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Current smartphone-based navigation applications fail to provide lane-level information due to poor GPS
accuracy. Detecting and tracking a vehicle’s lane position on the road assists in lane-level navigation. For
instance, it would be important to know whether a vehicle is in the correct lane for safely making a turn, or
whether the vehicle’s speed is compliant with a lane-specific speed limit. Recent efforts have used road net-
work information and inertial sensors to estimate lane position. While inertial sensors can detect lane shifts
over short windows, it would suffer from error accumulation over time. In this article, we present DeepLane,
a system that leverages the back camera of a windshield-mounted smartphone to provide an accurate esti-
mate of the vehicle’s current lane. We employ a deep learning-based technique to classify the vehicle’s lane
position. DeepLane does not depend on any infrastructure support such as lane markings and works even
when there are no lane markings, a characteristic of many roads in developing regions. We perform exten-
sive evaluation of DeepLane on real-world datasets collected in developed and developing regions. DeepLane
can detect a vehicle’s lane position with an accuracy of over 90%, and we have implemented DeepLane as an
Android app.
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1 INTRODUCTION

Sensors in a driver’s smartphone have been used for various applications such as navigation as-
sistance, road condition assessment, traffic congestion detection, driving safety monitoring, and
so on [15, 27, 37]. An important input to many applications is the physical location or position of
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Fig. 1. Sample images used in DeepLane.

the vehicle. While GPS-based positioning is typically adequate for longitudinal positioning, i.e.,
positioning along the direction of the road, it is typically not for lateral positioning, i.e., lane po-
sitioning, since an error of even just a few meters could mean that the positioning is off by a lane
or more.

Lane positioning is important for many applications, especially safety-related ones. For instance,
it would be important to know whether a vehicle is in the correct lane for safely making a turn,
perhaps even alerting the driver in advance if it is not, or whether the vehicle’s speed is compliant
with a lane-specific speed limit. Note that determining which lane the vehicle is in is different
from knowing the correct lane that vehicle should be in for making the turn; the lane assist feature
in the popular Google Maps application [4] only addresses the latter but not the former. If the
vehicle is not in the correct lane to make the turn, then the driver may miss the turn, or worse,
make a hurried attempt to turn [2], endangering the maneuvering vehicle as well as others around.
In 2015, 2% of road fatalities in the US were caused due to making an improper turn [3]. Hence,
automated detection of the lane that a vehicle is in is an important problem to consider.

Traditionally, lane detection has been attempted using road lane markings. For instance, high-
end cars [1] are often equipped with a camera-assisted active lane keeping system that uses lane
markings to detect whether the car is within a lane’s boundaries. However, such an approach
might not work in some challenging environments. For instance, sometimes there are no lane
markings, e.g., in some developing country settings, as shown in Figure 1(a). Even if lanes are
marked, vehicles might be packed together more tightly than the markings would suggest, e.g.,
three vehicles driving astride on a two-lane road (Figure 1(b)). Since the “effective” lane that the
vehicle is in is what matters for applications such as knowing whether it is safe to turn, lane
position in such a setting would have to be defined in a relative sense, by considering the presence
or absence of vehicles to the left or right.

In this article, we present DeepLane, a camera-based system for lane detection, which we dub
as “camera-assisted GPS.” We use the back camera of a windshield-mounted smartphone, which
gives a 70-degree view of the scene in front.
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We first show the limitations of hand-crafted features and then turn to deep learning techniques
to classify the lane of the vehicle. We build a three-way lane classifier to detect whether the vehicle
is in the left, right, or middle lane. (Note that if the vehicle is found to be in neither the left-most
nor the right-most lane, we deem it to be in the middle lane.) DeepLane is trained and tested using
an extensive dataset composed of over 29,000 images from developed and developing countries
in both daytime and nighttime conditions, and ranging from well-marked highways to unmarked
city roads with chaotic traffic. Some sample images from our dataset are shown in Figure 1.

As extensive as our dataset is, it is insufficient to train a Deep Neural Network (DNN) from
scratch. Therefore, we employ transfer learning, wherein a pre-trained network (we employ either
the 8-layer AlexNet or the 16-layer VGG16, trained on 1.2M images from ImageNet [5] dataset)
is first used to generate a compact feature representation of an image. In this article, we present
two architectures towards lane detection, (i) without temporal features (here, the image features
are independently evaluated to determine the lane position) and (ii) with temporal features (here,
features from an image sequence are aggregated to determine the lane position). Using the above
approaches, we see an overall lane classification accuracy of over 90%.

A specific form of “lane” detection is determining whether the vehicle is driving on the wrong
side of the road, i.e., against the flow of traffic instead of with it. Such wrong-side driving is not
uncommon in developing regions [12], with drivers sometimes choosing to take the shortcut of
driving—say, on the shoulder—against the flow of traffic, to avoid a much longer drive the correct
way and then taking a U-turn to come back. Needless to say, this is a significant safety hazard.
In 2016, 5% of road fatalities in India were caused due to wrong-side driving [8]. The problem
is so severe in some cases that authorities have considered infrastructure heavy and destructive
“solutions” such as the installation of tire-killers [9]. While it is difficult to prevent this, if we
are at least able to detect wrong-side driving of a vehicle using the same setup as above (i.e.,
a windshield-mounted camera), then it might be possible to discourage such behavior; say, in a
fleet setting, where the supervisor is interested in overseeing each driver’s overall safe driving
behavior. We develop a binary classification system to indicate whether the vehicle is driving in
the correct direction or the wrong direction. While it would appear that the problem is different
from lane detection in that we would see the front-view of vehicles rather than the back-view,
we find that hand-crafting features corresponding to the front- vs. back-view does not help due to
heterogeneous vehicles, manually identifying relevant features, and the requirement of significant
diverse data to train the network. Instead, employing the same DNN pipeline as for lane detection,
with just the final classification step being retrained, yields an accuracy of over 90%.

We present an implementation of DeepLane optimized for Android smartphones, which can
operate at 5fps on a Quad-core CPU and up to 15fps on an Adreno 530 GPU.

2 MOTIVATION AND PRIOR WORK

To motivate our work on DeeplLane, we describe some of the existing approaches to lane detection
along with their limitations.

