56 0.56 (d) 8.69 5.19 4.49 (o) 151 182 819 510 4083
Poly1305 1.59 0.37 0.35 (j) 2.31 0.39 0.51 (j) 4.20 3.11 1.50 (o) 56 122 370 2361 7136

(arith) +3594
Blake2b 2.56 2.26 2.02 (b) 3.97 3.13 2.84 (b) 6.99 – 6.02 (b) 430 441 324 1077 2824Blake2s 4.32 3.34 3.06 (b) 6.63 4.52 4.11 (b) 11.42 15.30 9.80 (b)
SHA224,256 7.41 1.62×8 1.49×8 (o) 11.36 1.69×8 2.29×8 (o) 15.70 12.92×4 15.09 (o) 213 420 662 1360 4647SHA384,512 5.06 1.95×4 3.25 (o) 7.38 1.44×8 4.99 (o) 11.27 – 9.77 (o)

Total (lines of specs, proofs, and code): 850 12242 18690
Table 2: Evaluating HACL×N Performance and Development Effort.
Performance (left): For each algorithm, we measure CPU cycles per byte when processing 16384 bytes of data. We list these numbers for our portable
(scalar) C code, for our best-performing vectorized implementation on the machine, and for the fastest alternative implementation we tested: (j) refers to
verified assembly code from Jasmin [9]; (o) is OpenSSL, (b) is code from the Blake2 team [12], (d) is code submitted by Romain Dolbeau to SUPERCOP. For
multi-buffer SHA-2, the total cycle count is divided by the number of inputs processed in parallel (indicated by ×𝑁).
Development Effort (right): All our specs and proofs are written in F★, our implementations are written in Low★ and then compiled to C. We calculate the
size of each file in the development using cloc, discarding comments. The Poly1305 implementation includes a large field arithmetic component, which is
separately listed. We write a single implementation of Blake2 and SHA-2 for all variants of these algorithms.

HACL×N provides a makefile that a user can use to compile just the
code needed for the HPKE ciphersuite consisting of Curve25519,
SHA-256, and Chacha20-Poly1305 for ARM, resulting in a self-
contained vectorized HPKE implementation with 3000 lines of C
(compared to 100K lines for the full library.)

6 EVALUATION AND DISCUSSION

Benchmarking Performance. Appendix A presents detailed per-
formance measurements and analysis for all our code obtained
using both the SUPERCOP framework [6] and a user-space version
of KBENCH9000 [24]. We benchmarked each algorithm on a low-
end ARM Cortex-A53 device (Raspberry Pi 3B+, supporting NEON),
a mainstream Intel i7-7560U laptop (Dell XPS13, supporting AVX2),
and a high-end Intel Xeon Gold 5122 workstation (Dell Precision,
supporting AVX512). We also benchmarked our code on 4 Ama-
zon EC2 instances; two with Intel Xeon CPUs, two with ARMv8
CPUs. All machines ran 64-bit Linux and the code was compiled
with GCC and CLANG (at −O3). We compared the performance
of our code to popular libraries like OpenSSL and LibSodium, to
optimized implementations contributed to SUPERCOP, to verified
assembly code from Jasmin, and to reference implementations for
each algorithm.

Table 2 summarizes the results. Our goal is to answer two ques-
tions: (1) what is the performance benefit of using our vectorized
HACL×N code over the portable C code previously used in HACL★;
(2) how does our code compare to optimized implementations, both
verified and unverified, both in C and in hand-written assembly.

On AVX2, our vectorized code for Chacha20, Poly1305, and SHA-
2 is 3-5X faster than scalar code. On AVX512, the speedup for these
algorithms is 5-10X. Blake2 offers smaller speedups: 1.13-1.29X
on AVX2, and 1.27-1.47X on AVX512. The reason for this modest
improvement is that the portable C code for Blake2 is already very
fast, and is heavily optimized by modern C compilers. On ARM
Neon, the performance gains are more modest. Chacha20 is 1.7X
faster and Poly1305 is 1.4X faster than scalar code. Perhaps more
surprisingly, the vectorized code for Blake2 and SHA-2 provides no
gains on low-end ARM devices, and is sometimes worse than scalar

code. This is a known issue on ARM CPUs where the latency of
vector shift instructions (used extensively in hash functions like
Blake2 and SHA-2) is quite high [4]. On higher-end ARM devices,
like the Apple A9, and on upcoming ARM servers, we expect that
vectorized code will reap significant benefits.

It is instructive to compare the performance of our ChaCha20-
Poly1305 code with Jasmin’s AVX2 assembly code, the only other
verified implementation. On the laptop, our AVX2 code is 3-5%
slower than Jasmin, and this performance gap is due to AVX2-
specific instruction interleaving optimizations in the Jasmin code.
However, Jasmin does not have an AVX512 implementation, so on
Xeon workstations, our AVX512 code is significantly faster than
Jasmin’s AVX2. Interestingly, on these machines, even our AVX2
code is faster than Jasmin, which indicates that the advantages of
careful instruction interleaving do not carry over to other platforms.
These measurements illustrate the tradeoff between our generic
programming methodology and platform-specific assembly. On a
specific platform, a skilled assembly programmer can eke out 5-
10% extra speed from crypto code. However, we obtain both AVX2
and AVX512 implementations from the same verified source code,
whereas one would have to re-write (and re-verify) a new AVX512
implementation in Jasmin. On ARM, our Chacha-Poly code is the
only verified implementation (Jasmin does not support ARM) and
is 1.16-2.1X slower than hand-optimized OpenSSL assembly.

Our generic Blake2 code is between 10-15% slower than other
implementations that include platform-specific permutation code.
Ourmulti-buffer SHA-256 code is 9% slower thanOpenSSL assembly
on AVX2 but 35% faster on AVX512. OpenSSL does not provide
multi-buffer implementations for other variants of SHA-2.

In summary, with the exception of hash functions on ARM de-
vices, vectorization provides a measurable speedup for all algo-
rithms on all platforms. Furthermore, the C code extracted from our
verified vectorized implementations is close in performance to the
fastest available hand-optimized assembly code on each platform.
Estimating Developer Skill and Effort. From a software engi-
neering viewpoint, we would like to answer two further questions:
(1) what is the coding and verification effort of HACL×N compared

13

to HACL★ [44]; (2) what is the developer skill and work required
to extend our library with new algorithms and new architectures.

Recall the workflow for developing and extending HACL×N
(Figure 1). Table 2 tries to quantify the effort for the main steps
in our workflow for each algorithm, in terms of lines of code and
proof. If we measure verification overhead in terms of lines of proof
for each line of generated C, HACL×N code has an overhead under
0.9X, compared to the 3X overhead in HACL★ [44].

In ChaCha20, for example, our code and proofs total to 1511
lines, this is more than the 691 lines for scalar ChaCha20 in HACL★,
but we are able to compile our code to a scalar implementation and
3 vectorized implementations, totaling 4083 lines of C (with a proof
overhead of 0.37). Our largest development is Poly1305, totaling
6447 lines, which can itself be broken down into the field arithmetic
(3594 lines) and polynomial evaluation (2853 lines). This generic
implementation is about twice as large as the original scalar code
in [44], but compiles to 4 C implementations, totaling 7136 lines of
C (overhead 0.9). Moreover, we expect large parts of our vectorized
bignum code to be reusable in other algorithms.

The skills required to extend HACL×N depend on the task. Com-
piling the code to C, specializing an algorithm for a platform, and
making small modifications requires standard programming skills.
Writing a high-level spec requires knowledge of the cryptographic
algorithm and basic knowledge of functional programming. Im-
plementing an algorithm requires knowledge of the F★ language
and type system but we ease the coding effort by providing a few
well-documented libraries for integer, array, and vector operations.
Extending HACL×N with a new platform requires knowledge of
the new instruction set, and familiarity with the vector libraries. For
example, PhD students in our team can usually write a high-level
spec in a day, and a generic vectorized implementation in a week.
Adding AVX512 to HACL×N took about a week.

Verifying an implementation against a high-level specification
requires considerable skill in formal verification and a good famil-
iarity with F★ and Low★. For algorithms like ChaCha20, Blake2, and
SHA-2, most of the subsequent effort is in proving spec equivalence
for vectorization, and memory safety for low-level code. Using
various library lemmas, these proofs typically take one week for
each algorithm. Verifying code that interleaves vectorization with
complex math can take significantly longer; it took a PhD student
about a month to write, verify and optimize Poly1305.
Relying on the C Compiler. All our performance measurements
above relied on mainstream compilers like GCC and CLANG run-
ning with all their optimizations (−O3). Adding large unverified
compilers like GCC into the trusted computing base (TCB) for a
cryptographic library is risky, since theymay be buggy [43] andmay
introduce side channels that were not present in the C code [40].

