
On the Future of Congestion Control for the Public Internet

Lloyd Brown1 Ganesh Ananthanarayanan2 Ethan Katz-Bassett3 Arvind Krishnamurthy4
Sylvia Ratnasamy1 Michael Schapira5 Scott Shenker1,6

1 UC Berkeley 2 Microsoft Research 3 Columbia University 4 University of Washington
5 Hebrew University of Jerusalem 6 ICSI

Abstract
The conventional wisdom requires that all congestion control algo-
rithms deployed on the public Internet be TCP-friendly. If univer-
sally obeyed, this requirement would greatly constrain the future
of such congestion control algorithms. If partially ignored, as is
increasingly likely, then there could be significant inequities in
the bandwidth received by different flows. To avoid this dilemma,
we propose an alternative to the TCP-friendly paradigm that can
accommodate innovation, is consistent with the Internet’s current
economic model, and is feasible to deploy given current usage
trends.
ACM Reference Format:
Lloyd Brown, Ganesh Ananthanarayanan, Ethan Katz-Bassett, Arvind Kr-
ishnamurthy, Sylvia Ratnasamy, Michael Schapira, Scott Shenker. 2020. On
the Future of Congestion Control for the Public Internet. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks (HotNets ’20), No-
vember 4–6, 2020, Virtual Event, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3422604.3425939

1. INTRODUCTION
The problem of congestion control has probably inspired more pa-
pers than any other topic in networking, resulting in a never-ending
stream of new proposals [1–11] as well as significant advances in
how to create [12, 13] and evaluate them [14, 15]. This paper stands
apart from this literature, as it does not present any specific new
designs or methodologies. Instead, it discusses an overall frame-
work that would make the Internet more open to these congestion
control innovations as they arise.

In doing so, this paper considers the problem of congestion
control only in the context of the public Internet. We do not address
congestion control solutions that are only run in settings where
(i) an operator has control over what is deployed, and (ii) flows
only interact with other similarly controlled flows. There has been
great progress in developing and deploying congestion control
algorithms (hereafter, CCAs) in controlled settings such as private
datacenters [16–24] precisely because their designs do not affect,
nor are affected by, CCAs operated by external entities.

To the contrary, we will focus on congestion control as it plays
out on the public Internet, where CCAs adopted by many indepen-
dent entities freely interact with each other. Note that our purview

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotNets ’20, November 4–6, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8145-1/20/11.
https://doi.org/10.1145/3422604.3425939

includes all endpoint CCAs that are deployed on hosts in private
networks but which communicate with other endpoints that are
reached by crossing the public Internet, because such flows may in-
teract with flows using CCAs chosen by others. In this open setting,
where there is no central control over which CCAs are deployed, we
consider the question of how to tolerate diversity in CCAs, which is
necessary for enabling congestion control innovations to be freely
deployed.

To review, the modern era of congestion control started with the
seminal works of Jacobson [25, 26] and Ramakrishnan and Jain [27],
and has culminated with TCP Cubic [28] (the default in Linux) and
other related CCAs [29–32] that follow a simple paradigm. When
they detect signals of congestion such as packet drops or increasing
delays, they reduce their sending rate. When no such congestion
signals are detected, they gradually increase their rate.

The interactions on the public Internet between a set of long-
running flows with various CCAs results in an allocation of band-
width among those flows. For instance, for TCP New Reno flows,
the standard TCP equation expresses the bandwidth received by
long-running flows as a function of loss rate and RTT [33–35].
We have long known that more aggressive CCAs receive more
bandwidth than less aggressive ones; e.g., changing the constants
in the TCP AIMD algorithm to increase more quickly or reduce
more slowly results in more bandwidth. If individual users could
alter their CCAs to be more aggressive, it could lead not only to
unfairness but also to a networking version of the Tragedy of the
Commons [36] as CCAs get increasingly more aggressive.

The traditional approach to minimizing unfairness and prevent-
ing a spiral into ever-more aggressive CCAs has been to demand
all newly deployed CCAs be TCP-friendly. The notion of TCP-
friendliness arose out of early discussions in the End-to-End Task
Force and other venues about the general concept of “Network
Friendliness” (i.e., behaviors that did not cause harm to the Inter-
net), and was most articulately formulated and forcefully advocated
by Sally Floyd who wrote in [37]: “We say a flow is TCP-friendly
if its arrival rate does not exceed the arrival of a conformant TCP
connection in the same circumstances.”

The TCP-friendliness approach has, for the past twenty-plus
years, been widely adhered to on the public Internet. This compli-
ance has been accompanied by significant research on (i) various
improvements to TCP (such as in [28, 29, 38]) that are friendly
with the default versions, and (ii) developing non-TCP CCAs (for
streaming media and other purposes) that are TCP-friendly [39].
However, not all research has resulted in TCP-friendly CCAs. Here
we mention two such recent proposals: BBR [1] and PCC [2].

BBR mostly avoids using packet drops as a congestion signal and
instead computes a desired rate by using delay measurements to
identify the bottleneck bandwidth and the round-trip propagation

https://doi.org/10.1145/3422604.3425939
https://doi.org/10.1145/3422604.3425939


time. BBR then tries to sustain this desired rate even in the pres-
ence of more conventional loss-based CCAs that would otherwise
crowd it out. Through these techniques, BBR virtually eliminates
bufferbloat and quickly achieves full bandwidth utilization on un-
congested paths. BBR has been deployed by Google on YouTube
and many other services, and is used by Netflix and recent versions
of the Linux and FreeBSD kernels; thus, it is in active use on the
public Internet.