Navigation apps today fail to give lane-level information, because they depend on GPS, whose
location resolution is inadequate for resolving lane position. To establish this methodically, we
took a ride through a city road, while changing lanes from time to time and also recording the
GPS coordinates all along using a OnePlus 3 Android smartphone. The raw GPS points recorded
in a section of the drive are shown in Figure 2(a), with the points recorded while in the right lane
being shown in brown with a “star” marker and those in the middle lane in green with a “location”
marker. Due to the inherent error of GPS, all the GPS points lie outside of the actual road segment.
Furthermore, when we use the snap-to-roads [19] API from Google Maps, the points get mapped
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Fig. 2. Limitations of GPS for lane detection.

to the correct road segment but are all placed at the middle of the road, as shown in Figure 2(b).
All of this points to the inadequacy of GPS for resolving lane position.

While improvements to GPS such as differential GPS (D-GPS) or dual-frequency GNSS could
yield a high enough accuracy for lane positioning, these systems are not widely available. For
instance, D-GPS stations are not present in large parts of developing regions, and dual-frequency
GNSS is very new (e.g., just recently, on May 31, 2018, Xiaomi launched the “world’s first dual-
frequency GNSS smartphone” providing up to decimeter-level accuracy [11]).

Several past works [17, 34] have employed inertial sensors such as accelerometer and gyroscope
in conjunction with GPS to detect lanes. While effective in detecting discrete lane-change events,
such an approach suffers from an accumulation of error over time, which would impede accurate
tracking of lane position. This effect is more pronounced if the initial state estimation is erroneous,
too.

With the rising popularity of autonomous vehicles, LIDAR (Light Detection and Ranging), in
combination with IMU (Inertial Measurement Unit) and GPS sensing, are being employed for lane
detection [28, 30]. Although LIDAR-based systems have reported positioning errors under 1m [28],
the high cost of LIDAR [6] prevents it from being adopted for general use. However, we just use a
smartphone in DeepLane.

There has been much work on camera-based lane detection. Kim et al. [24] use the Hough
transform to detect lane markings, which are then used to arrive at an estimate of left and right
lane boundaries, thereby detecting the current lane. Wang et al. [35] use a spline-based road model
and CHEVP (Canny/Hough estimation of vanishing points) to detect and track lanes. Yu et al. [38]
estimate lane boundaries using multi-resolution Hough transform with a parabolic model. Such
approaches have several shortcomings. First, most of the above methods depend on either prior
knowledge of the road model or on detecting lane markings, which may not be present on all
roads, especially in developing countries. Second, during nighttime, or even due to shadows in
daytime, lane markings may not be visible and hence be hard to detect. Third, edge detection
algorithms perform poorly on curved roads. Although there are several curve detection algorithms
that assume the road curve to follow a parabolic model [21] or a hyperbolic model [26], it is hard
to estimate the radius of curvature while the vehicle is driving on the curve. This is because of
the bias in difference between the heading direction of the vehicle’s body and its actual heading
angle [23].

Yet another downside of depending on lane markings is that even when such markings exist,
these might not be respected by the dense and heterogeneous traffic that is quite common in
developing regions. For instance, on a road with two marked lanes, there could be three or more
vehicles driving astride, as shown in Figure 1(b).
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3 STRAWMAN DESIGN AND ITS LIMITATIONS

In view of the above, we present a strawman design that is also camera-based but does not depend
on lane markings. The idea, instead, is to look at the pattern of movement of vehicles around. The
intuition here is as follows: If we only see vehicles moving to our right, we can conclude that we
are in the “left” lane, and likewise for the “right” lane. If vehicular movement is seen on both the
left and the right sides, then we can conclude that we are in a “middle” lane.

Optical flow (OF) [33] is the basic technique we use for detecting motion. We tried two ap-
proaches based on optical flow:

1. Pixel-level OF: In this approach, we calculate the optical flow for each pixel in the image.
The angle and magnitude of the flow vector corresponding to each pixel are then used as input
features to an SVM classifier.

2. Vehicle-level OF: In this approach, we first identify all the vehicle objects in the frame using
an object detector such as DNN-based YOLO [13]. We then find OF for only the detected vehicles.
The idea here is to restrict motion analysis to objects of interest, i.e., vehicles, thus eliminating
noise from other static objects in the scene. For each vehicle, we then calculate the mean angle
and mean magnitude of the flow vectors, which are passed to the SVM classifier as features.

We tried these approaches on a subset of our dataset (described in Section 5). We computed
OF on images extracted at 10 frames per second (fps) and the overall classification accuracy for
pixel-level and vehicle-level techniques were 69.3% and 72.6%, respectively. On further inspection,
we found that the majority of the misclassifications arose due to static objects and corresponding
noisy OF values, and inaccuracies in detecting vehicle boundaries. While we could further feature
engineering by hand, this is a tedious task that needs to be done with care to ensure general-
ity. Therefore, we move to a DNN-based approach for feature extraction in DeepLane, which we
present next.

4 DEEPLANE DESIGN

We now present the design of DeeplLane to detect a vehicle’s lane position. DeepLane uses the
back camera of a windshield-mounted smartphone to detect the lane position. In this article, we
assume, without loss of generality, that the vehicles are right-hand driven (with steering wheel on
the right side) and follow the left-hand traffic rule (i.e., the vehicles are driven on the left side of
the road).

Deep Neural Network (DNN)-based techniques [10, 13, 25] have shown a lot of promise for iden-
tifying and classifying objects in a scene by learning relevant features, without the need for feature
engineering by hand. However, these DNNs require a significant amount of data for training. For
instance, various DNN architectures such as AlexNet [25] and VGG [10] have been designed and
trained on datasets such as ImageNet [5], which consists of 1.2M images belonging to 1K separate
object categories such as vehicle types, sign posts, buildings, various household objects, dogs, cats,
and so on.

Obtaining such a large volume of labelled diverse data to train a DNN for the lane detection
problem is challenging. With the lack of adequate amount of data, the DNN model often overfits
on the training data and would not adapt to diverse scenarios originating in the real world. In
Section 5.2.2, we shed light on the efficacy of such an approach.

