
Estimating GPU Memory Consumption of Deep Learning
Models

Yanjie Gao
Microsoft Research

China
yanjga@microsoft.com

Yu Liu∗
Microsoft Research

National University of
Singapore
Singapore

liuyu@comp.nus.edu.sg

Hongyu Zhang
The University of

Newcastle
Australia

hongyu.zhang@newcastle.edu.au

Zhengxian Li
Microsoft Research

China
v-zhli10@microsoft.com

Yonghao Zhu
Microsoft Research

China
v-yonghz@microsoft.com

Haoxiang Lin†
Microsoft Research

China
haoxlin@microsoft.com

Mao Yang
Microsoft Research

China
maoyang@microsoft.com

ABSTRACT

Deep learning (DL) has been increasingly adopted by a variety of
software-intensive systems. Developers mainly use GPUs to accel-
erate the training, testing, and deployment of DL models. However,
the GPU memory consumed by a DL model is often unknown to
them before the DL job executes. Therefore, an improper choice
of neural architecture or hyperparameters can cause such a job to
run out of the limited GPU memory and fail. Our recent empirical
study has found that many DL job failures are due to the exhaustion
of GPU memory. This leads to a horrendous waste of computing
resources and a significant reduction in development productivity.
In this paper, we propose DNNMem, an accurate estimation tool for
GPUmemory consumption of DLmodels. DNNMem employs an an-
alytic estimation approach to systematically calculate the memory
consumption of both the computation graph and the DL framework
runtime. We have evaluated DNNMem on 5 real-world representa-
tive models with different hyperparameters under 3 mainstream
frameworks (TensorFlow, PyTorch, and MXNet). Our extensive
experiments show that DNNMem is effective in estimating GPU
memory consumption.

CCS CONCEPTS

• Software and its engineering → Extra-functional proper-

ties.

KEYWORDS

deep learning, memory consumption, estimation model, program
analysis

∗This author’s work is done as an intern at Microsoft Research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3417050

ACM Reference Format:

Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang
Lin, and Mao Yang. 2020. Estimating GPU Memory Consumption of Deep
Learning Models. In Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3368089.3417050

1 INTRODUCTION

In recent years, deep learning (DL) has rapidly become one of
the most successful machine learning techniques and is widely
integrated into a variety of software-intensive systems (such as
computer vision systems, natural language processing systems,
games, etc.). To accelerate the training, testing, and deployment of
DL models (aka deep neural networks or DNNs), GPU (Graphics
Processing Unit) is widely adopted by the developers. Enterprises
also build dedicate DL platforms such as Amazon SageMaker [4]
and Microsoft Azure Machine Learning [5] with a large number
of GPUs, providing support for DL frameworks like TensorFlow
(TF) [1], PyTorch [35], and MXNet [9].

However, since the GPU memory consumed by a DL model is
often unknown to developers before the training or inferencing job
starts running, an improper model configuration of neural archi-
tecture or hyperparameters can cause such a job to run out of the
limited GPU memory and fail. For example, as shown in Figure 1,
if a PyTorch ResNet50 [18] training job with a batch size of 256 is
scheduled on the NVIDIA Tesla P100 GPU, it will trigger an OOM
(out-of-memory) exception because the DL model requires 22 GB
of GPU memory while P100 has only 16 GB in total.

According to our recent empirical study on 4960 failed DL jobs
in Microsoft (Section 2.1), 8.8% of the job failures were caused by
the exhaustion of GPU memory, which accounts for the largest
category in all deep learning specific failures. Therefore, knowing
the accurate GPU memory consumption (aka memory footprint)
in advance is very important to reduce OOM failures and save pre-
cious platform resources including GPU/CPU/storage, by helping
developers choose an optimal model configuration or facilitating
DL frameworks to better utilize the mechanisms of dynamic mem-
ory management [17] (e.g., GPU memory swapping). This ability
can also benefit AutoML tools in enhancing the search efficiency

https://doi.org/10.1145/3368089.3417050
https://doi.org/10.1145/3368089.3417050

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang

(e.g., excluding those model configurations that do not satisfy the
memory requirement) and DL platforms in optimizing job plan-
ning and scheduling (e.g., scheduling a group of DL jobs that can
maximize the GPU memory usage).

64 128 256

12
16

24

𝐾80
𝑉 100/𝑃100

𝑃40

G
B

VGG16 ResNet50

Figure 1: GPU memory consumption of training PyTorch

VGG16 [42] and ResNet50 models with different batch

sizes. The red lines indicate the memory capacities of three

NVIDIA GPUs.

There are already many program analysis based techniques [2, 6,
7, 12, 22, 46, 47] for estimating memory consumption of C, C++, and
Java programs. For example, Albert et al. [2] presented a paramet-
ric inference on the notion of object lifetime to inferring memory
requirements of Java-like programs. Heo et al. [19] proposed a
resource-aware (e.g., memory size) flow-sensitive analysis that can
adjust behaviors by coarsening program abstraction. However, exist-
ing work cannot be directly applied to DL models for the following
three main reasons:

(1) The hybrid programming paradigm adopted by DL frame-
works hides the internal execution of a DL model from the
high-level programs written by developers, therefore making
it difficult to track the precise GPU memory usage.

(2) It is hard to analyze the GPU memory usage of low-level
framework operators (e.g., Conv2d), since they are usually
implemented with proprietary NVIDIA cuDNN, cuBLAS, or
CUDA APIs and nested loops.

(3) There are many hidden factors within the framework run-
time, which could observably affect the final GPU memory
consumption, including allocation policy (e.g., tensor align-
ment, fragmentation, reservation, and garbage collection),
internal usage (e.g., CUDA context), implementation choice
(e.g., multiple convolution algorithms in cuDNN [33]), oper-
ator scheduling, etc.

Simple workarounds cannot precisely estimate the GPU memory
consumption. First, the Shape Inference capability of DL frame-
works [25, 34] could be adapted for the estimation, by statically
adding up all the GPU memory allocated to the initial input, oper-
ator weights, intermediate outputs, and final output. However, it
does not take into account the above-mentioned hidden framework
factors, leading to large estimation errors (Section 5.2). Second,
running a DL job for a while and profiling it dynamically may help
estimate how much GPU memory is required. Nevertheless, such a
resource-consuming workaround cannot avoid GPU OOM either
and is unaffordable in the scenario of hyperparameter tuning, where
a large number of possible neural architectures and hyperparameter
combinations exist.

This paper presents DNNMem, an accurate estimation tool for
GPU memory consumption of DL models. Our key observation is
that the algorithmic execution of a DL model can be represented
as iterative forward and backward propagation on its computa-
tion graph. Such a graph is a directed acyclic graph (DAG), where
each node is an invocation of a mathematical function called oper-
ator (e.g., matrix addition) and each edge specifies the execution
dependency. GPU memory is allocated to tensors (e.g., operator in-
puts/outputs, and learnable parameters) and temporary buffers (e.g.,
cuDNNworkspace), and is later released by the framework’s built-in
memory allocator [15] along with the execution of operators. Hence,
estimating GPU memory consumption can be reduced to the calcu-
lation of memory required by each operator on the computation
graph in accordance with a graph traversal order. For an operator,
DNNMem defines an analytic and framework-independent memory
cost function since the operator is well defined with similar imple-
mentations across different frameworks. DNNMem also extracts
many of the above-mentioned runtime factors from each supported
framework to refine the estimation. For example, it analyzes the
liveness of tensors to handle GPU memory deallocation. DNNMem
is general and applies to not only single-device training but also
data-parallel training and model inference.

We have implemented DNNMem and evaluated it on 5 real-
world representative models (VGG16 [42], ResNet50 [18], Incep-
tionV3 [43], LSTM [20], and BERT [14]) with different hyperparam-
eters under 3 mainstream DL frameworks (TensorFlow, PyTorch,
and MXNet). The average estimation errors are below 16.3%, con-
firming the effectiveness of our proposed approach. The results also
show that DNNMem is robust to the choices of neural architectures,
hyperparameters, and DL frameworks.

In summary, this paper makes the following contributions:
(1) We systematically explore how GPU memory is consumed

by DL models.
(2) We propose and implement DNNMem, which can accurately

estimate the GPU memory consumption of a DL model.
(3) We perform comprehensive evaluations of DNNMem on a

variety of DL models and frameworks. The results show the
effectiveness and robustness of DNNMem.

