
Symbolic Boolean Derivatives for Efficiently Solving Extended
Regular Expression Constraints∗

Microsoft Technical Report MSR-TR-2020-25

CALEB STANFORD
†
,Microsoft, USA and University of Pennsylvania, USA

MARGUS VEANES,Microsoft, USA

NIKOLAJ BJØRNER,Microsoft, USA

The manipulation of raw string data is ubiquitous in security-critical software, and verification of such software relies on

efficiently solving string and regular expression constraints via SMT. However, the typical case of Boolean combinations

of regular expression constraints exposes blowup in existing techniques. To address solvability of such constraints, we

propose a new theory of derivatives of symbolic extended regular expressions (extended meaning that complement

and intersection are incorporated), and show how to apply this theory to obtain more efficient decision procedures.

Our implementation of these ideas, built on top of Z3, matches or outperforms state-of-the-art solvers on standard and

handwritten benchmarks, showing particular benefits on examples with Boolean combinations.

Our work is the first formalization of derivatives of regular expressions which both handles intersection and

complement and works symbolically over an arbitrary character theory. It unifies existing approaches involving

derivatives of extended regular expressions, alternating automata and Boolean automata by lifting them to a common

symbolic platform. It relies on a parsimonious augmentation of regular expressions: a construct for symbolic conditionals

is shown to be sufficient to obtain relevant closure properties for derivatives over extended regular expressions.

1 INTRODUCTION

Regular expressions and finite automata play a fundamental role in many areas, ranging from applications in

natural sciences [21] andNLP [33] to core problems in applied computer science, such asmatching [19, 36, 39],

model-checking [22], and solving of string constraints in SMT [23]. Recent years have seen a resurgence

of interest in solvers for quantifier-free string and regular expression constraints, driven by software

verification and security applications [4, 11]. However, there remains a gap between the theory of regular

expressions (or regexes) and the constraints that arise in practice in such applications. We focus here

on two aspects of this gap: (1) in typical applications, regexes exist over a symbolic potentially complex

character theory rather than over a finite alphabet; and (2) in typical applications, multiple regex membership

constraints may be combined using Boolean connectives. Modern SMT solvers thus need to efficiently

∗
Updated November 2020.

†
Work done during MSR internship.

Authors’ addresses: Caleb Stanford, MSR,Microsoft, OneMicrosoftWay, Redmond,WA, 98052, USA , UPenn, University of Pennsylvania,

3330 Walnut St. Philadelphia, PA, 19104, USA, castan@cis.upenn.edu; Margus Veanes, MSR, Microsoft, One Microsoft Way, Redmond,

WA, 98052, USA, margus@microsoft.com; Nikolaj Bjørner, MSR, Microsoft, One Microsoft Way, Redmond, WA, 98052, USA, nbjorner@

microsoft.com.

2 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

solve Boolean combinations of regex constraints over a symbolic alphabet, rather than solving individual

constraints in isolation over a finite one.

Although regexes are widely supported in most modern SMT string solvers [1, 5, 7, 14, 15, 20, 35, 49–51],

no current state-of-the-art tool provides a satisfactory solution to both of these challenges simultaneously.

With respect to (1), modern strings that arise in applications are generally written in Unicode, but as of

today, no SMT solver supports even the Basic Multilingual Plane (BMP or also known as Plane 0), while most

widely used regex standards, e.g., the .NET regex standard [31] are based on BMP. Additionally, regexes

that arise in practice employ character classes such as \w which denotes a word character, i.e. the subset

of the character space (e.g. Unicode) which includes the Latin alphabet a-z and other alphabetic symbols.

With respect to (2), we follow existing work by defining extended regexes to be those that allow intersection

and complement. As we will see shortly, an efficient treatment of extended regexes has eluded existing

techniques.

