Challenging the Stateless Quo of Programmable Switches

Nadeen Gebara

n.gebaral7@imperial.ac.uk
Imperial College London

Minlan Yu
minlanyu@g.harvard.edu
Harvard University

ABSTRACT

Programmable switches based on the Protocol Independent Switch
Architecture (PISA) have greatly enhanced the flexibility of today’s
networks by allowing new packet protocols to be deployed without
any hardware changes. They have also been instrumental in en-
abling a new computing paradigm in which parts of an application’s
logic run within the network core (in-network computing).

The characteristics and requirements of in-network applications,
however, are quite different from those of packet protocols for
which programmable switches were originally designed. Packet
protocols are typically stateless, while in-network applications re-
quire frequent operations on shared state maintained in the switch.
This mismatch increases the developing complexity of in-network
computing and hampers widespread adoption.

In this paper, we describe the key obstacles to developing in-
network applications on PISA and propose rethinking the current
switch architecture. Rather than changing the existing architecture,
we propose augmenting it with a Stateful Data Plane (SDP). The
SDP supports the requirements of stateful applications, while the
conventional data plane (CDP) performs packet-protocol functions.

CCS CONCEPTS

« Networks — Intermediate nodes; Programmable networks;
In-network processing; - Hardware — Networking hardware;
Hardware accelerators.

KEYWORDS

In-network Computing, Stateful Applications, Programmable Swi-
tches, PISA

ACM Reference Format:

Nadeen Gebara, Alberto Lerner, Mingran Yang, Minlan Yu, Paolo Costa,
and Manya Ghobadi. 2020. Challenging the Stateless Quo of Programmable
Switches. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks
(HotNets °20), November 4—6, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3422604.3425928

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HotNets 20, November 4—6, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8145-1/20/11...$15.00
https://doi.org/10.1145/3422604.3425928

Alberto Lerner
alberto.lerner@unifr.ch
University of Fribourg — Switzerland

Paolo Costa
paolo.costa@microsoft.com
Microsoft Research

Mingran Yang
mingrany@mit.edu
MIT CSAIL

Manya Ghobadi
ghobadi@csail.mit.edu
MIT CSAIL

1 INTRODUCTION

The ability of programmable switches based on the Protocol Inde-
pendent Switch Architecture (PISA) [2, 7, 9, 35] to execute data-
plane programs at line rate has opened up new opportunities for
researchers and practitioners, spurring unprecedented innovation
in network protocols and architectures, e.g., [4, 7, 13, 25, 35, 41, 43].

They have also paved the way for in-network computing [11, 38,
48], anew class of applications, ranging from caching [22] and data-
base query processing [26, 47] to machine learning (ML) [33, 40, 52]
and consensus [16, 17, 27], that take advantage of the ability to ex-
ecute arbitrary code within the network core (as opposed to just
at the edge), leveraging the switches’ unique vantage point. How-
ever, while programmable switches have been crucial to enable this
new paradigm, we argue that their current architecture is a poor
fit for the emerging applications, introducing unnecessary devel-
opment complexity and impacting performance. This is limiting
further growth and precluding widespread adoption of in-network
computing, ultimately hurting innovation.

PISA and some of its recent extensions [13, 41] were primarily
devised to handle traditional packet-processing operations, e.g.,
address rewriting or forwarding based on header fields, which
typically require limited state. Their architectures, therefore, rely
on a pipeline of independent match-action stages across which
memory and compute resources are distributed (§2).

In contrast, in-network computing applications tend to be stateful
and comprise a sequence of operations performed on complex data
structures, such as hash tables or caches. Such complex operations
are hard to accommodate in current PISA-based switches because
the application’s state is scattered across pipelines and match-action
pipeline stages. For instance, inserting a new item into a cache data
structure might require a packet to traverse all match-action stages
in a pipeline to check whether that item is already present. If the
item is not found, it should be inserted in one of the previous stages
but this is not possible because pipelines are feed-forward only.
The common workaround is to reinsert (or recirculate) the packet
into the pipeline, potentially at the cost of program correctness and
performance.

We believe the time has come to rethink the hardware platform
of programmable switches. We advocate the need for a new ar-
chitecture designed to support both in-network computing and
traditional packet protocols. This is analogous to a similar trend in
ML hardware design where general-purpose GPUs paved the way
for new architectures designed specifically with ML applications in
mind, e.g., Google TPUs [23] and NVIDIA Tensor Cores [34].


https://doi.org/10.1145/3422604.3425928
https://doi.org/10.1145/3422604.3425928

MAU Stage

Processing Pipeline

Multi-pipeline Switch

metadata

headers ¢

o
pack a MAU
ackety
] Stage,

K Pipeline of MAU Stages

\ -'--[ Ingress  Scheduler Egress
PHY | Pipeline; Pipeline;
Bus | MAU % Ingress ; Pipeline, Pipeline, Egress
Stagey E g-) Ports Pipeline; Pipeline; Ports
________ :>/? i Pipeline, Pipeline,

Recirculate

Figure 1: PISA-based switch, adapted from RMT architecture [7]. We show the switch in different levels of detail: Match-Action
Unit (MAU) stage within a single switch pipeline (left), switch pipeline of MAU stages (middle), and a switch with multiple

pipelines (right).

