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Abstract—Refactoring is a transformation that preserves the external behavior of a program and improves its internal quality.
Usually, compilation errors and behavioral changes are avoided by preconditions determined for each refactoring transformation.
However, to formally define these preconditions and transfer them to program checks is a rather complex task. In practice,
refactoring engine developers commonly implement refactorings in an ad hoc manner, since no guidelines are available for
evaluating the correctness of refactoring implementations. As a result, even mainstream refactoring engines contain critical
bugs. We present a technique to test Java refactoring engines. It automates test input generation by using a Java program
generator that exhaustively generates programs for a given scope of Java declarations. The refactoring under test is applied to
each generated program. The technique uses SAFEREFACTOR, a tool for detecting behavioral changes, as oracle to evaluate the
correctness of these transformations. Finally, the technique classifies the failing transformations by the kind of behavioral change
or compilation error introduced by them. We have evaluated this technique by testing 29 refactorings in Eclipse JDT, NetBeans
and the JastAdd Refactoring Tools. We analyzed 153,444 transformations, and identified 57 bugs related to compilation errors,
and 63 bugs related to behavioral changes.
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1 INTRODUCTION

R EFACTORING is the process of changing a pro-
gram to improve its internal structure without

changing its external behavior [1], [2], [3]. Each refac-
toring may contain a number of preconditions to secure
its behavioral preservation [1]. For instance, to pull up
a method m to a superclass, the implementation must
check whether m conflicts with the signature of other
methods in that superclass. Widely used IDEs, such as
Eclipse [4], NetBeans [5], IntelliJ [6], and JBuilder [7]
contain a number of refactorings that automate pre-
condition checking and program transformation.

Defining and implementing refactorings is a non-
trivial task which the literature has treated in different
ways [8], [9], [10], [11], [12], [13], [14], [15]. These
include analyses of some of the various aspects of a
language, such as: accessibility, types, name binding,
data flow, and control flow. However, proving refac-
toring correctness for the entire language constitutes
a challenge [16].

Consequently, refactoring engine developers use
informal sets of preconditions as the basis for imple-
menting refactorings; which may bring about differ-
ences between the implementations of the same refac-
toring [17]. More importantly, incorrect implementa-
tions have been reported in those engines [17], [12],
[15]. Besides, while compilation errors introduced by
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the refactorings are easily detected in IDEs, behav-
ioral changes may pass unnoticed (Section 2). Test
suites are commonly seen as trustworthy resources
for preventing such issue. However, these tests may
also be affected by changes, which may render them
inappropriate for testing refactoring outcomes [3].

In this work, we propose a technique to test Java
refactoring engines. This technique is based on two
main components: a program generator, JDOLLY (Sec-
tion 4), and a tool for detecting behavioral changes,
SAFEREFACTOR [18]. It uses JDOLLY to automate the
test input generation. JDOLLY exhaustively generates
programs for a given scope of Java declarations (pack-
ages, classes, fields, and methods). It contains a subset
of the Java metamodel specified in Alloy, which is a
formal specification language [19]. It also employs the
Alloy Analyzer [20], a tool for the analysis of Alloy
models, to generate solutions for this metamodel. The
refactoring engine developer passes as input both
the maximum number of the elements that generated
programs may declare, and additional constraints for
guiding the program generation. The refactoring un-
der test is applied to each program generated by
JDOLLY. The technique uses SAFEREFACTOR as oracle
to evaluate the correctness of these transformations.
Finally, the technique classifies the failing transforma-
tions by the kind of behavioral change or compilation
error introduced by them.

We have evaluated our technique1 by testing
29 refactorings in Eclipse JDT 3.7, NetBeans 7.0.1,
and two versions of the JastAdd Refactoring Tools

1. All experimental data are available at: http://www.dsc.ufcg.
edu.br/∼spg/saferefactor/experiments.html

http://www.dsc.ufcg.edu.br/~spg/saferefactor/experiments.html
http://www.dsc.ufcg.edu.br/~spg/saferefactor/experiments.html
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(JRRT) [12], [13], [14]. JRRT was proposed to im-
prove the correctness of refactorings by using formal
techniques. We assessed 153,444 transformations, and
identified 57 bugs related to compilation errors, and
63 bugs related to behavioral changes. These results
confirm the bug-finding power obtained from the
combination of JDOLLY and SAFEREFACTOR to detect
bugs in refactorings. In short, the main contributions
of this article include:

• A technique to test Java refactoring engines (Sec-
tion 3);

• An evaluation of this technique on three refactor-
ing engines, considering 29 refactorings as imple-
mented in those tools (Section 5).

SAFEREFACTOR was described in a previous arti-
cle [18] along with the evaluation of 24 specific trans-
formations applied to small examples and real open
source projects (such as JHotDraw and JUnit). SAFE-
REFACTOR detected a number of behavioral changes.
This article describes a technique to test refactoring
engines, a step of which involves SAFEREFACTOR as
the oracle for detecting behavioral changes in pro-
grams generated by JDOLLY.

2 MOTIVATING EXAMPLE

In this section, we present two transformations –
assumed to be refactorings – performed by Eclipse
JDT 3.7 and JRRTv12. They actually introduce a com-
pilation error and a behavioral change, respectively.

Consider the class hierarchy presented in Listing 1.
A and B declare fields f and n, respectively. C declares
the m method, which accesses f. By using Eclipse JDT
3.7 to apply the Rename Field refactoring to n, by
changing its name to f, the program presented in
Listing 2 is generated. However, the resulting pro-
gram will not compile. After the transformation, B.f
hides A.f, and since the first has the private access
modifier, it cannot be accessed from C. The following
compilation error is introduced: “The field B.f is not
visible”.

On the other hand, detecting behavioral changes
is more difficult. Take class A and its subclass B as
illustrated in Listing 3. A declares the k method, and
B declares methods k, m, and test. The latter yields
1. Suppose we want to apply the Pull Up Method
refactoring to move m from B to A. This method
contains a reference to A.k using the super access.
The use of either Eclipse JDT 3.7 or JRRTv1 to perform
this refactoring will produce the program presented in
Listing 43. Method m is moved from B to A, and super
is updated to this; a compilation error is avoided
with this change. Nevertheless, a behavioral change
was introduced: test yields 2 instead of 1. Since m is
invoked on an instance of B, the call to k using this
is dispatched on to the implementation of k in B.

2. The JRRT version from May 18th, 2010
3. The same problem happens when we omit the keyword this

Understanding inheritance, references to this/su-
per, accessibility and other Java constructs in isolation
may be simple, but nontrivial when considering them
in conjunction [21]. So, it is difficult to find sufficient
conditions for a refactoring to preserve behavior bear-
ing in mind the complete Java language specifications.
For example, a simple transformation changing the
access modifier may have an impact on a number
of Java constructs [15]. Because it is time consuming
and difficult to prove all refactorings sound with
respect to a formal semantics, a less costly method to
evaluate the correctness of refactorings is needed. In
this article, we present an approach to test refactoring
engines.

3 TECHNIQUE

Our technique consists of four major steps. First, a
program generator automatically yields programs as
test inputs for a refactoring (Step 1); in this article, we
employ JDOLLY in this step (Section 3.1). Second, the
refactoring under test is automatically applied to each
generated program (Step 2) (Section 3.2). The transfor-
mation is evaluated in terms of behavior preservation,
using SAFEREFACTOR4 (Section 3.3). In the end, we
may have detected a number of transformations that
modify behavior or introduce compilation errors. In
Step 4, the detected problems are then categorized
(Section 3.4). Figure 1 gives an overview of those
steps.