We believe that Boolean combinations of constraints represent the norm, rather than the exception, in

practice. To give one example: cloud policy languages, such as Amazon AWS policies [4] and Microsoft

Azure resource manager policies [30] utilize regexes for lightweight pattern matching. For example, Figure 1

shows a combination of constraints used to match a date format: a string which appears like a date, such as

2020-Nov-25. A sanity check here for SMT would be to make sure that the constraint is indeed satisfiable

— for example, if we made a mistake and wrote .*2019 and .*2020 instead of 2019.* and 2020.*, then

it would be unsatisfiable because the year was accidentally specified to be both at the beginning and at

the end of the string. This would render this hypothetical audit policy useless (never activated) and would

not match the user’s intention. To combine the date constraints into a single classical regex (i.e., without

any use of complement or intersection), is theoretically possible because regular languages are closed

under Boolean operations. However, this not only might be less succinct, but interestingly, industrial policy

languages actually restrict regex syntax in various ways, forcing users to write Boolean combinations. For

example, both the Amazon AWS and Microsoft Azure languages, as of 2020, allow Kleene star in .* only

(here .* is the regex matching any string). One rationale behind such language restrictions is to simplify

the regex matcher engine implementation in order to avoid performance bottlenecks that could otherwise

be exploited for regex denial-of-service attacks (ReDoS). This makes the use of top level conjunction and

complement, as used in this date example, a way to safely express more complex regular constraints, while

at the same time raises the need to deal with Boolean combinations of regex contraints for analysis.

The way in which current state-of-the-art solvers deal with Boolean combinations (intersection and

complement) can be summarized by two main approaches:

(1) Convert a regular expression r into an automaton Mr and then propagate the logical connectives

into corresponding Boolean operations over automata. Thus (s ∈ r1) ∧ (s ∈ r2) can be converted into

s ∈ L(Mr1
×Mr2

) and ¬(s ∈ r) can be converted into s ∈ L(M{
r) [48].

Symbolic Boolean Derivatives 3

{"if":{"allOf":[{"field":"date", "match":"####-???-##"},
{"anyOf":[{"field":"date", "like":"2019*" },

{"field":"date", "like":"2020*"}]}]}
"then":{"effect":"audit"}}

meaning :

date ∈ \d{4}-[a-zA-Z]{3}-\d{2} ∧

(date ∈ 2019.* ∨ date ∈ 2020.*).

Fig. 1. Example Boolean combination of regex constraints arising in practice: users of the Azure resource policy

language [30] write a restricted form of regexes to control when a cloud resource should be audited. The semantics

of the policy (top) is a Boolean combination of regex membership constraints (bottom), where # denotes a number

(\d), ? denotes a letter ([a-zA-Z]), * denotes any sequence (.*), and we write {n} for n-fold iteration of a regex. Large

Boolean combinations are either challenging or beyond reach for existing SMT string solvers (see Section 6).

(2) Propagate the operations over regexes, by considering extended regexes, such as (.*\d.*)&(.*[a-z].*),

where & is intersection. Then, directly algebraically manipulate such extended regexes using deriva-

tives [29].

While it is possible to extend classical automata algorithms to work modulo a character theory [18], the

first approach has the following fundamental bottleneck. The construction of Mr is typically eager (the

entire state space is constructed), and intersection and complement cause state space blowup for most

automata models that are used. This means that constructing the state space forMr is infeasible, such as for

r = ~(.*a.{100}) (where .* matches any string, {n} is n-fold repetition, and ~ is complement). This is a

limitation because constructingMr eagerly might not be needed in the first place: for example if checking

satisfiability of r , it may be that an accepting state of Mr can be reached through exploration without

constructing all states. On the other hand, if checking unsatisfiability of r , in product and complement

constructions on automata, many more states are constructed than may actually be reachable (these can be

eliminated through minimization of automata, but only after the fact). This suggests that we may be able to

avoid constructing them in the first place.

On the other hand, the second approach addresses this state space blowup by leveraging derivatives,

a syntactic way of exploring the state space of a regular expression without converting it to automata,

pioneered by Brzozowski [9] and Antimorov [3]. The summary of the approach is that the derivatives of a

regular expression correspond to the states of Mr , but they are constructed lazily. However, the second

approach has another fundamental drawback: the lack of an appropriate formalism which both works

symbolically and incorporates intersection and complement. As shown in [26], the classical theory of

derivatives does not directly extend to the symbolic setting, because taking a symbolic derivative (derivative

with respect to a character predicate denoting a set B of characters) of an extended symbolic regular

expression r does in general not preserve its language semantics. It either results in an over-approximation

or an under-approximation of the actual language, depending on whether the positive derivative ∆B (r)

or the negative derivative ∇B (r) is taken [26, Lemma 3]. On the other hand, a classical generalization

of Antimorov derivatives to extended regular expressions is possible (over a finite alphabet Σ) although

challenging [12]; however, leveraging this work for the symbolic SMT setting would require explicitly