PCC goes even further away from the traditional notion of con-
gestion signals and focuses on optimization by correlating its em-
pirically observed performance (in terms of throughput and packet
drops) with its actions (in terms of its sending rate). It then chooses
the actions that result in the highest performance. PCC has been
shown to achieve better fairness, stability, and performance than
traditional TCPs.

While BBR’s designers intended for BBR to be TCP-friendly, more
recent results have shown otherwise. As noted in [40], several re-
search groups [3, 41, 42] have “observed a single BBR flow consum-
ing a fixed 35-40% of link capacity when competing with as many as
16 Cubic flows.” Reference [43] also finds extreme unfairness when
BBR competes with Cubic. In contrast, PCC’s TCP-friendliness has
thus far received very little attention, but the authors of [3] conjec-
ture that “it is fundamentally hard for any loss-based protocol to
achieve consistently high performance and at the same time be fair
towards TCP.”

The lack of TCP-friendliness (verified in BBR and conjectured
for the loss-based variants of PCC, Allegro [2] and Vivace-loss [3])
is not because of careless design but results from a fundamental
tradeoff. As shown for a simple model of loss-based congestion con-
trol [44], the goal of TCP-friendliness is provably incompatible with
the goals of achieving certain levels of efficiency (utilizing full path
capacity) and rapid ramp-up (not taking too long to achieve high
efficiency). A similar result holds when requiring robustness (being
able to tolerate a certain level of non-congestion losses without
losing too much efficiency).

TCP-friendliness also imposes another kind of constraint: not
only do CCAs have to treat traditional TCPs nicely, but they also
have to function well in their presence. Notably, delay-based algo-
rithms often suffer from being squeezed out by traditional TCPs
that fill the buffer before backing off, causing an increase in delay.
Delay-based CCAs tend to interpret these delay increases as con-
gestion, while loss-based TCPs do not detect congestion until the
buffer overflows. As an example, the delay-based Vivace-latency
suffers from being overly conservative when competing with buffer-
filling CCAs like TCP Cubic (see Figure 10 in [3]). Avoiding this
phenomenon strongly influenced BBR’s design, at the loss of TCP-
friendliness. Thus, TCP-friendliness poses two challenges for new
CCAs: being friendly to TCPs despite trying to maximize bandwidth
while, at the same time, not being overly conservative despite try-
ing to minimize delays. The need to navigate between these two
requirements narrows the room for innovation.

These observations make it clear that TCP-friendliness greatly
constrains how we handle congestion in the Internet. That is, if we
were to remove the constraint of CCAs being TCP-friendly then we
could accomplish many more desirable congestion control goals,
such as rapidly achieving full path capacity and being impervious to
non-congestion losses. In addition, the deployment of BBR by two of

the largest Internet actors in the world shows that the commitment
to only deploying TCP-friendly CCAs has broken down. Thus, we
can view the era of universal TCP-friendliness from a theoretical
perspective as overly constraining, or from a practical viewpoint
as essentially over. In either case, we should look for an alternative,
which is the focus of our paper.

We begin in Section 2 by discussing and ultimately rejecting
the two previous alternatives to the TCP-friendly paradigm, and
then propose a new alternative. In Section 3 we describe a design
implementing our approach and then in Section 4 we discuss the
impact of current trends on our design choices.

2. ALTERNATIVE APPROACHES

2.1 Previous Proposals

The literature on congestion control contains two main alternatives
to TCP-friendliness. The first, as articulated in the context of Fair
Queueing [45, 46] and its many descendants [47–53], is to have
every potentially congested router provide isolation between flows;
by isolation we mean that no matter how aggressively other flows
send, each flow is guaranteed a fair share of the bandwidth. This
share could be based on a notion of equality between flows, or
there could be a weight associated with each flow that determines
its relative share, but the focus of this per-flow-fairness paradigm
was not the precise values of these weights but to protect flows
from the actions of others. This removed the need for a universally
mandated CCA; because of isolation, flows could freely adopt the
CCA that best met their needs – for instance trading off bandwidth
to ensure fewer losses, or the reverse – without worrying about
imposing harm on other flows or being harmed by others.

This approach can be implemented using various forms of packet
scheduling [46, 51, 54] and/or selective packet dropping [47, 52].
While the initial proposals [46, 51] required per-flow queues and
state, more recent designs [47, 52, 54] do not. In particular, core
routers in [47] have no per-flow state and utilize a single FIFO
queue. Thus, the isolation approach is implementable and could
support ongoing innovation in CCAs, which makes it a potential
alternative to TCP-friendliness.

However, the notion of per-flow-fairness is highly problematic.
Initially there were concerns about how to define flows (should they
be per source, per destination, or per source-destination pairs?),
and how to assign weights in the weighted version of these algo-
rithms. But Bob Briscoe, in [55], dismantled the religion of per-
flow-fairness by observing that flows were not the economic ac-
tors on the Internet, and thus there was no reason to treat them
equally (or in some weighted fashion). Briscoe’s argument is that
congestion control determines, to some extent, the allocation of
bandwidth on the public Internet; thus, these allocations should
be motivated by some underlying economic model, and per-flow-
fairness had no such intellectual foundation. Note that Briscoe’s
critique also applies to TCP-friendliness since that too produces a
form of per-flow-fairness. In replacing TCP-friendliness, we seek a
more fundamentally grounded approach.