To circumvent this, we employ transfer learning [29, 31, 36], wherein models trained for one task
capture relations in the data that can be reused for different problems in the same domain. Recent
works have shown that pre-trained models have a strong ability to generalize to images outside
the ImageNet dataset via transfer learning [22, 36]. For example, a model trained for classification
on ImageNet data can be reused to detect various car types such as sedan, SUV, and hatchback,
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without the need to train a new model from scratch. Features from intermediate layers of pre-
trained DNN networks are used to train a much smaller network for classifying an image into
three categories of cars instead of a 1K object categories. The intuition is that while the lower (i.e.,
initial) layers of the DNN architecture learn fine-grained information such as edges and texture,
the higher layers learn coarse-grained information such as object parts and the final output layer
is a classification layer [29]. Transfer learning extracts features from the higher layers that capture
object parts and other patterns, since it can be reused for other tasks in the same domain.

4.1 DeeplLane Architecture without Temporal Features

DeepLane’s objective is to classify the lane that a vehicle is currently in as one of left, middle, or
right, as defined in Section 3. We define the current lane as left lane when the vehicle is driving in
the left-most permitted lane and sees vehicles ahead of it only towards its right. Similarly, if the
vehicle is driving in the right-most permitted lane and sees vehicles ahead of it only towards its
left, we define it as right lane. If the vehicle is found to be in neither the left-most nor the right-most
lane, then we deem it to be in the middle lane, as shown in Figure 3.

To take advantage of pre-trained networks for image processing, DeepLane works with images
(i.e., individual frames) rather than a video. It takes an image as input, extracts relevant features
automatically, and classifies it as either left, middle, or right lane. DeepLane employs transfer learn-
ing where pre-trained models are used as feature extractors. The hypothesis is that the features
extracted from pre-trained models trained on ImageNet have information on various objects of
interest on the road such as vehicles, trees, sign posts, and so on, that can be used for lane detec-
tion, thus eliminating the need for manual feature identification and training from scratch, and
the requirement of a large volume of training data. Figure 4 shows the architecture of DeepLane
towards lane detection. The input image is fed to a pre-trained DNN model to extract features,
which are called bottleneck features. These features are then used to build a classifier model that
classifies an input image to either left, middle, or right. We now describe the building blocks of
DeepLane.
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Fig. 5. Pre-trained DNNs: (a) AlexNet and (b) VGG 16.

4.1.1 DNN Models. There exist several DNN models, such as AlexNet [25], VGG [10],
ResNet [20], and Inception [32], that are trained on the ImageNet dataset for classification. Since
our goal is also to run DeepLane as an Android app that can detect the current lane in real-time, we
select DNN models that can run efficiently on a smartphone. In this article, we leverage AlexNet
and VGG16 as our pre-trained models due to the network design simplicity and performance. In
Section 7, we describe how we implement DeepLane on an Android app and present performance
results.

AlexNet [25]: AlexNet has five convolutional layers followed with three fully connected layers
and a final softmax layer for classification as shown in Figure 5(a). The network takes an input
of image size 227X227x3, where the image resolution is 227x227 pixels and there are three color
channels (RGB). This is then compressed down to 4,096-dimensional feature vectors at the first
fully connected layer and finally reduced to a 1K-dimensional feature vector, which is used for
classification.

VGG16 [10]: VGG16 consists of 16 layers, which includes 13 convolutional layers and 3
fully connected layers followed by a softmax classifier as shown in Figure 5(b). VGG16 takes a
224X224x3 image as input and the convolutional layers compresses it to 7x7x512, i.e, 25,088 fea-
tures. This is then fed to the fully connected layers to obtain a 1K-dimensional feature vector.

4.1.2 Bottleneck Features. The features extracted after the final convolutional layers are called
the bottleneck features. In AlexNet, these features are of length 4,096 and in VGG16 it is 25,088
for each frame. These features encode information on various objects of interest on the road, such
as vehicles, trees, sign posts, and so on, from the input frame. The extracted features are then fed
to Principal Component Analysis (PCA) to reduce the dimensionality of the feature vector. PCA
performs a linear mapping of the data to a lower-dimensional space such that the variance of the
data in the low-dimensional representation is maximized. We apply PCA on bottleneck features to
primarily speed up DeeplLane performance on smartphones. In Section 5.2.1, we show what parts
of the image bottleneck features concentrate to extract relevant features.

4.1.3 Classifier Model. The feature vectors are then used to build a classifier model that clas-
sifies an input image to either left, middle, or right lane. We use linear Support Vector Machine
(SVM) as our 3-way classification model. During training, the classifier takes the label associated
with the input image along with the bottleneck features. In testing phase, for each image DeepLane
extracts the bottleneck features using pre-trained models, which are then evaluated on the trained
classifier.

It is to be noted that in this architecture each input frame is classified independently to either
left, middle, or right lane. However, typically a lane change event occurs over a short time span
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say few seconds. To this end, we extend the current architecture to handle temporal features as
described next.

4.2 DeepLane Architecture with Temporal Features

Until now, each individual frame was used to detect the driving lane of the vehicle. However, in the
real-world, DeepLane will be continuously recording and analyzing video frames. Can we leverage
this temporal information to our benefit? The intuition here is that a vehicle is unlikely to change
lanes abruptly, and a misclassification on a single frame can be phased out by incorporating the
knowledge of the previous frames. Also, a lane change is a smooth maneuver that takes a few
seconds to happen. Hence it is imperative to include temporal features across image frames for
accurate lane detection. One challenge that arises is how to aggregate temporal features across
images to make a driving lane prediction? To this end, we leverage the use of CNN + recurrent
neural networks (RNN) as our basic building block to aggregate temporal features [18] as shown
in Figure 6. In a nutshell, CNN derives the image level features and RNN aggregates the individual
images across time. We now explain this architecture in detail.

For a given input image, we extract the bottleneck features as described in Section 4.1.2. This
feature vector is then fed to an RNN for aggregation across consecutive frames. In our architecture
we employ gated recurrent unit (GRU), which is like a long short-term memory (LSTM) but with
two gates instead of three. The GRU block will combine both the current image features along
with previous image features to derive a temporal feature vector for a given sequence of images.
The aggregated temporal features for a sequence of images is passed to two fully connected layers
followed with a softmax layer for classification. The output dimension of GRU was set to 256,
while the fully-connected layers had an output dimension of 1,024 and 256, respectively. The final
softmax layer gives the probability of the image sequence belonging to each of the three classes,
viz. left, middle, or right lane. The classification, unlike the previous model, considers all the images
in a sequence to determine the labels for each image, thus eliminating spurious misclassifications
in a sequence.