4 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

enumerating (finitizing) the entire alphabet upfront (also known asmintermization in the literature [17, 18]),

as we explain further in Section 2. Doing so may be infeasible or prohibitively expensive (e.g. for Unicode),

requires considering all regex constraints in an SMT formula globally, and for general predicates may cause

another exponential blowup [18]. Considering only intersection, and not complement, avoids some of this

complexity and represents a state-of-the-art approach [29], but this loses the full generality of the Boolean

operations.

In this work, we fill these gaps by proposing the first theory of derivatives of symbolic regexes which

incorporates intersection and complement. Unlike previous work, our approach can be used to avoid the

state-space blowup of automata-based solvers without assuming a finite alphabet and without under- and

over-approximation. The key new insight that enables us to define derivatives of regexes directly, while

allowing Boolean operations, is that we augment regexes with conditionals (if-then-else), and define the

derivative of a regex to be a regex with conditionals, called a transition regex. We show that transition

regexes allow for efficient algebraic manipulation rules for complementation and intersection: for example,

given a regex which is a Boolean combination of classical regexes, we show that the number of derivatives

is strictly linear (Theorem 7.4). We give a decision procedure based on our derivatives which integrates into

a broader SMT context: a set of inference rules that incrementally unfolds regular expression constraints

into symbolic constraints over the background character theory. Derivatives enable this lazy unfolding;

the symbolic conditionals directly map to the underlying character theory; and the succinct handling of

Boolean combinations via extended regexes avoids the blowup in existing techniques. We also introduce an

accompanying theory of symbolic Boolean finite automata (SBFAs): the deriatives of an extended regular

expression correspond to the states in the SBFA. This is used to prove the succinctness theorem and to

study the connection with classical approaches and other techniques.

We have implemented symbolic Boolean derivatives in a new regular expression solver, dZ3, which

is built on top of Z3 and fully replaces the existing solver. We show that the lack of blowup shows the

expected benefits in practice. Using a large benchmark suite and compared to an array of state-of-the-art

solvers, we show that our decision procedure matches or outperforms other solvers in terms of number

of benchmarks solved and average time per benchmark. It shows particular benefits on examples with

Boolean combinations: although CVC4 and Ostrich are competitive on subsets of the benchmarks, no solver

consistently shows good performance across benchmark sets involving Boolean combinations. For example,

dZ3 is 1.54x faster than the next best solver (CVC4) on average for existing benchmarks with Boolean

combinations, and solves 88% of handwritten examples such as the date example in Figure 1, compared to

57% for CVC4.

Contributions

• We introduce a new theory of symbolic derivatives of extended regexes, which avoids blowup in

existing techniques. It works via translation to transition regexes which augment extended regexes

with a conditional construct. (Section 4)

Symbolic Boolean Derivatives 5

• We propose a sound and conditionally complete decision procedure for solving extended regular

expression constraints in an SMT context. (Section 5)

• We provide a proof-of-concept open-source implementation on top of Z3, called dZ3. Using existing

benchmark sets, we show that our solver matches or outperforms state-of-the-art solvers for string

constraints and shows particular performance and solvability improvements on Boolean combinations.

(Section 6)

• To formally study the benefits of our approach, we introduce a theory of Symbolic Boolean Finite

Automata (SBFAs) that generalizes the various classical approaches of alternating and Boolean

automata to the symbolic setting. In particular, we use SBFAs to show that for a common subclass of

extended regexes, the set of symbolic derivatives has linear size (Theorem 7.4). (Section 7)

• We provide an in-depth comparison of our theory of derivatives with the classical theory. (Section 8).

2 MOTIVATING RUNNING EXAMPLE

We discuss here a motivating example that helps us highlight some of the main ideas behind transition

regexes, the key to defining derivatives for symbolic extended regular expressions. The example also serves

as a running example and is referenced in the later sections. It is similar in spirit to the date example in

Figure 1 and is typical to many of the benchmarks used in Section 6.