To estimate the impact of compiler optimizations on HACL×N
performance, we measured the performance of our code with differ-
ent C compilers at various optimization levels. Appendix B presents
the detailed results, but to summarize, most of the performance of
our code depends only on well-understood compiler optimizations
enabled in O1 and O2, such as constant propagation, inlining, loop
unrolling, and dead store elimination. Hence, a verified compiler
that implemented just these optimizations could get close to the
performance of GCC while eliminating the compiler from our TCB.

We measured the performance of the CompCert verified com-
piler [31], which implements a few standard optimizations. On
our scalar code (CompCert does not yet support SIMD), we found
that CompCert is about 2X slower than GCC and 30% slower than
CLANG at O1. However, CompCert is an active project and we
hope to benefit from ongoing improvements for performance, side
channel resistance [16], and SIMD support [10].

Our F★-based ecosystem allows a variety of approaches to be
brought together to build high-assurance high-performance crypto
applications.We canwrite verified crypto code in Low★ and compile
it via GCC or CompCert, depending on the TCB. Performance-
critical functions can be written in Vale assembly, verified in F★,
and embedded back inHACL★ [34]. Finally, we can write and verify
protocol code in F★ and compose it with our verified crypto to
obtain fully verified protocol implementations [23, 33].
Acknowledgments. This work was supported by ERC Grant CIR-
CUS (683032) and ONR Grant N00014-18-1-2892.
7 DEPLOYMENT AND FUTUREWORK
HACL×N has been integrated into theHACL★ cryptographic library
and all our code is publicly available at:

https://github.com/project-everest/hacl-star
Our vectorized ChaCha20 and Poly1305 implementations have

been deployed in the NSS cryptographic library used by Mozilla
Firefox, and in the TLS stack used in Microsoft’s msQuic implemen-
tation. Our vectorized Blake2 code is being deployed in the Tezos
blockchain. Other deployments are ongoing.

Each deployment induces a newworkflow that exercises different
aspects of our verified codebase. For example, integrating our code
into NSS requires spec and code review by the NSS developers.
Consequently, a good amount of our engineering effort goes into
generating readable C code from KreMLin, in a way that follows
NSS coding guidelines. The code is then subjected to static analysis
tools that check for unused variables, dead code and other issues
that sometimes require fixes in the Low★ source code. Finally, once
our C code passes the audit, it is integrated into the NSS continuous
integration (CI) infrastructure, where it is regularly tested on a large
number of platforms, against both hand-written unit tests and test
frameworks like Wycheproof [1]. The code is then pushed to the
main NSS branch and included in Firefox Nightly (a few thousand
users) to find early deployment problems. After 2-4 weeks, it is
deployed to Firefox Beta (a few million users) where more platform
compatibility issues may be found due to the increased coverage.
A month later, if no issues are found, the code is released in the
Firefox browser (about 250 million users.)

The above workflow requires close coordination between NSS
and HACL★ developers over an extended period of time. A similar
level of engagement is needed for successful deployments in Tezos
and msQuic. This additional time and effort should be seen as the
cost of transferring verified code from a research project like ours
to real-world software applications.

This paper has focused on a few algorithms, but we are working
on extending the library with many more vecrotized implementa-
tions, following the same SIMD patterns we have discussed here.
We also plan to optimize our code better for low-end ARM devices
and investigate new vectorization strategies for such platforms.

14

https://github.com/project-everest/hacl-star

REFERENCES
[1] [n.d.]. Project Wycheproof. https://github.com/google/wycheproof.
[2] 2012. Federal Information Processing Standards Publication 180-4: Secure hash

standard (SHS). NIST.
[3] 2015. ChaCha20 and Poly1305 for IETF Protocols. IETF RFC 7539.
[4] 2017. BLAKE2b NEON suffers poor performance on ARMv8/Aarch64 with

Cortex-A57. https://github.com/weidai11/cryptopp/issues/367.
[5] 2017. On the dangers of Intel’s frequency scaling. https://blog.cloudflare.com/on-

the-dangers-of-intels-frequency-scaling/.
[6] 2020. eBACS: ECRYPT Benchmarking of Cryptographic Systems – SUPERCOP.

https://bench.cr.yp.to/supercop.html.
[7] 2020. WebAssembly 128-bit packed SIMD Extension. https://github.com/

WebAssembly/simd/blob/master/proposals/simd/SIMD.md, W3C.
[8] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.
https://doi.org/10.1145/3133956.3134078

[9] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien
Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. 2020. The Last
Mile: High-Assurance and High-Speed Cryptographic Implementations. In IEEE
Symposium on Security and Privacy. 965–982.

[10] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Laporte Vincent, and
Oliveira Tiago. 2019. Certified Compilers in Supercop: Extended x86 Instructions
and Constant-Time Verification. (2019).

[11] AndrewWAppel. 2015. Verification of a cryptographic primitive: SHA-256. ACM
Transactions on Programming Languages and Systems (TOPLAS) 37, 2 (2015), 7.

[12] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. 2013. BLAKE2: Simpler, Smaller, Fast as MD5. In Applied Cryptogra-
phy and Network Security. 119–135.

[13] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cre-
mers, Kevin Liao, and Bryan Parno. 2019. SoK: Computer-Aided Cryptography.
Cryptology ePrint Archive, Report 2019/1393. https://eprint.iacr.org/2019/1393.

[14] R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert.
2020. The Messaging Layer Security (MLS) Protocol. IETF Internet-Draft draft-
ietf-mls-protocol-09.

[15] R. Barnes and K. Bhargavan. 2019. Hybrid Public Key Encryption. IRTF Internet-
Draft draft-irtf-cfrg-hpke-02.

[16] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte,
David Pichardie, and Alix Trieu. 2019. Formal verification of a constant-time
preserving C compiler. Proceedings of the ACM on Programming Languages 4,
POPL (2019), 1–30.

[17] David Benjamin. 2016. poly1305-x86.pl produces incorrect output. https://mta.
openssl.org/pipermail/openssl-dev/2016-March/006161.

[18] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015.
Verified Correctness and Security of OpenSSL HMAC. In USENIX Security Sym-
posium. 207–221.

[19] Daniel J. Bernstein. 2005. The Poly1305-AES message-authentication code. In
Proceedings of Fast Software Encryption.

[20] Daniel J. Bernstein and Peter Schwabe. 2012. NEON Crypto. In Cryptographic
Hardware and Embedded Systems (CHES). 320–339.

[21] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R.
Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. 2017. Vale:
Verifying High-Performance Cryptographic Assembly Code. In Proceedings of
the USENIX Security Symposium.

[22] Edwin Brady. 2013. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of functional programming 23, 5
(2013), 552–593.

[23] Antoine Delignat-Lavaud, Cédric Fournet, Bryan Parno, Jonathan Protzenko,
Tahina Ramananandro, Jay Bosamiya, Joseph Lallemand, Itsaka Rakotonirina,
and Yi Zhou. 2020. A Security Model and Fully Verified Implementation for the
IETF QUIC Record Layer. Cryptology ePrint Archive, Report 2020/114. https:
//eprint.iacr.org/2020/114.

[24] Jason A. Donenfeld. 2018. kBench9000 - simple kernel land cycle counter. https:
//git.zx2c4.com/kbench9000/about/.

[25] Morris J. Dworkin. 2001. SP 800-38A 2001 Edition. Recommendation for Block
Cipher Modes of Operation: Methods and Techniques. NIST.

[26] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.
2019. Simple High-Level Code for Cryptographic Arithmetic - With Proofs,
Without Compromises. In 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019. IEEE, 1202–1219.

[27] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem
Rastogi, and Nikhil Swamy. 2019. A verified, efficient embedding of a verifiable
assembly language. Proc. ACM Program. Lang. 3, POPL (2019), 63:1–63:30.

[28] Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and
Bo-Yin Yang. 2019. Signed Cryptographic Program Verification with Typed
CryptoLine. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). 1591–
1606.

[29] Shay Gueron and Vlad Krasnov. 2012. Simultaneous Hashing of Multiple Mes-
sages. J. Information Security 3, 4 (2012), 319–325.

[30] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, and Derek
Dreyer. 2018. Mtac2: typed tactics for backward reasoning in Coq. Proceedings of
the ACM on Programming Languages 2, ICFP (2018), 1–31.

[31] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. 2016. CompCert – A Formally Verified Optimizing
Compiler. In Embedded Real Time Software and Systems (ERTS). SEE.

[32] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris
Hawblitzel, Catalin Hritcu, Monal Narasimhamurthy, Zoe Paraskevopoulou,
Clément Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi,
and Nikhil Swamy. 2019. Meta-F*: Proof Automation with SMT, Tactics, and
Metaprograms. In 28th European Symposium on Programming (ESOP). Springer,
30–59.

[33] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan
Bhargavan. 2019. Formally verified cryptographic web applications inWebAssem-
bly. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1256–1274.