The other commonly espoused alternative is the Network Uti-
lization Maximization (NUM) approach first articulated by Frank
Kelly [56, 57]. In NUM, congestion signals serve as shadow prices



indicating the level of congestion the flow is encountering. In sim-
ple network models, if sources use these shadow prices to adjust
their rate so as to maximize the utility of the flowminus the shadow
cost incurred, then NUM achieves the socially optimal outcome
(maximizing the sum of the utilities) at equilibrium.

There are manyways to apply Kelly’s insights to the Internet. For
example, one could require CCAs to all be self-optimizing based on
these shadow prices, or turn these shadow prices into real costs and
let CCAs adapt tomonetary incentives, or use this NUM formulation
to describe the utilities that would produce various currently used
CCAs [58].

However, these various applications of the NUM approach all
suffer from the fundamental problem that focusing on per-flow
utilities, while firmly grounded in theoretical economics, is not con-
sistent with the Internet’s current economic model in which larger
entities (not individual flows) contract for service from providers.
In fact, the NUM approach of maximizing the sum of flow utilities
is completely orthogonal to who has paid for service and what their
resulting service expectations might be, which would be untenable
for providers and users alike. To base congestion control on the
NUMmodel would require replacing the current economic arrange-
ments with ones that charged individual flows, so that payments
could be tied to the services being provided.

2.2 Our Approach

In designing an approach that could be a long-lasting framework for
congestion control on the public Internet, we begin by embracing
Briscoe’s point that congestion control should be grounded in some
underlying economic foundations, and then extend this by requiring
that these foundations be consistent with the Internet’s current
economic model (which is likely to change far more slowly than
congestion control).

Both of these previous approaches failed this latter test, as they
embraced flows as the relevant economic actors. Instead, the Inter-
net’s economic model revolves around purchasing network access,
and then applying those access rights recursively: i.e., a home user’s
packets are carried by her provider’s network because she pays
her provider directly, and then the next-hop provider carries her
packets because her provider has an economic arrangement with
that next-hop (which may be settlement-free peering, or a provider-
customer relationship). The actors in these arrangements are the
entities that purchase access, not individual flows.

Accordingly, our proposal extends these network access con-
tracts (which currently provide for a certain level of sending and
receiving traffic) to also ensure that outgoing traffic has certain
relative rights (or shares) when it hits congestion. These congestion-
shares are enforced by the isolation mechanisms mentioned previ-
ously (i.e., packet scheduling or selective dropping) and produce
bandwidth allocations as in weighted fair queueing [46]: i.e., un-
der congestion the resulting bandwidths for bottlenecked traffic
are proportional to congestion-shares. Moreover, we apply these
congestion-shares recursively, similar to how today’s access agree-
ments work. That is, when the home user’s traffic in the example
above hits congestion in her provider’s network, the traffic is treated
as having some congestion-share dictated by her agreement with
her provider; but when her traffic hits congestion in the next-hop

provider’s network, it is treated as having the same congestion-
share as her provider’s traffic has in the next-hop domain. We will
make this recursive behavior more precise in the next section.

Thus, our approach –whichwe call Recursive Congestion-Shares
(RCS) – is based on the isolation approach, except rather than en-
forcing shares on the granularity of flows, they are enforced on the
granularity of these access agreements, and these access agreements
are applied recursively. RCS would let everyone adopt the CCA of
their choice – such as BBR, PCC, or future innovations – while the
bandwidth allocations under congestion would be determined not
by the aggressiveness of their CCA but by their congestion-shares,
which reflect the underlying economic arrangements that finance
the Internet infrastructure.

The prior work that is most related to our approach is FairCloud
[59] which only applies within datacenters, but does assign tenant-
or flow-specific shares that dictate how to allocate bandwidth under
congestion. FairCloud considers a wider class of policies than we
do here (sender and receiver payments are considered, as is prox-
imity). We ignore receiver arrangements since (as we discuss later)
the congestion-shares are only applied at egress points (where all
aggregates share the same receiver), and do not consider proximity,
but do apply these policies recursively (as is necessary in the public
Internet setting, but not for internal cloud allocations).

3. THE RCS DESIGN
We present RCS in more detail by addressing a few basic questions,
briefly discussing various other technical issues, and then exam-
ining how RCS relates to network neutrality. In what follows, we
consider a single provider’s network, which we refer to as a do-
main, with a set of neighboring entities (NEs) each with their own
attachment point to the network. These NEs can be home users,
cellular users, enterprises, or peering domains (which themselves
could be customers, providers, or settlement-free peers); our design
need not distinguish between these different classes of NEs, as they
all have economic arrangements with the domain which result in
some congestion-share. Each NE represents both an ingress point
and an egress point, and we will refer to the traffic coming from
an NE into a domain as an aggregate, since it can be comprised of
many flows.

3.1 Where Is Isolation Enforced?
In order for RCS to be effective, it should enforce isolation at the
major congestion points. Enforcing isolation requires: (i) identify-
ing which packets belong to which aggregates, and (ii) knowing the
congestion-shares of each aggregate. To reduce this information-
sharing burden (since it would be difficult for all routers in a do-
main to have this information), and to cleanly separate how a
domain manages its internal routers from how it implements RCS
(see Section 3.5), we choose to only enforce isolation at domain
egress points, at least in transit domains (we consider originat-
ing/terminating domains separately in Section 3.4). That is, when
the convergence of traffic from a domain’s many ingress points
results in congestion at an egress point, the domain handles the
various traffic aggregates according to their congestion-shares us-
ing the aforementioned isolation mechanisms. To only enforce at
domain edges presumes that these are the primary places where
congestion occurs. This is already the conventional wisdom among



many we have talked to, but we have found it difficult to verify this
through measurement. Accordingly, here we are not considering
the statement that congestionmainly occurs at transit domain edges
as an empirical fact but as an imposed expectation on domains; to
be consistent with RCS, transit domains should be managed in such
a way that significant internal drops do not occur.