Suppose we are given a membership constraint s ∈ R, where s is a string term over an alphabet type Σ,

i.e., s has type Σ∗
, and R is a concrete regex over Σ∗

. Our goal is to solve the satisfiability problem for that

membership constraint: does there exist a concrete instance of s in Σ∗
such that R accepts that instance?

Using the approach of derivatives, we plan to attack the problem by calculating the derivatives of R, by

deducing the following case split:
1

(|s | = 0 ∧ IsNullable(R)) ∨ (|s | > 0 ∧ s1.. ∈ δ (R)(s0)),

where IsNullable(R) is true if R accepts the empty string, and δ (R) is a function of R called its derivative:

it takes a regex (R) and a first character (s0), and returns a regex for the language of suffixes w such that

s0w ∈ R holds.

However, the classical theory of derivatives does not directly apply here: the problem is that the

string s may be uninterpreted (we don’t know the first character s0), and classical derivatives

are only defined for a given input character. We could naively enumerate all possible characters∨
a∈Σ(s1..∈Da(R) ∧ s0=a), but this does not scale.

Our contribution is to address this by providing a closed definition of δ (R) above: in particular, we want to

be able to evaluate δ (R) symbolically, before knowing s0. We call this the symbolic derivative, and we call

the resulting term a transition regex: it denotes a function from Σ to regexes.

1
We write si for its i ’th element and si.. for its suffix from i . Note that these can be purely symbolic expressions, s itself may be

uninterpreted.

6 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

More concretely, take R to be a typical password constraint:

(s ∈ .*\d.*) ∧ ¬(s ∈ .*01.*)

This constraint states that s contains at least one digit but not the subsequence 01. Regular expressions such

as this one are used in the generation and validation of password strings. In typical real-world cases, theymay

involve many more similar simultaneous constraints (cf. [37]), which can be encoded as large intersections

(cf. [43]). The motivation for derivative-based approaches is that such constraints — in particular because

they are also combined with bounded loops such as .{8,128} — cause an explosion of the state space when

converted to automata [17]. By unfolding the derivatives of R, we will explore possible strings for s without

constructing the state space up front.

We now show how to solve the constraint s ∈ R for this example, using our approach, and following our

implementation in dZ3. The negation is first converted into a regex complement and then the conjuction

into an intersection:

s ∈ (.*\d.*) & ~(.*01.*)

Let R1 = .*\d.*, R2 = ~(.*01.*) and R = R1 & R2. Since R is not nullable (does not accept the empty

string), the case split we started from reduces to the assertion

|s | > 0 ∧ s1.. ∈ δ (R)(s0)

To calculate δ (R) as a transition regex, we need to deal with the problem that we do not know s0. The

solution is to augment regexes with conditionals (if-then-else), and then allow conditionals in transition

regexes. When taking the derivative of a regex such as 01, we generate the term if(x = 0, 1,⊥), read as if

x = 0 then 1 else ⊥. This idea allows for the derivative of R to be computed using algebraic rules as follows.

The ≡ below also shows simplification steps using distributivity, DeMorgan’s laws, and other properties.

Below, φd is the predicate for \d (characters that are digits).

δ (R) = δ (R1) & δ (R2)

δ (R1) = R1 | if(φd (x), .*,⊥) ≡ if(φd (x), .*,R1)

δ (R2) = ~(δ(.*01.*)) = ~(.*01.* | δ (01.*))

= ~(.*01.* | if(x = 0, 1.*,⊥))

≡ ~(.*01.*) & ~(if(x = 0, 1.*,⊥))

≡ R2 & if(x = 0, ~(1.*), .∗)

≡ if(x = 0,R2 & ~(1.*),R2)

δ (R) ≡ if(φd (x), .*,R1) & if(x = 0,R2 & ~(1.*),R2)
(i)

≡ if(x = 0,R2 & ~(1.*), if(φd (x), .*,R1) & R2)

≡ if(x = 0,R2 & ~(1.*), if(φd (x),R2,R))

Symbolic Boolean Derivatives 7

Observe that all conditional predicates are extracted from the regex itself: e.g. 0 in a conditional arises from

0 in the original regex. Step (i) uses (among other properties) that ¬φd (x) ∧ x = 0 is unsat. Note that ~⊥≡.*

and .*| . . .≡.*.

