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Abstract

Applying machine learning tools to forecasting adverse events in intensive care
can be invaluable in providing clinicians with the time needed to intervene and
improve patient outcomes. In this work, we describe an end-to-end approach to the
prediction of hypotension from critical care data using off-the-shelf classification
models. Standard performance metrics suggest these models effectively learn from
available data, and that additional multi-modal information improves classification
accuracy. However, we show that this improvement is disputable when probing
further into medical context and choices in data curation, thus highlighting the
need for a domain-centric design of machine learning for clinical decision support.

1 Introduction

The democratization of machine learning practice over recent years, allowing application in a range
of real world settings, raises both opportunities and unprecedented challenges [12]. The domain
of healthcare epitomizes this; machine learning tools have the capacity to leverage the wealth of
data available in electronic health records (EHRs) to support clinical decision making and improve
efficiency. At the same time, great care and continual input from domain experts at every stage of
the data selection and algorithm design is crucial to minimizing the risks of biased or confounded
inferences [5]. In this work, we consider how some of these issues can arise through the lens of
forecasting adverse clinical events. We focus on the task of predicting the onset of hypotensive
events given raw physiological time series as input, along with context in the form of curated EHR
data. We cast this as a binary classification problem and consider: (i) the trade-offs inherent in
cohort and feature selection from noisy, multi-resolution, multi-modal data, (ii) the effectiveness
of off-the-shelf machine learning algorithms in adverse event prediction, and (iii) the challenges in
evaluating machine learning in the safety-critical domain of clinical decision making.

The paper is structured as follows: in Section 2, we introduce the problem of predicting hypotensive
events and review past approaches to this task. In Section 3, we outline our data selection and
preparation process and formulate our classification problem, while in Sections 4, we analyse the
performance of baseline models trained and tested on a publicly available critical care dataset.

2 Background: Hypotension in Intensive Care

Hypotension is defined as a period of sustained, abnormally low blood pressure. It can not only
be a harmful condition in itself, slowing the delivery of oxygen and nutrients to vital organs, but
is often the first marker of more serious illness [3]. Acute hypotensive events (AHEs) are highly
common in critical care patients, though estimating prevalence is challenging due to variability in
clinical definitions across care providers, and across patient subpopulations; patients that meet a given
population-level definition may be entirely asymptomatic, for example. An AHE can result from a
number of different mechanisms, from distributive shock, typically caused by sepsis (severe blood



infection) or neurogenic disorders, or hypovolaemic shock following sudden loss of fluid, to shock
directly due to heart or circulatory failure [18]. Hypotension is in turn associated with higher rates of
comorbidity and mortality [8, 20, 16]. Timely prediction of hypotensive episodes can therefore allow
clinicians to intervene as appropriate before further patient decompensation, and improve outcomes.

Existing literature on the prediction of AHEs focuses on the extraction and analysis of waveform
shape and spectral characteristics, and the construction of complex hand-engineered features from
raw waveform data with high temporal resolution [17, 1, 9]. This heavily featurized waveform
data is then input to simple classifiers, such as logistic regression, random forests or support vector
machines. Feature engineering becomes prohibitive when the number of the features increases and
new combinatorial features become progressively difficult to interpret. Contrary to that, we deploy
and explore baseline approaches that take a small set of physiological signals as input and relegate
the composition of features to the classifier thus allowing for interpretability of the contribution of
each signal to the prediction. Additionally, while past approaches to AHE consider only waveform
data, here we look to incorporate information from corresponding EHRs as input.

More generally, the task of predicting adverse events ahead of clinical diagnoses has been tackled in
a number of different contexts, from tree-based methods in predicting hypoxaemia [15] or building
early warning systems for circulatory failure [10], to the detection of sepsis or acute kidney injury
using recurrent neural networks [2, 19]. These works typically consider only sparse, irregularly
sampled EHR data over extended time intervals; in the case of acute hypotension however, where both
deterioration and treatment can occur at much shorter time scales, leveraging high fidelity waveform
data—alongside clinical records as appropriate—is imperative.