In this paper, we first provide a comprehensive review of the
limitations of existing programmable data planes in supporting
stateful applications (§3). Next, we sketch the design of a possi-
ble architecture for extending the capabilities of PISA to support
stateful applications. We propose to complement the conventional
data plane (CDP) in PISA with a new stateful data plane (SDP) (§4).
Unlike the CDP, which requires all of its stages to be traversed
by packets, the SDP is designed to support stateful applications
without causing performance degradation. The key observation
driving our design is that today’s CDP pipelines have an end-to-end
latency of several hundreds of nanoseconds, creating a slack time
that can be leveraged to perform more complex operations in the
SDP while the packet headers traverse the CDP. As long as the
stateful operations are completed within the slack time, and no
packets are blocked, no performance loss occurs. This could enable
supporting stateful operations without disrupting traditional traffic.

While our design is still preliminary and several questions re-
main to be investigated, we consider this paper a first step towards
enabling stateful in-network computing at line rate. We hope to
trigger new research and innovation at the boundaries of computer
architecture, programming languages, and networking disciplines.

2 PROGRAMMABLE SWITCHES TODAY

Although the micro-architectural details of today’s programmable
switches vary, they usually comprise four main elements: a parser,
a deparser, a pipeline of Match-Action Unit (MAU) stages, and a
bus connecting these elements. Fig. 1 shows the components of a
generalized programmable switch architecture, commonly referred
to as the Protocol Independent Switch Architecture (PISA) [2].

Packet parser, header vectors, and packet deparser. As
shown in Fig. 1, the processing pipeline starts with a programmable
parser that extracts the packet header fields required for the pro-
gram execution [18]. These fields are transferred to a large register
file called the Packet Header Vector (PHV) [7]. Each MAU stage
takes a PHV instance as its input, performs an operation using
data in the PHV, and outputs data to the following PHV instance
(input of next stage) through the bus inter-connecting the MAU
stages. The final PHV instance is connected to a deparser which
reassembles the packet and the newly obtained headers.

Match-Action Unit stages. The MAU stages are the processing
elements of a programmable switch, as illustrated in Fig. 1. They can
“execute” a match-action table; i.e., they select specific fields from
the input PHV and compare them to values stored in the match

table to determine the actions to be executed. Match tables can be
stored in SRAM or TCAM, allowing more sophisticated matching
conditions such as longest prefix matching. If a match is found,
the action associated with the matching condition is provided to
a specific ALU in the form of a simple RISC-like instruction. The
action unit has multiple ALUs that operate on PHV fields (header or
metadata), and/or register data. The complexity of the operations
performed by ALUs varies across switch micro-architectures. For
example, MAU stages in Domino [41] support more complex actions
(atoms) than those originally proposed in RMT at the expense of
increased area. However, the complexity of the operations is limited
by the timing constraint imposed within a pipeline stage.

Registers. An action may need to change a value stored in
the MAU beyond the lifetime of a packet traversing the switch.
For this purpose, PISA switches provide registers in MAU stages,
usually stored in SRAM. Registers are the only state holders that
can be updated through the data plane. However, such operations
usually have tight restrictions on the number of registers that can
be concurrently accessed within a stage [27].

A pipeline of MAU stages. Multiple MAU stages form a pipeline
between the parser and deparser. The MAU stages are independent
of each other and share no resources as shown in Fig. 1. This design
has one important implication: the information is propagated across
the stages in a single direction, feed-forwarding data through the
connecting PHVs. If a computation requires reading/writing values
more than once, the packet needs to traverse the pipeline several
times. This is referred to as recirculation.

Multi-pipeline switches. To scale the number of ports, switch
manufacturers use multiple parallel pipelines with no state sharing
as depicted in Fig. 1. Ingress (egress) pipelines are statically bound
to their respective input (output) ports. Packets can move from their
ingress pipeline to any egress pipeline via the switching elements,
but moving a packet from one pipeline to another is only possible
by recirculating the packet.

3 PISA AND THE BATTLE OF STATE

In this section, we first discuss the shortcomings of PISA in the
context of in-network compute (§3.1). We then describe the chal-
lenges associated with developing a seemingly simple in-network
application (top-k heavy-hitter detection) as a concrete example of
the challenges faced by in-network compute programmers (§3.2).
Finally, we conclude the section by summarizing the key data struc-
tures and building blocks used by in-network compute services;



we discuss how they are currently implemented on PISA-based
switches and note the corresponding limitations (§3.3).

3.1 Limitations of PISA

Link rates in data centers have increased by a factor of 100 over
the last decade, jumping from 1 Gbps in 2009 to 100 Gbps today. A
hypothetical 64x100 Gbps-port would process an aggregate of 9.5
billion packets per second assuming 84-byte packets (including 20
bytes for preamble and inter-packet gap). If such a switch were to
retire a packet per clock, it would require an unfeasible 9.5 GHz
clock rate. This motivates the need for a pipelined architecture (§2)
with a small cycle budget per stage to support high throughput
even with today’s lower clock rates [54].

A pipelined architecture is well-suited for networking protocols,
which are typically characterized by relatively simple operations
(e.g., rewrite the packet header or select an output port), but it
is a poor fit for stateful in-network applications [38] because of
the several implementation constraints that such an architecture
introduces as we detail next.