Finally, it is important to identify the number of frames required to extract temporal features for
lane detection. The longer the sequence, the more time required for lane detection and vice versa.
This tradeoff depends on the application requirement; for example, it is imperative to have a short
sequence of frames to determine lane position to accurately provide navigation information in
GPS navigation systems. However, longer sequences can be employed to determine lane position
if the application is to analyze lane changing patterns of a driver over time. We found n =5 to
work well in practice, i.e., frames of previous 5s were used for predicting the driving lane of the
vehicle.
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4.3 Image Segmentation-based Lane Detection

While DeepLane either takes an entire raw image or a sequence of images as input for automated
feature extraction, we also tried a modified version that relies on input image segmentation for
lane detection (LDs.4), the intuition being that having information just about the vehicle and road
context may improve accuracy by ignoring other information that can contribute to the noise.
To this end, we first segment the input image to extract information about objects of interest,
viz., (i) road surface and (ii) vehicles. We then mask the remaining part of the image to reduce
noise. Figure 7 shows the input image and its corresponding segmented image for the road and
vehicles, along with the merged input image. The merged input image with only road and vehicle
information is fed to the DeepLane architecture to extract features and classify the current lane
position. We now describe the steps involved.

4.3.1 Road Segmentation. Image segmentation techniques aim to partition an input image into
multiple segments, i.e., set of pixels representing different object categories. Recent advances in
deep learning have enabled pixel-wise segmentation of an image, not just to identify different
objects but also their precise contours [14]. In this work, we employ SegNet [14], which is a pop-
ular pixel-wise image segmentation technique based on a deep encoder-decoder architecture. The
encoder network in SegNet compresses the input image into a low-resolution feature map. The
objective of decoder network is to map the low-resolution encoder feature maps to full input reso-
lution feature maps for pixel-wise classification. SegNet is trained on a dataset that has pixel-wise
annotations for various objects such as buildings, vehicles, roads, pavement, poles, and traffic signs.

In typical road scenes, the majority of the pixels belong to large classes such as road and build-
ings. On these classes SegNet performs significantly better than identifying pixels for vehicles in a
scene. Thus, we use SegNet towards broad segmentation such as roads and pavement (see Figure 7)
and apply customized techniques for vehicle detection described next. We call the image obtained
with road and pavement information as image;e,.

4.3.2  Vehicle Segmentation Using Bounding Box (BB). Since SegNet segmentation masks are
noisy for vehicles, we use techniques that can detect just the vehicles in the scene. To this end,
we use the You Only Look Once (YOLO) [13] deep network to detect bounding box for all vehicles
such as cars, motorbikes, and trucks in the scene. Figure 7 shows all the vehicles detected along
with their bounding boxes. We call this image as imagep.

At this stage, we combine image,.y and imagepy,, which has road and vehicle information, re-
spectively. We create a mask on the original image to retain only those pixels that either identified
as road/pavement in images. 4 or as a vehicle in imagey,, while the rest of the pixels are blacked
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Table 1. Training and Test Images for Chaotic
and Non-chaotic Datasets

Chaotic Non-chaotic
Lane Training | Test | Training | Test
Left 2,477 983 2,307 1,048

Middle 3,255 1,751 3,183 2,126
Right 4,398 2,230 3,520 1,885

out. The merged image is then fed as input to the transfer learning pipeline described in Section 4.1
to extract bottleneck features. We next present a detailed evaluation of DeepLane towards our goal
of lane detection.

5 EXPERIMENTAL EVALUATION

In this section, we first describe the various real-world datasets we use to evaluate DeepLane. We
then present an experimental evaluation of the accuracy of lane detection. We defer an evaluation
of the computational performance on smartphones to Section 7.

5.1 Datasets

To test the efficacy of DeepLane, we have considered two datasets (i) chaotic: a dataset from roads
in a developing region, where the traffic was rather chaotic without much lane discipline and
(ii) non-chaotic: a dataset from various developed regions where traffic mostly followed lane dis-
cipline. In total, we have collected around 10h of video data across the two datasets. To reduce
correlation between successive frames, we extracted the images at 1fps, resulting in 29,163 images
(15,094 images from chaotic and 14,069 from non-chaotic). These images were labeled manually
by us according to their respective class, viz., left, middle, or right as defined in Section 4.1. In both
the datasets, vehicles followed the left-hand driving rule (i.e., the vehicles were driven on the left
side of the road). We now provide a detailed description of our datasets.

5.1.1 Chaotic Traffic Dataset. This dataset consists of video samples taken from four different
cities in a developing region during both daytime and nighttime. The video samples were collected
from two sources, (i) YouTube videos and (ii) manually by use, using a windshield-mounted smart-
phone on vehicles. In our manual data collection setup, we deployed smartphones in a fleet of 10
cabs across multiple days and sampled video frames at 1fps to extract images.

This dataset includes data from locations where lane markings are often absent, and even if
present, vehicles usually do not follow lane discipline, often straddling lanes. The data includes
curvy roads, shadows, and the presence of heterogeneous vehicles in the scene. Further, the data
was collected at both highways and city roads. Some sample images from this dataset are shown
in Figures 1(a), (b), and (e). The dataset consists of a total of 15,094 images including both daytime
and nighttime images, which is then split into training and testing as shown in Table 1.

5.1.2  Non-chaotic Traffic Dataset. This dataset consists of video samples collected using
YouTube videos from the following countries: Singapore, UK, Australia, South Africa, and Japan.
The data represent non-chaotic traffic images with proper lane markings and well organized traf-
fic. The images represent a mix of motorways and city roads. Figures 1(c), (d), and (f) show sample
images belonging to this dataset in both daytime and nighttime conditions. As with other datasets,
we extracted frames at 1fps from the video samples. The dataset consists of a total of 14,069 images,
which is split into training and testing data as shown in Table 1.
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Image Heatmap

Fig. 8. Bottleneck features for left, middle, and right lane images.

5.2 Lane Detection Results Using DeeplLane

We present lane detection results on the two datasets described in Section 5.1 for both the DeepLane
architectures, viz., with temporal features (TF) as well as without TF. In our evaluation, we con-
sidered both AlexNet and VGG for feature extraction. Further, based on empirical evaluation, in
our implementation, we reduce the dimensions to 300 feature vectors for both AlexNet and VGG.
The different configurations considered are, viz.,

AlexNet-4096: It uses 4,096 bottleneck features for classification.