3.1 Test Input Generation
Test input generation is performed by a Java program
generator (Section 4). In this work, we present JDOLLY
for this purpose, which generates Java programs from
a Java metamodel specification. In JDOLLY, the tool
developer can specify the maximum number (scope)
of packages, classes, fields, and methods for the gen-
erated programs. Furthermore, JDOLLY can be pa-
rameterized with specific constraints. For example,
when testing a refactoring that pulls up a method
to a superclass, the input programs must contain at
least a subclass declaring a method that is subject
to be pulled up. We can specify these constraints in
Alloy, the base specification language for JDOLLY, as
detailed in Section 4.4.

3.2 Refactoring Application
The second step of our technique is to apply the
refactoring under test to each generated program.
This step can be performed manually (by using the
IDE directly) or by the use of an API offered by
the IDE infrastructure. Each refactoring checks a set
of conditions, and, given the fulfillment of these
conditions, the transformation is applied; otherwise,

4. It can be downloaded from: http://www.dsc.ufcg.edu.-
br/˜spg/saferefactor

http://www.dsc.ufcg.edu.br/~spg/saferefactor
http://www.dsc.ufcg.edu.br/~spg/saferefactor


3

Listing 1: Before Refactoring

public c l a s s A {
i n t f = 1 ;

}
public c l a s s B extends A {

private i n t n = 2 ;
}
public c l a s s C extends B {

public i n t m( ) {
return super . f ;

}
}

Listing 2: After Refactoring. Applying Re-
name Field in Eclipse JDT 3.7 leads to a
compilation error due to field hiding.
public c l a s s A {

i n t f = 1 ;
}
public c l a s s B extends A {

private i n t f = 2 ;
}
public c l a s s C extends B {

public i n t m( ) {
return super . f ;

}
}

Listing 3: Before Refactoring

public c l a s s A {
i n t k ( ) {

return 1 ;
}

}
public c l a s s B extends A {

i n t k ( ) {
return 2 ;

}
i n t m( ) {

return super . k ( ) ;
}
public i n t t e s t ( ) {

return m( ) ;
}

}

Listing 4: After Refactoring.Applying Pull
Up Method in Eclipse JDT 3.7 or JRRTv1
leads to a behavioral change due to incor-
rect change of super to this.
public c l a s s A {

i n t k ( ) {
return 1 ;

}
i n t m( ) {

return t h i s . k ( ) ;
}

}
public c l a s s B extends A {

i n t k ( ) {
return 2 ;

}
public i n t t e s t ( ) {

return m( ) ;
}

}

Fig. 1: A technique for testing refactoring engines.
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the refactoring is rejected, and a warning message is
shown.

3.3 SAFEREFACTOR as a Test Oracle

In this step, our technique evaluates the correctness of
each applied transformation. For this purpose, it uses
SAFEREFACTOR [18]. First, SAFEREFACTOR checks for
compilation errors in the resulting program, and re-
ports those errors; if no errors are found, it analyzes
the results and generates a number of tests suited for
detecting behavioral changes.

SAFEREFACTOR identifies the methods with match-
ing signature (methods with exactly the same modi-
fier, return type, qualified name, parameter types and
exceptions thrown) before and after the transforma-
tion. Next, it applies Randoop [22], a Java unit test
generator, to produce a test suite for those meth-
ods. Randoop randomly generates tests for a set of
methods given a time limit. The default time limit
is two seconds. Finally, SAFEREFACTOR runs the tests
before and after the transformation, and evaluates the
results. If results are divergent, the tool reports a be-
havioral change, and displays the set of unsuccessful
tests. Otherwise, developers have their confidence on
behavior preservation improved.

Assuming the programs in Listings 3 and 4 as in-
put, SAFEREFACTOR first identifies the methods with
matching signatures on both versions: A.k, B.k, and
B.test. Next, it generates 78 unit tests for these
methods within a time limit of two seconds. Finally, it
runs the test suite on both versions and evaluates the
results. A number of tests (64) passed in the source
program, but did not pass in the refactored program;
so SAFEREFACTOR reports a behavioral change. Next,
we show one of the generated tests that reveal behav-
ioral changes. The test passes in the source program
since the value returned by B.test is 1; however, it
fails in the target program since the value returned by
B.test is 2.

public void t e s t ( ) {
B b = new B ( ) ;
i n t x = b . t e s t ( ) ;
a sser tTrue ( x == 1 ) ;

}

3.4 Bug Categorizer

The previous step may detect a number of transforma-
tions that change behavior or introduce compilation
errors. Several of those failures may be caused by a
single bug in the refactoring. To analyze manually all
failed refactorings in order to identify whether these
errors have been caused by a single bug is both time
consuming and error-prone. Next, we describe a more
efficient way of classifying the failing transformations.

3.4.1 Compilation Errors
We use an automatic approach proposed by Jagannath
et al. [23] to classify compilation errors. It consists in
splitting the failing tests based on messages from the
test oracle. The goal is to group together the failing
tests related to the same bug.

For example, when we apply Eclipse’s Rename
Method refactoring to the program shown in Listing 1,
the resulting program yields the following compila-
tion error: The field “B.f” is not visible. Our approach
ignores (package, class, method or field) names within
quotes. If the same refactoring is applied to two
different programs, and they result in compilation
error messages following the same template, a single
bug is assigned to these two failures. We developed a
tool to automate this grouping.

3.4.2 Behavioral Changes
Additionally, we propose an approach to classify be-
havioral changes by analyzing each detected change
based on the characteristics of each pair source
program-target program. Our approach is based on
a set of filters; a filter checks whether the programs
follow a specific structural pattern. For example, there
are filters for transformations that enable or disable
overloading/overriding of a method in the target
program, relatively to the source program. All filters
are presented in Table 1. We defined these filters
by analyzing bugs found through the use of our
approach, in addition to other bug reports from refac-
toring engines.

The filters may be applied in any order. The bug
category of a behavior-changing transformation is
then designated by the filters matched by its source
and target programs. When a transformation does
not fit any of these filters, conventional debugging
is demanded from refactoring engine developers. For
instance, the failure in the Pull Up Method on either
Eclipse JDT 3.7 or JRRTv1 showed in Listing 4 matches
the filter named “Changes super(this) to this(super)”
from Table 1, in which a problem with replacing a
reference to super with this is detected.

The set of filters is not complete. Currently, they
focus on the Java constructs supported by JDOLLY.
New filters can be proposed based on additional bugs
found by refactoring engine developers. Currently, the
classification of behavioral changing transformations
is carried out manually. The process consists in ana-
lyzing each pair of programs, and testing every filter
for matches.

4 JDOLLY

JDOLLY5 is a Java program generator that exhaus-
tively generates programs, up to a given scope. The

5. It can be downloaded from:
http://www.dsc.ufcg.edu.br/˜spg/jdolly

http://www.dsc.ufcg.edu.br/~spg/jdolly
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TABLE 1: Filters for classifying behavioral changes.

Alloy specification language [19] is employed as the
formal infrastructure for generating programs; a meta-
model for Java is encoded in Alloy, and the Alloy
Analyzer finds solutions, which are translated into
programs by JDOLLY, for user-specified constraints.
For instance, Listing 3 shows an example of a program
generated by JDOLLY.

Next we provide an overview of Alloy (Section 4.1).
In Section 4.2, the encoding of a subset of the Java
meta- model in Alloy is presented. We then describe
how to translate each Alloy solution to Java (Sec-
tion 4.3), and explain how to use JDOLLY for gen-
erating more specific Java programs in Section 4.4.

4.1 Alloy Overview
An Alloy model or specification is a sequence of
paragraphs of two kinds: signatures and constraints.
Each signature denotes a set of objects associated to
other objects by relations declared in the signatures.
Each signature paragraph represents a type, and may
declare a set of relations along with their types and
other constraints on their included values.