[34] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina
Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi, An-
toine Delignat-Lavaud, Cédric Fournet, et al. 2019. Evercrypt: A fast, verified,
cross-platform cryptographic provider. In 2020 IEEE Symposium on Security and
Privacy (SP). 634–653.

[35] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ra-
mananandro, Peng Wang, Santiago Zanella Béguelin, Antoine Delignat-Lavaud,
Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.
Verified low-level programming embedded in F*. Proceedings of the ACM on
Programming Languages (PACMPL) 1, ICFP (2017), 17:1–17:29.

[36] Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy,
Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko. 2019. Everparse: verified
secure zero-copy parsers for authenticated message formats. In USENIX Security
Symposium. 1465–1482.

[37] E. Rescorla, K. Oku, N. Sullivan, and C.A. Wood. 2020. Encrypted Server Name
Indication for TLS 1.3. IETF Internet-Draft draft-ietf-tls-esni-06.

[38] M-J. Saarinen and J-P. Aumasson. 2015. The BLAKE2 Cryptographic Hash and
Message Authentication Code (MAC). IETF RFC 7693.

[39] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for
Haskell (Haskell ’02). 1–16.

[40] Laurent Simon, David Chisnall, and Ross J. Anderson. 2018. What You Get
is What You C: Controlling Side Effects in Mainstream C Compilers. In IEEE
European Symposium on Security and Privacy. 1–15.

[41] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-Monadic Effects in F*. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). 256–270.

[42] A. Tomb. 2016. Automated Verification of Real-World Cryptographic Implemen-
tations. IEEE Security and Privacy 14, 6 (2016), 26–33.

[43] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283–294.

[44] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Ben-
jamin Beurdouche. 2017. HACL*: A Verified Modern Cryptographic Library. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS. 1789–1806.

15

https://github.com/google/wycheproof
https://github.com/weidai11/cryptopp/issues/367
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://bench.cr.yp.to/supercop.html
https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md
https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md
https://doi.org/10.1145/3133956.3134078
https://eprint.iacr.org/2019/1393
draft-ietf-mls-protocol-09
draft-ietf-mls-protocol-09
draft-irtf-cfrg-hpke-02
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006161
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006161
https://eprint.iacr.org/2020/114
https://eprint.iacr.org/2020/114
https://git.zx2c4.com/kbench9000/about/
https://git.zx2c4.com/kbench9000/about/
draft-ietf-tls-esni-06

A PERFORMANCE BENCHMARKS
This appendix presents our performance measurements using two
benchmarking frameworks across several machines:
Tables 3 & 6: a Dell XPS13 laptop, with an Intel Core i7-7560U

(Kaby Lake, AVX2) CPU, running 64-bit Ubuntu Linux 18.04,
Tables 4 & 7: a Dell Precision workstation, with an Intel Xeon

Gold 5122 (AVX512) CPU, running 64-bit Ubuntu Linux 18.04,
Tables 5 & 8: a Raspberry PI 3B+ single-board computer, with

a Broadcom BCM2837B0 Cortex-A53 (64-bit, NEON) CPU,
running 64-bit Ubuntu Linux 18.04,

Table 9: an Amazon EC2 t3.large instance, with an Intel Xeon
Platinum 8259CL (AVX512) CPU, running 64-bit Amazon
Linux 2,

Table 10: an Amazon EC2 c5.metal instance, with an Intel Xeon
Platinum 8275CL (AVX512) CPU, running 64-bit Amazon
Linux 2,

Table 11: an Amazon EC2 a1.metal instance, with an Amazon
Graviton Cortex-A72 (64-bit, Neon) CPU, running 64-bit
Amazon Linux 2,

Table 12: an Amazon EC2 m6g.metal instance, with an Amazon
Graviton2 Cortex-A76 (64-bit, Neon) CPU, running 64-bit
Amazon Linux 2.

SUPERCOP. We downloaded supercop-20200417.tar.xz1 and in-
stalled it on all seven machines above. We configured SUPERCOP
to use the default GCC and CLANG compilers installed on each ma-
chine (typically gcc-7 and clang-7) and we also isntalled the latest
versions of these compilers (typically gcc-9 and clang-9). SUPER-
COP evaluated each algorithm for all compilers under a variety of
optimization flags, with the best performance usually achieved by
the combination: -O3 -march=native -mtune=native. We report
numbers for the best compiler combination.

To the existing implementations in SUPERCOP, we added: (1) Jas-
min Intel assembly code2, including verified scalar x86 code, (un-
verified) AVX, and verified AVX2; (2) Blake2 reference source code
package3, including scalar, NEON, and AVX code; (3) OpenSSL,
compiled from the latest source in the OpenSSL repository4 with
both assembly enabled and disabled (no-asm)

For each algorithm,we set the input size (TUNE_BYTES) parameter
to 16384 bytes. For Poly1305, we modified the benchmarking code
to measure just a single call to the Poly1305 MAC function (the
original SUPERCOP measured two calls, one for MACing and one
for verification.) The rest of SUPERCOP was left unchanged.

We then ran SUPERCOP which tested and measured all the
implementations it could compile on each platform. For example, on
the Graviton, it ignores all the Intel assembly implementations. We
removed some redundant implementations from SUPERCOP (e.g.
many similar variants of Blake2 with identical perfomance). Finally,
we post-processed the results with a script to obtain the tables
shown below, adding implementation author names for clarity.
KBENCH9000. We downloaded the kernel benchmarking suite
KBENCH90005. We extensively used this benchmarking suite for
1https://bench.cr.yp.to/supercop.html
2https://github.com/tfaoliveira/libjc
3https://github.com/BLAKE2/BLAKE2
4https://github.com/openssl/openssl
5https://git.zx2c4.com/kbench9000/about/

our own code (which runs in the Linux kernel), but some of the other
implementations we wanted to measure (notably OpenSSL) could
not be run in the kernel without significant modifications. Conse-
quently, we ported this benchmarking suite to work in user-space,
along with a script that turns off Turbo-Boost and HyperThreading
and then runs the benchmark on a single core. We then measured
each algorithm for input lengths ranging from 1kb to 32kb, and
for each length we pick the median measurement from 100000
runs. As a sanity check, we compared the performance numbers
for our own code between the kernel and user-space versions of
KBENCH9000 and the figures were indistinguishable, which gives
us more confidence in these measurements.

In addition to our own code and Jasmin, Blake2 (reference) and
OpenSSL, we added calls to the LibSodium library6. We then ran
these measurements on the three machines we owned: the Dell
XPS13 laptop, the Xeon workstation, and the Raspberry Pi 3B+.
ChaCha20 and Poly1305. On our Intel laptop, which supports
AVX2 but not AVX512, our vectorized AVX2 code for ChaCha20 and
Poly1305 is 4.8X and 4.3X faster than portable code. On the Xeon
workstation, the speedup for our AVX512 code grows to 10.3X for
ChaCha20 and 5.9X for Poly1305. On the Raspberry PI, the speedups
are more modest: 1.7X for ChaCha20, and 1.4X fo Poly1305.

Among the other implementations we measured, Jasmin had
the fastest ChaCha20 and Poly1305 AVX2 implementations. For
inputs of 16KB, our code was 3-5% slower than Jasmin, but the
difference is significantly greater for smaller inputs, where Jasmin
uses specialized code, but our implementation still uses generic
vectorization. For medium-to-large inputs, the speed difference is
because of the manual assembly-level instruction interleaving in
the Jasmin code. By mimicking this interleaving in our C code, we
were able to get closer to Jasmin’s performance, but we decided not
to use this optimization because it obfuscates the structure of the
code and because it is unclear whether such low-level optimizations
will still be effective on future platforms.

This speed difference disappears entirely on the Xeon work-
station, where our ChaCha20 and Poly1305 implementations are
uniformly the fastest among all the code we tested, matching the
performance of the fastest AVX512 implementation in SUPERCOP.
Interestingly, even our AVX2 code catches up to Jasmin’s AVX2 on
the AVX-512 machine, where the manual instruction interleaving
appears to offer less benefit. OpenSSL also includes AVX512 code
that we believe is at least as fast as ours but this code appears to
be disabled on our Xeon workstation (and on the Amazon Xeon
instances we tested) because of frequency scaling issues with AVX-
512 [5], and we could not find an easy way to re-enable this code
on our (first generation) AVX512 machines. We carefully inspected
the OpenSSL AVX-512 code, and we expect that it should be at least
as fast as our code. We intend to test it more thoroughly on newer
AVX512 processors with IFMA enabled.