AlexNet-300: It reduces 4,096 features to 300 features using PCA.

VGG-25088: It uses 25,088 bottleneck features for classification.

VGG-300: It reduces 25,088 features to 300 features using PCA for classification.

5.2.1 Evaluation of Bottleneck Features. We first present some qualitative results showing what
parts of the image are identified as relevant using bottleneck features extracted from pre-trained
networks. As mentioned earlier, since these networks are trained on large datasets such as Ima-
geNet [5], the bottleneck features concentrate on various object parts and other relevant patterns
in the image. The key idea is to eliminate manual identification of features and allowing the DNN
to identify relevant features of interest.

Figure 8 shows sample images when a vehicle is in the left lane, middle lane, and right lane.
The figure also shows a heatmap, which highlights the parts of the image the bottleneck features
represent. These heatmaps can be viewed as activation maps obtained as a result of stacking up
convolutional filter output from each layer. Intuitively, the network will learn filters that activate
when they see some type of distinct visual feature such as object parts.
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Fig. 9. Training accuracy of a network (VGG-16) trained from scratch on chaotic dataset.

In Figure 8(a), the heatmap shows the parts of the vehicle to the right and other static objects
such as pavement to the left being activated when the vehicle’s current lane position is left. Simi-
larly, Figure 8(b) shows the heatmap of an image when the vehicle’s current lane is middle. It can
be seen that the bottleneck features ignore background information such as blue sky, and concen-
trate on vehicles to the front, left, and right. Finally, in Figure 8(c), bottleneck features focus on
the vehicle to the left and road divider to the right for images when the vehicle is in the right lane.
Intuitively, since bottleneck features are extracting different features for each class of images, (i.e.,
left lane, right lane, and middle lane), one can use these features to detect the current lane position.
We now present lane detection results from both chaotic and non-chaotic datasets.

5.2.2  Training Accuracy of DNN Networks Trained from Scratch. A straightforward approach
for lane detection would be to train a DNN network from scratch. Figure 9 shows the performance
of such an approach on the chaotic traffic dataset. We employed VGG-16 as the baseline DNN
network. It could be seen that the model shows signs of overfitting on the training data, where
the model achieves high accuracy from early epochs itself. The training accuracy flattens out to
around 92% after 40 epochs, whereas the test accuracy lingers at a value around 70%. This is mainly
due to shortage of labelled data across various classes leading to overfitting based on the training
images. To overcome this, DeepLane uses transfer learning—-based architecture that enables usage
of DNN with fewer labeled images.

5.2.3 Chaotic Traffic Dataset. We now present the case in which we use individual image
frames only, i.e., without temporal features (without TF) for lane classification. For this, we trained
a linear SVM classifier model on bottleneck features extracted from the training data in chaotic
traffic dataset (see Table 1).

Table 2 shows the confusion matrix (without TF) when the current vehicle’s lane is classified
to either left or middle or right lane. The diagonal elements represent the instances for which
the predicted label matches the ground truth label, while off-diagonal elements correspond to
mislabeling by the classifier. It can be seen that the majority of the classifications lie on the diagonal
of the table, indicating correct classifications. Further, the number of misclassifications for VGG
have reduced as compared to AlexNet due to the deeper architecture, where the former has 16
layers and the latter has 8.
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Table 2. Lane Detection Confusion Matrix
in Chaotic Dataset without TF

Left | Middle | Right
Left 0.88 009 003
AlexNet-4096 | Middle | 0.08 074  0.18
Right | 0.03  0.08  0.89
Left 0.84 011  0.05
AlexNet-300 | Middle | 0.06  0.77  0.17
Right | 0.03  0.08  0.89
Left 090 008 0.2
VGG-25088 Middle | 0.05  0.89  0.06
Right | 0.01 004  0.95
Left 0.85 012 003
VGG-300 Middle | 0.04 085 0.1
Right | 0.01 005  0.94

Fig. 10. Lane misclassifications in chaotic dataset.

Upon analysis of misclassifications, we found that several instances were misclassified due to
parked vehicles on either side of the road (mostly on pavement) or instances where the pavement’s
surface looked similar to the road’s surface. Figure 10 shows a few examples of misclassification.
In the first two images, the vehicle is in the left lane but was classified as being in the middle lane.
This was mainly because DeepLane could not distinguish between the pavement’s surface and road
surface as they look similar (see Figures 10(a) and (b)). In Figure 10(c), the vehicle is in the left lane
(ground truth) but was classified as being in the middle lane, due to the parked vehicle off the road
to the left. Figure 10(d) shows an instance where the left lane is not adequately illuminated, due to
which DeepLane misclassifies the middle lane (ground truth) as the left lane. Figure 10(e) shows
a scenario where the entire left lane view is blocked by a bus, resulting in the classifier detecting
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Table 3. Lane Detection Confusion Matrix
in Chaotic Dataset with TF

Left | Middle | Right

Left 0.89 008  0.03

AlexNet-4096 | Middle | 0.02  0.89  0.09
Right | 0.03 009  0.88

Left 093 016 001

AlexNet-300 | Middle | 0.03  0.89  0.08
Right | 0.02  0.08  0.90

Left 094 006  0.00

VGG-25088 Middle | 0.02  0.95  0.03
Right | 0.00 003  0.97

Left 0.92  0.08  0.00

VGG-300 Middle | 0.03  0.92  0.05
Right | 0.00 003  0.97

Table 4. Lane Detection Accuracy in Chaotic Dataset with/without TF

AlexNet-4096 | AlexNet-300 | VGG-25088 | VGG-300
Accuracy without TF 83.6% 83.8% 91.3% 88.0%
Accuracy with TF 88.4% 90.0% 95.4% 93.1%

the current vehicle’s lane as left as opposed to middle (ground truth). Finally, Figure 10(f) shows
an instance where the road divider to the right of the vehicle looks similar to road surface. Hence,
DeepLane classifies it as the middle lane as opposed to the right lane (ground truth).

Next, we present the corresponding confusion matrix for DeepLane with temporal features in
Table 3. We can see that overall across all scenarios the accuracy of detection improves compared to
the without TF case. Upon closer observation, we can see that all the extreme cases (left classified as
right, or right classified as left) are non-existent for VGG configurations and reduced significantly
for the Alexnet configurations.