3 Data Selection and Preprocessing

We train and evaluate models for the prediction task described using the MIMIC III Critical Care
database [11], in conjunction with continual bedside monitoring data in the corresponding waveform
database [6]. Motivated by prior approaches to AHE prediction [17, 4], we extract as features the time
series of the following six vital signs, sampled once per minute: mean, systolic and diastolic arterial
blood pressure, heart rate, respiratory rate and SpO2 (blood oxygen saturation). We filter from the
database a total of 4,518 patients with waveform data available for all six vitals. We define AHE onset
as the point at which 80% of mean arterial pressure (MAP) measurements in the following 30 minute
window are below 65mmHg, and label each patient admission according to whether a hypotensive
event is present. This yields two groups of patients: cohort H , comprising 2,729 admissions with one
or more instances of AHE, and cohort C, a control group of 1,789 patients who experience no AHEs.

We augment these six waveform time series with temporally aligned data from the clinical database.
We consider information on administration of six categories of drugs that may directly influence blood
pressure: vasodilators, diuretics, and sedatives can cause drops in blood pressure, while vasopressors
and fluids (crystalloids and colloids) are administered to manage hypotension.Additionally, we extract
timestamps of nurse-verified chart and lab events, indicative of suspected change in patient state,
along with static demographic features (age, weight, gender, ethnicity, first care unit, admission type)
that may help characterize expected patient baseline MAP.

Figure 1: Example waveform time series segment of patient mean arterial blood pressure (ABPm), along with
charted MAP values and administered drugs. AHE onset at t∗ = 180; gap length ∆ = 30.

We extract fixed-length segments from each admission as follows: for patients in cohort H , we
find the time t∗ of the first AHE onset more than 180 minutes into the admission. We define the
observation window, data in interval [t∗ − 180, t∗ − ∆]. Here ∆ is the gap, or the interval between
the end of the observed data and the onset of the AHE event we aim to forecast, in the 30-minute
target window [t∗, t∗ + 30]. Figure 1 illustrates an example. For patients in cohort C, we simply
extract the first 180−∆ minutes of data from each admission and use this as our observation window.
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4 Experiments

Given the labelled dataset constructed above, we use information in the observation window of
each sample to predict the probability of a hypotensive event occurring after time ∆, in the target
window. We cast this as a binary classification task with class labels [H ,C], to (i) evaluate the
performance of common baseline classifiers, namely logistic regression, random forests and tree-
based gradient boosting machine [13] when predicting AHE onset at different future intervals, taking
the concatenated waveform time series of the six vitals as input, (ii) investigate the performance when
explicitly modelling the temporal dynamics of the input using a stacked bidirectional LSTM classifier
[7], and (iii) explore the effect of augmenting the classifier input with additional clinical information.

Figure 2(a) illustrates how the classification accuracy changes with interval lengths ∆, ranging from
0 and 60 minutes prior to AHE onset for each of our four classifiers. This can lend insight into the
potential actionability of the predictions generated, taken in context of the response time of typical
treatments for hypotension. As expected, we find that performance decreases with increasing ∆,
though this typically plateaus after ∆ = 30, suggesting that a reasonable estimate of AHE risk can be
achieved just with a short segment of data from the start of an admission.

We then consider how incorporating the auxiliary information from the clinical dataset can impact
classification performance. Figure 2(b) suggests that inclusion the six time series of administered
drugs consistently improves accuracy, while gains from chart measurement and lab test time series
as well as inclusion of demographics are more modest, and in fact decrease accuracy in the case of
logistic regression. This may be in part because demographics serve more as an indicator of baseline
hypotension risk, rather than of immediate MAP deterioration. Figure 3 plots classifier ROC and
precision-recall curve with ∆ = 30 and all extracted features, which can be used to choose a clinical
operating point; for example, the GBM with false alarm threshold of 1 in 10 yields 91% recall.

Figure 2: Comparison of classification accuracy of four baseline models, with (a) Sweep over different gap
sizes ∆ using waveform input alone; (b) Addition of clinical context features, fixed ∆ = 30.