On the Raspberry Pi, the fastest implementation we found was
hand-optimized assembly fromOpenSSL, whichwas 16% faster than
our ChaCha20, and 2.1X faster than our Poly1305. Our Poly1305
code gets closer to OpenSSL on newer ARMv8 chips; e.g. it is 46%
slower than OpenSSL on the Amazon Graviton2. On inspecting the
OpenSSL Poly1305 code, we found that the main difference is that it
6https://github.com/jedisct1/libsodium

16

https://bench.cr.yp.to/supercop.html
https://github.com/tfaoliveira/libjc
https://github.com/BLAKE2/BLAKE2
https://github.com/openssl/openssl
https://git.zx2c4.com/kbench9000/about/
https://github.com/jedisct1/libsodium

was making use of efficient multiply-with-accumulate instructions
available in ARM NEON (but not on Intel). We intend to extend our
vector libraries to support these instructions in the future.
Blake2s and Blake2b. Compared to our portable C code, our 128-
bit vectorized code for Blake2s offers a modest speedup on Intel
machines: 1.29X on the laptop, 1.47X on Xeon. Our 256-bit vector-
ized code for Blake2b offers even smaller speedups: 1.13X on the
laptop, 1.27X on Xeon. These measurements match the speedups
we have observed for other Blake2 implementations. If the effect
of vectorization seems less pronounced than for ChaCha20 and
Poly1305, it is perhaps because the portable C code for Blake2 is
already very fast, and easy to optimize for modern C compilers.

On all the ARM64 chips, however, we see a surprising perfor-
mance loss for vectorized code compared to portable C. This is
a known issue on ARM CPUs where the latency of vector shift
instructions (used extensively in hash functions like Blake2 and
SHA-2) is quite high [4]. Consequently, for hash functions, vector-
ization on the cheap ARMv8 CPUs we measured does not appear
to provide many benefits. However, on higher-end ARM devices,
like the Apple A9, and on upcoming ARM servers, we expect that
vectorized code will reap significant benefits.

The fastest implementations of Blake2 we found were written
by Samuel Neves for the BLAKE2 team. Our vectorized code is
about 10% slower than this implementation on both the laptop
and workstation. This difference is because Neves’ implementation
uses AVX2 instructions to implement the Blake2 message permuta-
tion table in code, whereas our generic vectorized code uses load
instructions that are available on all platforms.
Multi-Buffer SHA-2. Our multi-buffer SHA-2 implementation of-
fers a large speedup over portable code on Intel platforms, but
as with Blake2, are not effective on the ARM devices we tested.
Our 8-way SHA-256 implementation is 4.6X faster (per input) than
portable code on AVX2, and 6.7X faster on AVX512. Our 4-way SHA-
512 implementation is 2.6X faster than portable code on AVX2, our
8-way SHA-512 is and 5.1X faster on AVX512.

On all platforms, the fastest other SHA-2 implementations are
from OpenSSL, which relies on vector instructions to speed up mes-
sage scheduling and uses native SHA instruction (SHA-EXT) when
available. OpenSSL also includes a multi-buffer assembly implemen-
tation, but only for SHA-256 (not the other variants), and only for
Intel platforms. For SHA-256 on our AVX2 laptop, the hand-written
multi-buffer OpenSSL assembly code is 9% faster than HACL×N
when processing 8 inputs in parallel. However, on AVX512, our
code leapfrogs OpenSSL by a significant margin (35%) and is the
fastest implementation we tested. Furthermore, for SHA-224, SHA-
384, and SHA-512, ours are the only multi-buffer implementations
and hence are the fastest implementations in our benchmarks.

On ARM, our 4-way vectorized SHA-256 code is 22% faster than
our scalar code and 17% faster than OpenSSL. This is far less than
the speedups obtained on AVX2 and AVX512, and this is because of
the poor shift/rotate performance on NEON. Some Intel and ARM
processors support native SHA-2 instructions, and using these in-
structions can provide much better performance than vectorization.
On Amazon Graviton, for instance, OpenSSL assembly uses hard-
ware SHA instructions and is by far the fastest implementation.

B MEASURING THE IMPACT OF COMPILER
OPTIMIZATIONS

To estimate the impact of compiler optimizations on our code, we
reran SUPERCOP with just the HACL×N algorithms on the Intel
Kaby Lake Core i7-7560U laptop and the Intel Xeon Gold 5122
Workstation, enabling a variety of compiler options: GCC-9 at op-
timization levels O0, O1, O2, O3; CLANG-9 at optimization levels
O0, O1, O2, O3; and CompCert 3.7 at optimization level O.

The results are depicted in Table 13 and 14. In general, GCC-9
performs slightly better than CLANG-9 on our code. Optimization
level O0 disables all optimization, so, as expected, our code is 10-
50X slower than code at O3 for both CLANG and GCC. The main
performance improvements kick in at O1 for GCC-9, and at O2 for
CLANG. Notably, for all algorithms except ChaCha20, O3 does not
provide any improvement over O2 (in some cases, our measure-
ments for O2 are even better than those for O3). This means that
the performance of our code mainly relies on the well-understood
stable compiler optimizations that are enabled at O2 in GCC and
CLANG, not on the potentially dangerous optimizations in O3.

To further dig down into the precise optimizations that were
used in optimizing our code, we systematically measured our code
by turning off each optimization and checking if the resulting as-
sembly code was changed. Our ChaCha20 code triggers 23 out of
95 optimizations available at O1, 38 out of 135 optimizations at
O2, and 50 out of 151 optimizations at O3. Of these optimizations,
the ones that make the most difference appear to be (various fla-
vors of) forward constant propagation, dead store elimination, loop
unrolling, and function inlining.

Finally, we measure the performance of CompCert for our scalar
implementations (CompCert does not support SIMD instructions).
We find that the performance of CompCert falls between O0 and
O1. This is consistent with measurements in prior work [16], since
CompCert only implements some of the optimizations of O1 and
does not have any of the tree-based optimizations that GCC relies
on. We hope that future improvements in CompCert will close this
gap, and upcoming support for SIMD [10] will allow us to compile
all our implementations via this verified compiler.

17

Algorithm Implementation Language SIMD Features Compiler Cycles/Byte
ChaCha20 dolbeau/amd64-avx2 C AVX2 clang-11 0.75

jasmin/avx2 assembly AVX2 gcc-8 0.75
openssl assembly AVX2 clang-11 0.75

hacl-star/vec256 C AVX2 gcc-8 0.77
dolbeau/generic-gccsimd256 C AVX2 clang-10 0.87

goll-gueron C AVX2 gcc-8 0.90
krovetz/avx2 C AVX2 gcc-8 1.00
jasmin/avx assembly AVX gcc-9 1.44

hacl-star/vec128 C AVX gcc-8 1.50
dolbeau/generic-gccsimd128 C AVX clang-11 1.57

krovetz/vec128 C SSSE3 gcc-9 1.71
bernstein/e/amd64-xmm6 assembly SSE2 clang-11 1.83

jasmin/ref assembly gcc-9 3.62
hacl-star/scalar C gcc-8 3.73
openssl-portable C clang-11 4.10
bernstein/e/ref C gcc-9 4.10

Poly1305 openssl assembly AVX2 clang-11 0.35
jasmin/avx2 assembly AVX2 clang-11 0.35

hacl-star/vec256 C AVX2 clang-11 0.37
moon/avx2/64 assembly AVX2 clang-10 0.37
jasmin/avx assembly AVX clang-10 0.56

moon/sse2/64 assembly SSE2 clang-11 0.58
moon/avx/64 assembly AVX clang-10 0.60
jasmin/ref3 assembly gcc-9 0.65

hacl-star/vec128 C AVX clang-10 0.72
openssl-portable C clang-11 1.19
hacl-star/scalar C gcc-9 1.59
bernstein/amd64 assembly SSE2 gcc-8 1.65
bernstein/53 C gcc-8 1.79

Blake2b neves/avx2 C AVX2 clang-11 2.02
neves/avxicc assembly AVX clang-10 2.12
moon/avx2/64 assembly AVX2 clang-10 2.20
moon/avx/64 assembly AVX gcc-9 2.21

hacl-star/vec256 C AVX2 clang-11 2.26
neves/regs C gcc-9 2.34

blake2-reference/sse C AVX gcc-8 2.51
blake2-reference/ref C gcc-9 2.52
hacl-star/scalar C gcc-8 2.56

neves/ref C gcc-8 2.72
Blake2s neves/xmm C AVX clang-11 3.06

neves/avxicc assembly AVX clang-11 3.07
blake2-reference/sse C AVX clang-11 3.07

moon/ssse3/64 assembly SSSE3 gcc-9 3.29
hacl-star/vec128 C AVX gcc-9 3.34
moon/avx/64 assembly AVX clang-11 3.48
moon/sse2/64 assembly SSE2 gcc-8 3.81
neves/regs C gcc-9 4.01

blake2-reference/ref C gcc-8 4.28
hacl-star/scalar C gcc-9 4.32

neves/ref C gcc-9 4.33
SHA-256 openssl/sha256-mb8 asssembly AVX2 clang-11 1.49 (11.92 / 8)

hacl-star/sha256-mb8 C AVX2 gcc-9 1.62 (12.93 / 8)
openssl/sha256-mb4 asssembly AVX clang-11 2.84 (11.36 / 4)

hacl-star/sha256-mb4 C AVX clang-10 3.14 (12.58 / 4)
openssl assembly AVX2 clang-11 4.83

sphlib-small C gcc-9 7.29
sphlib C gcc-9 7.33

hacl-star/scalar C gcc-9 7.41
openssl-portable C clang-11 10.16

SHA-512 hacl-star/sha512-mb4 C AVX2 clang-10 1.95 (7.81 / 4)
openssl assembly AVX2 clang-11 3.25
sphlib C gcc-8 4.84

sphlib-small C gcc-9 4.98
hacl-star/scalar C gcc-8 5.06
openssl-portable C clang-10 5.83

Table 3: SUPERCOP Benchmarks on Dell XPS13 with Intel Kaby Lake i7-7560U processor, running 64-bit Ubuntu Linux. Im-
plementations are compiled with gcc-8, gcc-9, clang-10, and clang-11.