@® Limited support for complex operations. The first con-
sequence of the limited cycle budget is the difficulty of supporting
complex arithmetic operations. Such operations range from “sim-
ple” multiplications to more complex ones involving floating-point
arithmetic. This impacts such applications as gradient aggregation
in ML training [40] and complex queries in database systems [47].

® Shared-nothing stage architecture. Stages offer a limited
set of operations but compensate by executing several of them in
parallel. However, they must be independent: an operation’s output
cannot be used as the input for another operation in the same stage.
This effectively forces every sequential action to be unrolled across
several stages. Furthermore, a limited number of registers can be
accessed at once within a stage. Stateful register operations might
need to be partitioned across stages if this limit is reached [27].

(® Feed-forward transfer across stages. When the state of
a program is partitioned across stages, if an operation requires
access to the global state, the packet must travel across all the
stages. If, after traversing the pipeline, the packet needs to update a
variable in one of the previous stages, the only option is to recirculate
the packet. However, this operation can affect the application’s
correctness: by the time the packet is readmitted into the pipeline,
the state may have changed, thus possibly invalidating the result of
the previous read. Recirculation may also reduce the rate at which
new packets access the pipeline, decreasing overall throughput [3].

@ Fixed memory access pattern semantics. In addition to
the challenges described earlier, when the state is partitioned across
stages, compilers must impose a strict access pattern on the pro-
gram’s variables. For example, if a programmer defines two vari-
ables, a and b, in two different stages, s1 and s2, the program is
restricted to always accessing them in this order. This forces de-
velopers to think in terms of physical rather than logical memory
layout, which reduces programming flexibility.

@® No state-sharing across pipelines. The above issues are
exacerbated when the switch architecture hosts multiple parallel
pipelines—a common scenario for modern switches. Given the static

binding of switch ports and input pipelines and the lack of inter-
pipeline channels, the only way a packet can access an application’s
state stored in another pipeline is by being recirculated to that
pipeline. From an application’s perspective, a switch is essentially
a multi-core processor, with the caveat that one processor can only
communicate with another through recirculation paths.

3.2 Example: Top-k Heavy-Hitter Detection

To illustrate the impact of the limitations described in the previous
section on a real application, we consider HashPipe [42], a recently
proposed P4 implementation for heavy-hitter detection. We chose
this application because, despite the simplicity of the high-level pro-
tocol, implementing its required data structure on a programmable
switch is particularly complex and requires a compromise between
accuracy and performance. This is representative of the challenges
faced by developers when they attempt to implement stateful ap-
plications on programmable switches.

Program overview. The goal of HashPipe is to identify the set
of top-k flows that generate the largest number of packets. This is
achieved by using an adaptation of the space-saving algorithm [32].
The algorithm maintains a fixed-size table with k entries, each
containing the flow ID (e.g., a hash of the TCP 5-tuple) and the
corresponding packet counter. Every time a packet arrives, if its
flow ID is already stored in the table, its counter is incremented.
Otherwise, the flow ID with the smallest counter is evicted and
replaced by the flow ID of the incoming packet, and the previous
counter value is incremented by one.

Shared-nothing stage architecture. Determining the flow
with the smallest count value requires register accesses and se-
quential comparison operations that exceed the capacity of a single
stage. To circumvent this limitation, the table’s registers must be
partitioned across pipeline stages. However, since such a solution
would restrict the number of table registers (keys) to the number of
pipeline stages, HashPipe uses a probabilistic solution. Specifically,
it applies d hash functions (one per stage) to the flow ID to inspect
d randomly selected entries in different stages, where d is the num-
ber of stages. It then determines the minimum value across these
selected entries. This approach, however, incurs an accuracy error
because the minimum value across just d entries can be far from
the minimum value of the entire table.

Feed-forward transfer across stages. Partitioning the table
across d stages presents another challenge. A naive way to find the
minimum across the d entries is the following. As the incoming
packet traverses all stages, the program checks whether its flow
ID (frew) is already stored in any of the stages, and it uses the
metadata field to keep track of the flow ID with the smallest packet
counter encountered thus far (fiin). If frew is found, its counter
is simply incremented and no further action is required. However,
if the packet reaches the last stage and f¢1v has not been found,
the packet needs to be recirculated to replace the entry with fin.
In the worst-case scenario, the need to recirculate all packets can
result in halving the overall throughput [42].

To avoid recirculation and the corresponding performance hit,
HashPipe modifies the space-saving algorithm by inserting feq in
the first stage. The flow evicted in the first stage is carried forward as