2 BACKGROUND AND MOTIVATION

2.1 The Out-of-Memory Problem in DL

Practice

We recently conducted an empirical study on 4960 failed DL jobs
collected from the Philly platform in Microsoft within a three-week
period [51]. Every day, thousands of jobs from both research and
product teams are executed on Philly, including machine transla-
tion, reading comprehension, object detection, gaming, advertise-
ment, etc. For each failed job, we collected all related information
including input data, source code, job scripts, execution logs, and
runtime statistics for analysis. Failures in our study manifested as
unexpected runtime errors that led to job termination.

In our empirical study, we analyzed the categories and the root
causes of DL job failures. Our study shows that 8.8% of the total
failures were caused by the exhaustion of GPU memory, which ac-
counts for the largest category in all deep learning specific failures.
The DL models with sophisticated network structures and large

Estimating GPU Memory Consumption of Deep Learning Models ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

batch sizes may improve the model learning performance but also
significantly increase memory consumption. Since GPU memory is
relatively limited, developers need to size the model very carefully.

In fact, the OOM problem is not specific to the DL jobs in Mi-
crosoft. Another empirical study on 2716 Stack Overflow posts also
listed OOM as one of the six major effects of deep learning bugs [21].
Therefore, knowing the accurate GPU memory consumption in ad-
vance is very important to reduce out-of-memory failures and save
precious platform resources. A memory usage estimation tool is
very useful in this regard.

2.2 A Motivating Example of Our Approach

We motivate the design of DNNMem by describing how GPU mem-
ory is used and calculated for a simplified PyTorch training pro-
gram. Developers use deep learning frameworks such as TensorFlow
(TF) [1], PyTorch [35], and MXNet [9] to design layered data repre-
sentations called deep neural networks (DNNs) or deep learning
models. These frameworks provide both high-level programming
interfaces and basic building blocks for model construction. DL
models are essentially mathematical functions, which can be for-
malized as tensor-oriented computation graphs. Inputs and outputs
of the graph nodes are tensor (multi-dimensional array of numeri-
cal values) variables. The shape of a tensor is the element number
in each dimension plus element data type. Each node represents
the invocation of a mathematical operation called an operator (e.g.,
matrix addition). Since a node is completely decided by its invoked
operator, we may use “node” and “operator” interchangeably in the
rest of the paper. Each operator may additionally contain some nu-
merical learnable parameters (i.e., weights1). A graph edge pointing
from one output of operator 𝐴 to one input of 𝐵 delivers a tensor
and specifies the execution dependency.

Figure 2 shows the sample PyTorch training program, which sets
up a sequential model using the framework built-in Conv2d (2D
convolution), AvgPool2d (2D average pooling), and Linear (fully-
connected layer) operators (lines 5-12). The original code does not
give enough clues on how the training is processed. Under the hood,
PyTorch constructs a computation graph depicted in Figure 3 and
applies iterative forward and backward propagation on it to learn
the optimal weights. Such a graph is augmented with some system
crafted operators for backward propagation (e.g., 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝑑_𝐵𝑃 in
the middle of Figure 3).2 Under forward propagation (the left of Fig-
ure 3), input data (𝐷𝑎𝑡𝑎_𝑋) is fed through the neural network and
manipulated by the above developer-specified operators. Produced
output activations and input labels (𝐷𝑎𝑡𝑎_𝑌) are then propagated
backward to compute weight gradients. Finally, an optimizer is
responsible for weight update to minimize the loss (e.g., the differ-
ence between actual and expected outputs), marking the end of
one iteration. Popular optimization algorithms include Adam [23],
RMSProp [45], and SGD (stochastic gradient descent) [3].

During the training, operators apply for necessary GPU memory
on demand to store the following dimensions of tensors, denoted
by the ovals in Figure 3:

1Weight biases are included.
2We split the backward propagation of Linear into two logical operators

𝐿𝑖𝑛𝑒𝑎𝑟_𝐵𝑃1 and 𝐿𝑖𝑛𝑒𝑎𝑟_𝐵𝑃2 to clearly demonstrate the computation of weight
and output gradients. The same is to𝐶𝑜𝑛𝑣2𝑑_𝐵𝑃1 and𝐶𝑜𝑛𝑣2𝑑_𝐵𝑃2 .

1 import torch
2 class Net(nn.Module):
3 def __init__(self):
4 super(Net, self).__init__()
5 self.conv = nn.Conv2d(3, 8, 3)
6 self.pool = nn.AvgPool2d(2, 2)
7 self.fc = nn.Linear(1800, 10)
8 def forward(self, x):
9 x = self.conv(x)
10 x = self.pool(x)
11 x = x.view(x.size(0), -1)
12 x = self.fc(x)
13 return x
14

15 model = Net().cuda()
16 for epoch in range(500):
17 ...
18 outputs = model(inputs)
19 loss = criterion(outputs, labels)
20 loss.backward()
21 optimizer.step()

Figure 2: A sample PyTorch training program which con-

structs a sequential DL model using Conv2d (2D convolu-

tion), AvgPool2d (2D average pooling), and Linear (fully-

connected layer) operators.

Figure 3: Computation graph for training the DL model in

Figure 2. Ovals represent tensors in which 𝑊 stands for

weight tensor, 𝑂 for In/Out tensor, and 𝐸 for ephemeral ten-

sor. Rectangles are operators.
2
Dash lines denote weight up-

dates by SGD.

(1) Weight Tensor. This dimension includes operator weights
(e.g.,𝑊 1

𝑚), and weight gradients (e.g.,𝑊 6
𝑔) computed under

backward propagation for updating weights.
(2) In/Out Tensor.This dimension includes the initial input (Data_

X for features and 𝐷𝑎𝑡𝑎_𝑌 for labels) and operator inputs/
outputs. Outputs are further distinguished to forward out-
puts (e.g., 𝑂1

𝑓
), and output gradients (e.g., 𝑂6

𝑔) for calculating
weight gradients. We do not draw operator inputs because
they are identical to the corresponding predecessors’ outputs.
Note that they may occupy separate GPU memory buffers
under certain circumstances (e.g., in model-parallel training).

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang

Figure 4: GPU memory allocation during the operator exe-

cution.

(3) Ephemeral Tensor. This dimension includes variables used
by cuDNN/cuBLAS/CUDA APIs such as cuDNN workspace
(e.g., part of 𝐸1) and declared CUDA random numbers.

In addition, a DL model also requires some resident buffers. For
example, extra GPU memory is allocated for tensors to meet the
alignment requirements (i.e., internal tensor fragmentation). Others
include the CUDA context,3 runtime reservation, etc.

Figure 4 illustrates how GPU memory is possibly consumed in
training the above motivating DL model. The vertical axis repre-
sents the operator execution ordering such that Conv2d executes
first, AvgPool2d is the second, Linear then follows, etc. The horizon-
tal axis shows the consumed GPU memory when a certain operator
is executing. The GPU memory consumption of a DL model is the
total GPU memory consumption applied by the framework from
the device, which can be logically viewed as a continuous area
divided into memory blocks (rectangles in Figure 4). Green parts
are the allocated memory for in-use tensors. Yellow parts are the
internal tensor fragmentation if the original tensor sizes do not
align to a power of two. The gray parts are the reserved memory
by the framework allocator. For example, after a tensor is out of
use, its memory block could be cached instead of returning to the
GPU immediately. Since the CUDA context is allocated when DL
frameworks initialize, we do not draw it on the figure.

Initially, before the operator execution (the first line in Figure 4),
GPU memory is applied for the two initial input tensors 𝐷𝑎𝑡𝑎_𝑋
and𝐷𝑎𝑡𝑎_𝑌 and extra memory (the rightmost gray rectangle) is pre-
allocated to make future allocation more efficient. When Conv2d
executes, the framework allocator pads a little more GPU memory
as the internal tensor fragmentation to the ephemeral tensor 𝐸1
since its size is not aligned. After Conv2d has finished, 𝐸1 reaches
the end of its life and is then released. However, the corresponding
memory block is cached and will be re-allocated to𝑊 3

𝑚 when Linear
starts. The remaining space (the gray rectangle next to𝑊 3

𝑚) is too
small for any later tensors, therefore it becomes an external tensor
fragmentation and waits for being garbage-collected.