We use as example part of the Java metamodel
encoded in Alloy. A Java class is a type, and may
extend another class. Additionally, it may declare
fields and methods, as specified in the UML class
diagram, as shown in Figure 2(a). Figure 2(b) presents
its specification in Alloy. All classes and associations
in the UML class diagram are analogous to the Alloy
signatures and their relations, respectively. In Class,
the set in relation fields and relation methods
imposes no constraint on multiplicity. There are other
multiplicity qualifiers, such as lone, denoting par-
tial functions. If we omit the qualifier, the relation
becomes a total function. In Alloy, one signature can
extend another, establishing that the extended signa-
ture (subsignature) is a subset of the parent signature.
For example, a Class is a subsignature of Type.

A number of well-formedness constraints can
be specified for Java. For instance, a class can-
not extend itself. In Alloy, we can declare facts
which package formulas that always hold. The
ClassCannotExtendItself fact specifies this con-
straint.

fact ClassCannotExtendItself {
all c: Class | c ! in c.ˆextend
}

The all keyword represents the universal quanti-
fier, and the in keyword denotes the set membership
operator in the previous fragment. The operators ˆ
and ! represent the transitive closure and negation
operators, respectively. The dot operator (.) is a
generalized definition of the relational join operator.
For example, the expression c.extend yields the
superclass of c.

In Alloy, predicates are used to package
reusable formulas and specify operations. The
following Alloy fragment declares the predicate
someClassHasNoField, stating that there is a class
without fields. The some keyword represents the
existential quantifier. The no keyword, when applied
to an expression, denotes that the expression is
empty.

pred someClassHasNoField [] {
some c: Class | no c.field
}

The Alloy Analyzer tool [20] allows us to perform
analysis on an Alloy specification; for example, in
order to find a solution for a model in a pre-defined
scope. A scope defines the maximum number of
objects allowed for each signature during analysis, as-
signing a bound to the number of objects of each type.
The simulations performed by the Alloy Analyzer tool
are sound and complete, up to a given scope.
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(a)

sig Type {}
sig Class extends Type {

extend: lone Class,
methods: set Method,
fields: set Field
}
sig Method {}
sig Field {}

(b)

Fig. 2: A UML class diagram and its representation in Alloy.

Alloy commands are used for analysis purposes.
Next, we declare a run command that is applied
to a predicate, specifying a scope for all declared
signatures. For desired solutions containing as many
as three of each type, class, field and method, and
at least one of the classes with no fields, the Alloy
Analyzer searches for all combinations that satisfy
the signature and fact constraints, in addition to the
someClassHasNoField predicate.

run someClassHasNoField for 3

4.2 Java Metamodel
We specified a subset of Java’s abstract syntax and
well-formedness rules in Alloy.

4.2.1 Abstract Syntax
From Java, we have only considered the int and long
primitive types. A UML class diagram representing
the subset of the Java metamodel encoded in Alloy is
shown in Figure 3. A class is the only non-primitive
type – currently, we do not consider interfaces. A Java
class has an identifier, field and method declarations,
and extends another class. Moreover, each class is
located in a package. If a class is not explicitly related
to a package, the default package is assumed.

Each field is associated with one identifier, one
type, and at most one modifier, such as public,
protected, or private. When it does not have
a modifier, its accessibility is package. Similarly, a
method declaration contains a return type, an identi-
fier, a number of parameters, and a body. Moreover,
it may contain an access modifier. In order to avoid
state space explosion, we have considered methods
with at most one parameter.

In Java, a method body contains a sequence of state-
ments, whose last statement must be a return for every
non-void method. Currently, a method body contains
just a single return statement. So, the simplest return
statement returns a literal value based on the return
type. Return statements can also contain field accesses
or method invocations. Field accesses include: f,
A.f, this.f, super.f and new A().f – the latter
is a ConstructorFieldAccess). LiteralValue

represents the simplest kind of statement, ex-
tending the signature Body. FieldAccess and
MethodInvocation contain the identifier of the ac-
cessed field and method with a single qualifier at
most, respectively. For simplicity, all methods contain
at most one parameter. If a method with a single
parameter is called JDOLLY always passes value 2 as
argument to the call.

4.2.2 Well-Formedness Rules
Well-formedness rules are specified within Alloy facts.
For example a Java class cannot have two fields
with the same identifier, as declared in the fact
noClassTwoFieldsSameId.

fact noClassTwoFieldsSameId {
all c: Class | all f1,f2: c.fields |

f1 ! = f2 ⇒ f1.id ! = f2.id
}

Similarly, a Java class cannot contain two methods
with the same signature, as presented in the fact
noClassTwoMethodsSameSignature.

fact noClassTwoMethodsSameSignature {
all c: Class | all m1,m2: c.methods |

m1 ! = m2 ⇒
(m1.id ! = m2.id or m1.param ! = m2.param)

}

We specified other elements of Java’s abstract syn-
tax and other well-formedness rules, including field
access and method invocation rules.

4.3 Program Generation
The previous Alloy model is then used to generate
Java programs using Alloy’s run commands; specif-
ically with the generate predicate. By default, the
scope of at most three objects is used for each signa-
ture.

pred generate[] {}
run generate for 3

The Alloy Analyzer searches for solutions such
as the instance depicted in Figure 4(a). The graph
contains the Class object, which is associated
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Fig. 3: The Java metamodel specified in JDOLLY.

with objects Package, ClassId, Method, and
Field. Moreover, object Field is associated with
FieldId and Int_, and Method is associated with
LiteralValue, MethodId, Protected, and Int_.
For simplicity, we distinguish class from field identi-
fiers. For example, Figure 4(b) shows the counterpart
in Java of the Alloy solution.

The Alloy Analyzer does not automatically convert
an Alloy instance into a Java program. In fact, we
use its API to generate every possible solution6. To
complete the generation step, we reused the syn-
tax tree available in Eclipse JDT [24] for generating
programs from those solutions. For example, the Al-
loy objects Class and Package are mapped to a
TypeDeclaration and a PackageDeclaration,
respectively. The imports are automatically calculated
from each Alloy instance generated; they are included
in each program.

4.4 Generating More Specific Programs
With JDOLLY, we can specify different scopes to limit
program generation. For instance, if we are not in-
terested in fields, we can specify the scope of zero.
Besides, the generation can be further constrained.
In a context in which programs are needed with at
least one class (C2) extending another one (C1), and
C2 declares at least a method (M1), the following
Alloy fragment specifies generate. This particular
specification is useful for testing the Pull Up Method
refactoring, considering M1. For each instance, we pass
the value given to M1 to the refactoring.

one sig C1, C2 extends Class {}
one sig M1 extends Method {}

6. Accessing Alloy 4 using Java API: http://alloy.mit.edu/-
alloy4/api.html

pred generate[] {
C1 in C2·extend
M1 in C2·methods
}

5 EVALUATION

In this section, we evaluate our technique on three
refactoring engines, considering 29 refactorings as
implemented in those tools. We intend to evaluate our
technique with respect to:

• fault finding capabilities;
• performance;
• configuration effort.

In addition, we established a comparison between
JDOLLY and the UDITA/ASTGen approach.

First, we describe the subjects evaluated (Sec-
tion 5.1) and the experimental setup (Section 5.2).
Section 5.3 contains the results of our evaluation, and
Section 5.4 discusses topics related to compilation
errors, behavioral changes, and JDOLLY. Additionally,
we compare JDOLLY to ASTGen and UDITA. Finally,
in Section 5.5 we discuss some of the threats to
validity.

5.1 Subject Characterization

We evaluated Java refactorings implemented by
Eclipse JDT 3.7 (10 refactorings), JRRTv1 and JRRTv27

(10 refactorings), and NetBeans 7.0.1 (9 refactorings).
Table 2 summarizes all evaluated refactorings.