18

Algorithm Implementation Language SIMD Features Compiler Cycles/Byte
ChaCha20 hacl-star/vec512 C AVX512 gcc-9 0.56

dolbeau/amd64-avx2 C AVX512 clang-10 0.56
openssl assembly AVX2 clang-10 0.77

hacl-star/vec256 C AVX2 gcc-7 0.84
dolbeau/generic-gccsimd256 C AVX2 clang-10 0.99

jasmin/avx2 assembly AVX2 clang-10 1.12
krovetz/avx2 C AVX2 gcc-9 1.37

hacl-star/vec128 C AVX gcc-9 1.53
dolbeau/generic-gccsimd128 C AVX clang-10 1.79

krovetz/vec128 C SSSE3 clang-10 1.99
jasmin/avx assembly AVX clang-10 2.21

bernstein/e/amd64-xmm6 assembly SSE2 gcc-9 2.81
jasmin/ref assembly gcc-9 5.57

hacl-star/scalar C gcc-9 5.74
bernstein/e/ref C gcc-9 5.97
openssl-portable C clang-10 6.00

Poly1305 hacl-star/vec512 C AVX512 gcc-9 0.39
jasmin/avx2 assembly AVX2 clang-6 0.51
openssl assembly AVX2 gcc-9 0.52

hacl-star/vec256 C AVX2 gcc-9 0.52
moon/avx2/64 assembly AVX2 gcc-7 0.57
jasmin/avx assembly AVX clang-10 0.87
moon/avx/64 assembly AVX gcc-7 0.88
moon/sse2/64 assembly SSE2 clang-10 0.89
jasmin/ref3 assembly clang-10 0.97

hacl-star/vec128 C AVX gcc-9 1.04
openssl-portable C gcc-7 1.85
hacl-star/scalar C gcc-9 2.31
bernstein/amd64 assembly gcc-9 2.53
bernstein/53 C gcc-9 2.73

Blake2b neves/avx2 C AVX2 clang-10 2.84
blake2-reference/sse C AVX clang-10 2.98
hacl-star/vec256 C AVX2 clang-10 3.13

neves/avxicc assembly AVX gcc-9 3.26
moon/avx2/64 assembly AVX2 clang-10 3.39
moon/avx/64 assembly AVX gcc-9 3.40
neves/regs C gcc-9 3.61

blake2-reference/ref C gcc-9 3.88
neves/ref C gcc-7 3.97

hacl-star/scalar C gcc-9 3.97
Blake2s neves/xmm C AVX clang-6 4.11

blake2-reference/sse C AVX clang-6 4.12
hacl-star/vec128 C AVX gcc-7 4.52

neves/avxicc assembly AVX gcc-9 4.72
moon/ssse3/64 assembly SSSE3 gcc-9 5.06
moon/avx/64 assembly AVX gcc-9 5.21
moon/sse2/64 assembly SSE2 gcc-9 5.85
neves/regs C gcc-9 6.17

blake2-reference/ref C gcc-9 6.45
neves/ref C gcc-9 6.57

hacl-star/scalar C gcc-9 6.63
SHA-256 hacl-star/sha256-mb8 C AVX2 gcc-9 1.69 (13.53 / 8)

openssl/sha256-mb8 asssembly AVX2 gcc-9 2.29 (18.31 / 8)
hacl-star/sha256-mb4 C AVX gcc-9 3.22 (12.90 / 4)
openssl/sha256-mb4 asssembly AVX clang-10 4.36 (17.46 / 4)

openssl assembly AVX2 gcc-9 7.43
sphlib-small C gcc-7 11.04

sphlib C gcc-7 11.25
hacl-star/scalar C gcc-9 11.36
openssl-portable C gcc-9 15.35

SHA-512 hacl-star/sha512-mb8 C AVX512 clang-10 1.44 (11.49 / 8)
hacl-star/sha512-mb4 C AVX2 gcc-9 2.07 (8.29 / 4)

openssl assembly AVX2 gcc-9 4.99
sphlib C gcc-9 6.72

sphlib-small C gcc-9 6.75
hacl-star/scalar C gcc-7 7.38
openssl-portable C clang-10 9.12

Table 4: SUPERCOP Benchmarks on Dell Precision Workstation with Intel Xeon Gold 5122 processor, running 64-bit Ubuntu
Linux. Implementations are compiled with gcc-7, gcc-9, clang-6, and clang-10.

19

Algorithm Implementation Language SIMD Features Compiler Cycles/Byte
ChaCha20 openssl assembly NEON clang 4.49

hacl-star/vec128 C NEON gcc 5.19
dolbeau/arm-neon C NEON clang 5.50
krovetz/vec128 C NEON gcc 6.22

dolbeau/generic-gccsimd128 C NEON clang 7.01
hacl-star/scalar C gcc 8.69
openssl-portable C gcc 8.84
bernstein/e/ref C gcc 9.08

Poly1305 openssl assembly NEON clang 1.50
hacl-star/vec128 C NEON clang 3.11
openssl-portable C clang 3.57
hacl-star/scalar C clang 4.20
bernstein/53 C gcc 4.95

Blake2b neves/regs C gcc 6.02
blake2-reference/ref C gcc 6.70
hacl-star/scalar C clang 6.99

neves/ref C gcc 7.35
blake2-reference/neon C NEON gcc 10.27

Blake2s neves/regs C gcc 9.80
blake2-reference/ref C gcc 10.70
blake2-reference/neon C NEON clang 11.31

neves/ref C gcc 11.31
hacl-star/scalar C gcc 11.42
hacl-star/vec128 C NEON gcc 15.30

SHA-256 hacl-star/sha256-mb4 C NEON gcc 12.92 (51.66 / 4)
openssl assembly NEON clang 15.09

hacl-star/scalar C clang 15.70
sphlib-small C NEON gcc 15.97

sphlib C NEON gcc 16.40
openssl-portable C gcc 19.85

SHA-512 openssl assembly NEON gcc 9.77
openssl-portable C gcc 10.07
hacl-star/scalar C gcc 11.27

sphlib C NEON gcc 12.40
sphlib-small C NEON gcc 12.40

Table 5: SUPERCOPBenchmarks onRaspberryPi 3B+,with aBroadcomBCM2837B0quad-coreCortex-A53 (ARMv8)@1.4GHz.
Implementations are compiled with gcc-9 and clang-9.

20

Algorithm Implementation Compiler 1024 2048 4096 8192 16384 32768
ChaCha20 jasmin/avx2 gcc-9 1.21 1.18 1.17 1.16 1.16 1.16

openssl-assembly gcc-9 1.24 1.19 1.17 1.16 1.17 1.17
libsodium gcc-9 1.34 1.28 1.25 1.24 1.24 1.23

hacl-star/vec256 gcc-9 1.38 1.29 1.25 1.23 1.28 1.27
hacl-star/vec128 gcc-9 2.38 2.34 2.32 2.31 2.37 2.36
hacl-star/scalar gcc-9 6.23 6.18 6.16 6.15 6.15 6.15
openssl-portable clang-9 6.23 6.20 6.18 6.17 6.17 6.16

Poly1305 openssl-assembly clang-9 0.75 0.63 0.57 0.54 0.52 0.51
jasmin/avx2 clang-9 0.67 0.59 0.55 0.53 0.52 0.52

hacl-star/vec256 clang-9 0.85 0.72 0.63 0.61 0.57 0.57
libsodium clang-9 1.23 1.10 1.04 1.00 0.99 0.99

hacl-star/vec128 clang-9 1.29 1.20 1.17 1.16 1.14 1.13
openssl-portable gcc-9 1.99 1.94 1.91 1.90 1.89 1.89
hacl-star/scalar gcc-9 2.50 2.44 2.41 2.39 2.38 2.39

Blake2b libsodium clang-9 3.34 3.22 3.15 3.12 3.11 3.10
hacl-star/vec256 clang-9 3.71 3.63 3.60 3.58 3.57 3.58
reference-avx gcc-9 4.12 4.09 4.02 3.99 3.98 3.97

hacl-star/scalar gcc-9 4.23 4.22 4.16 4.13 4.11 4.11
openssl-portable clang-9 6.42 5.31 4.75 4.49 4.36 4.29