3The CUDA context contains managing information to control and use GPU
devices.

4H, W, and C represent the height, width, and channel dimensions of an image
input tensor, respectively.

Figure 5: Architecture of DNNMem.

Table 1: Selected settings in the model (upper part) and exe-

cution specifications. Mark “*” represents the default value.

Specification Example Affected

Settings Values Symbols

Framework TF * / PyTorch / MXNet 𝑀𝑐𝑡𝑥 , 𝑀𝑅(𝑢)
Input Shape (H:224, W:224, C:3)4 𝑂 (𝑢)
Batch Size 128 𝑂 (𝑢)

Optimization Algorithm SGD * / Adam 𝑊 (𝑢)
Precision Format Float32 * / Double 𝑀𝐶𝐺

Execution Mode single-* / multi-device 𝑊 (𝑢)
GPU SKU P40 𝑀𝑐𝑡𝑥

cuDNN Workspace Limit 4 GB 𝐸 (𝑢)

3 PROPOSED APPROACH

To fully understand how GPU memory is used by a DL model, we
classify the allocated GPU memory into 4 dimensions and present
them in Table 2. Our key observation is that the algorithmic ex-
ecution of a DL model is represented by frameworks as iterative
forward and backward propagation on its computation graph. Prop-
agation follows the execution dependency between operators, being
specified by the graph edges. The operator scheduling (i.e., in which
ordering the framework executes operators) is influential to the
GPU memory consumption since it could affect memory deallo-
cation, preservation, garbage collection, etc. DNNMem reduces
the operator scheduling to the computation graph traversal. Cur-
rently, since DL frameworks schedule one operator after another,5
we assume that operators are traversed sequentially. Therefore,
DNNMem adopts an analytic approach that formalizes the estima-
tion of GPU memory consumption as the calculation of memory
required by each operator on the computation graph in accordance
with a topological (linear) graph traversal ordering (Section 4.1).
Such an ordering is pre-generated by referring to the framework
implementations [17, 31, 37]

Figure 5 illustrates the architecture of DNNMem. It accepts the
on-disk serialized model file(s), a model specification, and an ex-
ecution specification as the input and then reports the estimated
GPU memory consumption. The model specification includes in-
put tensor shape and hyperparameter values (e.g., kernel size of
some convolutional operator). The execution specification contains
runtime information such as execution mode (e.g., single-device)

5MXNet can be configured to execute several operators simultaneously (i.e., bulk
execution).

Estimating GPU Memory Consumption of Deep Learning Models ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 2: Classification of allocated GPU memory.

Dimension Category Description

Weight Tensor Weight Learnable parameters of operators
Weight Gradient Gradients computed under backward propagation for updating weights

In/Out Tensor

Initial Input Input data items in mini batches

Operator Input Inputs of an operator (identical to the corresponding predecessors’ outputs if
the predecessors reside on the same GPU)

Forward Output Outputs of an operator computed under forward propagation (including the
model’s final output such as 𝑂3

𝑓
in Figure 3)

Output Gradient Gradients under backward propagation for calculating weight gradients

Ephemeral Tensor cuDNN Workspace Additional GPU memory used by cuDNN APIs
Temporary Tensor Temporary variables used in operator implementation

Resident Buffer

CUDA Context Managing information to control and use GPU devices
Internal Tensor Frag-
mentation Extra memory allocated for alignment

Allocator Reservation

(1) Released yet unreclaimed tensors
(2) Pre-allocated memory
(3) External tensor fragmentation
(4) Miscellaneous reservation (e.g., the fusion buffer used by Horovod)

and GPU SKU (Stock Keeping Unit) (e.g., GPU type, and memory
capacity). Some specification settings are shown in Table 1.

DNNMem implements a front-end parser for each supported DL
model format, using the framework built-in model deserialization
APIs. Such a parser is responsible for reading the input DL model
from the disk file(s) and reconstructing it to the corresponding
computation graph.

DL frameworks may allocate GPU memory in advance before
the operator execution (e.g., the CUDA context, initial input ten-
sors, and weight tensors of TensorFlow models). DNNMem de-
fines two allocation policies: ALLOC_ON_START (at the initializing
phase) and ALLOC_ON_DEMAND (at the first use). Before the graph
traversal, DNNMem counts tensors and resident buffers with the
ALLOC_ON_START policy to calculate an initial GPU memory con-
sumption.

During the graph traversal, DNNMem calculates a current GPU
memory consumption for the operator under visiting. As tensors
have their lifecycles, DNNMem first computes the set of unreleased
tensors which are still in GPU memory. This set consists of those
alive tensors being dependent by the visiting and subsequent op-
erators. Also, the framework may hold certain dead tensors for
a while, therefore they should also be counted. DNNMem defines
two release policies: RELEASE_ON_EXIT (at the finalizing phase) and
RELEASE_ON_DEATH (right after being out of use). At present, ac-
cording to the framework implementations, only operator weights
are set to RELEASE_ON_EXIT since they will be released only af-
ter the training finishes. Thus, unreleased tensors can be captured
with the liveness analyzer as well as the release policy information
(Section 4.3). Next, DNNMem analyzes tensors being allocated by
the visiting operator. Instead of performing program analysis on
the source code of operators, DNNMem defines an analytic and
framework-independent memory cost function for each operator
(Section 4.2), which returns a list of allocated tensors with type
and memory size. In this paper, we only consider single-device or
data-parallel training in which an operator and its predecessors are
placed on the same GPU. Hence, input tensors of the operator are
excluded because they are identical to the predecessors’ outputs.
DNNMem handles the internal tensor fragmentation by padding

extra memory according to the alignment requirements. It is pos-
sible that several operators may share weights (i.e., aliasing) [36].
DNNMem identifies them from their operator names and counts
the shared weight tensors only once.

The GPU memory occupied by the CUDA context is assumed to
be constant, being pre-computed by the GPU SKU, framework type
and version, etc. DNNMem finally identifies how GPU memory is
managed and reserved by the framework runtime, which serves for
increasing the performance of memory allocation (Section 4.5).

When the graph traversal completes, the maximum consumption
among all operators is reported as the GPU memory consumption
of the DL model. Note that our methodology requires that the
GPU memory consumption across training iterations is identical.
Therefore, the computation graph should be deterministic without
control-flow operators (e.g., loops, and conditional branches) and
dynamic graph changes (e.g., PyTorch employs the define-by-run
approach). Otherwise, users may unroll loops (as well as RNNs [50])
statically with a user-specified or framework-default count, or sup-
ply multiple deterministic computation graphs (e.g., several model
files) to tackle this problem.

4 IMPLEMENTATION

4.1 Estimation on Computation Graph

Formally, the computation graph of a DL model is represented as a
directed acyclic graph (DAG):

𝐶𝐺 = ⟨{𝑢𝑖 }𝑛𝑖=1, {(𝑢𝑖 , 𝑢 𝑗)}, {𝑝𝑘 }
𝑚
𝑘=1⟩

Each node 𝑢𝑖 is an operator, while a directed edge (𝑢𝑖 , 𝑢 𝑗) delivers
an output tensor of 𝑢𝑖 to 𝑢 𝑗 as input and specifies the execution
dependency between the two operators. Each 𝑝𝑘 is a hyperparam-
eter such as input tensor shape, batch size, learning rate, etc. As
mentioned before, we suppose that 𝐶𝐺 is deterministic without
control-flow operators.

Let 𝑆 = ⟨𝑢𝑖1 , 𝑢𝑖2 , · · · , 𝑢𝑖𝑛 ⟩ be a topological (linear) ordering
extended from the above graph edge ordering such that 𝑢𝑖 𝑗 ≺𝑆
𝑢𝑖𝑘 =⇒ (𝑢𝑖𝑘 , 𝑢𝑖 𝑗) ∉ 𝐶𝐺 . We call 𝑆 the operator schedule, which
represents the actual runtime execution of operators. 𝑆 is pre-
generated by reference to the framework implementations [17, 31,

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang

37]. DNNMem then follows 𝑆 to traverse the computation graph
𝐶𝐺 sequentially. Suppose that 𝑢 is the operator under visiting, the
current GPU memory consumption for 𝑢 consists of 3 parts: previ-
ously allocated but still in-use tensors, newly allocated tensors for𝑢,
and resident buffers of the CUDA context and allocator reservation.
The first two kinds of tensors are called the unreleased tensors.