3.2 How Are Congestion-Shares Computed?
Consider a set of domains (instances denoted by 𝛼) and NEs (in-
stances denoted by 𝑖). For clarity of notation, each NE is associated
with one domain; an entity with access in two different domains is
seen as two different NEs. We let 𝑁 (𝛼) represent the set of NEs of
domain 𝛼 .

Each NE of 𝛼 has some financial arrangement with the domain
that dictates sending and receiving rates, and perhaps SLAs. In our
proposal, we extend this arrangement to specify a congestion-share
𝑠𝛼
𝑖
; 𝑠𝛼
𝑖
need not be tied to any other parameter in the agreement (i.e.,

it is not necessarily tied to the sending or receiving rates or the SLA,
see Section 3.5), but we expect in many cases there will be some
correlation: NEs who have contracted for higher bandwidth rates
will likely have larger congestion-shares. However, this congestion-
share may not be made explicitly visible to the NE since there is
no way for an NE to verify (based on external behavior) how it is
being treated relative to other NEs.

In what follows we only consider traffic entering and then exiting
a domain; later we discuss the case where traffic originates or
terminates within a domain. The traffic matrix for the domain 𝛼 is
denoted by 𝑡𝛼

𝑖,𝑗
, which is only defined for 𝑖, 𝑗 ∈ 𝑁 (𝛼) and describes

the short-term average rate of traffic entering the domain from NE
𝑖 and leaving the domain towards NE 𝑗 . Let 𝑇𝛼

𝑖
=
∑

𝑗 𝑡
𝛼
𝑖,𝑗

be the

short-term average of the total traffic entering at 𝑖 , so
𝑡𝛼
𝑖,𝑗

𝑇𝛼
𝑖

is the
fraction of 𝑖’s traffic exiting at 𝑗 .

RCS weights the original congestion-shares of each NE 𝑖 by the
fraction of their traffic that is exiting at a particular egress point.
Thus, when enforcing isolation at egress 𝑗 , the isolation mechanism
will use the proportional shares 𝑝𝛼

𝑖,𝑗
=

𝑡𝛼
𝑖,𝑗

𝑇𝛼
𝑖
𝑠𝛼
𝑖
. Note that

∑
𝑗 𝑝

𝛼
𝑖,𝑗

= 𝑠𝛼
𝑖
,

so we are merely apportioning 𝑖’s total congestion-share among
the various egress points according to the amount exiting there.

Enforcing isolation using these shares results in the desired
outcome if all traffic only hits congestion on their first egress point.
However, consider the case where two NEs 𝑖, 𝑗 of domain 𝛼 have
very different proportional shares 𝑝𝛼

𝑖,𝑘
and 𝑝𝛼

𝑗,𝑘
for some egress 𝑘

where they encounter no congestion. Assume that egress 𝑘 leads to
domain 𝛽 , and both these aggregates leave domain 𝛽 through egress
𝑙 . If they encounter congestion at egress 𝑙 then these packets are
all treated as part of a single aggregate with congestion-share 𝑝𝛽

𝑘,𝑙
,

and no distinction is made between NEs 𝑖 and 𝑗 . Thus, whatever
additional congestion rights NE 𝑖 had over NE 𝑗 (or vice versa) have
been rendered invisible.

A more theoretically sound way to respect congestion-shares
when passing through multiple transit domains would be to employ
hierarchical isolation (as defined in [48, 60]). This would require a
domain 𝛼 to know not just the proportional shares of aggregates
entering its network, but all the proportional shares at all previous
transit domains. This would allow, in the example above, domain 𝛽

to enforce the relative shares of 𝑝𝛼
𝑖,𝑘

and 𝑝𝛼
𝑗,𝑘

within the aggregate
of traffic from domain 𝛼 leaving domain 𝛽 at egress 𝑙 .

Providing this level of information about congestion-shares
would be difficult. However, as we discuss in Section 4, we think
recent trends have made it unnecessary to enforce hierarchical
isolation. Note that this design choice (of not using hierarchical iso-
lation) has the side-benefit of making all congestion-shares, and the
mechanisms that enforce them, purely internal; each domain can
independently make agreements with its NEs about the congestion-
shares they are assigned within that domain, and then enforce
them upon egress. No broader domain-to-domain agreements or
interactions are required.

3.3 How Is RCS Implemented?
There are three challenges to be met in implementing RCS. The first
is to minimize dropping within transit domains, so enforcement at
egress is the main way in which congestion is resolved; all transit
domains already strive towards this goal. The second is to deploy
the necessary packet scheduling and/or selective dropping mecha-
nism on egress routers. These mechanisms need only be applied at
the fairly rough granularity of aggregates, rather than applied to
individual flows; such mechanisms are already available on many
commercial routers. Cases that involve many aggregates (such as in
a large-scale access network), where having a queue per-aggregate
is not feasible, can be handled with approaches such as AFD [52]
where a single FIFO queue is used.

The third required element is that the router at egress 𝑗 in domain
𝛼 needs to know the proportional shares 𝑝𝛼

𝑖,𝑗
for all of the domain’s

ingress points 𝑖 , and to be able to identify which packets belong
to which ingress aggregate. We assume that the congestion-shares
are updated perhaps on the order of minutes, so they can easily
be shared through some edge-to-edge protocol between routers
within a domain (as could be done by using iBGP, or RSVP-TE, or
OSPF attributes). If the aggregates belonging to ingress points can
easily be identified by a set of source prefixes (as would happen in
many provider networks), then this information can be exchanged
by the edge-to-edge protocol. However, if (as may be the case in
some transit networks) the aggregates cannot be easily described
by source prefixes, then one can use ingress-to-egress MPLS or
tunneling protocols to attach a label identifying the ingress point
to each packet.