Class| Data Structure Application(s) Limitation(s) Implementation trade-off
Bloom filter Distributed storage s'ystems, network telemetry, @ Limited number of hash functions [22, 33, 41, 47, 53]
load balancing, databases [30]
c1 Count-min Distributed storage systems, network @ Limited number of hash functions [22, 41, 47]
sketch telemetry [53], databases
Distributed storage system, network telemetry, Limited collision list & external overflow [26]
Hash table databases, load balancing, distributed system @ Lazy eviction threshold tuning required to
co-ordination [14, 19-22, 27-29, 33] evict stale hash table entries [12]
Limited vector size reduces application goodput
Vector ML training [5, 40, 48] 0 @ Lack of floating point operations (fp) makes accuracy
C2 dependent on fp conversion efficiency [40]
Priority queue Network telemetry, databases [47] @ @ @ Depth of queue bounded by pipeline stages requires
’ approximate solutions with reduced accuracy [3, 42]
Cache Distributed storage systems, network telemetry, @ @ ® Cache policy managed .throug‘h the c‘ontrol plane
databases & cache update operations violate line rate [22]
c3 Cuckoo Distributed storage system, network telemetry,
hash table databases,load balancing, distributed system @ @ @ No known implementation is available
co-ordination [14, 19-22, 26-29, 33]
Matrix ML inference [43] W No known implementation is available

Table 1: Mapping representative data structures to PISA-based switch architectures. (C1) implementation is practical; (C2)
implementation violates line rate or uses approximate solution; (C3) no complete data-plane implementation. Since @ is not
application-dependent, and not a property of the data structure itself; it is not included in the table.

part of the packet metadata field. If a flow ID with a smaller counter
is found in the next stage, the two are swapped and the latter is
carried forward. Although this approach circumvents the need for
recirculation, it can result in duplicate entries if fye4y is already
present in one of the later stages. These duplicate entries reduce
the usable table memory and can result in the accidental eviction
of heavy flows whose counts are spread across multiple registers.
Such evictions cause HashPipe to have a higher false-positive rate
than the space-saving algorithm when keys are over-reported [42].

Multiple pipelines. Depending on the definition of flow, e.g.,
the TCP 5-tuple vs. “all packets generated by a tenant,” the same
flow ID might appear on different pipelines, further complicating
a HashPipe-like implementation. One solution could be to force
packets to be steered through the same pipeline (ingress or egress)
via recirculation. Alternatively, independent tables could be main-
tained (one per ingress pipeline) but this would accentuate the risk
of duplicate keys and, hence, of lower accuracy.

3.3 Stateful data structures in PISA

A top-k list is not the only data structure that is difficult to imple-
ment in PISA switches. We surveyed the in-network computing
literature and identified the most common data structures used. We
classify them in Table 1 according to their implementation difficulty
and the impact of the limitations outlined in §3.1.

Bloom filter [6]. A membership test using a Bloom filter with
H hash functions requires a read and combine operation on the
values held in H registers. Such an operation cannot be completed
within a single stage because of @. Therefore, a Bloom filter must
span H + 1 stages to read the register values and combine their
outcome. This bounds the number of hash functions by the number
of pipeline stages.

Count-min sketch [15]. A count-min sketch with H hash
functions uses the minimum value accessed by a hash function
as an estimator of a key. The estimator requires a read and com-
bine operation on H registers; hence, it exhibits constraints similar
to those of Bloom filters because of (. Universal sketches with
more complex estimators are implemented by performing sketch
updates in the data plane and using the control plane for estimator
computation [31].

Hash table. Many hash-table implementations maintain a se-
quential list to handle collisions. However, because of @ the list
needs to extend across multiple stages. This caps the maximum
length of the collision list at the number of stages left after the
stage in which the hash computation is performed. A possible
workaround is to rely on the control plane to handle overflows but,
again, this causes significantly higher latency [26]. An alternative
approach is to rely on multiple hash tables with different hash func-
tions used in different stages [12]. Although this is a better solution,
it is less memory efficient than using a Cuckoo Hash table [36].
Multi-table hashes such as Cuckoo Hash may seem viable at first.
Yet, a pure data plane implementation requires recirculation when
an element is evicted from the last table. While the recirculation
is ongoing, new elements can be inserted and evicted, creating a
possible race condition. Today, implementing Cuckoo Hash tables
in PISA needs control-plane support.

Vector and Matrix. Vector operations can be mapped onto a
PISA switch in a variety of ways. When the size of a vector exceeds
the total number of stateful operations that can be performed on
packet headers (@) applications must partition the vector across
multiple packets. For example, since ML tensors are large vectors,
gradient aggregation requires applications to send multiple packets
to complete a single vector aggregation operation. Further, since @
does not allow floating-point operations, the provided gradient val-
ues must be converted to fixed-point numbers. Careful parameter



tuning is needed to avoid accuracy loss. Moreover, matrix oper-
ations required for in-network ML inference [43] are even more
complex than vector ones. A typical case may comprise several
multiply-accumulate operations [52]. Here, the operation needs to
be spread across multiple stages because of @) and @®.

Cache. Implementing associative caches in the data plane presents

challenges similar to the HashPipe example (§3.2). Cache lookups
and cache updates of existing keys can be realized by distribut-
ing the keys across multiple stages because of @. However, be-
cause of (), replacing an existing key with a new one can only
be done through recirculation, which might lead to correctness
violations. An alternative approach explored by recent work [22]
is to manage cache insertions and evictions via the control plane.
This shows higher memory efficiency than the data-plane imple-
mentation and can support variably-sized values but it incurs a
performance penalty, as control-plane operations are up to two
orders of magnitude slower than data plane operations [49].

4 BRIDGING THE GAP

This section presents our vision for a stateful switch architecture.
We first provide an overview of current research efforts and then
describe our solution. We do not claim to have all the answers
yet. Rather, we hope to start a discussion on new ways to design
programmable switches.