Let 𝑀𝐹𝑖𝑛𝑖𝑡 and 𝑀𝐹 be the functions that return the initial and
current GPU memory consumption. Let𝑀𝑈 ,𝑀𝑅, and𝑀𝑐𝑡𝑥 be the
functions that return the memory size of unreleased tensors, mem-
ory size of allocator reservation, and GPU memory occupied by the
CUDA context, respectively. Function𝑈𝑇 computes the set of all
unreleased tensors, and𝑀𝑇 returns the allocated memory size of
a tensor 𝑡 . Note that𝑀𝑇 counts in the internal tensor fragmenta-
tion. We use𝑀𝐶𝐺 to denote the GPU memory consumption of the
computation graph 𝐶𝐺 , and calculate it as follows:

𝑀𝐹𝑖𝑛𝑖𝑡 = 𝑀𝑐𝑡𝑥 +
∑

𝑀𝑇 (𝑡) 𝑡 has ALLOC_ON_START

𝑀𝑈 (𝑢) =
∑

𝑡 ∈𝑈𝑇 (𝑢)
𝑀𝑇 (𝑡)

𝑀𝐹 (𝑢) = 𝑀𝑈 (𝑢) +𝑀𝑅(𝑢) +𝑀𝑐𝑡𝑥

𝑀𝐶𝐺 = max{𝑀𝐹𝑖𝑛𝑖𝑡 , 𝑀𝐹 (𝑢𝑖) | 𝑢𝑖 ∈ 𝐶𝐺}

The above abstraction and formalization are general to different
frameworks and DL models in estimating GPU memory consump-
tion. Users can also adapt the estimation model to new devices
and frameworks by using another operator schedule, associating
different allocation/release policies to tensors, or modifying the
above functions such as𝑀𝑅,𝑀𝑐𝑡𝑥 , etc. functions.

4.2 Memory Cost Functions of Operators

Knowing how GPU memory is allocated and used by an operator
from its source code is challenging using traditional program anal-
ysis techniques. This is because operators are usually implemented
by DL frameworks with NVIDIA cuDNN, cuBLAS, or CUDA API
invocations (black box) and nested loops.

Instead, we define an analytic and framework-independent mem-
ory cost function for each operator by reference to the framework
implementations. Our solution is technically feasible for two rea-
sons. First, frequently-used operators are well-defined with clear
syntax and semantics. Second, DL frameworks implement them
similarly by calling NVIDIA APIs. The memory cost function re-
turns a set of allocated tensors with category and shape (in terms of
parameters such as batch size, input tensor shape, the filter number,
and so on). Most of the concrete parameter values are fetched from
the previously mentioned user specifications, while the input tensor
shape can be inferred by Shape Inference.

We suppose that 𝑢 is the operator under visiting and𝑀𝐶 is its
memory cost function. Let𝑊 ,𝑂 , and 𝐸 be the functions that return
the sets of 𝑢’s weight/output/ephemeral tensors. As mentioned in
Section 3, we exclude input tensors because only single-device and
data-parallel training are considered. Thus,

𝑀𝐶 (𝑢) =𝑊 (𝑢) ∪𝑂 (𝑢) ∪ 𝐸 (𝑢)

Weight tensors include operator weights (𝑊𝑚) under forward prop-
agation and weight gradients (𝑊𝑔) under backward propagation:

𝑊 (𝑢) =𝑊𝑚 (𝑢) ∪𝑊𝑔 (𝑢)

Output tensors consist of forward outputs (𝑂 𝑓) and output gradients
(𝑂𝑔):

𝑂 (𝑢) = 𝑂 𝑓 (𝑢) ∪𝑂𝑔 (𝑢)
Ephemeral tensors contain three parts:

(1) cuDNN workspace (𝐸𝑤), which is the additional GPU mem-
ory buffer used by cuDNN APIs such as cudnnConvolution
Forward() in the implementation of framework operators.
Larger workspace brings better performance. DNNMem in-
vokes standard interfaces such as cudnnGetConvolution
ForwardWorkspaceSize() to obtain the amount of cuDNN
workspace required. In addition, frameworks may limit the
workspace size in case of GPU memory shortage. For exam-
ple, TensorFlow exports an environment variable TF_CUDNN_
WORKSPACE_LIMIT_IN_MB to set the upper bound of cuDNN
workspace. Thus, DNNMem returns the smaller value.

(2) CUDA data structures (𝐸𝑣), which are miscellaneous data
structures used by CUDA APIs like CUDA random numbers.

(3) Temporary tensors (𝐸𝑝), which are temporary variables used
in the implementation of framework operators. For example,
we observe through runtime logs that TensorFlow’s convo-
lution operator uses two temporary tensors with the same
sizes as the weight and output tensors, respectively.

Thus,
𝐸 (𝑢) = 𝐸𝑤 (𝑢) ∪ 𝐸𝑣 (𝑢) ∪ 𝐸𝑝 (𝑢)

Note that not all types of tensors are allocated for the operator 𝑢.
Let us use the motivating example in Figures 2 and 3 to illustrate

how such memory cost functions look like. The following symbols
are used to denote each operator’s hyperparameters and tensor
shapes. 𝑆𝑓 is for the precision format of the data type. 𝑁 represents
batch size.𝐻𝑜 ,𝑊𝑜 and𝐶𝑜 are output height, width, and channel.𝐻𝑖 ,
𝑊𝑖 , 𝐶𝑖 are input height, width, and channels. 𝐻𝑓 and𝑊𝑓 are filter
height andwidth. 𝐹𝑜 represents the size of each output sample. Since
cuDNN workspace depends on a specific cuDNN convolutional
algorithm (denoted by A. e.g., GEMM, FFT, and Winograd), the
symbol of the workspace is represented as 𝐸A𝑤 .

Table 3 lists all allocated tensors of the operators used in our
motivating example and their sizes. Although the developer may
specify only three operators in code, DL frameworks automatically
insert auxiliary ones into the computation graph for backward prop-
agation. For example,𝐶𝑜𝑛𝑣2𝑑_𝐵𝑃1 and𝐶𝑜𝑛𝑣2𝑑_𝐵𝑃2 are framework-
crafted operators for calculating output and weight gradients to
update the weights of the developer-specified 𝐶𝑜𝑛𝑣2𝑑 operator.
The 𝐿𝑖𝑛𝑒𝑎𝑟 (FullyConnected) operator can be implemented by ma-
trix multiplication and addition. The RNN [50] operator needs to
consider the weight sharing of stacked cells.

Currently, DNNMem provides memory cost functions for 70+
frequently-used operators. Although operators represent different
mathematical operations, they may share the same or similar mem-
ory cost functions according to how they manipulate the input data.
For example, operators such as ReLU and Sigmoid perform in-place
updates by default (i.e., activation functions). They do not require
any additional GPU memory and thus share the same zero memory
cost function. Another example is that the listed memory cost func-
tion of operator Conv2d is adapted for Conv1d and Conv3d with
little change needed since their principles are similar. In this way,

Estimating GPU Memory Consumption of Deep Learning Models ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 3: Allocated tensors and their sizes in the motivating example.