Above we implicitly assumed that ingress points knew the egress
of each packet, and thus could compute the proportional shares. If
the internal routing is such that predicting the egress point cannot
be done at ingress, then the ingress points can merely distribute the
values𝑇𝛼

𝑖
and 𝑠𝛼

𝑖
; each egress point 𝑗 can measure 𝑡𝛼

𝑖,𝑗
and compute

the proportional congestion shares 𝑝𝛼
𝑖,𝑗
.

3.4 What Happens Within Originating and
Terminating Domains?

For transit domains we assume that most congestion happens at
egress points, and use the congestion-shares that the aggregates
have when entering to resolve congestion when exiting. This ap-
proach does not apply to private networks (e.g., homes, enterprises,
content providers) where much traffic originates and terminates,
since when traffic arises internally there is no service agreement



to guide how it should be treated when exiting. We leave it to pri-
vate networks to manage this themselves by either (i) requiring the
uniform use of a single CCA (resulting in the kinds of allocations
that TCP-friendliness produces) or (ii) enforcing isolation across
different flows with weights set according to some internal policy
(essentially an internal version of congestion-shares for flows), or
(iii) a combination of the two (e.g., internal hosts are broken into
groups, with each group having compatible CCAs and isolation
is enforced between the groups according to some policy-driven
weights).

It is useful to separate two cases: private networks with mostly
clients (e.g., an enterprise network) and private networks with
mostly servers (e.g., a content provider’s internal network). In the
former case, most traffic is inbound and the inbound congestion
is handled by the isolation mechanisms at the egress point of the
provider domain. However, in some cases (e.g., provider networks
servicing many homes) there can be internal congestion close to
where the customer access points are (e.g., at cable modem termi-
nation systems or CMTSs in cable networks). To provide isolation
at such points, domains could simply use per-flow-fairness; a more
sophisticated approach would be to first enforce isolation using
the contracted receive rates of the home customers, and then (in a
hierarchical fashion within each customer’s share) enforce isolation
using the congestion-shares of the incoming aggregates. This is
not much different from current practice, where CMTSs use token-
buckets to enforce receiver contracts, and then employ some form
of weighted isolation between homes (with the weights tied to the
level of contracted bandwidth).

For the occasional outgoing congestion in these client-heavy
networks, some form of per-flow-fairness might be adequate (as the
purpose of this occasional isolation enforcement is not to ensure
an economically justified fairness, just to make sure that aggressive
CCAs do not trample less aggressive ones).

In server-heavy private networks where most traffic is outbound,
isolation enforcement may be frequently necessary at the domain’s
egress point. Here, any of the three options listed above would apply.
Since the content provider knows the semantics of their application,
as well as the identity of their customers, they can make resource
decisions based on application-level and customer-relevant factors
(e.g., which flows can tolerate loss and which cannot, who has paid
for what level of application service) that lie outside our scope.

3.5 Other Issues
QoS, TE, and SLAs: ISPs use internal traffic management mecha-
nisms, involving both packet forwarding (QoS) and routing (TE),
to improve the overall performance of their network and to meet
individual customer SLAs. We have purposely designed RCS to
be largely orthogonal to those mechanisms, by mainly enforcing
congestion-shares at egress points, rather than internally. How-
ever, domains must ensure that congestion-shares assigned to their
customers are sufficient to meet their SLAs at egress points.

Congestion signals: Our proposal is agnostic to the details of
CCAs, but some CCAs require explicit congestion signals from
routers, and the question is whether RCS supports such algorithms.
There are two challenges here. The first is that CCAs requiring
explicit feedback could not be deployed until the necessary algo-
rithms were installed at all enforcement points. Our goal here is

to support CCA innovation, but we don’t see how to speed up the
deployment of such explicit mechanisms. Second, explicit feedback
is acted on by each flow’s CCA, yet the isolation mechanisms are
geared towards controlling the bandwidth shares of aggregates
without necessarily knowing about the individual flows. As a result,
RCS does not support such explicit signaling (except perhaps ECN
[61] which is already a standard) and only relies on the implicit
signals of packet delays and loss. However, we do not preclude
using explicit signaling if future advances in this area resulted in a
widely deployed and general design.

Congestion in low-bandwidth access networks: In access networks
with very limited bandwidth, like cellular, we expect that some
degree of isolationmight be enforced to prevent congestion collapse.
In such cases, per-flow fairness might be adequate, rather than
worrying about more complicated solutions.

Behavior at IXPs: We treat IXPs as a transparent mesh rather
than a separate AS-hop. The only complication is that a domain
𝛼 can then potentially receive incoming traffic from many NEs at
the same ingress point, so that enforcing isolation at egress is not
sufficient to prevent congestion at 𝛼 ’s ingress. This may require the
IXP to enforce isolation upon ingress according to weights assigned
by 𝛼 , which is feasible given the centralized nature of IXPs.

Equity: Just as with any network prioritization proposal, the
design should not squeeze out those with fewer financial resources.
The dynamic range of congestion-shares could be limited so that
congestion would not result in significant harm to any class of
users.