Eclipse JDT 3.7 contains more than 25 refactorings.
The evaluated refactorings focus on a representative
set of program structures. Moreover, a survey carried

7. The JRRT version from July 9th, 2011

http://alloy.mit.edu/alloy4/api.html
http://alloy.mit.edu/alloy4/api.html
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(a)

package Package ;
public ClassId {

i n t f i e l d I d = 1 ;
protected i n t methodId ( ) {

return 2 ;
}

}

(b)

Fig. 4: Translation of an Alloy solution to a Java program.

TABLE 2: Summary of evaluated refactorings; Scope
= Package (P) - Class (C) - Field (F) - Method (M).

out by Murphy et al. [25] shows the Eclipse JDT refac-
torings that Java developers use most: Rename, Move
Method, Extract Method, Pull Up Method, and Add
Parameter. Four of these are evaluated in this article.
The Move Method refactoring was not supported by
NetBeans by the time that this article was written.

We evaluated two versions of JRRT [12], [13], [14].
First, we evaluated with our technique the refactor-
ings implemented by JRRTv1. Later, a new version
with improvements and bug fixes was released (which
we call JRRTv2); this new version was also subject to
our analysis. The same refactorings from Eclipse JDT
were tested in both versions of JRRT.

5.2 Experimental Setup
We performed the evaluation on a 2.5 GHz dual-
core PC with 1 GB of RAM. We used the SAFE-
REFACTOR command-line version with a time limit
of one second, which is enough for testing the small
generated programs. Cobertura8 was used to collect
the statement coverage of the test suite as generated
by SAFEREFACTOR in the resulting program.

The scope column in Table 2 indicates the maximum
number of packages, classes, fields, and methods

8. http://cobertura.sourceforge.net

passed as parameter to JDOLLY. For each refactoring,
we specified main constraints for guiding JDOLLY to
generate programs with certain characteristics needed
to apply the refactoring. Table 3 shows these con-
straints; they prevent the generation of programs to
which the refactoring under test is not applicable.

Exhaustively generating programs often causes
state space explosion. In order to minimize the num-
ber of generated programs to a small, focused set,
we have also defined additional constraints. These con-
straints were built on data about refactoring bugs
gathered in the literature, enforcing properties such as
overriding, overloading, inheritance, field hiding, and
accessibility. For each refactoring (column Additional
Constraints in Table 3), we declare Alloy facts with
additional constraints. These are fully described in
Table 4. If a developer has the available resources to
analyze the entire scope, then it will not be required
to specify additional constraints.

Each refactoring may possibly include parameters.
For instance, a method can be renamed, or a field may
be encapsulated. In those cases, we declare a singleton
subsignature for each parameter, similar to what we
have done with C1,C2 in Section 4.4, and use it in
both the main and the additional constraints.

5.3 Experimental Results

For each refactoring, we used the same set of pro-
grams to evaluate Eclipse JDT, JRRTv1, JRRTv2, and
NetBeans. JDOLLY generated 153,444 programs to
evaluate all refactorings. Even though Eclipse JDT,
JRRT and NetBeans have their own test suites, our
technique identified 120 (likely) unique bugs. Table 5
summarizes the bugs reported to Eclipse JDT, Net-
Beans and JRRT. Our approach detects bugs related
to transformation failures or weak preconditions. Al-
though it is also relevant to find overly strong pre-
conditions in refactoring engines – which may pro-
duce potentially correct but undesirably restrictive
refactorings – these bugs are not the focus of our
technique (nevertheless, JDolly and SAFEREFACTOR
have already been evaluated as a detection strategy

http://cobertura.sourceforge.net/
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TABLE 3: Summary of the main constraints.

TABLE 4: Summary of the additional constraints.

for overly strong preconditions [26], as detailed in
Section 6.2).

From our catalog, most bugs were accepted (86).
Some bugs have not been dealt with by Eclipse JDT
and NetBeans developers prior to this submission
(23). All bugs reported to JRRTv1 (20) were fixed in
JRRTv2. We have also evaluated their new version
(JRRTv2) after fixing the bugs from JRRTv1, and re-
ported 11 bugs. They did not consider 4 bugs due
to the closed world assumption (CWA) adopted by
them, as we discuss in Section 5.5.1. More impor-
tantly, they incorporated our test cases into their test
suite9. Eclipse JDT and NetBeans teams have fixed 1
and 6 bugs10, respectively, which should be included
in the next version of the IDEs. Developers have
already confirmed 33 and 27 bugs in Eclipse JDT
and NetBeans, respectively. However, 16 bugs were
considered duplicated in Eclipse JDT.

It took from 1h36m to 50h24m to evaluate each
refactoring. This includes the time required to gen-
erate and compile the input programs, apply the
transformations, compile the resulting programs, run
SAFEREFACTOR, and collect the statement coverage.
The required amount of time depends not only on
the number of programs to be refactored, but also on
the number of transformations to be carried out. For

9. http://code.google.com/p/jrrt/source/checkout
10. The id of all bugs are available at: http://www.dsc.ufcg.edu.

br/∼spg/saferefactor/experiments.html

TABLE 5: Summary of bugs reported.

example, it took 6h54m to test the Rename Method
refactoring on Eclipse JDT, whereas it took 13h36m
to test the same refactoring in JRRTv2, with the same
inputs. Time also depends on the static analysis per-
formed by each refactoring to check preconditions.
Table 6 summarizes the experimental results.

The results include the number of programs gen-
erated by JDOLLY, the percentage of compilable pro-
grams, the time for testing, and the number of de-
tected failures (encompassing compilation errors and
behavioral changes). It also shows the number of bugs
identified by our approach in each refactoring. Table 6
indicates, for each refactoring, the mean value of the
statement coverage from the refactored program.

5.3.1 Compilation Errors

Our technique detected 16 bugs in Eclipse JDT, 11
bugs in JRRTv1, 1 bug in JRRTv2, and 29 bugs in
NetBeans; all related to compilation errors. Our bug
categorizer (Section 3.4.1) takes a few seconds to

http://code.google.com/p/jrrt/source/checkout
http://www.dsc.ufcg.edu.br/~spg/saferefactor/experiments.html
http://www.dsc.ufcg.edu.br/~spg/saferefactor/experiments.html
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TABLE 6: Overall experimental results; GP = number of generated programs; CP = number of compilable
programs (%); Time = total time to test the refactoring in hours; Fail. = number of detected failures; Bug =
number of identified bugs.

automatically classify all failures of a refactoring. For
instance, our technique detected 1,267 compilation
failures in the Push Down Method refactoring im-
plementation of Eclipse JDT. The described approach
classified them into two groups: some transformations
produced the message “The method [M] from the type
[T] is not visible”, while others produced the message
“No enclosing instance of the type [T] is accessible in
scope”. Consequently, two bugs were catalogued.

Even though all evaluated refactorings imple-
mented by Eclipse JDT and NetBeans contain at least
one bug related to compilation errors, our approach
did not find bugs related to compilation errors in 50%
and 90% of the refactorings of JRRTv1 and JRRTv2,
respectively. In Eclipse JDT, the Rename Class refac-
toring contains three bugs; from JRRTv1 and JRRTv2,
the Move Method refactoring showed more bugs than
the other refactorings. In NetBeans, three refactorings
contain four bugs each. Notice that the Rename Field,
Pull Up Field and Move Method implemented by JR-
RTv1 have more bugs than the similar implementation
of Eclipse JDT. After fixing them, JRRTv2 presented
fewer bugs than Eclipse JDT.

5.3.2 Behavioral Changes
We identified 18, 13, 10 and 22 bugs in Eclipse JDT,
JRRTv1, JRRTv2 and NetBeans, respectively, all re-
lated to behavioral changes. We devised an additional,
manual bug categorizer (Section 3.4.2) to classify these
bugs. For each refactoring, it took approximately two
hours to manually classify behavioral changes. As fu-
ture work, we intend to implement tools to automate
this process. For instance, Listings 3 and 4 show a bug
of the Pull Up Method refactoring implemented in the
Eclipse JDT, categorized as “Change super to this”.