Operator Category Operator Tensor Category Tensor Size

Convolution

𝐶𝑜𝑛𝑣2𝑑 Weight 𝑊 1
𝑚 = 𝑆𝑓 ×

(
𝐶𝑖 (𝑢) × 𝐻𝑓 (𝑢) ×𝑊𝑓 (𝑢) ×𝐶𝑜 (𝑢) +𝐶𝑜 (𝑢)

)
Forward Output 𝑂1

𝑓
= 𝑆𝑓 × 𝑁 ×𝐶𝑜 (𝑢) × 𝐻𝑜 (𝑢) ×𝑊𝑜 (𝑢)

cuDNN Workspace 𝐸1 = 𝐸A(𝐹𝑃)𝑤 (𝑢)

𝐶𝑜𝑛𝑣2𝑑_𝐵𝑃1 Output Gradient 𝑂7
𝑔 = 𝐷𝑎𝑡𝑎_𝑋

cuDNN Workspace 𝐸61 = 𝐸
A(𝐵𝑃1)
𝑤 (𝑢)

𝐶𝑜𝑛𝑣2𝑑_𝐵𝑃2 Weight Gradient 𝑊 6
𝑔 =𝑊 1

𝑚

cuDNN Workspace 𝐸62 = 𝐸
A(𝐵𝑃2)
𝑤 (𝑢)

AveragePooling
𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝑑 Forward Output 𝑂2

𝑓
= 𝑆𝑓 × 𝑁 ×𝐶𝑜 (𝑢) × 𝐻𝑜 (𝑢) ×𝑊𝑜 (𝑢)

𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝑑_𝐵𝑃 Output Gradient 𝑂6
𝑔 = 𝑂1

𝑓

FullyConnected

𝐿𝑖𝑛𝑒𝑎𝑟 Weight 𝑊 3
𝑚 = 𝑆𝑓 × (𝐶𝑖 (𝑢) × 𝐻𝑖 (𝑢) ×𝑊𝑖 (𝑢) × 𝐹𝑜 (𝑢) + 𝐹𝑜 (𝑢))

Forward Output 𝑂3
𝑓
= 𝑆𝑓 × 𝑁 × 𝐹𝑜 (𝑢)

𝐿𝑖𝑛𝑒𝑎𝑟_𝐵𝑃1 Output Gradient 𝑂5
𝑔 = 𝑂2

𝑓

𝐿𝑖𝑛𝑒𝑎𝑟_𝐵𝑃2 Weight Gradient 𝑊 4
𝑔 =𝑊 3

𝑚

Table 4: Operators share the same memory cost functions.

Category Example Operators

Activation ReLU, LeakyReLU, Sigmoid, Tanh, ELU
Convolution Conv1d, Conv2d, Conv3d
Pooling MaxPooling, AvgPooling

Elementwise Add, Mul, Mod, And
RNN VanillaRNN, LSTM, GRU

Constant DataInput, Constant
Misc Assert, Ignore

more operators could be supported in DNNMem. Table 4 shows
some operators that share the memory cost functions.

4.3 Unreleased Tensors

Algorithm 1 demonstrates how to compute the unreleased ten-
sors during graph traversal. We suppose that the computation
graph, traversal order, and operator 𝑢 under visiting are given.
First, DNNMem identifies the visited operators on the computation
graph and obtains their tensors from the memory cost functions.
Next, DNNMem enumerates each of such tensors to check if it has
the policy RELEASE_ON_EXIT set or it is still live. If satisfied, this
tensor is added to the set of unreleased tensors. Finally, DNNMem
adds all the tensors of 𝑢 too.

The liveness of a tensor is computed by verifying whether it
will be used by any of the current and later operators (i.e., there
exists an edge on the computation graph). Figure 6 highlights the
dependencies between certain tensors and operators. Suppose that
the operator under visiting is 𝐿𝑖𝑛𝑒𝑎𝑟_𝐵𝑃1, and the immediate suc-
cessor is 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝑑_𝐵𝑃 .𝑊 3

𝑚 and 𝑂4
𝑔 are used by 𝐿𝑖𝑛𝑒𝑎𝑟_𝐵𝑃1, so

they are live. When we proceed to visit 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝑑_𝐵𝑃 , 𝑂4
𝑔 is then

dead assuming that 𝐿𝑖𝑛𝑒𝑎𝑟_𝐵𝑃1 and 𝐿𝑖𝑛𝑒𝑎𝑟_𝐵𝑃2 have been visited
before. Although the weight tensor𝑊 3

𝑚 looks also dead, it is set
RELEASE_ON_EXIT thus cannot be released since DL frameworks
will keep it in GPU memory for later weight updating.

Figure 6: Tensor liveness example.

Since DNNMem is extensible, users can add memory optimiza-
tion strategies (e.g., SWAP [38] and gradient checkpoint [11]) as
extensions to Algorithm 1 to simulate more application scenarios.

4.4 Memory Block Management

Asmentioned in Section 3, tracking the memory blocks is indispens-
able to handle the impact factors of the DL framework runtime (e.g.,
policies of memory pre-allocation, and reallocation). DNNMem im-
plements a linked-list based memory block manager and the best-fit
with coalescing (BFC) algorithm.

When visiting an operator during the computation graph tra-
versal, memory allocation is simulated for each of the operator’s
tensors. DNNMem searches the list for the first free block fitting
the tensor size (with alignment). If such a block is larger than the
requested size such that the residual space exceeds a threshold, it is
split and the remainder will be inserted into the list right after. Oth-
erwise, the full block should be returned. However, there may be no
suitable free blocks anymore. DNNMem then simulates applying
for fresh memory from the GPU device by creating a new block data
structure and appending it to the list tail. Memory pre-allocation
is handled by correctly setting the size of such a new block. For

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang

Algorithm 1: Compute the set of unreleased tensors.
Input: The computation graph cg, traversal ordering tp_order, and

operator u under visiting.
Output: A set of unreleased tensors ut.

1 ut← ∅ ;
2 prev_tensors← ∅ ; // Already allocated tensors.

3 unvisited_ops← ∅ ; // u will also be included.

4 foreach op ∈ cg do
5 if IsVisited(op) then

// MC() is the memory cost function.

6 prev_tensors← prev_tensors ∪ MC(op) ;
7 else

8 foreach t ∈ MC(op) do

9 if t.alloc_policy == ALLOC_ON_START then

10 prev_tensors← prev_tensors ∪ { t } ;
11 end

12 end

13 unvisited_ops← unvisited_ops ∪ { op } ;
14 end

15 end

16 foreach t ∈ prev_tensors do
17 if t.release_policy == RELEASE_ON_EXIT then

18 ut← ut ∪ { t } ; // t cannot be released.

19 continue;
20 end

21 foreach op ∈ unvisited_ops do
22 if IsDependent(op, t) then

23 ut← ut ∪ { t } ; // t is alive.

24 break;
25 end

26 end

27 end

28 ut← ut ∪ MC(u) ; // Add tensors of u.
29 return ut;

TensorFlow, the size equals to the total size of all existing memory
blocks (exponential backoff).

4.5 Resident Buffers

Resident buffers are essential GPU memory for the training and
inference of DLmodels and are managed by the framework runtime.
As shown in Table 2, DNNMem currently handles the following
three categories.

CUDA Context. The CUDA context𝑀𝑐𝑡𝑥 is mainly determined
by three factors: GPU SKU, framework type, and version. When
such factors are fixed, it is constant to different DLmodels. DNNMem
profiles values of the CUDA context under various combinations
in advance for later queries. The profiling first obtains the total
GPU memory consumption using NVML (NVIDIA Management
Library) [32], then calculates the consumed memory by DL frame-
works from runtime logs, framework APIs, or CUDA hooks, and
finally computes the difference.

Internal Tensor Fragmentation. To takemaximum advantage
of GPU hardware, the actual size of allocated GPU memory for a
tensor should meet some alignment requirements. For example,

TensorFlow aligns with multiples of 256 bytes while PyTorch aligns
with multiples of 512 bytes.

Allocator Reservation. Within the category of allocator reser-
vation, released yet unreclaimed tensors, pre-allocated memory,
and external tensor fragmentation can be calculated by querying
the memory block manager. For the miscellaneous reservation,
DNNMem currently handles the fusion buffer from the data-parallel
training using Horovod [40]. DNNMem treats its size as a constant
(64 MB by default) and provides a user configuration.

5 EVALUATION

5.1 Experimental Setup

We evaluate DNNMem under three popular DL frameworks: Ten-
sorFlow 1.12.0, PyTorch 1.2.0, and MXNet 1.5.0 with CUDA 9.0 and
cuDNN 7.0.3. For each framework, we experiment the following 5
representative DL models shown in Table 5.

Table 5: The experimented DL models.

DL Model Field Dataset # of Layers

VGG16 CV ImageNet [13] 22
ResNet50 CV ImageNet 50

InceptionV3 CV ImageNet 48
LSTM NLP Synthetic 2

BERT (base) NLP GLUE [48] 12

To obtain the real consumed GPUmemory of a DLmodel, we pro-
filed the job using NVIDIANVML [32]. CUDAUnifiedMemory [39]
was disabled to avoid tensors being migrated to the main memory.
We did not limit the memory usage of the cuDNN workspace.