3.6 How Does RCS Relate to Network
Neutrality?

We end this section by noting that some view our proposal as vio-
lating network neutrality and relying too heavily on economics as
a rationale for allocating bandwidth. In response to this critique,
we first observe that access to Internet bandwidth is already driven
by economics: customers purchase access with specific send and
receive rates, and their providers enter into economic agreements
with their peers. Thus, the bandwidth a customer’s traffic receives
today already depends on the set of economic agreements along the
path. Our proposal applies this information more systematically
than today, but our proposal is consistent with current practice (e.g.,
as mentioned before, under contention CMTSs can allocate band-
width to customers based on their level of contracted bandwidth).

The issue of network neutrality is complicated by the fact that
there is no universally-accepted definition of the term. If network
neutrality means that all packets are treated equally, then our pro-
posal certainly violates that standard. However, Misra in [62, 63]
discusses a range of possible definitions and proposes one where
network neutrality is the proclamation that the “Internet is a plat-
form where ISPs provide no competitive advantage to specific
apps/services, either through pricing or QoS.” Our proposal is cer-
tainly consistent with this formulation of network neutrality which
specifically allows non-discriminatory differential QoS and pricing.

This dispute over definitions can only be settled by their impli-
cations for the Internet. Our paper addresses the looming reality
where the TCP-friendliness no longer holds. If the Internet treated



all packets equally then the bandwidth achieved by flows from dif-
ferent customers would be a function of the aggressiveness of their
CCA. This could result in increasingly aggressive CCAs and an
overly congested Internet. Thus, in a world where TCP-friendliness
has broken down, the Internet must provide some form of explicit
bandwidth allocation, which then requires that packets be treated
in a nonuniform manner. The question before us is not whether
to discriminate between packets, but how bandwidth should be
allocated.

Our proposal’s core idea is that this allocation be based on a
recursive set of bandwidth shares, as it seems closest to current
practice on the Internet. This leaves significant room for different
policies in how bandwidth shares are computed, which could range
from being proportional to the level of contracted bandwidth to
all customers receiving the same share. As observed above, equity
considerations should play a role in how the shares are determined.

Thus, one should view our contribution as setting up a frame-
work for how bandwidth allocations should be enforced in the
Internet in a post-TCP-friendly world. This framework does not
dictate a particular policy for computing congestion shares, and
allows equity to be a consideration in such policies.

4. EXPLOITING CURRENT TRENDS

Recall from Section 3.2 that RCS would only need to enforce hier-
archical isolation (considering congestion-shares from upstream
transit domains) when traffic passes through multiple transit do-
mains (i.e., passing through four or more ASes: the originating
domain, two or more transit domains, and the terminating domain).
Here we argue why we think implementing hierarchical isolation
is unnecessary.

The average AS path length between two random destinations
on the Internet has remained fairly stable at around four to five
hops, with only a slight decrease in recent years [64]. At the same
time, the traffic patterns on the Internet have undergone two radical
shifts. First, traffic is now dominated by cacheable video content
and highly concentrated (with ten ASes being responsible for 70%
of Internet traffic [65]). Second, most high-volume providers (such
as Netflix, Google, Akamai, Amazon, and Facebook) have invested
heavily in placing this content close to users by creating numerous
PoPs (with caches) and peering directly with many other domains,
causing Geoff Huston to proclaim the “Death of Transit?” [66]. As a
result of these trends, some have estimated that roughly 70% of the
Internet’s traffic goes directly to the requesting client from either a
nearby cache or from a neighboring domain [67].

While unfortunately we cannot directly verify this conjecture
with publicly available measurements, we can consider a study [68]
of routes from various cloud providers (which does not capture
routes from caches). For traffic leaving Google Compute Engine
towards client networks around the world, weighted by the number
of clients in each network, the authors found that: (i) 62% of the
requests traversed two ASes (i.e., going straight from originating
domain to terminating domain), (ii) 29% of the requests traversed
three ASes (i.e., passing through one transit domain), and (iii) 9%
of the requests traversed four or more ASes (where knowledge
of upstream congestion-shares would be needed to be completely
faithful to the relative congestion-shares of aggregates).

The numbers in [68] for other cloud providers (IBM, Amazon,
and Microsoft) had significantly higher percentages for this last
category (between 39% and 51%). However, the methods in [68]
are more conservative (i.e., show longer paths) than those used
in a 2015 study [69] which found significantly fewer long paths.
Moreover, when one uses the same methodology on the 2015 and
2020 datasets, there is a clear trend towards the shortening of paths
over time for this cloud-related traffic that is not being handled
by nearby caches. In addition, the rising popularity of cloud/edge
computing to support gaming, AR/VR, and the like suggests this
trend will continue.

One might argue that we should use upstream congestion-shares
in order for RCS to be independent of traffic trends. However, we
choose not to because the difficulties – both mechanistic (in terms
of algorithmic complexity and bandwidth overhead) and organiza-
tional (in terms of requiring interdomain standards) – needed to
communicate these congestion-shares across providers are prohib-
itive. Thus, our proposal is to only use congestion-shares locally
within each domain, which is easily implementable.

5. SUMMARY

We considered the problem of congestion control on the public
Internet, and observed that the current TCP-friendly paradigm is
in trouble. If strictly observed, TCP-friendliness would prevent us
from deploying better CCAs; the tradeoff between TCP-friendliness
and certain desirable properties has been theoretically established
and confirmed by years of design experience. If TCP-friendliness
is partially violated, which has already occurred with BBR, then
radically unequal bandwidth allocations could result.