PISA variations. There have been attempts to extend PISA
switches by improving them along at least three dimensions: i)
adding more sophisticated atoms (actions), e.g., in Domino [41]; ii)
allowing more flexible memory access patterns, e.g., in dRMT [13];
and iii) mixing MAU stages and “configurable logic-based” stages
within a pipeline, e.g., in Flowblaze and Taurus [37, 43]. All these
proposals support more expressive programs than a “pure” PISA
switch because they relax some—but not all— the limitations dis-
cussed in §3.1. While in principle we could combine all these ap-
proaches to address the shortcomings of PISA in supporting stateful
applications, such an approach would result in longer and more
complex pipelines, and would therefore increase the cut-through
latency of packets that do not require any stateful operations, and
potentially result in resource wastage [54].

Instead of extending the PISA pipeline, we explore an alternative
approach that uses pipeline specialization and works alongside a
PISA pipeline. In contrast to other designs that complement the
PISA pipeline with external memory resources on servers [24],
our design combines the PISA pipeline with an additional tightly
integrated pipeline specialized for stateful computations.

Stateful Data Plane (SDP). We introduce a separate data plane
that operates in conjunction with the conventional data plane (CDP),
as depicted in Fig. 2. The goal of the SDP is to support a more
powerful set of stateful operations as first-class citizens.

The two planes are synchronized at the shared parser and de-
parser units. The packets are parsed normally, as they would be
in a PISA switch, but we propose extending the parser graph’s
semantics to allow the extraction of fields used by the SDP as well.
Fields requiring traditional header processing are sent to the CDP
through the PHV, whereas fields requiring stateful computations
are streamed to the SDP through a separate Stateful Queue (SQ).

Conventional Data Plane (CDP) v

PHV i
%‘ StagelH StagezH Stagez’:(> .......... _..i..
]

Stateful Data Plane (SDP)

o

195484
Jasiedag

Stateful

DSIB; Queue
DSIB,
Top-k DSIB
@& > L D1 | | & | O
1 3 'r d v
2 _47 - o
< swap (FIow‘ID, Count)

Figure 2: Our vision for the next generation of pro-
grammable switches is a Stateful Data Plane (SDP) that com-
putes the state while packets traverse the Conventional Data
Plane (CDP). Individual stateful computations can be im-
plemented through specialized blocks (DSIB). We show in
the detail how a DSIB calculates the top-k flows using a
pipelined hardware algorithm [45].

A series of units called Data Structure Instance Blocks (DSIB) are
at the heart of the SDP. These blocks house structures that main-
tain the state of applications and are specialized for performing
the required operations. We expect DSIBs to leverage pipelining to
sustain high throughput and, as we show shortly, they can avoid the
limitations faced by PISA (§3.1) because they do not need to adhere to
the PISA aspects that cause such limitations. Since some data struc-
tures may be common, DSIBs may be shared across applications.

An Application Bus directs incoming stateful data to their respec-
tive associated DSIBs. The bus is equipped with sufficient buffering
to match the rate at which inputs are provided by the parser unit,
and ensures that no packets are blocked. The latency of DSIBs
might vary depending on the operations they support. Therefore,
the Packet Reorder unit after the DSIBs ensures that the order with
which fields leave both the CDP and SDP is consistent.

The main constraint imposed on the SDP and its DSIBs is that
all operations must be carried out within a slack time. The slack time
is the time budget during which a packet traverses the CDP, and is
usually determined at compile time [7]. By imposing this constraint,
we ensure that the latency of stateful computations matches that
of the original pipeline.

Slack calculation. The key element of our solution is mapping
a stateful computation onto the SDP and guaranteeing that its
worst-case execution-time (WCET) is within the slack budget. There
are various methods to calculate the WCET given a program and
a platform, including static program analysis [50]. We intend to
program the SDP using feed-forward languages such as P4, and
extending them to support a richer set of data structures. We suspect
that P4 naturally produces temporally predictable code due to the
structure of the language [39]. Also, commercial P4 compilers are
already capable of determining the slack for the PISA processing
pipeline at compile time [2]. We expect our compiler extension to
be able to do the same for the stateful computations. We note that
the same extension could be applied to other languages that share
these characteristics, such as NPL [10] or Xilinx PX [8].



Some hardware’s characteristics are also essential for timing
predictability [46]. Consider PISA, where the MAU stages have
static instruction scheduling, lack memory hierarchy, and perform
no speculative execution. These mechanisms foster predictability.
We have the same design goal for the SDP.

An FPGA-based realization. To explore the design space, we
suggest the initial realization of the SDP path through FPGAs. They
support pipelined computation implementations and the tight hard-
ware control necessary for timing predictability. Recent FPGAs may
have dozens of 100-Gbps hard MAC units and as much as 0.5 GB
of on-chip RAM [51]. Also, new techniques are allowing FPGA de-
signs to be clocked from 400 to 850 MHz [44], only slightly slower
than today’s switching silicons at around 1 GHz. These factors may
allow us to achieve an SDP’s traversal time in the hundreds of
cycles per packet. Such latency is in line with current commercial
programmable switches” CDPs, which take at least 800 ns [1].