To evaluate the effectiveness of DNNMem, we use relative error
between the real and estimated GPU memory consumption:

% error =
|Est. − Real|

Real
× 100

Smaller errors indicate better estimation accuracy.

5.2 RQ1: How effective is DNNMem in

estimating GPU memory consumption of

DL models?

This RQ evaluates the overall effectiveness of DNNMem in esti-
mating GPU memory consumption. Table 6 lists the experimental
results for VGG16, ResNet50, InceptionV3 (with the input image
data shape [Channel:3, Height:224, Width:224] and batch size 128),
and LSTM (with the hidden and input sizes 5120, 2 layers, and
batch size 128) models. The results show that DNNMem is able to
make satisfactory estimations. For TensorFlow, the relative errors
range from 2.3% to 13.8%, with an average of 5.9%. For PyTorch, the
relative errors range from 7.5% to 23.0%, with an average of 14.4%.
For MXNet, the relative errors range from 0.6% to 10.0%, with an
average of 3.9%.

We also compare DNNMem with Shape Inference [25, 34], a
static analysis technique to infer the tensor shapes of operator in-
puts, outputs, and weights. Currently, the three DL frameworks
do not provide stand-alone shape inference tools. DNNMem has

Estimating GPU Memory Consumption of Deep Learning Models ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 6: GPU memory consumption (GB) of different mod-

els. “Est.” is estimation. “SI” is Shape Inference. “BS128”

means batch size 128. The % values denote relative errors.

Models TensorFlow PyTorch MXNet

BS128 Real Est. SI Real Est. SI Real Est. SI

VGG16
17.4 16.9 7.2 16.2 14.6 7.2 14.3 14.2 7.2

(2.8%) (58.6%) (9.8%) (55.5%) (0.6%) (49.6%)

ResNet50
8.4 8.2 5.1 13.2 10.9 10.1 11.8 11.5 10.1

(2.3%) (39.2%) (17.4%) (23.4%) (2.5%) (14.4%)
Inception 10.1 8.7 7.0 15.6 12 11.2 12.9 11.6 11.2

V3 (13.8%) (30.6%) (23.0%) (28.2%) (10.0%) (13.1%)

LSTM
4.1 4.3 2.3 7.9 8.5 2.3 11.9 12.2 2.3

(4.8%) (43.9%) (7.5%) (70.8%) (2.5%) (80.6%)

already implemented our own using the framework APIs for estab-
lishing the operator memory cost functions. We query such cost
functions for tensors of the initial input, weights, intermediate out-
puts, and final output under forward propagation, and then add
them up as the GPU memory consumption estimated by Shape
Inference.

On average, the relative errors of Shape Inference reach 43.0%
(TensorFlow), 44.4% (PyTorch), and 39.4% (MXNet), which are much
higher than those of DNNMem. The reason is that DNNMem con-
siders hidden factors such as tensor allocation policy and cuDNN
workspace.

To further evaluate DNNMem, for each framework, we exper-
iment with the three DL CV models in Table 5 with 100 different
input shapes (from [Channel: 3, Height: 224, Width: 224] to [Chan-
nel: 3, Height: 300, Width: 300]) and batch sizes (from 2 to 256). We
then compute the mean relative errors (MRE) of all 100 experiments
for each framework. Figure 7 summarizes the results. The mean
relative errors achieved by DNNMem are 16.0% for TensorFlow,
15.4% for PyTorch, and 16.3% for MXNet. While the mean relative
errors achieved by Shape Inference (SI) range from 35.9% to 49.1%.
The results show the robustness and effectiveness of DNNMem.

TensorFlow PyTorch MXNet

20

30

40

50 49.1

35.9
39.3

16 15.4 16.3

M
ea
n
Re

la
tiv

e
Er
ro
rs

(%
)

SI (Shape Inference) Est. (DNNMem)

Figure 7: The effectiveness of DNNMem under different in-

put shapes and batch sizes. The Y-axis shows the mean rela-

tive errors (%).

To evaluate the effectiveness of DNNMem in predicting the GPU
OOM (out-of-memory) cases, we also increase the batch size to
512 and measure the memory consumption of three CV models
under the three frameworks (total 9 experiments). Among these
9 experiments, 8 failed due to OOM. That is, the memory con-
sumption is larger than the available memory of NVIDIA Tesla P40
(22.38 GB), which is the GPU used in this experiment. For all the
OOM experiments, the memory consumption estimates made by
DNNMem range from 28.7 to 46.0 GB, which are all above the avail-
able GPU memory (22.38 GB). For the remaining one experiment

Table 7: GPUmemory consumption (GB) of BERT (base, un-

cased) model with different batch sizes (BS) and sequence

lengths (SL). “SI” is Shape Inference. The % values denote rel-

ative errors.

Models

TensorFlow PyTorch MXNet

Real Est. SI Real Est. SI Real Est. SI

BS32 4.2 3.4 1.8 3.5 2.4 1.8 3.7 2.9 1.8
SL32 (19.0%) (57.1%) (31.4%) (48.5%) (21.6%) (51.3%)
BS32 8.2 5.4 3.1 4.7 3.8 3.1 4.9 4.3 3.1
SL64 (34.1%) (62.1%) (19.1%) (34.0%) (12.2%) (36.7%)
BS128 16.2 15.4 11.2 12.7 12.3 11.2 11.9 13.1 11.2
SL64 (4.9%) (30.8%) (3.1%) (11.8%) (10.0%) (5.8%)
BS64 16.2 15.4 11.2 12.6 12.3 11.2 13.1 13.1 11.2
SL128 (4.9%) (30.8%) (2.3%) (11.1%) (0.0%) (14.5%)
BS100 21.2 22.7 17.3 18.4 18.6 17.3 20.5 19.6 17.3
SL128 (7.0%) (18.3%) (1.0%) (5.9%) (4.3%) (15.6%)

(TensorFlow ResNet50) that did not have the OOM failure, the esti-
mation error achieved by DNNMem is only 3.9%. The results show
that DNNMem can successfully predict OOM cases, confirming the
effectiveness of DNNMem.

Table 7 shows the experiment of BERT [14] (base) model over
the GLUE (General Language Understanding Evaluation) bench-
mark [48], with various batch sizes and sequence lengths. DNNMem
achieves average errors of 13.9% (TensorFlow), 11.3% (PyTorch), and
9.6% (MXNet) and Shape Inference achieves average errors of 39.8%
(TensorFlow), 22.2% (PyTorch), and 24.7% (MXNet). The results show
that DNNMem is still effective under different hyperparameters.

Table 8: Categories of GPU memory consumption (GB) of

TensorFlow VGG16 model. The % values are relative errors.

Batch Size

Category

64 128 256

Real Est. Real Est. Real Est.

Live Tensors 4.90 3.52 8.55 7.24 15.84 14.49
Internal Fragmentation 0.14 0.02 0.27 0.04 0.13 0.04
Allocator Reservation 3.08 5.08 8.3 9.34 5.16 2.59
CUDA Context 0.37 0.37 0.37 0.37 0.37 0.37

Total

8.49 8.99 17.49 16.99 21.50 17.49
(5.88%) (2.85%) (18.65%)

An advantage of the analytic approach is the interpretability that
DNNMem can present memory usage details, which will greatly
help developers tune model configurations and framework run-
time parameters. Table 8 demonstrates how GPU memory is con-
sumed by different categories of tensors and TensorFlow runtime
when training the VGG16 model. The real memory consumption
of each part was obtained from TensorFlow runtime logs. “Live
Tensors” refer to the Weight/In/Out/Ephemeral tensors in Table 2.
DNNMem achieves low average errors of 5.88 % (Total Consump-
tion), 17.33 % (Live Tensors), 42.42% (Allocator Reservation), and
0.0% (CUDA Context). Because the internal fragmentation has a
relatively small value, the estimation can cause a much higher av-
erage error (80.04%). Nevertheless, it contributes only a very small
portion of the total GPU memory consumption.

As for the time performance, the estimation time of DNNMem
ranges from 0.6 to 0.7 seconds for the above experiments. DNNMem
has an order of magnitude speedup compared with real execution
estimation.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang

5.3 RQ2: How accurate are the operator

memory cost functions of DNNMem?