Blake2s reference-avx clang-9 4.97 4.96 4.90 4.87 4.86 4.85
hacl-star/vec128 gcc-9 5.42 5.36 5.34 5.32 5.32 5.35
hacl-star/scalar gcc-9 7.03 6.93 6.89 6.86 6.85 6.86
openssl-portable gcc-9 8.96 7.87 7.33 7.07 6.94 6.95

SHA-256 hacl-star/mb8 clang-9 2.74 2.64 2.60 2.57 2.56 2.56
hacl-star/mb4 gcc-9 5.31 5.14 5.05 5.00 4.98 4.98
openssl-assembly gcc-9 8.38 8.04 7.86 7.78 7.74 7.73

libsodium gcc-9 12.60 12.14 11.89 11.76 11.70 11.66
hacl-star/scalar gcc-9 12.62 12.15 11.93 11.80 11.74 11.72
openssl-portable clang-9 17.30 16.73 16.43 16.27 16.19 16.15

SHA-512 hacl-star/mb4 clang-9 3.50 3.29 3.18 3.13 3.11 3.10
openssl-assembly gcc-9 6.03 5.59 5.36 5.25 5.20 5.18

libsodium clang-9 8.62 8.01 7.72 7.56 7.49 7.45
hacl-star/scalar gcc-9 8.66 8.08 7.80 7.66 7.59 7.56
openssl-portable clang-9 10.48 9.82 9.50 9.31 9.22 9.18

Table 6: KBENCH9000 Benchmarks on Dell XPS13 with Intel Kaby Lake i7-7560U processor running 64-bit Ubuntu Linux. All
implementations are compiled with gcc-9 and clang-9. Measurements are in cycles/byte, for input lengths ranging from 1024
bytes to 32768 bytes, obtained as the median of 100000 runs.

21

Algorithm Implementation Compiler 1024 2048 4096 8192 16384 32768
ChaCha20 hacl-star/vec512 gcc-9 0.68 0.61 0.58 0.56 0.56 0.56

openssl-assembly gcc-9 0.89 0.83 0.81 0.80 0.79 0.79
hacl-star/vec256 gcc-9 0.98 0.93 0.90 0.89 0.88 0.88

jasmin/avx2 gcc-9 1.20 1.17 1.16 1.15 1.15 1.15
libsodium gcc-9 1.26 1.21 1.18 1.17 1.16 1.16

hacl-star/vec128 gcc-9 1.63 1.60 1.58 1.58 1.58 1.57
hacl-star/scalar gcc-9 6.19 6.15 6.12 6.12 6.11 6.11
openssl-portable gcc-9 6.23 6.19 6.17 6.17 6.16 6.16

Poly1305 hacl-star/vec512 gcc-9 0.94 0.65 0.51 0.43 0.40 0.38
jasmin/avx2 gcc-9 0.67 0.59 0.55 0.53 0.52 0.51

openssl-assembly clang-9 0.75 0.63 0.57 0.54 0.52 0.51
hacl-star/vec256 gcc-9 0.82 0.66 0.58 0.54 0.52 0.51

libsodium clang-9 1.14 1.01 0.95 0.92 0.91 0.90
hacl-star/vec128 gcc-9 1.27 1.16 1.11 1.09 1.07 1.06
openssl-portable gcc-9 1.97 1.93 1.92 1.89 1.88 1.88
hacl-star/scalar gcc-9 2.49 2.45 2.41 2.39 2.38 2.39

Blake2b reference-avx clang-9 3.23 3.14 3.09 3.07 3.06 3.05
libsodium gcc-9 3.34 3.22 3.18 3.15 3.14 3.14

hacl-star/vec256 clang-9 3.40 3.36 3.33 3.32 3.31 3.31
hacl-star/scalar gcc-9 4.21 4.14 4.11 4.10 4.09 4.09
openssl-portable gcc-9 5.88 5.06 4.62 4.40 4.30 4.29

Blake2s reference-avx clang-9 4.60 4.53 4.50 4.49 4.48 4.48
hacl-star/vec128 gcc-9 4.77 4.71 4.69 4.67 4.67 4.69
openssl-portable gcc-9 8.33 7.46 7.02 6.82 6.71 6.73
hacl-star/scalar gcc-9 6.90 6.86 6.85 6.83 6.82 6.84

SHA-256 hacl-star/mb8 gcc-9 1.87 1.80 1.76 1.75 1.74 1.74
hacl-star/mb4 gcc-9 3.55 3.43 3.36 3.33 3.32 3.31
openssl-assembly clang-9 8.38 8.04 7.85 7.76 7.72 7.71

libsodium clang-9 12.57 12.10 11.85 11.73 11.67 11.63
hacl-star/scalar gcc-9 12.51 12.10 11.88 11.76 11.71 11.69
openssl-portable clang-9 16.92 16.39 16.11 15.96 15.88 15.85

SHA-512 hacl-star/mb8 clang-9 1.72 1.61 1.56 1.53 1.52 1.52
hacl-star/mb4 gcc-9 2.40 2.25 2.18 2.14 2.12 2.11
openssl-assembly gcc-9 6.06 5.58 5.33 5.22 5.17 5.14

libsodium gcc-9 8.55 8.00 7.72 7.57 7.50 7.47
hacl-star/scalar gcc-9 8.59 8.05 7.79 7.65 7.58 7.55
openssl-portable gcc-9 10.63 9.95 9.63 9.45 9.37 9.32

Table 7: KBENCH9000 Benchmarks on Dell Precision workstation with Intel(R) Xeon(R) Gold 5122 CPU@ 3.60GHz processor
running 64-bit Ubuntu Linux. All implementations are compiled with gcc-9 and clang-9. Measurements are in cycles/byte, for
input lengths ranging from 1024 bytes to 32768 bytes, obtained as the median of 100000 runs.

22

Algorithm Implementation Compiler 1024 2048 4096 8192 16384 32768
ChaCha20 openssl-assembly clang 4.59 4.53 4.50 4.49 4.50 4.55

hacl-star/vec128 gcc 5.42 5.32 5.27 5.25 5.27 5.32
openssl-portable clang 8.88 8.84 8.82 8.82 8.84 8.94
hacl-star/scalar gcc 8.91 8.86 8.84 8.83 8.87 8.99

libsodium clang 9.33 9.25 9.21 9.21 9.25 9.37
Poly1305 openssl-assembly gcc 1.97 1.72 1.59 1.53 1.50 1.51

hacl-star/vec128 clang 3.48 3.30 3.21 3.17 3.15 3.16
openssl-portable gcc 3.74 3.65 3.61 3.58 3.57 3.59
hacl-star/scalar gcc 4.61 4.52 4.48 4.46 4.45 4.47

libsodium gcc 5.35 5.27 5.23 5.21 5.20 5.22
Blake2b openssl-portable gcc 11.33 8.71 7.39 6.74 6.43 6.30

hacl-star/scalar gcc 7.12 7.01 6.95 6.93 6.92 6.96
libsodium gcc 7.60 7.42 7.34 7.29 7.28 7.33

reference-neon gcc 11.13 10.96 10.87 10.82 10.81 10.91
Blake2s openssl-portable gcc 14.92 12.60 11.44 10.89 10.63 10.56

hacl-star/scalar gcc 11.59 11.51 11.48 11.46 11.47 11.57
reference-neon gcc 11.83 11.68 11.61 11.57 11.58 11.66

hacl-star/vec128 gcc 16.58 16.52 16.49 16.49 16.61 16.64
SHA-256 hacl-star/mb4 gcc 13.68 13.23 13.01 12.99 13.08 13.00

openssl-assembly gcc 16.22 15.58 15.26 15.10 15.15 15.12
hacl-star/scalar gcc 17.49 16.92 16.64 16.51 16.58 16.54

libsodium gcc 19.43 18.68 18.31 18.13 18.22 18.19
openssl-portable clang 21.01 20.25 19.88 19.70 19.79 19.73

SHA-512 openssl-assembly gcc 11.10 10.37 10.01 9.83 9.76 9.82
openssl-portable gcc 11.45 10.70 10.33 10.14 10.08 10.12
hacl-star/scalar gcc 12.70 11.94 11.55 11.36 11.28 11.34

libsodium gcc 13.73 12.76 12.27 12.03 11.94 11.98
Table 8: KBENCH9000 Benchmarks on Raspberry Pi 3B+, with a Broadcom BCM2837B0 quad-core Cortex-A53 (ARMv8) @
1.4GHz running 64-bit Ubuntu Linux. All implementations are compiled with gcc-9 and clang-9. Measurements are in cy-
cles/byte, for input lengths ranging from 1024 bytes to 32768 bytes, obtained as the median of 100000 runs.