The question arises as to whether general-purpose CPUs would
be a better option with their higher clock rates and easier pro-
grammability. The problem with CPUs in our scenario is that they
use PCle lanes to interact with network cards and do not have the
bandwidth to support more than a few NICs. Moreover, caching
and speculative mechanisms in modern CPUs prevent writing ap-
plications with deterministic completion times.

The proposed architecture’s exact tradeoffs in terms of chip area,
power utilization, and additional costs are still open questions to be
addressed. We will research how to minimize the SDPs’ overhead
while matching the throughput and latency of the conventional
pipeline.

An FPGA-based top-k DSIB. Referring back to the top-k ex-
ample, the parser extracts the packet’s flow ID and sends it to the
top-k DSIB via the stateful queue and application bus as shown
in Fig. 2. This DSIB implements a variation of the space-saving
algorithm [32]. It maintains a series of k bins, each storing a flowID
(x;) and a counter, that keep track of the top-k flows [45].

Each bin in the pipeline performs the same operations on a
different flow ID entry. We numbered these operations from (1) to
(4) in Fig. 2 for convenience. A bin compares x;’s value with the
flow ID it holds (1) and updates its counter if they match. Next, the
counter value is compared with the next bin’s and swapped if the
first counter is lower than the second (2). These two operations are
then repeated for this next bin (3 and 4), before sending the flow
ID entry down the pipeline. Repeating the described sequence of
operations as the flow ID traverses the pipeline mimics a bubble
sort and sorts the flow IDs in descending order. As a result, when
the flow ID gets to the last register without matching any bin value,
the last bin’s value is automatically updated with the new flow ID
and its counter is incremented.

It would not have been possible to access more than one bin
in the original CDP due to () and @. Furthermore, even with
more powerful atoms that allow two register accesses and a swap
operation within a single pipeline stage, the approach is still not
possible because register swaps cannot be performed across pipeline
stages due to (®.

The original design implementation reports a throughput of 110
million items per second while clocked at a maximum rate of ~ 115

MHz when implemented on a Virtex-6 FPGA [45]. Considering

that the FPGA used is two generations old (40 nm process node),
and newer FPGAs typically allow higher clocking rates because of
improved technology and advanced optimization heuristics, we an-
ticipate that replicating the design on a state-of-the-art FPGA would
result in higher throughput. Furthermore, the proposed design is
expected to be capable of maintaining k values in the hundreds
of items while meeting a slack value of at least 800 ns quoted for
programmable switch pipelines [1].

The DSIB block’s latency is deterministic given a fixed clock rate
and k value (latency = k X clock_rate/2). We divided by 2 because
we can implement two bin operations per clock cycle [45]. By
further accounting for the time required to traverse the application
bus and re-order unit, we can determine whether the slack time
can be met for a specific k-value. Optimizing DSIBs for throughput
and slack constraints is a fundamental part of our future research.

Scaling to multi-pipeline switches. We have discussed how
to augment a single CDP with a stateful data plane. However, many
switches, in particular the high-port-count ones, deploy more than
one pipeline. We think that a single SDP path might be sufficient
for a 2-pipeline switch, a typical arrangement for today’s 32-port
switches. However, a 64-port, 4-pipeline switch, may need more
SDP paths, potentially one per pipeline. In such scenarios, a reduc-
tion SDP path may be needed to connect all the SDPs and perform
global computations.

5 CONCLUSION

In-network computing represents a new class of applications tak-
ing advantage of programmable networks. The first generation
of such applications brought benefits to several domains beyond
networking, but it also exposed severe limitations in the ability
of the current generation of programmable switches to perform
stateful computations. In this paper, we identify and characterize
the architectural features impacting in-network applications. We
curate a selection of data structures commonly used in stateful
applications and systematically expose the pain points involved in
implementing them.

Armed with insights from this exercise, we suggest a way to
extend programmable switches. The cornerstone of our proposal is
the deployment of a second data plane in the switch, in addition
to the “conventional” one, thus making the switch capable of more
complex stateful computations. We propose an initial design for
our Stateful Data Plane but we hope other researchers join us in
this effort by proposing and evaluating alternative designs.

ACKNOWLEDGMENTS

We thank our anonymous HotNets reviewers for their feedback.
This work was partly supported by the Microsoft Research PhD
scholarship program, by the United Kingdom EPSRC (grant num-
bers EP/L016796/1, EP/1012036/1, EP/L00058X/1, EP/N031768/1, and
EP/K034448/1), by the European Research Council (ERC) under the
European Union Horizon 2020 Research and Innovation Program
(grant agreements 683253/Graphint and 671653 ), by NSF grants

CNS-2008624 and CNS-1834263, as well as by SystemsThatLearn@CSAIL

Ignite Grant.



REFERENCES

(1]

=

[10
[11]

[12]

=
&

[14

[15]

[16]

(17]

[18]

19]

[20]

[21]

[22

[23]

[24

[25]

[26]

[27]

[28]

Arista. 7170 Series Programmable Data Center Switches. https://www.arista.
com/assets/data/pdf/Datasheets/7170-Datasheet.pdf.

Barefoot. Tofino. https://www.barefootnetworks.com/products/brief-tofino-2/.
R. Ben Basat, X. Chen, G. Einziger, and O. Rottenstreich. 2018. Efficient Measure-
ment on Programmable Switches Using Probabilistic Recirculation. In IEEE 26th
International Conference on Network Protocols (ICNP’18).