5.4 Discussion
Next we discuss some issues related to compilation
error, behavior preservation and JDOLLY. In addition,

we provide a separate study comparing JDolly with
ASTGen/UDITA.

5.4.1 Compilation Errors

Changing the name, location, or accessibility of a
declaration can lead to compilation errors. All engines
but JRRTv2 produced transformations that reduced
the accessibility of an inherited method, which is not
allowed in Java. Most compilation errors were due
to dereferences of inaccessible or nonexistent decla-
rations. For example, in Listing 5, m accesses the f
field of its super class. If we apply the Pull Up Field
refactoring of Eclipse JDT 3.7 to B.f, it yields the
uncompilable program presented in Listing 6. After
the transformation, B.f hides A.f, and since it is
private, it cannot be accessed from C. To prevent
such errors, JRRT statically checks whether every
identifier refers to the same declaration as before. In
that case, however, JRRTv1 introduced another com-
pilation error by re-qualifying field access super.f
to ((A)super).f, which has a syntax error. We
reported this bug to JRRT developers, and they fixed
it. JRRTv2 correctly applies the transformation by re-
qualifying the super.f field access to ((A)this).f.

Moreover, JRRT refactorings translate the programs
into a richer language, which provides a more
straightforward specification. After this, the programs
are translated back into Java. Although the imple-
mentation of the refactoring itself becomes simpler, it
does require some effort to translate the program back
from the enriched language into the base language.
Our technique detected some failures in JRRTv1 that
may be related to this step. For instance, some of the
refactored programs presented compilation errors due
to method invocations for non existing declarations,
such as unknown().

Although we only evaluated 9 refactorings from
NetBeans, those refactorings contained more bugs
related to compilation errors than Eclipse JDT and
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Listing 5: Before Refactoring

public c l a s s A {
long f = 1 ;

}
public c l a s s B extends A {
}
public c l a s s C extends B {

private long f = 2 ;
public long m( ) {

return super . f ;
}

}

Listing 6: After Refactoring. Pull Up Field
implemented by Eclipse JDT 3.7 intro-
duces a compilation error due to an in-
visible field.
public c l a s s A {

long f = 1 ;
}
public c l a s s B extends A {

private long f = 2 ;
}
public c l a s s C extends B {

public long m( ) {
return super . f ;

}
}

JRRT. It seems that NetBeans does not implement
a number of expected preconditions. Since its refac-
torings present a lower rate of rejections, it takes,
in general, more time to evaluate NetBeans than the
other tools.

5.4.2 Behavioral Changes
Some bugs related to overloading and overriding
have been known by Eclipse JDT developers for years.
For instance, a bug related to the Add parameter
refactoring has demanded the inclusion of additional
preconditions since 200411. Nevertheless, it is difficult
to establish and check preconditions to avoid these
bugs. While the Add Parameter bug is still open,
Eclipse JDT developers implemented simpler precon-
ditions for Rename Method, checking whether there
are other methods in the hierarchy with the same
signature as that of the refactored method. If so, the
engine warns the user that the transformation may
introduce behavioral changes. In this case, it is up to
the user to analyze whether the transformation is safe.

For each refactoring, we analyzed the statement
coverage of the random test suite used by SAFE-
REFACTOR over the program after refactoring; from
these, we calculated the mean value of the statement
coverage (see Table 6). The minimum mean value
of the statement coverage of Eclipse JDT, JRRTv1,
JRRTv2, and NetBeans in our evaluation was 54%,
63%, 67%, and 56%, respectively, for the Rename Class
refactoring. These numbers can be partially explained
by the tests generated only for methods in common.
Additionally, most of the programs generated by
JDOLLY contain at most four methods, and fewer than
15 LOC. If a class or a method is renamed, and they
are not referred to by methods with unchanged signa-
tures, the statement coverage decreases significantly.
Since refactorings engines may allow different trans-
formations, and the test suite is randomly generated

11. See Eclipse JDT Bug 58616

in SAFEREFACTOR, the mean value of the statement
coverage may be different between engines.

The detected bugs can be fixed either by modi-
fying preconditions or changing the transformation
itself. For instance, one bug reported to JRRT gen-
erates a program with the following code fragment:
((A)super). This is an invalid Java expression. We
can fix this bug by modifying the transformation
applied by JRRT, which rewrites a command with the
incorrect fragment. However, fixing bugs may not be
as straightforward as it appears to be. For example,
consider the transformation showed in Listings 5
and 6. We can fix this bug by adding a precondi-
tion avoiding this kind of transformation. However,
adding preconditions may avoid useful behavior-
preserving transformations. JRRTv1 can apply this
transformation, and yet preserve program behavior
by replacing the super field access to a qualified this
field access, ((A)this).f.

In some situations, differential testing [27] may help
identifying whether a bug can be attributed to some
incorrect transformation performed by the engine or
due to missing preconditions. Suppose that we use an
engine called X to apply a refactoring and the SAFE-
REFACTOR detects a behavioral change. If Y applies
the same refactoring, and the SAFEREFACTOR cannot
find any behavioral changes, then it is likely that the
transformation is incorrect in X. This solution may
work within a limited range of refactoring failures.
Although our technique may help debugging refac-
toring engines in some cases, its main contribution is
the detection of bug presence.

5.4.3 JDOLLY

During evaluation, we specified the scope of the
program generation in JDOLLY based on previous
examples of bugs in refactorings. For instance, we
used the scope of two packages since Steimann and
Thies [15] show accessibility problems when moving
elements between packages. Schäfer et al. [28] show

https://bugs.eclipse.org/bugs/show_bug.cgi?id=58616
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non-behavior-preserving transformations in programs
with up to three classes and four methods/fields.
Since JDOLLY exhaustively generates programs for
a given scope, this approach has been useful for
detecting bugs that have not been detected so far.

JDOLLY generated uncompilable programs. The
lowest percentage of compilable programs was in the
Add Parameter (63%), and the highest was in the
Encapsulate Field (92.8%). Considering all generated
programs, the percentage of compilable programs was
68.8%. For future work, we intend to specify more
well-formedness constraints so as to minimize uncom-
pilable programs.

Our Java metamodel does not include constructs
such as the static modifier, inner classes, interfaces,
and richer method bodies. Therefore, the currently
implementation of JDOLLY cannot reveal some previ-
ously identified bugs in manual experiments [28]. We
aim at improving the expressiveness of the programs
generated by JDOLLY by adding more constructs to
our model. This will increase the state space for the
Alloy Analyzer to find solutions and, consequently,
the number of programs generated by JDOLLY, which
will take longer to evaluate all transformations. We
plan to investigate the possibility of generating a
greater range of programs, specifying as well a time
limit, or limiting the number of generated programs.
As a result, we will be able to evaluate refactorings
by means of more sophisticated programs, though
without considering the entire solution space.

Our technique can use any program generator.
Specifically, JDOLLY systematically explores the entire
combinatorial solution space for the Alloy model
within a given scope of elements – a bounded-
exhaustive generation method. As a consequence, it
generates programs that a purely random generation
might miss. There is no randomness in JDOLLY. Like-
wise, with our technique any test suite generator can
replace Randoop. For instance, we can use TestFul [29]
instead of Randoop. Randoop is the choice because
it detected interesting bugs in real programs [22]. In
our initial evaluation, it generated tests that detected
several bugs in refactorings [18]. As future work, we
intend to evaluate our technique by using different
test suite generators.