23

Algorithm Implementation Language SIMD Features Compiler Cycles/Byte
ChaCha20 hacl-star/vec512 C AVX512 gcc-9 0.52

dolbeau/amd64-avx2 C AVX512 clang 0.52
openssl assembly AVX2 gcc-9 0.64

hacl-star/vec256 C AVX2 gcc-9 0.71
jasmin/avx2 assembly AVX2 gcc-9 0.93

dolbeau/generic-gccsimd256 C AVX2 gcc-9 0.94
krovetz/avx2 C AVX2 gcc-9 1.14

hacl-star/vec128 C AVX gcc-9 1.27
dolbeau/generic-gccsimd128 C AVX gcc-9 1.51

jasmin/avx assembly AVX gcc-9 1.83
krovetz/vec128 C SSSE3 clang 1.88

bernstein/e/amd64-xmm6 assembly SSE2 gcc-9 2.33
jasmin/ref assembly clang-9 4.62

hacl-star/scalar C gcc-9 4.76
bernstein/e/ref C gcc-9 4.95
openssl-portable C gcc-9 4.98

Poly1305 hacl-star/vec512 C AVX512 gcc-9 0.40
jasmin/avx2 assembly AVX2 gcc-9 0.49
openssl assembly AVX2 gcc-9 0.49

hacl-star/vec256 C AVX2 gcc-9 0.49
moon/avx2/64 assembly AVX2 clang-9 0.53
jasmin/avx assembly AVX gcc-9 0.72
moon/avx/64 assembly AVX gcc-9 0.77
jasmin/ref3 assembly gcc-9 0.80
moon/sse2/64 assembly SSE2 gcc-9 0.86

hacl-star/vec128 C AVX gcc-9 0.88
openssl-portable C gcc-9 1.53
hacl-star/scalar C gcc-9 1.92
bernstein/amd64 assembly gcc-9 2.20
bernstein/53 C gcc-9 2.51

Blake2b neves/avx2 C AVX2 clang-9 2.60
neves/avxicc assembly AVX gcc-9 2.70
moon/avx/64 assembly AVX gcc-9 2.82

blake2-reference/sse C AVX clang-9 2.83
neves/regs C gcc-9 2.99

hacl-star/vec256 C AVX2 gcc-9 2.99
blake2-reference/ref C gcc-9 3.21

moon/avx2/64 assembly AVX2 clang-9 3.23
hacl-star/scalar C gcc-9 3.29

neves/ref C gcc-9 3.34
Blake2s blake2-reference/sse C AVX clang 3.33

neves/xmm C AVX clang 3.37
hacl-star/vec128 C AVX gcc-9 3.76

neves/avxicc assembly AVX gcc-9 3.91
moon/ssse3/64 assembly SSSE3 gcc-9 4.20
moon/avx/64 assembly AVX gcc-9 4.32
moon/sse2/64 assembly SSE2 gcc-9 4.85
neves/regs C gcc-9 5.11

blake2-reference/ref C gcc-9 5.35
neves/ref C gcc-9 5.45

hacl-star/scalar C gcc-9 5.49
SHA-256 hacl-star/sha256-mb8 C AVX2 gcc-9 1.40 (11.21 / 8)

hacl-star/sha256-mb4 C AVX gcc-9 2.68 (10.70 / 4)
openssl assembly AVX2 clang-9 6.23

sphlib-small C gcc 9.15
sphlib C gcc-9 9.34

hacl-star/scalar C gcc-9 9.43
openssl-portable C gcc-9 12.73

SHA-512 hacl-star/sha512-mb8 C AVX512 clang 1.39 (11.11 / 8)
hacl-star/sha512-mb4 C AVX2 gcc-9 1.72 (6.89 / 4)

openssl assembly AVX2 gcc-9 4.19
sphlib C gcc-9 5.63

sphlib-small C gcc-9 5.64
hacl-star/scalar C gcc-9 6.19
openssl-portable C gcc-9 7.56

Table 9: SUPERCOP Benchmarks on Amazon EC2 t3.large instance with Intel(R) Xeon(R) Platinum 8259CL CPU@ 2.50GHz
processor, running 64-bit Ubuntu Linux. Implementations are compiled with gcc-7, clang-7, gcc-9, and clang-9.

24

Algorithm Implementation Language SIMD Features Compiler Cycles/Byte
ChaCha20 hacl-star/vec512 C AVX512 gcc-9 0.44

dolbeau/amd64-avx2 C AVX512 clang-9 0.44
openssl assembly AVX2 gcc-9 0.61

hacl-star/vec256 C AVX2 gcc-9 0.67
dolbeau/generic-gccsimd256 C AVX2 clang-9 0.81

jasmin/avx2 assembly AVX2 gcc-9 0.89
krovetz/avx2 C AVX2 gcc-9 1.08

hacl-star/vec128 C AVX gcc-9 1.21
dolbeau/generic-gccsimd128 C AVX clang-9 1.44

krovetz/vec128 C SSSE3 clang-9 1.61
jasmin/avx assembly AVX gcc-9 1.74

bernstein/e/amd64-xmm6 assembly SSE2 gcc-9 2.22
jasmin/ref assembly gcc-9 4.40

hacl-star/scalar C gcc-9 4.54
bernstein/e/ref C gcc-9 4.72
openssl-portable C gcc-9 4.75

Poly1305 hacl-star/vec512 C AVX512 gcc-9 0.31
jasmin/avx2 assembly AVX2 gcc-9 0.41
openssl assembly AVX2 clang 0.41

hacl-star/vec256 C AVX2 gcc-9 0.41
moon/avx2/64 assembly AVX2 gcc 0.46
jasmin/avx assembly AVX gcc-9 0.69
moon/avx/64 assembly AVX gcc-9 0.71
moon/sse2/64 assembly SSE2 gcc-9 0.72
jasmin/ref3 assembly gcc-9 0.76

hacl-star/vec128 C AVX gcc-9 0.82
openssl-portable C gcc-9 1.46
hacl-star/scalar C gcc-9 1.83
bernstein/amd64 assembly gcc-9 2.00
bernstein/53 C gcc-9 2.14

Blake2b neves/avx2 C AVX2 clang-9 2.74
moon/avx2/64 assembly AVX2 clang-9 2.75

hacl-star/vec256 C AVX2 clang-9 2.85
blake2-reference/sse C AVX clang-9 3.06

moon/avx/64 assembly AVX clang-9 3.28
neves/avxicc assembly AVX clang-9 3.35

hacl-star/scalar C clang-9 3.85
neves/regs C clang-9 4.48

blake2-reference/ref C clang-9 4.58
neves/ref C clang-9 4.68

Blake2s blake2-reference/sse C AVX clang-9 3.53
moon/ssse3/64 assembly SSSE3 clang-9 4.01

hacl-star/vec128 C AVX clang-9 4.05
neves/xmm C AVX clang 4.11
neves/avxicc assembly AVX clang-9 4.15
moon/avx/64 assembly AVX clang 4.59
moon/sse2/64 assembly SSE2 clang 5.02

hacl-star/scalar C gcc-9 5.68
neves/regs C clang 5.73

blake2-reference/ref C gcc-9 6.22
neves/ref C gcc-9 6.99

SHA-256 hacl-star/sha256-mb8 C AVX2 gcc-9 1.33 (10.60 / 8)
hacl-star/sha256-mb4 C AVX gcc-9 2.55 (10.20 / 4)

openssl assembly AVX2 gcc-9 6.26
sphlib C clang-9 9.78

hacl-star/scalar C clang 9.81
sphlib-small C clang-9 9.93

openssl-portable C clang 12.14
SHA-512 hacl-star/sha512-mb8 C AVX512 clang 1.18 (9.43 / 8)

hacl-star/sha512-mb4 C AVX2 clang 1.75 (6.99 / 4)
openssl assembly AVX2 clang-9 3.98

hacl-star/scalar C clang 6.39
sphlib C clang-9 6.67

openssl-portable C clang-9 7.40
sphlib-small C clang-9 7.45

Table 10: SUPERCOP Benchmarks on Amazon EC2 c5.metal instance with Intel(R) Xeon(R) Platinum 8275CL CPU@ 2.50GHz
processor, running 64-bit Ubuntu Linux. Implementations are compiled with gcc-7, clang-7, gcc-9, and clang-9.