Table 4, row 1, shows the overall accuracy of lane detection per image (averaging the diagonal
elements from Table 2) across various configurations. VGG-25088 has highest accuracy of 91.3%
in detecting the current lane position, whereas AlexNet-4096 has 83.6% accuracy. In row 2, we
show the results using temporal features. An overall accuracy improvement of 6% was observed
for the Alexnet configurations, and over 5% for the VGG configurations. Further, it can be seen
that by reducing the feature vectors to 300 using PCA for both AlexNet and VGG, the accuracy
drop is minimal, with corresponding benefits in computational efficiency (see Section 7). From
now on, we show evaluation results on AlexNet-300 and VGG-300 throughout the article. We also
trained separate SVM models for day (or night) separately, and the resulting accuracy was similar
to combined day and nighttime data.

5.24  Non-chaotic Traffic Dataset. Table 5 shows the confusion matrix for lane detection with-
out TF on the non-chaotic dataset for AlexNet-300 and VGG-300 (see Table 1 for training and test
data split). It can be seen from Table 5 that majority of the classifications lie on the diagonal of the
table, indicating correct classifications.

In this dataset, we found that majority of the misclassifications were due to the presence of
shoulders on the left or right side of the road, or due to no vehicles being present in the scene.
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Table 5. Lane Detection Confusion Matrix
in Non-chaotic Dataset without TF

Left | Middle | Right
Left 091 004 005
AlexNet-300 | Middle | 0.04 086  0.10
Right | 0.01 012  0.87
Left 094 004  0.02
VGG-300 Middle | 0.03 092  0.05
Right | 0.03 013  0.84

Fig. 11. Lane detection misclassifications in non-chaotic dataset.

Table 6. Lane Detection Confusion Matrix
in Non-chaotic Dataset with TF

Left | Middle | Right
Left 0.89 006  0.05
AlexNet-300 | Middle | 0.07 0.86  0.07
Right | 0.01 001  0.98
Left 0.95 005  0.00
VGG-300 Middle | 0.02 093  0.05
Right | 0.00 001  0.99

Some misclassifications are shown in Figure 11. Figures 11(a) and (b) show instances where there
is a shoulder present towards the left and right side of the road, respectively. Due to this, DeepLane
misclassifies the vehicle’s lane position as middle instead of left or right, respectively. As in the
case of the chaotic traffic dataset, in some of the instances the entire left lane view is blocked by a
bus/truck, leading to a misclassification (see Figure 11(c)). Finally, few instances get misclassified
from right lane to middle lane, as shown in Figure 11(d), due to absence of road dividers. One way
to reduce these misclassifications would be to add the misclassified images back to the training set
to improve accuracy, which is known as hard positive/negative sampling [16].

Table 6 shows the confusion matrix for DeepLane architecture with temporal features. It can be
seen that across diagonal the classification accuracy is significantly improved for both VGG and
Alexnet configurations. Further, due to consideration of temporal features across image sequence
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Table 7. Lane Detection Accuracy in Non-chaotic Dataset with/without TF

AlexNet-4096 | AlexNet-300 | VGG-25088 | VGG-300
Accuracy without TF 87.0% 86.0% 91.1% 90.2%
Accuracy with TF 88.4% 88.8% 94.6% 93.7%

Table 8. Lane Detection Accuracy in Merged Dataset with/without TF

AlexNet-4096 | AlexNet-300 | VGG-25088 | VGG-300
Accuracy without TF 83.3% 83.1% 91.6% 88.4%
Accuracy with TF 94.0% 92.1% 94.8% 92.5%

Table 9. Lane Detection Confusion Matrix
in Merged Dataset without TF

Left | Middle | Right

Left 0.85 0.09 0.06

AlexNet-300 Middle | 0.06 0.80 0.14
Right 0.03 0.12 0.85

Left 0.88 0.09 0.03

VGG-300 Middle | 0.05 0.86 0.09
Right 0.01 0.08 0.91

the misclassifications in extreme cases such as left to right or right lane are negligible. Table 7
shows the overall lane detection accuracy with and without TF for various configurations. An
overall accuracy of 86% was found for AlexNet-300, which further improved to around 89% when
temporal features (TF) were considered. Similarly, an accuracy of 90.2% and 93.7% was found for
VGG-300 without and with TF, respectively.

5.2.5 Merged Dataset. Finally, we also show the lane detection accuracy when we combine both
the chaotic and non-chaotic traffic datasets, we call it merged dataset. Table 8 shows the lane detec-
tion accuracy with and without temporal features (TF). It can be seen that the overall accuracy on
the merged dataset is similar to individual datasets for the VGG configurations, but it shows a sig-
nificant improvement for Alexnet configurations. This may be attributed to the improved diversity
in the data, thus helping a shallower network (Alexnet in our case) in generating distinctive fea-
tures. Overall, some of the misclassifications found in individual datasets were eliminated due to
the diversity in the data. Table 9 shows the confusion matrix for the merged data (without TF) and
it can be seen that the off-diagonal elements are lower compared to individual datasets, showing
reduction in misclassifications. Further, we also performed 10-fold cross-validation, which resulted
in similar overall accuracy numbers showing the robustness of the classifier. It was also observed
that considering temporal features for the merged dataset leads to total removal of extreme cases
for both the Alexnet and VGG configurations, as shown in the confusion matrix in Table 10.

5.3 Segmentation-based Results

To test the efficacy of the LD, approach described in Section 4.3, we evaluated it on our non-
chaotic traffic dataset. With VGG-25088 as the DNN model, the overall accuracy obtained was
84.3%. For the same dataset, we found DeepLane has higher accuracy, i.e., 91.1%.
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Table 10. Lane Detection Confusion Matrix
in Merged Dataset with TF

Left | Middle | Right
Left 0.94 006  0.00
AlexNet-300 | Middle | 0.05  0.89  0.06
Right | 0.00  0.03  0.97
Left 0.95 005  0.00
VGG-300 Middle | 0.04 0.90  0.06
Right | 0.00 003  0.97

Table 11. Lane Detection Confusion
Matrix Using LDseq

Left | Middle | Right
Left 0.95 0.03 0.02
Middle | 0.07 0.81 0.12
Right 0.01 0.16 0.83

Correct-side driving ~ Wrong-side driving Daytime Nighttime

(a)

Fig. 12. (a) Wrong-side driving scenario, (b) Sample images from our dataset, (c) Misclassifications.