Test data adequacy criteria provide measurements
of test quality. Moreover, it may provide explicit rules
to determine when it is appropriate to end the testing
phase [30], [31]. There are a number of notions of
test data adequacy. For instance, test data adequacy
can be defined in terms of covering all productions in
grammar-based testing. In our work, we have used a
similar test data adequacy criteria. JDOLLY generates
every possible program, for a subset of the Java meta-
model, within a given scope of constructs. As such,
the generator covers every terminal symbol and non-
terminal production rule from the metamodel, which
are represented by signatures and relations from the

underlying Alloy specification. In the evaluation of
the refactorings (Table 2), JDOLLY generated programs
covering from 71% to 85% of the 41 signatures and
relations of the metamodel. Some signatures and re-
lations were not covered because we had specified a
scope of 0 for Field. In other cases, some additional
constraints implied that some relations could not have
values.

Extending Method Bodies

In this article, we have dealt mainly with testing
refactorings that operate at or above the level of meth-
ods. The method bodies contain only one statement
(see relation b of Method). We can extend our Alloy
specification to test other refactoring, such as Extract
Method. First of all, we must change the relation of the
Method signature. Now, b must contain a sequence of
statements.

sig Method {
b: seq[Body]
}

Moreover, we can extend Body to represent other
kinds of statements. For instance, we can create the
following signature representing method invocation.
Notice that we need a new kind of Id to represent
the variable name that invokes a method id.

sig InstanceMethodInvocation extends Body {
id: one VarId,
method: one MethodId
}

In this way, JDOLLY can generate more elaborated
method bodies, such as the one presented next.

public void m( ) {
A a = new A ( ) ;
a . z ( 2 ) ;
a . y ( ) ;

}

We can guide JDOLLY to generate method bod-
ies with a number of statements (by specifying the
main and additional constraints on b). For example,
we can state that the second and third statements
should be extracted on to another method. Additional
constraints reduce the space state. In order to avoid
generating a number of uncompilable programs, we
can consider that the method bodies have a certain
pattern, as the one followed by ASTGen.

Comparison with ASTGen and UDITA

There are two program generators that have been
used in the literature for testing refactoring engines:
ASTGen [17] and UDITA [32]. Although JDOLLY,
UDITA, and ASTGen exhaustively generate programs
for a given scope, they follow different approaches.



13

ASTGen follows the generative approach, which
means that the tester directly implements how the
Java constructs will be combined to generate pro-
grams. The more combinations the tester implements,
the more programs it will generate. As basis tech-
nology, ASTGen uses the Java language and its
Iterable interface.

However, combining some other Java elements does
require some effort. JDOLLY and UDITA follow the
filtering approach, that is, the generator automatically
searches for all possible combinations of Java con-
structs to generate programs. Moreover, the tester can
specify constraints to filter the program generation.
The more constraints the tester specifies, the fewer
programs it will generate. While, UDITA uses the Java
Path Finder (JPF) model checker as a basis for search-
ing for all possible combinations, JDOLLY grounds its
search on SAT solvers used by the Alloy Analyzer.
Moreover, the SAT Solvers and the JPF also automat-
ically avoid generating several symmetric programs.
On the other hand, in ASTGen, the tester is in charge
of this task. UDITA also allows combining generating
and filtering approach together.

Besides using different technologies for searching
for solutions, JDOLLY and UDITA specify constraints
in different styles. While in UDITA the constraints are
specified in a Java-like language, in JDOLLY they are
specified in Alloy, which is a declarative language.

In previous experiments [32], UDITA was found to
be more expressive and easier to use than ASTGen,
usually resulting in faster program generation as well.
We carried out a similar comparison on the differences
between JDOLLY and UDITA. We have considered
the generation of inheritance graphs for Java pro-
grams in UDITA and JDOLLY. We have compared
them with respect to time, specification (or program)
size, number of generated programs, and, from these,
rate of compilable, isomorphic and non-isomorphic
programs. Scopes ranging from 1 to 4 were applied
throughout the evaluation. Table 7 summarizes the
results of the comparison.

The JDOLLY specification was smaller in size — 14
lines of specification — than the 46 LOC program in
UDITA. Alloy logic presented, as expected, a higher
level of abstraction than Java-like code. For example,
the results of the closure operator in Alloy can only
be achieved programmatically after considerable ad-
ditional effort. Due to the simplicity of the programs
generated in this experiment, all programs generated
by JDOLLY and UDITA were compilable. However,
when evaluating refactorings, both generate uncom-
pilable programs since neither specifies the complete
set of Java’s well-formedness rules. Moreover, in con-
trast with JDOLLY, UDITA did not generate 2, 7
and 37 non-isomorphic programs in scopes 2, 3 and
4, respectively. Those programs may be useful for
detecting bugs. On the other hand, JDOLLY generated
more structurally-equivalent (isomorphic) programs

programs than UDITA; this metric has been quan-
tified by a simple algorithm (developed by us) that
compares isomorphism between two Java programs.
These isomorphic programs may increase the time for
testing refactoring engines. Nonetheless, JDOLLY was
a bit faster than UDITA in this experiment (Table 7).

Eight out of ten refactorings evaluated by us were
also evaluated using ASTGen [17]. JDOLLY generates
more programs than ASTGen even with a smaller
subset of Java in all refactorings except for the Encap-
sulate Field refactoring of ASTGen. A similar thing
happens in the UDITA evaluation. This indicates that
ASTGen and UDITA used stronger additional con-
straints. Additionally, the number of detected bugs
can be used to measure the quality of programs
generated by JDOLLY. JRRT developers have used
ASTGen to test their renaming refactorings, but no
bugs were found [12]. By using JDOLLY, on the other
hand, we were able to detect five bugs in the Rename
Method and Field refactorings on JRRT.

5.5 Threats to Validity

Next we identify some threats to validity from the
evaluation performed.

5.5.1 Construct Validity

Construct validity refers to whether the bugs that we
have detected are indeed bugs in the refactoring en-
gines. Tool developers follow a closed world assump-
tion (CWA) as the correctness criterion. In refactoring,
CWA means that the test suite is considered part of
the program that is being refactored. For instance, the
method calls started by the test suite are the only ones
to be considered in the precondition checking by the
refactoring engine. Our technique, on the other hand,
follows an open world assumption (OWA), in which
every public method can be a potential target for the
test suite generated by SAFEREFACTOR.

Some bugs were not accepted by the JRRT team
due to this difference in criteria. Consider the trans-
formation illustrated by Listings 3 and 4, performed
by the Pull Up Method refactoring in both JRRTv1 and
Eclipse JDT. Under OWA, this transformation does not
preserve behavior. The method test yields 1 before
the transformation, and 2 afterwards. However, under
CWA, this transformation preserves behavior, since
there is no instance of B calling test.

Despite the different criteria, many other reported
bugs were accepted by JRRT, Eclipse and NetBeans
developers (see Table 5). Although our technique may
produce false positives, it was considered useful by
those developers in practice. In particular, the feed-
back given by the JRRT team shows evidence that our
technique is convenient in detecting bugs under both
CWA and OWA criteria.
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TABLE 7: Comparison of JDOLLY and UDITA; Prog.: Number of generated programs; Comp.: number of
compilable programs; Isomor: number of isomorphic programs; Unique: number of unique programs; NG:
number of unique programs that were not generated.

5.5.2 Internal Validity

Concerning JDOLLY generation with Alloy, additional
constraints may hide possibly detectable bugs. These
constraints can be too restrictive with respect to the
programs that can be generated by JDOLLY, which
shows that one must be cautious when creating con-
straints for JDOLLY.

The results provided by SAFEREFACTOR deserve
closer analysis. If, out of the programs generated
by JDOLLY no compilation error or behavior change
is detected, no definitive conclusion can be drawn
from the refactoring under test. Our technique cannot,
based on the absence of behavior changes, claim that
a refactoring is correct. Nevertheless, developers have
stronger evidence that the refactoring is correctly im-
plemented, in practice; we use a test suite to evaluate
the transformation.