R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzenmacher. 2020.
PINT: Probabilistic In-band Network Telemetry. In Proceedings of the 2020 ACM
SIGCOMM Conference (SIGCOMM °20).

G. Bloch. 2019. Accelerating Distributed Deep Learning with In-Network Comput-
ing Technology. In APNET. https://conferences.sigcomm.org/events/apnet2019/
slides/Industrial_1_3.pdf

B. H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable Errors.
Commun. ACM 13, 7 (July 1970), 422-426.

P. Bosshart et al. 2013. Forwarding Metamorphosis: Fast Programmable Match-
Action Processing in Hardware for SDN. SIGCOMM Comput. Commun. Rev. 43, 4
(Aug. 2013), 99-110.

G. Brebner and W. Jiang. 2014. High-Speed Packet Processing using Reconfig-
urable Computing. MICRO 34, 1 (Jan 2014), 8-18.

Broadcom. BCM56870 Series. https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56870- series.

Broadcom. NPL - Network Programming Language. https://nplang.org/.

A. Caulfield, P. Costa, and M. Ghobadi. 2018. Beyond SmartNICs: Towards a Fully
Programmable Cloud: Invited Paper. In 2018 IEEE 19th International Conference
on High Performance Switching and Routing (HPRS ’18).

X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, and J. Rexford. 2020. Measuring
TCP Round-Trip Time in the Data Plane. In Proceedings of the Workshop on Secure
Programmable Network Infrastructure (SPIN "20).

S. Chole et al. 2017. DRMT: Disaggregated Programmable Switching. In Proceed-
ings of the 2017 ACM SIGCOMM Conference (SIGCOMM °17).

E. Cidon, S. Choi, S. Katti, and N. McKeown. 2017. AppSwitch: Application-Layer
Load Balancing within a Software Switch. In Proceedings of the First Asia-Pacific
Workshop on Networking (APNet’17).

G. Cormode and S. Muthukrishnan. 2005. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms 55, 1 (2005),
58-75.

H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman, H. Weatherspoon, M.
Canini, F. Pedone, and R. Soule. 2020. P4xos: Consensus as a Network Service.
IEEE/ACM Transactions on Networking 28, 4 (2020).

H. T. Dang, M. Canini, F. Pedone, and R. Soulé. 2016. Paxos Made Switch-y.
SIGCOMM Comput. Commun. Rev. 46, 2 (May 2016), 18-24.

G. Gibb, G. Varghese, M. Horowitz, and N. McKeown. 2013. Design Principles
for Packet Parsers. In Architectures for Networking and Communications Systems
(ANCS ’13).

R. Harrison, S. L. Feibish, A. Gupta, R. Teixeira, S. Muthukrishnan, and J. Rexford.
2020. Carpe Elephants: Seize the Global Heavy Hitters. In Proceedings of the
Workshop on Secure Programmable Network Infrastructure (SPIN °20).

T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé. 2018. Life in the Fast
Lane: A Line-Rate Linear Road. In Proceedings of the Symposium on SDN Research
(SOSR ’18).

X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and L. Stoica. 2018.
NetChain: Scale-Free Sub-RTT Coordination. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’18).

X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and L. Stoica. 2017. Net-
Cache: Balancing Key-Value Stores with Fast In-Network Caching. In Proceedings
of the 26th Symposium on Operating Systems Principles (SOSP ’17).

N. Jouppi et al. 2017. In-Datacenter Performance Analysis of a Tensor Processing
Unit. SIGARCH Comput. Archit. News 45, 2 (June 2017), 1-12.

D.Kim, Z. Liu, Y. Zhu, C. Kim, ]. Lee, V. Sekar, and S. Seshan. 2020. TEA: Enabling
State-Intensive Network Functions on Programmable Switches. In Proceedings of
the 2020 ACM SIGCOMM Conference (SIGCOMM °20). New York, NY, USA.

D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan. 2018. Generic External Memory for
Switch Data Planes. In Proceedings of the 17th ACM Workshop on Hot Topics in
Networks (HotNets ’18).

A. Lerner, R. Hussein, and P. Cudré-Mauroux. 2019. The Case for Network
Accelerated Query Processing. In Proceedings of the Innovative Data Systems
Research Conference (CIDR ’19).

J. Li, E. Michael, and D. R. K. Ports. 2017. Eris: Coordination-Free Consistent
Transactions Using In-Network Concurrency Control. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17).

J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports. 2016. Just Say No
to Paxos Overhead: Replacing Consensus with Network Ordering. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation

[29]

[30

(31]

[32

[33

[34]

[35

(36]

[37

(38]

(39]

[41]

[42]

[43

[44]

[45

[46

[47]

[48

[49]

[51

[52

(53]

(OSDI ’16).
X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman. 2016. Be Fast,

Cheap and in Control with SwitchKV. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’16).

M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya. 2017. IncBricks:
Toward In-Network Computation with an In-Network Cache. In Proceedings of the
22nd International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’17).

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. 2016. One Sketch
to Rule Them All: Rethinking Network Flow Monitoring with UnivMon. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16).