Operators’ memory cost functions play a critical role in DNNMem.
This RQ is to evaluate their accuracy. Four representative operators:
𝐶𝑜𝑛𝑣2𝑑 , 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝑑 , 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 , and 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (batch normaliza-
tion) were chosen for experiment. We crafted a minimal DL model
for each of them to reduce distractions. For example, the 𝐶𝑜𝑛𝑣2𝑑
model only adds an additional 𝐿𝑖𝑛𝑒𝑎𝑟 operator. To obtain the real
memory usage, we analyzed the runtime logs of TensorFlow and
MXNet. For PyTorch, we added profiling code right before and
after operator construction/execution inside the framework. The
shape of the input data is [BatchSize:128, Channel:3, Height:224,
Width:224]. 𝐶𝑜𝑛𝑣2𝑑 has the filter_count of 2 and kernel_size
of 3. For 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝑑 , its kernel_size and stride are both 2.

Figure 8 shows that the estimation errors of the four operators
are all less than 8%, indicating that our memory cost functions
are accurate. Note that the values of TensorFlow 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 are
marked as 0 because the in-place execution is enabled by default.

Conv2d AvgPool2d Dropout BatchNorm

0

20

40

60

80

49.3

18.4

73.5

0

49.3

18.4

73.5

0

50

20

74 74

49.3

18.4

73.5 73.5

49.3

18.4

73.5 73.5

49.3

18.4

73.5 73.5

G
PU

M
em

or
y
(M

B)

TensorFlow Real TensorFlow Est. PyTorch Real
PyTorch Est. MXNet Real MXNet Est.

Figure 8: GPU memory consumption (MB) of DL operators.

5.4 RQ3: How effective is DNNMem in

data-parallel training?

Nowadays, in industrial practice, many DL training jobs adopt data
parallelism, which employs multiple GPU devices (in a single ma-
chine or distributed nodes) to increase the number of input data
processed simultaneously. This RQ is to evaluate the effectiveness of
DNNMem in such common scenarios. We experiment the ResNet50
model with a batch size of 64 using Horovod (a popular data-parallel
training framework supporting automatic parallelization [40]). The
fusion buffer has a default size of 64 MB. Note that here the Ten-
sorFlow model is provided by Horovod using Keras APIs, which
is different from that in Section 5.2. We ran the multi-device ex-
periments on a single node and ran the distributed experiments
on a 3-node cluster. Each node is equipped with 4 NVIDIA K80
GPUs with 12GB memory each. The reported real GPU memory
consumption is the arithmetic mean value of all training instances.

Figure 9 shows that DNNMem achieves average errors of 11.8%
(TensorFlow), 13.85% (PyTorch), and 8.9% (MXNet), indicating the
effectiveness of DNNMem in data-parallel training.

6 RELATEDWORK

Quality attributes (e.g., reliability, cost, performance, and memory
consumption) are non-functional properties of software, which are
vital for the success of a real-world software-intensive system. Over
the years, many estimation models have been proposed to predict
these attributes. Examples include defect prediction [24, 27], effort
and cost estimation [28, 44], and performance prediction [16, 41].

TensorFlow PyTorch MXNet

5

10
10.6

6.8 6.5

9.4

5.9 5.9

10.7

6.9 6.4

9.4

5.9 5.9

G
PU

M
em

or
y
(G
B)

Multi-device Real Multi-device Est.
Distributed Real Distributed Est.

Figure 9: The effectiveness of DNNMem in data-parallel

training (ResNet50).

There are also many program analysis techniques [2, 6, 7, 12, 22,
46, 47] for memory footprint analysis and estimation. For example,
Verbauwhede et al. [47] propose to estimate the memory of DSP ap-
plications by modeling array dependencies and execution sequence
as an integer linear problem solved by the ILP solver. Albert et
al. [2] present parametric inference on the notion of object lifetime
to inferring memory requirements of Java-like programs. Heo et
al. [19] propose a resource-aware flow-sensitive analysis via online
abstraction coarsening. However, as described in the paper, they
cannot be directly applied to deep learning programs.

Frameworks’ built-in Shape Inference [17, 25, 29, 34], and some
DL performance analysis work [8] estimate GPU memory usage by
summarizing weight, input, and output tensors on the computation
graph under forward propagation. However, they are just a subset
of the whole memory consumption. Shape Inference is incapable
of analyzing the remaining yet complex memory usage by tensors
under backward propagation and framework runtime (e.g., mem-
ory fragmentation/reallocation/reservation, cuDNN workspace),
which could observably affect the final GPU memory consumption.
DNNMem adopts a novel, comprehensive, and unified analytic
approach which systematically solves the challenges. We have com-
pared DNNMem with Shape Inference in Section 5, and the results
indicate that DNNMem is more effective and robust.

Real execution estimation [30] has issues of being limited by
the memory capacity of testing GPUs, high execution cost, and
environmental dependency, which are especially not applicable to
enterprise platforms. DL compilers such as TVM [10] focus on the
inference phase, cross-platform deployment, and loop level cost
model. However, these techniques are beyond the scope of this
paper. Researchers have also observed the need for memory cost
modeling for DNNmemory optimization and planning by analyzing
the computation graph [26, 38, 49]. Unlike these work, DNNMem
focuses on memory estimation for DL models.

7 CONCLUSION

In this paper, we have presented DNNMem, an accurate estima-
tion tool for GPU memory consumption of deep learning models.
This work is motivated by the many out-of-memory failures of
DL jobs in Microsoft. DNNMem adopts an analytic approach that
systematically explores many memory consumption-related fac-
tors. Our extensive experiments show that DNNMem can make
satisfactory estimations of GPU memory consumption. DNNMem
is also effective and robust to the choices of neural architectures,
hyperparameters, and frameworks.

Estimating GPU Memory Consumption of Deep Learning Models ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

While we use models developed under three popular deep learn-
ing frameworks to evaluate the proposed approach, DNNMem is
generalizable. We can define more memory cost functions of stan-
dard/custom operators and adapt the analytic approach to different
devices and frameworks. In the future, we will experiment with the
extension of DNNMem to demonstrate its generalizability.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, and Andy et.al Davis.
2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 265–283.

[2] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. 2010. Parametric
Inference of Memory Requirements for Garbage Collected Languages. SIGPLAN
Not. 45, 8 (June 2010), 121–130. https://doi.org/10.1145/1837855.1806671

[3] S. Amari. 1993. Backpropagation and stochastic gradient descent method. Neuro-
computing, 5(4):185 - 196 (1993).

[4] Amazon. 2019. Amazon SageMaker. https://aws.amazon.com/sagemaker.
[5] Microsoft Azure. 2019. Microsoft Azure Machine Learning. https://azure.

microsoft.com/en-us/services/machine-learning-service.
[6] Antoine Blin, Cédric Courtaud, Julien Sopena, Julia Lawall, and GillesMuller. 2016.

Understanding the Memory Consumption of the MiBench Embedded Benchmark.
In Networked Systems, Parosh Aziz Abdulla and Carole Delporte-Gallet (Eds.).
Springer International Publishing, Cham, 71–86.

[7] Víctor Braberman, Federico Fernández, Diego Garbervetsky, and Sergio Yovine.
2008. Parametric Prediction of Heap Memory Requirements. In Proceedings of the
7th International Symposium on Memory Management (Tucson, AZ, USA) (ISMM
’08). Association for Computing Machinery, New York, NY, USA, 141–150.

[8] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. 2017. An Analysis of
Deep Neural Network Models for Practical Applications. ArXiv abs/1605.07678
(2017).

[9] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015). arXiv:1512.01274 http://arxiv.org/abs/1512.01274

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA, USA) (OSDI’18).
USENIX Association, USA, 579–594.

[11] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep
Nets with Sublinear Memory Cost. CoRR abs/1604.06174 (2016). arXiv:1604.06174

[12] Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. 2016. Symbolic Execution for
Memory Consumption Analysis. In Proceedings of the 17th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, Tools, and Theory for Embedded Systems
(Santa Barbara, CA, USA) (LCTES 2016). ACM, New York, NY, USA, 62–71.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR 2009.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT.

