


AI-enabled experience that provides 
ongoing information about people in the 
immediate vicinity for people who are 
blind or have low vision [1].

Through the narrative describing 
our design journey, we capture key 
insights on two themes. We begin with 
a discussion, central to any conversation 
about human-AI interaction, of 
how we positioned the AI system in 
relationship to the person using it. 
Here we illustrate how AI can become a 
resource for enabling people to extend 
their capabilities, standing in contrast 
to the automation of experiences, or 
systems that attempt to emulate human 
ability. With the human-AI partnership 

Rapid development in AI technologies 
such as computer vision have enabled 
the robust perception of many aspects 
of our world, inviting tantalizing 
new experience designs. Yet these 
technology advances also raise many 
fundamental design considerations, as 
they become embedded in real-world 
applications. Designers must think 
carefully upon the dynamic between 
the person and the AI system they 
aim to create, and how that is realized 
through the design of an interpretable 
system. In this article, we reflect 
upon interpretability as a dynamic of 
human-AI interaction through sharing 
our design journey of developing an 
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Insights
We should design AI systems  
as a resource for people  
to extend their own capabilities.  
A few key guidelines:

 → Consider interpretability as 
evolving through dynamic, 
situated system interactions. 

 → Provide users tools to work 
with the system to improve its 
perception accuracy. 

 → Create easy access to 
differently derived AI system 
outputs to enable users to 
determine an appropriate level 
of trust in the system.
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controller (Figure 2). We created three 
core experience modes for users to 
interact with. When users access the 
“overview” mode, the system instantly 
reads out the total number of people 
that it presently detects (e.g., “three 
people”). In this mode, through twist-
by-twist interactions, users can receive 
additional details for each detected 
person: their name (or the system states 
“unknown”), approximate location, 
and time passed since the person was 
last detected (e.g., “John, near-front, 
10 seconds ago”). The user can either 
dwell to receive all those details, or 
quickly skip over these through further 
twists. This information access can 
make it easier for the user to build up an 
understanding of who and where certain 
people might be in a room, and facilitate 
their approaching. For example, “John” 
might be a friend the user would like 
to talk to. Once in conversation with 
“John,” the user may activate the 
“person in front” mode. In this mode, 
whenever the user looks directly at 
another person (indicated through the 
device orientation), they would hear the 
name of the person, or, if not identified, 
a spatialized sound to indicate the 
presence of a person. This functionality 
can help confirm who a conversation 
partner may be and enable the user to 
better adjust their body orientation 
toward that person. Finally, the 
“ambient” mode provides a sound for 
each person nearby at regular intervals 
(e.g., every 30 seconds) without any 
names or details. These interval-based 
updates allow users to have a more 
continuous sense of people’s presence 
through peripheral, low-frequency 
audio that they can easily tune into or 
ignore if irrelevant.

articulated, we then consider how it 
is supported through designing for 
interpretability. We focus on how this 
can be achieved by taking advantage 
of continuous interactions with a 
dynamic AI system. We then pull these 
insights together into a set of guidelines 
for designing future AI-enabled 
experiences.

POSITION THE AI AS  
A RESOURCE FOR ENABLING 
HUMAN CAPABILITIES
Much AI application development has 
focused on enabling standalone systems 
like self-driving cars or analytics tools 
that aid company decision making, 
(e.g., choosing who qualifies for a loan). 
In these examples, AI systems are 
positioned as either capable of emulating 
humans (e.g., driving) or superior to 
humans, potentially outperforming 
them through improved data insights 
or productivity. We propose a different 
orientation to AI systems. Moving 
beyond the emulation and replacement 
of human activities, we suggest that 
AI systems can serve as a useful 
resource for humans, helping them 
expand their agency to develop new 
or extend existing skills. This requires 
consideration of the dynamic of the 
partnership between person and AI 
system.

We explored the nuance of human-
AI partnerships through a series of 
design research [2] and ethnographic 
fieldwork [3] activities with people who 
have vision impairments. This work 
highlighted that social relationships 
and interactions are critical for 
how our participants made sense of 
their surroundings, connected with 
others, or sought help. Based on this 

M

insight, we began to imagine how 
perception technology could provide 
functionality that would offer people 
with vision impairments dynamic, in 
situ access to information about others 
nearby. Such information could make 
it easier, for example, for a blind person 
to proactively approach someone 
to socialize rather than waiting for 
someone to reach out. It might also 
mitigate the embarrassing situation of 
starting a conversation with someone 
who had quietly left the room. The 
design aim was to build a system 
that would enable people with vision 
impairments to be more confident in 
how they approached social situations, 
rather than trying to design a system to 
replace their vision.