SAFEREFACTOR only generates test suites that ex-
ercise methods with unchanged signatures. Methods
with changed signatures may be called by the un-
changed methods, which exercise a potential change
of behavior. Otherwise, methods not called by oth-
ers are not considered, in our approach, part of the
overall behavior of the system under test; changes in
these methods will not affect the system behavior. A
stronger notion of equivalence could be used: testing
every changed method of the system and creating a
mapping between two versions of the modified ver-
sions, for comparing their results. We believe that this
approach would add considerable costs with limited
benefits to testing refactoring engines.

5.5.3 External Validity

We believe that other refactoring engines can be
tested as well with our technique. This exercise can
be accomplished by applying a test generator for
the target language (a substitute for Randoop) and
adaptations to SAFEREFACTOR. Also, the target lan-
guage’s metamodel must be provided to JDOLLY;
or else we can use a different program generator.
Therefore, refactoring engines targeted at other object-
oriented programming languages can benefit from our
technique.

Regarding some refactoring transformations other
than the ones evaluated in this article, we have

showed that our technique is applicable to any trans-
formation, because it does not rely on specific prop-
erties of the transformation. In order to generate
programs that exercise a specific refactoring, we may
have to change the Alloy specification in JDOLLY.

The bug categorizer described in Section 5 is lim-
ited, since the classification is not complete. We have
only considered a subset of Java. Still, it is non-trivial
to pinpoint a bug in a refactoring. Each refactoring
engine may incorporate different design choices. Our
bug categorizer is an approximation, and it may help
refactoring engine developers with this task. For ex-
ample, our approach may classify two distinct bugs
under the same category. After fixing the identified
bugs, the developer should re-run the technique to
catch possibly missed bugs. Moreover, our approach
may identify two distinct bugs that are, in fact, just
one. Developers can easily detect whether two differ-
ent test cases are related to the same bug by fixing
each bug and running all bugs again after. In spite
of that, the technique reduced from thousands of
failing test cases to 120 unique bugs to be checked
by refactoring engine developers. This classification
was useful when reporting a number of bugs in
refactorings in Eclipse JDT, NetBeans and JRRT. Tool
developers accepted a number of those bugs.

6 RELATED WORK

6.1 Program Generation

Regarding automatic generation of programs,
Grammar-Based Test Generation (GBTB) is a well-
known technique for automatically generating
programs based on a formal grammar definition [33].
Using this technique, a generator is capable of
building valid (or intentionally invalid) sentences
of the target language. GBTB has been successfully
used, for instance, to generate programs for testing
the correctness and error messages in compilers [33],
[34]. JDOLLY, by comparison, uses Alloy to specify
the Java metamodel using signatures and relations.
By performing analysis using the Alloy Analyzer,
each Alloy solution is translated into a Java program.
Moreover, we can guide JDOLLY to generate
programs with properties that are specific to a given
target domain (Section 4.4). In contrast, context-free
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grammars are somewhat limited for this purpose,
being usually extended by operational definitions or
even by code snippets for adapting generation to the
desired class of test cases.

Recently, GBTB has been mixed with other ad-
vanced combinatorial techniques for generating pro-
grams of a language grammar. An approach that is
very related to JDOLLY’s generation technique has
been described by Hoffman et al. [35]. It uses gram-
mars instrumented by tags and code snippets written
in Python that further constrain the generated test
cases. In the referred tool, YouGen, tags inject parame-
ters to the generation. For instance, parameters adjust
the depth of a generation tree, limiting the deriva-
tion over recursive production rules. This feature is
analogous to JDOLLY’s scope. Also, while JDOLLY
makes use of Alloy Analyzer’s exhaustive search to
generate a comprehensive set of programs, YouGen
uses combinatorial techniques, such as mixed-strength
covering arrays. In both cases, they evaluate all pos-
sible combinations. Their application contexts are in
essence different, however: YouGen has been used
for testing XML-based tools and network protocols,
whereas JDOLLY is tailored for testing refactoring
engines, using SAFEREFACTOR as a test oracle. Still,
both tools can be adapted for diverse application
cases.

6.2 Refactorings

Steimann and Thies [15] show that by changing access
modifiers (public, protected, package, private)
in Java one can introduce compilation errors and
behavioral changes. They propose a constraint-based
approach to specify Java accessibility, which favors
checking refactoring preconditions and computing
the changes of access modifiers needed to preserve
the program behavior. Such specialized approach
is extremely useful for detecting bugs regarding
accessibility-related properties; our approach, on the
other hand, is general enough for detecting bugs with
respect to other program constructs. They identified
a number of bugs that can also be detected by our
approach. We have also detected new bugs related
to the Java access modifiers. Both approaches can
be complementary for testing refactorings that affect
accessibility constraints.

Another specialized approach for testing refactor-
ings – generalization-related refactorings such as Ex-
tract Interface and Pull Up Method – is proposed by
Tip et al. [10]. Their work proposes an approach that
uses type constraints to verify preconditions of those
refactorings, determining which part of the code they
may modify. Using type constraints, they also propose
the refactoring Infer Generic Type Arguments [36],
which adapts a program to use the Generics feature
of Java 5, and a refactoring to migration of legacy li-
brary classes [37]. These refactorings are implemented

in the Eclipse JDT. Their technique allows sound
refactorings with respect to type constraints. How-
ever, a refactoring may have preconditions related
to other constructs. Our general-purpose testing ap-
proach evaluates a refactoring independently of pro-
gram structures being affected by the refactoring. The
bugs detected by our tool are often due to misplaced
or omitted preconditions.

Preconditions are a key concept of research stud-
ies on the correctness of refactorings. Opdyke [1]
proposes a number of refactoring preconditions to
guarantee behavior preservation. However, there was
no formal proof of the correctness and completeness
of these preconditions. In fact, later, Tokuda and Ba-
tory [38] showed that Opdyke’s preconditions were
not sufficient to ensure preservation of behavior. Prov-
ing refactorings with respect to a formal semantics is a
challenge [16]. Some approaches have been contribut-
ing in this direction. Borba et al. [8] propose a set of
refactorings for a subset of Java with copy semantics
(ROOL). They prove the refactoring correctness based
on a formal semantics. Silva et al. [11] propose a
set of behavior-preserving transformation laws for
a sequential object-oriented language with reference
semantics (rCOS). They prove the correctness of each
one of the laws with respect to rCOS semantics. Some
of these laws can be used in the Java context. Yet,
they have not considered all Java constructs, such as
overloading and field hiding. Our testing approach
still applies formal verification techniques (first-order
logic and Alloy Analyzer) that are combined for a
practical and less costly solution for increasing con-
fidence when refactoring Java programs.

Mens et al. [39] use graph rewriting for formalizing
program refactorings. Two refactorings are specified
for a subset of Java, and the authors propose a static
semantics for Java, which is preserved by the two
refactoring specifications. Graph-based verification is
more ambitious than testing, aiming at full structural
analysis, although presenting limited scalability. They
have recognized that some refactorings, such as Move
Method, which may deal with nested structures, re-
quire complex graph manipulation. Such analysis be-
comes considerably costly, which limits its results, in
comparison with a more lightweight testing approach.

Schäfer et al. [40] propose refactorings for con-
current programs. They have proved the correctness
based on the Java memory model. Currently, we do
not deal with concurrency, since SAFEREFACTOR can
only evaluate sequential Java programs. However,
they have demonstrated that some useful refactorings
are not influenced by concurrency. In those situations,
we can use SAFEREFACTOR.