[15] Peng Gu. 2018. Memory management for tensorflow. https://github.com/
miglopst/cs263_spring2018/wiki/Memory-management-for-tensorflow

[16] Huong Ha and Hongyu Zhang. 2019. DeepPerf: Performance Prediction for
Configurable Software with Deep Sparse Neural Network. In Proceedings of the
41st International Conference on Software Engineering (Montreal, Quebec, Canada)
(ICSE ’19). IEEE Press, 1095–1106. https://doi.org/10.1109/ICSE.2019.00113

[17] Mark Harris. 2019. TensorFlow Graph Optimizations. (2019).
[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385
[19] Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2019. Resource-Aware Program

Analysis via Online Abstraction Coarsening. In Proceedings of the 41st Interna-
tional Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19).
IEEE Press, 94–104. https://doi.org/10.1109/ICSE.2019.00027

[20] SeppHochreiter and Jurgen Schmidhuber. 1997. Long Short-termMemory. Neural
computation 9 (12 1997), 1735–80.

[21] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, NY, USA, 510–520.

[22] Timotej Kapus and Cristian Cadar. 2019. A Segmented Memory Model for Sym-
bolic Execution. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software

Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Ma-
chinery, New York, NY, USA, 774–784. https://doi.org/10.1145/3338906.3338936

[23] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR (Poster). http://arxiv.org/abs/1412.6980

[24] Z. Li, X. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying. 2019. On the Multiple
Sources and Privacy Preservation Issues for Heterogeneous Defect Prediction.
IEEE Transactions on Software Engineering 45, 4 (2019), 391–411.

[25] Malmaud. 2020. TensorFlow Shape Infer. https://malmaud.github.io/tfdocs/
shape_inference.

[26] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. 2017. Training
Deeper Models by GPU Memory Optimization on TensorFlow.

[27] TimMenzies, ZachMilton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayşe Bener.
2010. Defect prediction from static code features: Current results, limitations,
new approaches. Automated Software Engineering 17, 4 (1 12 2010), 375–407.

[28] K. Molokken and M. Jorgensen. 2003. A review of software surveys on soft-
ware effort estimation. In 2003 International Symposium on Empirical Software
Engineering, 2003. ISESE 2003. Proceedings. 223–230.

[29] MXNet. 2020. MXNet Memory Monger. https://github.com/dmlc/mxnet-
memonger.

[30] MXNet. 2020. MXNet symbol simple bind. https://beta.mxnet.io/api/symbol/
_autogen/mxnet.symbol.Symbol.\simple_bind.html.

[31] Apache MXNet. 2019. The topological sorting algorithm for computation graphs
in Apache MXNet. https://github.com/apache/incubator-mxnet/blob/1.6.0/src/
executor/simple_partition_pass.h

[32] NVIDIA. 2019. NVML API Reference Guide. https://docs.nvidia.com/deploy/
nvml-api/index.html. (2019).

[33] Nvidia. 2020. cudnnConvolutionFwdAlgo. https://docs.nvidia.com/deeplearning/
sdk/cudnn-api/index.html#cudnnConvolutionFwdAlgo_t.

[34] ONNX. 2020. ONNX Shape Inference. https://github.com/onnx/onnx/blob/v1.7.
0/docs/ShapeInference.md.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, and James et al. Bradbury.
2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
8024–8035.

[36] PyTorch. 2019. PyTorch: Control Flow + Weight Sharing. https://pytorch.org/
tutorials/beginner/examples_nn/dynamic_net.html.

[37] PyTorch. 2019. The topological sorting algorithm for computation graphs in Py-
Torch. https://github.com/pytorch/pytorch/blob/v1.2.0/caffe2/core/nomnigraph/
include/nomnigraph/Graph/TopoSort.h#L26

[38] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W.
Keckler. 2016. VDNN: Virtualized Deep Neural Networks for Scalable, Memory-
Efficient Neural Network Design. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (Taipei, Taiwan) (MICRO-49). IEEE Press, Article
18, 13 pages.

[39] Nikolay Sakharnykh. 2018. Everything you need to know about unified memory.
NVIDIA GTC (2018).

[40] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799

[41] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-Influence Models for Highly Configurable Systems. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). ACM, New York, NY, USA, 284–294.

[42] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings. http://arxiv.org/abs/1409.1556

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
CoRR abs/1512.00567 (2015). arXiv:1512.00567 http://arxiv.org/abs/1512.00567

[44] Hee Beng Kuan Tan, Yuan Zhao, and Hongyu Zhang. 2009. Conceptual Data
Model-Based Software Size Estimation for Information Systems. ACM Trans.
Softw. Eng. Methodol. 19, 2, Article 4 (Oct. 2009), 37 pages.

[45] T. Tieleman and G. Hinton. 2012. rmsprop: Divide the Gradient by a Running
Average of Its Recent Magnitude. COURSERA: Neural Networks for Machine
Learning, 4, 26-31. (2012).

[46] Leena Unnikrishnan, Scott D. Stoller, and Yanhong A. Liu. 2000. Automatic
Accurate Stack Space and Heap Space Analysis for High-Level Languages. Technical
Report. Indiana University.

[47] Ingrid M. Verbauwhede, Chris J. Scheers, and Jan M. Rabaey. 1994. Memory
Estimation for High Level Synthesis. In Proceedings of the 31st Annual Design
Automation Conference (San Diego, California, USA) (DAC ’94). Association for
Computing Machinery, New York, NY, USA, 143–148.

[48] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In the Proceedings of ICLR.

[49] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU Memory
Management for Training Deep Neural Networks. In Proceedings of the 23rd

https://doi.org/10.1145/1837855.1806671
https://aws.amazon.com/sagemaker
https://azure.microsoft.com/en-us/services/machine-learning-service
https://azure.microsoft.com/en-us/services/machine-learning-service
https://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1604.06174
https://github.com/miglopst/cs263_spring2018/wiki/Memory-management-for-tensorflow
https://github.com/miglopst/cs263_spring2018/wiki/Memory-management-for-tensorflow
https://doi.org/10.1109/ICSE.2019.00113
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ICSE.2019.00027
https://doi.org/10.1145/3338906.3338936
http://arxiv.org/abs/1412.6980
https://malmaud.github.io/tfdocs/shape_inference
https://malmaud.github.io/tfdocs/shape_inference
https://github.com/dmlc/mxnet-memonger
https://github.com/dmlc/mxnet-memonger
https://beta.mxnet.io/api/symbol/_autogen/mxnet.symbol.Symbol.\simple_bind.html
https://beta.mxnet.io/api/symbol/_autogen/mxnet.symbol.Symbol.\simple_bind.html
https://github.com/apache/incubator-mxnet/blob/1.6.0/src/executor/simple_partition_pass.h
https://github.com/apache/incubator-mxnet/blob/1.6.0/src/executor/simple_partition_pass.h
https://docs.nvidia.com/deploy/nvml-api/index.html
https://docs.nvidia.com/deploy/nvml-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionFwdAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionFwdAlgo_t
https://github.com/onnx/onnx/blob/v1.7.0/docs/ShapeInference.md
https://github.com/onnx/onnx/blob/v1.7.0/docs/ShapeInference.md
https://pytorch.org/tutorials/beginner/examples_nn/dynamic_net.html
https://pytorch.org/tutorials/beginner/examples_nn/dynamic_net.html
https://github.com/pytorch/pytorch/blob/v1.2.0/caffe2/core/nomnigraph/include/nomnigraph/Graph/TopoSort.h#L26
https://github.com/pytorch/pytorch/blob/v1.2.0/caffe2/core/nomnigraph/include/nomnigraph/Graph/TopoSort.h#L26
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’18). 41–53.

[50] P. J. Werbos. 1990. Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 10 (1990), 1550–1560.

[51] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
2020. An Empirical Study on Program Failures of Deep Learning Jobs. In Proceed-
ings of the 42nd International Conference on Software Engineering (Seoul, Republic
of Korea) (ICSE ’20). Association for Computing Machinery, NY, USA, 1159–1170.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Out-of-Memory Problem in DL Practice
	2.2 A Motivating Example of Our Approach

	3 Proposed Approach
	4 Implementation
	4.1 Estimation on Computation Graph
	4.2 Memory Cost Functions of Operators
	4.3 Unreleased Tensors
	4.4 Memory Block Management
	4.5 Resident Buffers

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: How effective is DNNMem in estimating GPU memory consumption of DL models?
	5.3 RQ2: How accurate are the operator memory cost functions of DNNMem?
	5.4 RQ3: How effective is DNNMem in data-parallel training?

	6 Related Work
	7 Conclusion
	References