The AI system and enabled user 
experiences. In conjunction with a 
user team of eight blind or low-vision 
people, we developed an AI system 
(Figure 1) that runs on a head-worn 
HoloLens device modified to remove 
the lenses. The device captures a near 
180-degree field of view surrounding 
the person wearing the device, tracks 
their head position, and provides 
high-quality spatialized audio from 
non-occluding speakers above the ears. 
Multiple state-of-the art computer 
vision algorithms process the captured 
images to continuously identify 
other people nearby, including their 
identity, location, activity, and gaze 
direction. The outputs of the underlying 
perception models are further 
integrated into a real-time tracking 
model of all people detected.

Users can filter and receive 
information about people in the vicinity 
acoustically via spatialized audio using 
various input controls on a wrist-worn 

Figure 1. Left: Image of the adapted HoloLens device. Right: Schematic description of the core functionality of the AI system.

John
Sarah ?

The cameras continuously 
capture images together with 
the position and orientation 
of the device.

Each image is processed
by a server to detect
people, their identity,
pose, and gaze direction.

This information is used to build 
a 3D tracking model of the people 
detected, which is updated in real time.

(2)

(3)

(4)
TRACKED IDENTIFIED

An LED display on top 
of the HoloLens visualizes 
to bystanders when 
the system tracks 
or identifies them.

EXTERNAL FEEDBACK

The HoloLens is head-mounted. 
It provides an array of cameras that 
capture a near 180° field of view 
and offers 3D spatialized audio.

(1)

Users access the 
information auditorially 
through the device.

(5)

THE AI SYSTEM
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Foreground human agency and 
understanding. The way information 
is communicated by the system reflects 
a number of design decisions explicitly 
intended to reflect a human-AI 
partnership that places agency with the 
person rather than the system. First, the 
experience is user controlled, allowing 
the user to determine when and what 
kind of information would suit them in a 
given situation. This stands in contrast 
to a technical trend toward integrated 
AI systems (also called end-to-end 
systems). Such an approach provides 
complex inferences about a situation, for 
example, determining when to provide 
social information. Engagements 
with our user team illustrated that 
such inferences are very specific to 
personal preference, existing skills, 
and a complex set of contextual cues. 
Attempting to infer these is likely to 
lead to a fallible system that loses users’ 
trust. In contrast, the design approach 
described here forefronts the user as 
“doing the understanding,” helping 
them maintain agency of their own lived 
experience.

Second, the information provided, 

presented through a range of experience 
modes, is simpler than what the system 
is technically capable of. Participants 
were best able to incorporate 
information into their experience 
that was immediately useful to, but 
not disruptive of, their interactions 
with those around them. These simple 
pieces of information, such as “who 
is in the room,” support the user to 
initiate interaction, such as approaching 
a particular person. This type of 
experience clearly positions the person 
as the entity with agency and the AI as 
a resource. The result is an experience 
that is less prescriptive, leaving space 
for users to identify meaningful 
appropriations of this AI resource 
within their lives beyond anticipated 
use cases.

In order to achieve this design 
vision of an AI system as an 
information resource for people that 
can help extend their capabilities, 
it is further essential to support an 
appropriate user understanding of 
the system functionality. Next, we 
consider how such interpretability 
can be achieved through continuous 

interactions with a dynamic AI system.

INTERPRETABILITY THROUGH 
CONTINUOUS INTERACTIONS 
WITH A DYNAMIC AI SYSTEM
The real-time human tracker of our AI 
system is based on a combination of 
multiple technically sophisticated 
machine learning (ML) models, each of 
which is trained on diverse datasets and 
based on many model parameters. The 
complexity of this integrated model can 
make it difficult, if not impossible, for 
humans to understand how certain 
predictions are achieved, or why a model 
may perform more or less accurately in 
different contexts. Furthermore, as a 
system that is continuously worn by the 
user, there are many contextual factors 
that can complicate the reliable 
detection of other people nearby. For 
example, different light conditions or 
the occlusion of a face can hinder the 
system’s ability to recognize people’s 
identity—above and beyond any 
probabilistic uncertainties of its 
algorithmic outputs [4]. Considering 
that these limitations are difficult to 
overcome fully, how can we provide 

T
Figure 2. Description of the input modalities of the wrist-worn controller and the outputs of each of the three experience modes.