Overbey and Johnson [41] propose a technique to
check for behavior preservation. They implement it in
a library containing preconditions for the most com-
mon refactorings. Refactoring engines for different
languages can use their library to check refactoring
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preconditions. The preservation-checking algorithm is
based on exploiting an isomorphism between graph
nodes and textual intervals. They evaluate their tech-
nique for 18 refactorings in refactoring engines for
Fortran 95, PHP 5 and BC. In our approach, we use
SAFEREFACTOR to evaluate whether a transformation
is behavior-preserving. The authors acknowledge the
challenge of specifying preconditions for refactoring;
they provide a simple and expressive way of spec-
ifying these preconditions. Nevertheless, producing
correct preconditions in languages with a complex se-
mantics remains a difficult problem. We chose to build
a practical approach for improving quality of refac-
toring engines, independently of how preconditions
are specified. Our technique can complement their
approach to improve confidence that the refactorings
are sound.

Testing refactoring correctness can be useful in
other contexts as well. Dig and Johnson [42] studied
the API changes of some frameworks. They have
discovered that more than 80% of the changes that
break API clients are refactorings. This suggests that
refactoring-based migration engines should be used
to update applications. API users can use SAFE-
REFACTOR for checking whether API changes mod-
ify their programs’ behavior. Furthermore, Reichen-
bach et al. [43] propose the program metamorpho-
sis approach for program refactoring. It breaks a
coarse-grained transformation into small transforma-
tions. Although these small transformations may not
preserve behavior individually, they guarantee that
the coarse-grained transformation preserves behavior.
Our approach can be used to increase confidence that
the set of small transformations, applied in sequence,
indeed preserve behavior.

Soares et al. [26] propose a technique to identify
overly strong conditions based on differential test-
ing [27]. If a tool correctly applies a refactoring ac-
cording to SAFEREFACTOR and another tool rejects
the same transformation, the latter has an overly
strong condition. In a sample of 42,774 programs
generated by JDolly, they evaluated 27 refactorings of
Eclipse JDT, NetBeans and JRRT, and found 17 and
7 types of overly strong conditions in Eclipse JDT
and JRRT, respectively. This approach is useful for
detecting whether the set of refactoring preconditions
is minimal. This work complements the technique
presented here. Our approach focuses on weak con-
ditions in refactorings. Therefore a combination of
these approaches may be useful for detecting whether
the set of refactoring preconditions is complete and
minimal.

6.3 Automated Testing

Daniel et al. [17] propose an approach for automated
testing refactoring engines. They used ASTGen to
generate programs as input to refactoring engines.

To evaluate the refactoring correctness, they imple-
mented six oracles that evaluate the output of each
transformation. For instance, one of them checks for
compilation errors, while another applies the inverse
refactoring to the target program, and compares the
result with the source program. If they were syn-
tactically different, the refactoring engine developer
would manually check whether they have the same
behavior. They evaluated the technique by testing 21
refactorings, and identified 21 bugs in Eclipse JDT and
24 in NetBeans. In Eclipse JDT, 17 bugs were related
to compilation errors, 3 were related to incomplete
transformations (e.g. the Encapsulate field did not
encapsulate all field accesses), and one was related
to behavioral change. Later, Gligoric et at. [32] used
the same approach to evaluate UDITA. They found
4 new compilation error bugs in 6 refactorings (2 in
Eclipse JDT and 2 in NetBeans). While the oracles of
previous approaches can only syntactically compare
the programs to detect behavioral changes, SAFE-
REFACTOR generates tests that do compare program
behavior. We found 63 bugs related to behavioral
changes. Moreover, both techniques found a similar
number of bugs related to compilation errors.

Li and Thompson [44] propose an approach to
test refactorings for Erlang using a tool called Quvid
QuickCheck. They evaluate a number of implemen-
tations of the Wrangler refactoring engine. For each
refactoring, they state a number of properties that
it must satisfy, which is still a challenge. If a refac-
toring applies a transformation but does not satisfy
a property, they indicate a bug in the implemen-
tation. We evaluate behavior preservation by using
SAFEREFACTOR. We propose a similar approach for
testing refactorings for Java. Their approach applies
refactorings to a number of real case studies and
toy examples. In contrast, we apply refactorings to
a number of programs generated by JDOLLY.

Korel and Yami [45] propose an approach to au-
tomated regression test generation [46]. They use
TESTGEN, a test data generation system for Pascal
programs. Similarly, a component of our approach,
SAFEREFACTOR, tests evaluate whether a transfor-
mation preserves behavior. It uses the Randoop test
generator. They test the parts of the programs whose
functionality is unchanged after modifications. SAFE-
REFACTOR automatically detects the methods with
unchanged signatures and generates tests for them.
We are concerned with testing refactorings in this
article.

A more recent contribution concerning regression
test generation is provided by BERT [47], a tool that
focuses on detection of state changes from one ver-
sion of a given class to its next version, considering
transformations of any category (not only refactoring).
The main distinction between the two approaches is
their test oracle. SAFEREFACTOR uses a simple oracle
that compares outputs of methods with unchanged
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signatures for the same input. If any changed behavior
is, directly or indirectly, exercised by one of these
methods, there is a high probability that the test goes
wrong, and a behavior change is detected. BERT, on
the other hand, focuses on identifying differences in
several structural aspects of the target program: return
values of all methods, field values, and even output
(textual) results. If a change is detected, there is an
indication of a regression bug, although this may be
not the case (false positives). Since they evaluate any
kind of transformation, developers have to analyze
whether the behavioral changes have been intention-
ally introduced.

Marinov and Khurshid [48], [49] propose TestEra, a
framework for automated specification-based testing
of Java programs. It uses Alloy to specify the pre and
post-conditions of a method under test. Using this
specification, it automatically generates the test inputs
and checks post-conditions. This approach is similar
to JDOLLY for generating test inputs, but we generate
programs as test inputs.

7 CONCLUSION

In this article, we propose a technique to test Java
refactoring engines. This technique is made up of a
Java program generator (in our proposal, JDOLLY)
and a test system for refactorings (SAFEREFACTOR).
For each refactoring, the technique generates a num-
ber of Java programs, followed by the application
of the refactoring, with these programs as target. It
uses SAFEREFACTOR to evaluate the correctness of the
transformations. Finally, the technique classifies the
failing transformations by kind of behavioral change
or compilation error introduced by them. We pro-
pose a Java program generator (JDOLLY) to run the
program generation step of our technique. It uses
Alloy [19] and the Alloy Analyzer [20] to create
programs for a given scope of elements (packages,
classes, fields, and methods). We have evaluated our
technique by testing 29 refactorings, and found 57 and
63 bugs related to compilation errors and behavioral
changes, respectively.

Implementing refactorings is not simple. Even
refactoring engines written with correctness in mind,
such as JRRT, still have bugs. We have shown some
corner cases automatically detected by our technique.
With these results, we have demonstrated how the
combination of JDOLLY and SAFEREFACTOR is pow-
erful to detect bugs in refactorings. In the absence
of formal proofs, our technique can be useful for the
improvement of previous solutions. We have reported
all bugs to Eclipse JDT, NetBeans and JRRT, and a
number of them have already been accepted prior to
this submission. Moreover, Eclipse JDT and NetBeans
developers have fixed some of them, and JRRT devel-
opers have already fixed all accepted bugs. They have
also included our test cases in their test suite.
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[3] T. Mens and T. Tourwé, “A survey of software refactoring,”
IEEE Transactions on Software Engineering, vol. 30, pp. 126–139,
February 2004.

[4] Eclipse.org, “Eclipse project,” 2011, at http://www.eclipse.org.
[5] Sun Microsystems, “NetBeans IDE,” 2011, at

http://www.netbeans.org/.
[6] Jet Brains, “IntelliJ Idea,” 2011, at

http://www.intellij.com/idea/.
[7] Embarcadero Technologies, “JBuilder,” 2011, at

http://www.codegear.com/br/products/jbuilder.
[8] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornélio, “Alge-

braic reasoning for object-oriented programming,” Science of
Computer Programming, vol. 52, pp. 53–100, August 2004.

[9] M. Cornélio, “Refactorings as Formal Refinements,” Ph.D.
dissertation, Federal University of Pernambuco, 2004.
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