A. Metwally, D. Agrawal, and A. El Abbadi. 2005. Efficient Computation of
Frequent and Top-k Elements in Data Streams. In International Conference on
Database Theory (ICDT ’05).

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. 2017. SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap Using Switching ASICs. In Proceedings
of the 2017 ACM SIGCOMM Conference (SIGCOMM ’17).

NVIDIA. Tensor Cores. https://www.nvidia.com/en-us/data-center/tensor-
cores/.

P4.org Architecture Working Group. P416 Portable Switch Architecture (PSA).
https://p4.org/p4-spec/docs/PSA.html.

R. Pagh and F. F. Rodler. 2004. Cuckoo Hashing. Journal of Algorithms 51, 2
(2004), 122-144.

S. Pontarelli et al. 2019. FlowBlaze: Stateful Packet Processing in Hardware. In
16th USENIX Symposium on Networked Systems Design and Implementation (NSDI
19).

D.R. K. Ports and J. Nelson. 2019. When Should The Network Be The Computer?.
In Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS ’19).
P. Puschner and A. Burns. 2002. Writing Temporally Predictable Code. In Pro-
ceedings of the Seventh IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS *02).

A. Sapio et al. 2019. Scaling Distributed Machine Learning with In-Network
Aggregation. CoRR abs/1903.06701 (2019). arXiv:1903.06701 http://arxiv.org/abs/
1903.06701

A. Sivaraman et al. 2016. Packet Transactions: High-Level Programming for Line-
Rate Switches. In Proceedings of the 2016 ACM SIGCOMM Conference (SSIGCOMM
16).

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford.
2017. Heavy-Hitter Detection Entirely in the Data Plane. In Proceedings of the
Symposium on SDN Research (SOSR ’17).

T. Swamy, A. Rucker, M. Shahbaz, and K. Olukotun. 2020. Taurus: An Intelligent
Data Plane. CoRR abs/2002.08987 (2020). arXiv:2002.08987 https://arxiv.org/abs/
2002.08987

T. Tan, E. Nurvitadhi, D. Shih, and D. Chiou. 2018. Evaluating The Highly-
Pipelined Intel Stratix 10 FPGA Architecture Using Open-Source Benchmarks. In
2018 International Conference on Field-Programmable Technology (FPT ’18).

J. Teubner, R. Muller, and G. Alonso. 2011. Frequent Item Computation on a Chip.
IEEE Trans. on Knowl. and Data Eng. 23, 8 (Aug. 2011), 1169-1181.

L. Thiele and R. Wilhelm. 2004. Design for Timing Predictability. Real-Time
Systems 28, 2-3 (Nov. 2004), 157-177.

M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu. 2020. Cheetah: Accelerating Database
Queries with Switch Pruning. In Proceedings of the 2020 ACM SIGMOD Conference
(SIGMOD *20).

Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman. 2019. The Case
For In-Network Computing On Demand. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19).

S. Wang, C. Sun, Z. Meng, M. Wang, J. Cao, M. Xu, J. Bi, Q. Huang, M. Moshref,
T. Yang, H. Hu, and G. Zhang. 2020. Martini: Bridging the Gap between Network
Measurement and Control Using Switching ASICs. In IEEE 28th International
Conference on Network Protocols (ICNP °20).

R. Wilhelm et al. 2008. The Worst-Case Execution-Time Problem—Overview of
Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst. 7, 3 (May 2008),
36-53.

Xilinx. UltraRAM: Breakthrough Embedded Memory Integration on UltraScale+
Devices. https://www.xilinx.com/support/documentation/white_papers/wp477-
ultraram.pdf

Z. Xiong and N. Zilberman. 2019. Do Switches Dream of Machine Learning?
Toward In-Network Classification. In Proceedings of the 18th ACM Workshop on
Hot Topics in Networks (HotNets’19).

M. Yu, L. Jose, and R. Miao. 2013. Software Defined Traffic Measurement with
OpenSketch. In 10th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI ’13).

N. Zilberman, G. Bracha, and G. Schzukin. 2019. Stardust: Divide and Conquer
in the Data Center Network. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI '19).


https://www.arista.com/assets/data/pdf/Datasheets/7170-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7170-Datasheet.pdf
https://www.barefootnetworks.com/products/brief-tofino-2/
https://conferences.sigcomm.org/events/apnet2019/slides/Industrial_1_3.pdf
https://conferences.sigcomm.org/events/apnet2019/slides/Industrial_1_3.pdf
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://nplang.org/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://p4.org/p4-spec/docs/PSA.html
https://arxiv.org/abs/1903.06701
http://arxiv.org/abs/1903.06701
http://arxiv.org/abs/1903.06701
https://arxiv.org/abs/2002.08987
https://arxiv.org/abs/2002.08987
https://arxiv.org/abs/2002.08987
https://www.xilinx.com/support/documentation/white_papers/wp477-ultraram.pdf
https://www.xilinx.com/support/documentation/white_papers/wp477-ultraram.pdf

	Abstract
	1 Introduction
	2 Programmable Switches Today
	3 PISA and the Battle of state
	3.1 Limitations of PISA
	3.2 Example: Top-k Heavy-Hitter Detection
	3.3 Stateful data structures in PISA

	4 Bridging the Gap
	5 Conclusion
	Acknowledgments
	References