Table 11 shows the confusion matrix for lane detection using LD;.4. The majority of the mis-
classifications was due to (i) inaccuracy in accurately detecting road surface and pavement and
(if) inaccuracy in detecting accurate vehicle bounding boxes, especially when the vehicles were
far away. Hence, the resulting segmented image was noisy and included other background in-
formation leading to poor accuracy in detecting the vehicle’s lane. Further, LD, requires use of
three separate DNNs for (i) road segmentation, (ii) vehicle segmentation, and (iii) feature extrac-
tion, which are computationally expensive and not feasible to run on smartphones. Due to the
above reason, we discard the segmentation-based approach for lane detection.

6 WRONG-SIDE DRIVING DETECTION

In the previous section, we showed the efficacy of DeepLane in detecting the current lane that a
vehicle is in. A specific form of lane detection arises when the vehicle is driving on the wrong
side of the road (henceforth abbreviated as WD), i.e., against the flow of traffic. Such wrong-side
driving is not uncommon in the chaotic road conditions in developing regions. Here, we focus on
the specific case where the vehicle in which the camera is mounted is itself driving on the wrong
side, along the edge of the road. Figure 12(a) depicts the wrong-side driving scenario, where the
interest vehicle in red is driving on the wrong side.
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Table 12. Training and Test Images for Wrong-side Driving

Training data | Test data | Time of Day
Correct-side 3,000 2,213 day
Wrong-side 3,000 3,614 day
Correct-side 2,200 1,618 night
Wrong-side 3,000 2,717 night

The GPS available in smartphones typically lacks the resolution needed to detect wrong-side
driving on a two-way road, just as it is inadequate for lane detection (Section 4). (A one-way road
is a different case, where GPS might suffice when coupled with map annotations indicating the di-
rection restrictions.) Therefore, we focus on a camera-based approach, just as with lane detection.
The intuition here is if a vehicle travels in the correct direction, the camera view would largely
be composed of the rears of the vehicles in front, including such features as the tail-lights. How-
ever, while going in the wrong direction, the camera would mostly see a frontal view of vehicles,
including their headlights.

While we could build a detector to identify the front view versus the rear view of vehicles,
this would require a significant amount of labeling, identifying features of interest, and collect-
ing a sufficiently diverse set of data. To avoid these difficulties, we follow the same DeepLane
architectures as described in Section 4.1 and Section 4.2. The idea is, given an input image along
with a label (correct-side driving or wrong-side driving), the DeepLane architecture extracts rel-
evant features using pre-trained networks and then uses these features to classify the scene into
correct-side versus wrong-side driving (a two-way classification as opposed to three-way for lane
detection).

To train the network, we took a subset of labeled data corresponding to correct-side and wrong-
side driving in both daytime and nighttime conditions. The bottleneck features extracted from the
pre-trained networks were fed to a classifier to build a model for two-way classification. This
classifier, as described in Sections 4.1 and 4.2 could either be a linear SVM or an RNN (GRU),
depending on whether temporal features were used or not. As in the case of lane detection, we
believe the bottleneck features extracted before the final fully connected layers in the DNN include
the most relevant features with respect to object parts such as headlights, tail-lights, and other
vehicle parts that can be used to detect wrong-side driving.

Dataset: To evaluate the accuracy of our approach, we collected real-world data on various
road segments in developing regions. Since we did not wish to risk driving on the wrong side
of the road, we parked at the edge of the road, facing the wrong side, to capture videos. Though
we remained stationary during data collection, we were nevertheless in constant motion relative
to the incoming traffic. Since the relative speed would be low, we sampled the videos at 1fps to
reduce the correlation between successive sampled images. The dataset consists of a total of 6h
of video data, with 2.5h and 3.5h of data for correct-side and wrong-side driving, respectively.
We extracted frames at 1fps from this video, resulting in a total of 21,362 images, with 9,031 and
12,331 images corresponding to correct- and wrong-side driving, respectively. Some sample images
of correct- and wrong-side driving are shown in Figure 12(b). The data split for training and testing
the network is shown in Table 12 for both day and nighttime images.

We now present our evaluation of WD using the architecture described in Section 4.1. Tables 13
and 14 show the accuracy in detecting wrong-side driving along with false positives (FPs) and false
negatives (FNs) using the pre-trained networks, VGG and AlexNet, during daytime and nighttime,
respectively. False positives (FPs) represent cases when the vehicle is traveling in the correct direc-
tion (with the flow of the traffic) but predicted as going in the wrong direction. Conversely, false
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Table 13. Wrong-side Driving Detection During Daytime
FPs FNs Accuracy FPs FNs Accuracy
(without TF) | (without TF) | (without TF) || (with TF) | (with TF) | (with TF)
AlexNet-4096 2.1% 13.1% 90.5% 2.0% 11.7% 91.8%
AlexNet-300 2.7% 23.1% 84.5% 2.5% 14.2% 89.1%
VGG-25088 2.1% 13.1% 90.5% 1.8% 9.7% 94.6%
VGG-300 2.2% 13.8% 90.3% 1.8% 10.5% 94.3%
Table 14. Wrong-side Driving Detection During Nighttime
FPs FNs Accuracy FPs FNs Accuracy
(without TF) | (without TF) | (without TF) || (with TF) | (with TF) | (with TF)
AlexNet-4096 1.7% 8.4% 93.8% 1.5% 7.3% 95.3%
AlexNet-300 1.9% 9.0% 93.2% 1.7% 7.9% 94.7%
VGG-25088 1.9% 10.1% 91.8% 1.5% 6.8% 95.5%
VGG-300 2.1% 10.3% 91.6% 1.9% 8.5% 93.8%
Table 15. Wrong-side Driving on Merged Data (Day+Night)
FPs FNs Accuracy FPs FNs Accuracy
(without TF) | (without TF) | (without TF) || (with TF) | (with TF) | (with TF)
AlexNet-4096 2.5% 10.1% 92.1% 1.8% 7.9% 94.3%
AlexNet-300 2.4% 15.0% 88.8% 2.7% 9.4% 92.3%
VGG-25088 2.1% 13.3% 90.7% 1.5% 7.7% 96.1%
VGG-300 2.9% 13.3% 90.3% 1.8% 8.6% 94.8%

negatives (FNs) represent cases when a vehicle is traveling in the wrong direction but is predicted
as going in the correct direction. The tables also show evaluation on the architecture described in
Section 4.2.