The two most promising alternatives to the TCP-friendly para-
digm – per-flow-fairness and Network Utility Maximization – focus
on flows as the fundamental unit of allocation, which is not con-
sistent with the Internet’s current economic model. In response,
we have proposed a third alternative, one that involves linking
access agreements to congestion-shares, and employing isolation
mechanisms to enforce these congestion-shares at the main points
of congestion. This would allow new CCAs to be used without
requiring them to comply with TCP-friendliness or any other over-
arching constraints, thereby unleashing the community to develop
and deploy a wide range of new congestion control designs.

The benefits of RCS seem clear, and the deployment require-
ments are modest, as many commercial routers already have the
necessary isolation algorithms and disseminating the congestion-
shares and aggregate-identification information is easily done. The
most pressing question, then, is who would lead the charge to have
RCS be adopted? Are there incentives for the relevant actors, such
as the ISPs, to adopt these (completely internal) changes? This in-
centive question is particularly problematic since RCS would yield
significant benefits only after being widely adopted. Thus, we end
this paper not with a set of future technical challenges but with an
open question about the incentives for deployment, where we are
at a loss.

Acknowledgements: This work was funded in part by NSF
Grants 1619377, 1817115, 1817116, 1704941, 1835253, and by grants
from the Israel Science Foundation, Intel, VMware, Ericsson, Fu-
turewei, and Cisco.



References
[1] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. BBR: Congestion-Based Congestion Control. ACM Queue, 2016.
[2] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira.

PCC: Re-architecting Congestion Control for Consistent High Performance. NSDI,
2015.

[3] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. PCC Vivace: Online-Learning Congestion Control. NSDI,
2018.

[4] Tong Meng, Neta Rozen Schiff, P. Brighten Godfrey, and Michael Schapira. PCC
Proteus: Scavenger Transport And Beyond. SIGCOMM, 2020.

[5] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. Classic Meets Modern:
A Pragmatic Learning-Based Congestion Control for the Internet. SIGCOMM,
2020.

[6] Yaxiong Xie, Fan Yi, and Kyle Jamieson. PBE-CC: Congestion Control via
Endpoint-Centric, Physical-Layer Bandwidth Measurements. SIGCOMM, 2020.

[7] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. NSDI, 2013.

[8] Venkat Arun and Hari Balakrishnan. Copa: Practical Delay-Based Congestion
Control for the Internet. NSDI, 2018.

[9] Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker. Recursively
Cautious Congestion Control. NSDI, 2014.

[10] Nandita Dukkipati and Nick McKeown. Why Flow-Completion Time is the Right
Metric for Congestion Control. SIGCOMM, 2006.

[11] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. SIGCOMM, 2002.

[12] Keith Winstein and Hari Balakrishnan. TCP Ex Machina: Computer-Generated
Congestion Control. SIGCOMM, 2013.

[13] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar.
A Deep Reinforcement Learning Perspective on Internet Congestion Control.
ICML, 2019.

[14] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby,
Philip Levis, and Keith Winstein. Pantheon: the Training Ground for Internet
Congestion-control Research. ATC, 2018.

[15] Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine Sherry.
Beyond Jain’s Fairness Index: Setting the Bar For The Deployment of Congestion
Control Algorithms. HotNets, 2019.

[16] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. Swift: Delay is Simple and
Effective for Congestion Control in the Datacenter. SIGCOMM, 2020.

[17] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan, Mostafa
Ammar, Ellen Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani, and
Amin Vahdat. Annulus: A Dual Congestion Control Loop for Datacenter and
WAN Traffic Aggregates. SIGCOMM, 2020.

[18] Wenxue Cheng, Kun Qian, Wanchun Jiang, Tong Zhang, and Fengyuan Ren.
Re-architecting Congestion Management in Lossless Ethernet. NSDI, 2020.

[19] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.
HPCC: High Precision Congestion Control. SIGCOMM, 2019.

[20] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
TIMELY: RTT-Based Congestion Control for the Datacenter. SIGCOMM, 2015.

[21] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion Control for Large-Scale RDMA Deployments. SIG-
COMM, 2015.

[22] Jonathan Perry, Hari Balakrishnan, andDevavrat Shah. Flowtune: Flowlet Control
for Datacenter Networks. NSDI, 2017.

[23] Inho Cho, Keon Jang, and Dongsu Han. Credit-scheduled Delay-bounded Con-
gestion Control for Datacenters. SIGCOMM, 2017.

[24] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
Center TCP (DCTCP). SIGCOMM, 2010.

[25] Van Jacobson and Michael J. Karels. Congestion Avoidance and Control. SIG-
COMM, 1988.

[26] Van Jacobson. Modified TCP Congestion Avoidance Algorithm. End2end-interest
Mailing List, 1990.

[27] K. K. Ramakrishnan and Raj Jain. A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks with a Connectionless Network Layer. SIG-
COMM, 1988.

[28] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-Friendly High-
Speed TCP Variant. SIGOPS, 2008.

[29] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. SIGCOMM, 1994.

[30] Joel Sing and Ben Soh. TCP New Vegas: Improving the Performance of TCP
Vegas Over High Latency Links. NCA, 2005.

[31] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms. RFC 2001, 1997.

[32] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 2582, 1999.

[33] Sally Floyd. Connections with Multiple Congested Gateways in Packet-Switched
Networks Part 1: One-Way Traffic. 1991.

[34] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP
Throughput: A Simple Model and Its Empirical Validation. SIGCOMM, 1998.

[35] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The Macro-
scopic Behavior of the TCP Congestion Avoidance Algorithm. SIGCOMM, 1997.