Figure 3: (a) Precision-Recall Curve, (b) Receiver-Operator Characteristic, for classification accuracy of each
baseline model with varying thresholds, given all available features and gap size ∆ = 30.

Interpreting feature importances In looking to explain the predictions of the GBM (the highest
performing model), we use Shapley values for trees [14], which evaluate the contribution of each
feature in pushing the predicted probability of AHE away from the population mean prediction, along
with the direction of influence. In addition to population-level feature importances, it allows for
individual-level explanations of predictions, important in facilitating trust in predictions. Figure 4
plots the distribution of the impacts each feature has on the model output, for the top 10 features, with
color of sample point representing the feature value. We see that the top ten features are dominated by
the value of diastolic (ABPd) or mean (ABPm) arterial pressure—where ABPm is a linear function
of, and covaries with, ABPd—towards the end of the observation window. Samples with low values
for these features tend to have high positive SHAP values, indicating increased probability of an AHE
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Figure 4: Top 10 features ranked by sum of SHAP value magnitudes over training samples, for GBM classifier
with all extracted clinical features and gap ∆ = 30, such that | observation window | = 150.

in the target window, as would be expected. However, the feature with greatest impact across samples
is crystalloids (fluids for blood volume expansion, increasing pressure) at the start of the observation
window, t = 0. This suggests that the classifier is identifying those patients that have already been
diagnosed by clinicians in the data as at high risk of hypotension, and hence have been administered
fluids early in the admission. The classifier may therefore provide limited actionable insights in these
cases, and predictions would be invalidated by any change in hypotension risk management practices.

This is emphasised when inspecting the highest impact features of instance-specific SHAP values for
errors made by the classifier. False positives are dominated by admissions censored by preventative
intravenous fluids; more crucially, false negatives often result from patients that do not receive fluids
in the observation window and hence erroneously predicted as low-risk, despite deteriorating vitals.
These issues motivate the need for causal approaches when building models with censored data.

Analysing patient subgroups We also explore how the distribution of errors varies with respect
the patient comorbidities. Table 4 summarizes the performance of the GBM classifier across certain
key patient subpopulations: patients admitted to cardiac surgery recovery or coronary care units (that
are likely to be dependent on vasoactive drugs), patients that have been explicity diagnosed in ICD-9
codes with some form of shock, and those that expired in hospital. In each case, classification accuracy
(recall in particular) are significantly higher for these subgroups that the whole test population. This
suggests that our model performs better for more critically hyoptensive patients, and that many
samples on cohort H may experience asymptomatic hypotension, of less clinical relevance.

TEST SUBGROUP # ADMISSIONS #H | #C ACCURACY PRECISION RECALL

TOTAL 1318 729 | 589 0.894 0.934 0.88

CARDIAC UNITS 496 313 | 183 0.905 0.949 0.905
NON-CARDIAC UNITS 822 416 | 406 0.887 0.925 0.861

SHOCK (ICD-9) 241 183 | 58 0.913 0.951 0.935
NO SHOCK (ICD-9) 1077 546 | 531 0.89 0.93 0.862

IN-HOSPITAL MORTALITY 179 135 | 45 0.905 0.963 0.915
DISCHARGE 1139 595 | 544 0.892 0.929 0.872

Table 1: Sample size and classification accuracy for different patient subpopulations

5 Discussion

We presented an end-to-end approach to the prediction of hypotension from historical ICU data. We
described our data selection process, and deployed a number of baseline classifiers to predict the onset
of hypotensive events while varying input. We showed that, under standard performance metrics,
off-the-shelf classification models perform well even in comparison with more sophisticated but
data-hungry deep learning models, and this performance improves with the inclusion of information
from multiple sources—that is, both raw physiological signals and data confounded by clinical action.
We showed with further analysis, however, that accuracy provides a limited view of model usefulness,
and evaluation in relation to clinical protocol underlying the collection of data, as well as decisions
made in its curation, is crucial. This underlines the need for a principled, context-aware approach to
the model design, with the synergy of medical and machine learning expertise.
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