John
A <double click> (de-)activates this mode.

Each time the user directly faces 
a person, the system plays a non-speech
sound or their name, if identified.

PERSON IN FRONT

EXPERIENCE MODES

A simple, wrist-worn user input device.
WEARABLE

3 people

John, near front, 
10 seconds ago

A <triple click> (de-)activates this mode.

At regular intervals, the system ‘sweeps’ 
the space from left-to-right (like a radar) and 
provides individual sounds for each person. 

AMBIENT

Upon a <single click>, the system speaks 
the total number of the people it detects.

Through <twists>, additional information
about each person can be retrieved.

OVERVIEW

<Twist>
outer circle

<Click>
center button

<Single Click>

<Double Click>

<Triple Click>
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mounted device, as well as become 
an active participant in the social 
sensemaking in which the user was 
engaged.

We affixed a semicircular LED 
interface to the top of the HoloLens 
(Figure 1, left) that communicates the 
system state visually to bystanders. A 
moving white light tracks the location of 
the nearest detected person and flashes 
green when that person is identified 
(auditorily) to the user. The visual 
feedback enables the development of 
common ground between all parties 
and enables bystanders to test out the 
workings of the system. Bystanders can 
use that understanding to physically 
orient themselves to the system—to 
make themselves more detectable to the 
system or, conversely, to evade it if they 
do not want to be captured. Creating 
transparency through a more open sharing 
of the system state can further help 
manage bystander expectations and 
ameliorate concerns that they otherwise 
might have about a system that would 
try to detect them “unobtrusively.”

Allow users to triangulate different 
system information. Each of the 
experience modes that we created is 

users tools that 1) enable them to work 
with the AI system to help improve its 
detection performance, and thereby, 
practical usefulness; and 2) help them 
develop an appropriate mental model of an 
AI system’s state or behavior so that they 
can have a clearer understanding of 
whether they can rely on, or need to 
further verify, system-derived 
information.

Work with the AI to improve its 
performance and usefulness. Among 
the experience modes we created 
(Figure 2), the “person in front” 
functionality was popular. In this mode, 
whenever the user of the AI system 
was looking directly at another person, 
they would hear that person’s name, 
or a spatialized sound if the system 
detected a person but did not identify 
them. When the system had a robust 
internal representation of nearby 
people, this audio feedback was instant 
and presented as a short, comprehensive 
information cue that was easy to place in 
the environment due to its positioning 
in relation to the user’s head orientation 
and their control of head movement. As 
such, it served as a useful resource to 
quickly build up an understanding of 
the surrounding social landscape.

In building up the system’s 
representation of people, different 
computer vision models were employed. 
While the recognition of people’s 
bodies via pose detection was fairly 
robust, even when parts of the body 
were occluded, identity recognition 
required clear images of full faces [4]. 
As it can be difficult for those with 
vision impairments to know how to best 
direct their head to help frame other 
people’s faces such that the system can 
perceive them, we developed orientation 
cues. For those people who are detected 
by the system but not identified by 
name, an additional woodblock sound 
is played. This sound changes pitch 
if the user’s head is tilted too high or 
too low, and “snaps” to faces, helping 
the user orient to the nearest face. 

Seamlessly integrated within AI system 
interactions, the different types of audio 
feedback provide insights about the 
system state in recognizing people while 
giving users the means, through body-
orientation adjustments, to work with 
the system to improve its recognition 
performance.

Furthermore, we found that 
interactions extended beyond the 
user and the AI system to a three-
way reciprocal relationship between 
the user, the system, and the people 
with whom the user is interacting. 
Designed as a social system that detects 
others nearby, it was important to 
consider how those bystanders would 
come to understand the purpose 
and functionality of the visible head-

Figure 3. Top left: Using the wrist controller, one of our blind participants switched and 
triangulated across different system outputs to build up his understanding of others nearby, 
which he articulates out loud to the researchers around him (text below). Top right: AI system 
view of the surroundings, showing the 180-degree field of view of the HoloLens cameras as well 
as the real-time model of three people that it detected: their location, identity, and orientation 
to the user.