[36] W. F. Lloyd. Two Lectures on the Checks to Population. Oxford, 1832.
[37] Sally Floyd and Kevin Fall. Promoting the Use of End-to-End Congestion Control

in the Internet. IEEE/ACM Trans. Netw., 1999.
[38] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, 2003.
[39] J. Widmer, R. Denda, and M. Mauve. A Survey on TCP-Friendly Congestion

Control. Netwrk. Mag. of Global Internetwkg., 2001.
[40] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry.

Modeling BBR’s Interactions with Loss-Based Congestion Control. IMC, 2019.
[41] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien

Geyer, and Georg Carle. Towards a Deeper Understanding of TCP BBR Conges-
tion Control. IFIP, 2018.

[42] R. Ware, M. K. Mukerjee, J. Sherry, and S. Seshan. The Battle for Bandwidth:
Fairness and Heterogeneous Congestion Control. NSDI Poster, 2018.

[43] Geoff Huston. "BBR, the new kid on the TCP block". 2017. URL https://blog.
apnic.net/2017/05/09/bbr-new-kid-tcp-block/.

[44] Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker. An Ax-
iomatic Approach to Congestion Control. HotNets, 2017.

[45] J. Nagle. On Packet Switches with Infinite Storage. RFC 970, 1985.
[46] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing

Algorithm. SIGCOMM, 1989.
[47] Ion Stoica, Scott Shenker, and Hui Zhang. Core-Stateless Fair Queueing: Achiev-

ing Approximately Fair Bandwidth Allocations in High Speed Networks. SIG-
COMM, 1998.

[48] Jon C. R. Bennett and Hui Zhang. Hierarchical Packet Fair Queueing Algorithms.
SIGCOMM, 1996.

[49] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: the Single-node Case. IEEE/ACM
Transactions on Networking, 1993.

[50] Jon C. R. Bennett and Hui Zhang. WF2Q: Worst-Case Fair Weighted Fair Queue-
ing. INFOCOM, 1996.

[51] M. Shreedhar and George Varghese. Efficient Fair Queueing Using Deficit Round
Robin. SIGCOMM, 1995.

[52] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. Approximate Fairness
through Differential Dropping. SIGCOMM, 2003.

[53] P. E. McKenney. Stochastic Fairness Queueing. INFOCOM, 1990.
[54] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. Ap-

proximating Fair Queueing on Reconfigurable Switches. NSDI, 2018.
[55] Bob Briscoe. Flow Rate Fairness: Dismantling a Religion. SIGCOMM, 2007.
[56] Frank Kelly. Charging and Rate Control for Elastic Traffic. European transactions

on Telecommunications, 1997.
[57] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate Control for Communi-

cation Networks: Shadow Prices, Proportional Fairness and Stability. Journal of
the Operational Research society, 1998.

[58] D. P. Palomar and Mung Chiang. A Tutorial on Decomposition Methods for
Network Utility Maximization. IEEE J.Sel. A. Commun., 2006.

[59] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. FairCloud: Sharing the network in cloud
computing. SIGCOMM, 2012.

[60] Ion Stoica, Hui Zhang, and TS Eugene Ng. A Hierarchical Fair Service Curve
Algorithm for Link-sharing, Real-time and Priority Services. SIGCOMM, 1997.

[61] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168, 2001.

[62] Vishal Misra. Half the equation and half the definition. peerunre-
viewed.blogspot.com, 2015. URL http://peerunreviewed.blogspot.com/2015/12/
what-is-definition-of-net-neutrality.html.

[63] Niloofar Bayat, Richard Ma, Vishal Misra, and Dan Rubenstein. Zero-Rating and
Network Neutrality: Big Winners and Small Losers. In Proceedings of IFIP WG
7.3 Performance, 2020.

[64] T. Böttger, G. Antichi, E.L. Fernandes, R. Lallo, M. Bruyere, S. Uhlig, and I. Castro.
The Elusive Internet Flattening: 10 Years of IXP Growth. RIPE 78, 2018.

[65] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. Engineering Egress with Edge Fabric: Steering Oceans of Content to the
World. SIGCOMM, 2017.

[66] Geoff Huston. The Death of Transit? APNIC.net, 2016. URL https://blog.apnic.
net/2016/10/28/the-death-of-transit/.

[67] Personal and Confidential Communication from an ISP, 2019.

https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/
https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/
http://peerunreviewed.blogspot.com/2015/12/what-is-definition-of-net-neutrality.html
http://peerunreviewed.blogspot.com/2015/12/what-is-definition-of-net-neutrality.html
https://blog.apnic.net/2016/10/28/the-death-of-transit/
https://blog.apnic.net/2016/10/28/the-death-of-transit/


[68] Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios Giotsas,
and Ethan Katz-Bassett. Cloud Provider Connectivity in the Flat Internet. IMC,
2020.

[69] Yi-Ching Chiu, Brandon Schlinker, Abhishek Balaji Radhakrishnan, Ethan Katz-
Bassett, and Ramesh Govindan. Are We One Hop Away from a Better Internet?
IMC, 2015.


	Abstract
	1 Introduction
	2 Alternative Approaches
	2.1 Previous Proposals
	2.2 Our Approach

	3 The RCS Design
	3.1 Where Is Isolation Enforced?
	3.2 How Are Congestion-Shares Computed?
	3.3 How Is RCS Implemented?
	3.4 What Happens Within Originating and Terminating Domains?
	3.5 Other Issues
	3.6 How Does RCS Relate to Network Neutrality?

	4 Exploiting Current Trends
	5 Summary
	References