25

Algorithm Implementation Language SIMD Features Compiler Cycles/Byte
ChaCha20 openssl assembly NEON clang 4.40

hacl-star/vec128 C NEON gcc 5.10
dolbeau/arm-neon C NEON gcc 5.16
krovetz/vec128 C NEON clang 5.79

dolbeau/generic-gccsimd128 C NEON clang 5.87
hacl-star/scalar C gcc 5.95
openssl-portable C gcc 8.43
bernstein/e/ref C clang 8.90

Poly1305 openssl assembly NEON clang 1.16
hacl-star/vec128 C NEON clang 1.98
openssl-portable C clang 3.08
bernstein/53 C clang 3.74

hacl-star/scalar C gcc 5.13
Blake2b neves/regs C gcc 5.46

blake2-reference/ref C gcc 5.78
hacl-star/scalar C gcc 5.95

neves/ref C gcc 6.21
blake2-reference/neon C NEON clang 11.63

Blake2s neves/regs C gcc 9.10
blake2-reference/ref C gcc 9.34
hacl-star/scalar C gcc 9.78

neves/ref C gcc 10.06
blake2-reference/neon C NEON clang 17.15
hacl-star/vec128 C NEON gcc 19.15

SHA-256 openssl assembly SHA-EXT clang 2.01
hacl-star/sha256-mb4 C NEON clang 10.12 (40.46 / 4)

sphlib-small C NEON clang 12.08
hacl-star/scalar C gcc 12.15

sphlib C NEON gcc 12.31
openssl-portable C gcc 14.58

SHA-512 openssl assembly NEON gcc 7.28
openssl-portable C gcc 7.75
hacl-star/scalar C gcc 7.93
sphlib-small C NEON clang 9.81

sphlib C NEON clang 9.82
Table 11: SUPERCOP Benchmarks on Amazon EC2 a1.metal instance with Amazon Graviton1 Cortex-A72@ 2.3GHz, running
64-bit Ubuntu Linux. Implementations are compiled with gcc-7 and clang-7.

26

Algorithm Implementation Language SIMD Features Compiler Cycles/Byte
ChaCha20 openssl assembly NEON gcc 2.36

hacl-star/vec128 C NEON gcc 2.95
dolbeau/arm-neon C NEON gcc 3.16
krovetz/vec128 C NEON gcc 3.58
hacl-star/scalar C gcc 3.66

dolbeau/generic-gccsimd128 C NEON gcc 3.74
openssl-portable C gcc 5.78
bernstein/e/ref C clang 5.98

Poly1305 openssl assembly NEON clang 1.05
hacl-star/vec128 C NEON clang 1.54
openssl-portable C gcc 2.82
bernstein/53 C gcc 2.93

hacl-star/scalar C gcc 5.07
Blake2b neves/regs C clang 3.78

blake2-reference/ref C gcc 3.82
hacl-star/scalar C gcc 3.98

neves/ref C gcc 3.99
blake2-reference/neon C NEON clang 7.83

Blake2s neves/regs C gcc 6.26
blake2-reference/ref C gcc 6.45

neves/ref C gcc 6.54
hacl-star/scalar C gcc 6.60
hacl-star/vec128 C NEON clang 10.44

blake2-reference/neon C NEON clang 11.16
SHA-256 openssl assembly SHA-EXT gcc 1.57

hacl-star/sha256-mb4 C NEON clang 6.52 (26.09 / 4)
sphlib-small C NEON clang 9.76

sphlib C NEON gcc 10.16
hacl-star/scalar C gcc 10.44
openssl-portable C gcc 11.72

SHA-512 openssl assembly NEON gcc 6.03
openssl-portable C gcc 6.31
hacl-star/scalar C gcc 7.00
sphlib-small C NEON clang 7.96

sphlib C NEON clang 7.99
Table 12: SUPERCOPBenchmarks onAmazon EC2 m6g.metal instancewithAmazonGraviton2Cortex-A76@2.3GHz, running
64-bit Ubuntu Linux. Implementations are compiled with gcc-7 and clang-7.

Algorithm Implementation clang-9 gcc-9 ccomp
-O0 -O1 -O2 -O3 -O0 -O1 -O2 -O3 -O

ChaCha20 hacl-star/scalar 45.71 6.82 6.25 6.46 41.94 4.36 4.12 3.88 6.97
hacl-star/vec128 31.10 1.87 1.72 1.60 30.11 1.69 1.67 1.50
hacl-star/vec256 25.78 1.02 0.92 0.90 30.22 1.25 1.23 0.77

Poly1305 hacl-star/scalar 8.78 1.87 1.68 1.64 8.47 1.81 1.59 1.51 2.49
hacl-star/vec128 10.52 0.75 0.71 0.71 10.01 0.96 0.90 0.84
hacl-star/vec256 5.60 0.45 0.36 0.36 4.83 0.45 0.42 0.40

Blake2b hacl-star/scalar 109.09 3.09 2.75 2.75 60.85 2.62 2.59 2.59 8.13
hacl-star/vec256 54.29 2.73 2.26 2.25 46.71 2.63 2.35 2.51

Blake2s hacl-star/scalar 107.80 5.21 4.71 4.71 98.79 4.35 4.32 4.32 13.42
hacl-star/vec128 57.38 5.00 3.66 3.66 54.65 3.69 3.49 3.37

SHA-256 hacl-star/scalar 48.44 8.79 8.07 8.08 35.89 7.57 7.40 7.45 12.96
hacl-star/sha256-mb4 50.21 3.33 3.16 3.16 52.24 3.26 3.22 3.14
hacl-star/sha256-mb8 48.73 2.11 2.12 1.61 36.29 1.78 1.78 1.63

SHA-512 hacl-star/scalar 34.67 5.47 4.99 4.99 23.97 4.86 4.81 4.85 8.21
hacl-star/sha512-mb4 59.02 2.02 1.96 1.96 50.48 2.05 2.01 2.00

Table 13: SUPERCOP Benchmarks on Dell XPS13 with Intel Kaby Lake i7-7560U processor, running 64-bit Ubuntu Linux.
Implementations are compiled with gcc-9, clang-9, and CompCert3.7.

27

Algorithm Implementation clang-9 gcc-9 ccomp
-O0 -O1 -O2 -O3 -O0 -O1 -O2 -O3 -O

ChaCha20 hacl-star/scalar 73.09 12.23 8.24 8.23 65.71 6.67 6.50 5.96 11.26
hacl-star/vec128 27.59 2.61 2.11 1.89 27.86 1.88 1.86 1.54
hacl-star/vec256 15.52 1.40 1.00 1.00 16.06 1.19 1.12 0.86
hacl-star/vec512 8.65 0.88 0.72 0.73 9.04 0.58 0.55 0.56

Poly1305 hacl-star/scalar 12.38 2.83 2.59 2.59 12.76 2.62 2.32 2.31 3.84
hacl-star/vec128 16.22 1.44 1.29 1.29 15.65 1.19 1.06 1.06
hacl-star/vec256 8.71 0.71 0.69 0.69 8.47 0.63 0.54 0.53
hacl-star/vec512 5.16 0.45 0.47 0.47 4.84 0.40 0.39 0.40

Blake2b hacl-star/scalar 98.20 5.51 4.49 4.50 94.05 4.04 3.97 3.97 11.95
hacl-star/vec256 47.25 4.56 3.32 3.38 47.48 3.68 3.39 3.63

Blake2s hacl-star/scalar 156.55 9.38 7.62 7.65 156.85 6.78 6.64 6.64 20.50
hacl-star/vec128 70.99 7.96 5.08 5.08 69.81 4.99 4.66 4.59

SHA-256 hacl-star/scalar 75.04 13.16 12.42 12.41 56.12 11.56 11.37 11.39 20.36
hacl-star/sha256-mb4 47.52 3.52 3.51 3.51 46.98 3.22 3.22 3.22
hacl-star/sha256-mb8 34.02 1.86 1.88 1.85 28.97 1.68 1.69 1.69

SHA-512 hacl-star/scalar 52.30 8.47 7.92 7.92 36.94 7.45 7.46 7.46 12.64
hacl-star/sha512-mb4 41.07 2.34 2.32 2.30 35.16 2.07 2.08 2.07
hacl-star/sha512-mb8 66.79 1.50 1.51 1.51 44.26 2.33 2.35 2.31

Table 14: SUPERCOP Benchmarks on Dell PrecisionWorkstation with Intel Xeon Gold 5122 processor, running 64-bit Ubuntu
Linux. Implementations are compiled with gcc-9, clang-9, and CompCert3.7.

28

	Abstract
	1 Verified High-Performance Crypto
	2 Background: HACL, F, Low
	3 Write & Verify once; compile N times
	3.1 Generic integer and array libraries
	3.2 Abstract integer vectors for SIMD code
	3.3 Representation-agnostic crypto code
	3.4 Large-scale program specialization

	4 SIMD Crypto Programming Patterns
	4.1 Exploiting Internal Parallelism (Blake2)
	4.2 Multiple Input Parallelism (SHA-2)
	4.3 Counter Mode Encryption (ChaCha20)
	4.4 Polynomial Evaluation (Poly1305)

	5 Cryptography for all your needs
	5.1 Integration and Deployment with HACL*
	5.2 HPKE: a verified application of HACLN

	6 Evaluation and Discussion
	7 Deployment and Future Work
	References
	A Performance Benchmarks
	B Measuring the Impact of Compiler Optimizations