It can be seen that the accuracy is generally over 90% in detecting wrong-side driving during
both daytime as well as nighttime. Further, when temporal features are aggregated with a window
of five frames, the overall accuracy improves by up to about 4%, as shown in Tables 13 and 14.

While the number of false positives is under 3%, most of the misclassifications happen to be due
to false negatives, with an FN rate close to 15% across daytime and nighttime. On closer examina-
tion, we found that most of the misclassifications happen when there were few or no vehicles in
the scene. Some of those cases, corresponding to daytime and nighttime, are shown in Figure 12(c),
where even the few vehicles seen are very far away. In such cases, the relevant features could not
be obtained, hence the misclassification. However, in such cases, the use of temporal features leads
to a reduction in the number of false negatives, as can be seen in Tables 13 and 14.

Besides evaluating daytime and nighttime conditions separately, we also built a classifier that
pools together both daytime and nighttime images for wrong-side driving detection. The accuracy
of the classifier on the merged data is more than 92% when temporal features are used, as shown in
Table 15. The false negatives, too, have fallen below 10%. The fact that accuracy is comparable to
the case where daytime and nighttime are considered separately suggests that the relevant features
(e.g., the pattern of vehicles around) are independent of the lighting conditions.
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7 MOBILE IMPLEMENTATION

We now describe the implementation of DeeplLane without temporal features to detect a vehi-
cle’s current lane position on an Android platform. Further, we benchmark the performance of
DeepLane running on CPU and GPU for various Android phones such as OnePlus 3 (USD 350) and
Lenovo Zuk 2 (USD 155). DeepLane has three building blocks: (i) extracting features using pre-
trained DNN networks such as AlexNet and VGG, (ii) reducing the dimensionality of the features
using PCA to improve performance, and (iii) classifier model to detect lane position.

7.1 DeeplLane Implementation on Android

The entire pipeline on Android is written in native C++ code based on OpenCV, TensorFlow, and
custom libraries interfaced with Java using JNI wrappers.

1. Porting AlexNet and VGG on Android phones: We have written the AlexNet and VGG
architecture shown in Figure 5 using TensorFlow. We save this model as a protocol buffer (PB) file,
which can later be used to load the model and visualize the structure of the network.

To run DNN networks on Android, we import the saved model file, viz., the PB file, into our
Android app. Currently, the TensorFlow models saved as PB files can run only on NVidia GPUs.
Most of the smartphones have Qualcomm-based Adreno GPUs and TensorFlow models on these
can only use the CPU. To overcome this, we employ Qualcomm’s Snapdragon Neural Processing
Engine (SNPE) [7], which is an SDK for running neural network models trained in Caffe or Tensor-
Flow on Snapdragon mobile platforms. SNPE takes the PB file and converts it into a DLC file (Deep
Learning Container). The DLC file can now be used by SNPE runtime to run on either CPU or
GPU of the smartphone. Thus, for each image, the Android app sends a request to the DLC, which
returns with the feature vectors corresponding to the image.

2. Dimensionality reduction: The feature vectors returned are then fed to the PCA for di-
mensionality reduction and for faster inference. We used OpenCV implementation of PCA in our
Android application.

3. Classifier model: We used linear SVM to build our classifier model for lane detection and
wrong-side driving. We employed libSVM for Android along with Android NDK library to imple-
ment linear SVM model.

7.2 Benchmarking DeeplLane on Android

We now present benchmark results of DeepLane using both AlexNet and VGG on CPU and GPU of
Android smartphones. We have tested the Android app on multiple smartphones such as OnePlus
3 and Lenovo Zuk Z2, both having Qualcomm Snapdragon 820 chipset with Quad-core CPU and
Adreno 530 GPU.

Table 16 shows the model size and time taken for inference on CPU and GPU, for AlexNet-4096
and VGG-25088, on the Lenovo ZUK Z2 phone. As described in Section 4.1, AlexNet has 5 con-
volutional layers followed by 3 fully connected layers and has 60M parameters. Similarly, VGG16
has 16 layers with 13 convolutional layers and 3 fully connected layers, resulting in 138M param-
eters. While both the models yield similar accuracy for lane detection and wrong-side driving,
the model size and inference time of AlexNet is significantly lower than VGG16 due to the much
smaller number of parameters. Thus, DeepLane on Android employs AlexNet as its pre-trained
model for feature extraction.

As shown in Table 16, for both AlexNet and VGG16, the inference time drops significantly when
the smartphone’s GPU is used for feature extraction. For AlexNet-4096 the inference time is 140ms
and 38ms when CPU and GPU is used, respectively. Further, the time taken for feature reduction
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Table 16. Inference Time for Bottleneck Feature Extraction

Model Size | Inference time | Inference time
(MB) CPU (ms) GPU (ms)
AlexNet-4096 5MB 140 38
VGG-25088 20MB 1,300 340

from 4,096 to 300 using OpenCV PCA implementation is around 10ms. Finally, the time taken for
classification using 1ibSVM classifier model is around 30ms.

The DeepLane Android app using AlexNet currently supports processing at 5 frames per second
(fps) (i-e., 140ms+10ms+30ms = 180ms per frame) when running on a CPU and can support up to
15fps when GPU on the smartphone is used. Since vehicles are unlikely to be changing lanes
very frequently, the supported frame processing rate of 5fps on CPU is suitable for detecting lane
position in real-world settings. The CPU usage with the app running was around 20%-25% on both
the smartphone models, thus enabling other apps such as navigation to be used concurrently with
DeepLane.

8 CONCLUSION

In this article, we have presented DeeplLane, a smartphone-based system for real-time lane detec-
tion. DeepLane employs deep learning techniques to classify the lane of the vehicle to either the
left, middle, or right lane. We have evaluated DeepLane in both developed and developing regions.
DeeplLane can detect a vehicle’s lane position with an accuracy of over 90% in both daytime and
nighttime conditions using temporal features, and does not depend on any infrastructure support
such as lane markings. We have implemented DeepLane as an Android app and can assist naviga-
tion applications with lane-level information.’
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