We found that interactions extended 
beyond the user and the AI system to 
a three-way reciprocal relationship 
between the user, the system, and the 
people with whom the user is interacting.

User interacts with overview and twist inputs to build up his understanding of others nearby:
User: [Twists] “Martin, near-front, 10 seconds ago.” I’m pretty sure he’s not there anymore.
 [Twist] “Anja, near-front, just now”
 [Twist] “Sebastian, near-front, just now.” Yeah, that’s all good.
 [Keeps twisting] “Unknown, really far away, 2 seconds ago.”
 [Twist] “Martin, near-front, 10 seconds ago.”
Anja: Did he just creep up?
User: Maybe, yeah. I think maybe the system put him down as unknown to begin with. “Sebastian, 
 still there.”
 [Twist] “Unknown, near-front, just now.”
 [Twist] “Martin, near-front, just now.”
 [Clicks overview] “3 people.” OK, so the unknown was Martin. OK, that’s cool.
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enabled by a different set of computer 
perception models that capture different 
types of information. For example, 
while an initial overview (outputting 
the number of people detected) relies 
only on a robust pose detection of 
people’s bodies, the identification 
of a person’s identity in the “person 
in front” mode requires input from 
multiple perception models, starting 
with pose, then face, and finally, identity 
recognition. In providing users access 
to these differently derived types of 
system information via the experience 
modes and a simple controller to switch 
between these modes, we created 
interactions that would enable users to 
more easily identify consistencies and 
ambiguities across system outputs. This 
can aid confidence in the information 
offered or invite more caution in the 
interpretation of system feedback and 
further inspection.

Figure 3 exemplifies this interaction. 
Here, one of our blind participants 
was using the AI system to better 
understand who was present. Using the 
wrist controller, he kept triangulating 
between system outputs. By identifying 
discrepancies between unknown and 
identified people as well as temporal 
information (the time passed since a 
person was last detected), he was able to 
build up a more accurate understanding 
of system ambiguities. Having access to 
differently derived types of information, 
combined with the user’s own common-
sense understanding (e.g., that it is 
not possible for people to suddenly 
disappear or be in multiple places 
at once), our participant was able to 
better interpret the configuration of 
people around him. This suggests that, 
rather than developing highly complex, 
integrated perception models with 
multiple interdependencies that are 
difficult to disentangle, there might be 
value in deliberately enabling access to 
decomposed model outputs.

Facilitate system use in the context 
of people’s other ways of knowing. 
As illustrated through our example 
in Figure 3, a user’s understanding of 
their social surrounding is not solely 
informed by, or reliant on, system 
feedback. Humans are not “turned-off 
receivers”; they bring other existing 
senses and ways of understanding the 
world around them to their interactions 
with technology. By embedding uses of 

the AI system within people’s everyday 
lives and situated interactions with 
others, we enable them to evaluate 
the system outputs in the context of 
their “other ways of knowing” about 
a social situation. This allows users to 
better scrutinize the validity of system 
information. For example, the user may 
be actively holding a conversation with 
someone whom they know well, or have 
clear expectations of who will attend a 
particular meeting. These other ways 
of knowing who is likely to be present 
are therefore instrumental in helping 
users more carefully interpret system 
outputs, and through this, to confirm 
or reject some of the assumptions 
that they may hold about their social 
surroundings. This mediates how much 
users would trust, or be cautious about 
relying on, system-derived information.

CONCLUSION
Positioning the AI system as a 
resource for people and foregrounding 
human agency and sensemaking, 
we created a set of experiences 
with a dynamic perception system 
that enables people with vision 
impairments to build up a richer 
understanding of their social 
surroundings. This can extend 
their capabilities by creating more 
opportunities for them to socially 
connect and be more confident in 
their interactions with others nearby. 
In this context, interactive features 
such as orientation cues, an external 
display of the system state, and access 
to different experience modes can 
support the formation of collaborative 
partnership(s) between human(s) 
and the AI system. It is through the 
dynamic back-and-forth interactions 
between system feedback and other 
human sensemaking capabilities, 
situated within people’s everyday 
lives, that users can develop a better 
understanding of the AI system’s 
functionality and derive practical and 
meaningful uses from it, despite some 
ambiguity in its outputs.
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