There is no direct classical counterpart to the above derivation sequence, because classical regexes do

not have if-then-else. In particular, there is no direct classical counterpart which handles complement.

For example, consider the regular expression 01.* above. Classically, we would take the derivative as

D0(01.*) = 1.*. But what if we want to now take the derivative of the complement of 01.*? Then we need

to know not just this derivative where the first character is 0 but also the derivative if the first character is not

0, because while the latter case was impossible before it becomes relevant when considering the complement.

Using conditionals solves this problem: we write the derivative as if(x = 0, 1.*,⊥), which has the case

where the first character is not 0 present. Then when complementing this, we get if(x = 0, ~(1.*), .*).

Thus, viewing the derivative as a conditional regex (transition regex) is what enables us to treat complement

algebraically.

Having calculated the derivative δ (R), we then continue as follows. Let R3 = R2 & ~(1.*). So s1.. ∈ δ (R)(s0)

reduces to

s1.. ∈ if(s0 = 0,R3, if(φd (s0),R2,R))

Going forward, this creates the further case split:

(s0 = 0 ∧ s1.. ∈ R3) ∨ (s0 , 0 ∧ s1.. ∈ if(φd (s0),R2,R))

where s1..∈R3 splits further into two subcases:

(|s1..| = 0 ∧ IsNullable(R3)) ∨ (|s1..| > 0 ∧ s2.. ∈ δ (R3)(s1))

where (s1..)1.. = s2.. and (s1..)0 = s1, and the procedure repeats. Here R3 is nullable so dZ3 can generate a model

for |s | > 0 ∧ |s1..| = 0 ∧ s0 = 0 — provided that these constraints are consistent with other constraints on

s in the context. For example if there was a constraint s0 > 0, this case would be blocked and the search

would backtrack to the other case.
2

3 PRELIMINARIES

3.1 Sequences

When working with sequences over a domain Σwe make the standard simplifying assumption that Σ(1) = Σ,

and let Σ(0) = {ϵ}, Σ(k+1) = Σ · Σ(k)
, for k ≥ 0, and Σ∗ =

⋃
k≥0

Σ(k)
, Σ+ =

⋃
k≥1

Σ(k)
. Moreover, for v ∈ Σ(k)

,

the length of v is k , |v | = k . In contrast, when Σ∗
is implemented in an SMT solver the type Σ∗

is sequence

over Σ that is disjoint from Σ. For X ,Y ⊆ Σ∗
, define X · Y ⊆ Σ∗

such that X · Y = {x · y | x ∈ X ,y ∈ Y }

where concatenation · is associative and ϵ is the empty sequence. We write xy for x · y when it is clear

2
The condition s0 > 0 is possible because the underlying character theory (by default bitvectors in dZ3) is equipped with a total order.

8 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

from the context that juxtaposition stands for concatenation. Also, X ∗
stands for the closure of X under

concatenation when it is clear from the context that X ⊆ Σ∗
.

3.2 Boolean Algebras

Let D be a nonempty universe. A Boolean algebra over D is a tuple A = (D,Ψ, [[_]],⊥,⊤,∨,∧,¬) where Ψ is

a set of predicates closed under the Boolean connectives; [[_]] : Ψ → 2
D
is a denotation function; ⊥,⊤ ∈ Ψ;

[[⊥]] = ∅, [[⊤]] = D, and for all φ,ψ ∈ Ψ, [[φ ∨ψ]] = [[φ]] ∪ [[ψ]], [[φ ∧ψ]] = [[φ]] ∩ [[ψ]], and [[¬φ]] = D \ [[φ]].

For φ,ψ ∈ Ψ we write φ ≡ ψ (φ is equivalent toψ) to mean that [[φ]] = [[ψ]]. In particular, if φ ≡ ⊥ then φ is

unsatisfiable and if φ ≡ ⊤ then φ is valid. A being effective means that all components of A are recursively

enumerable, and satisfiability of φ ∈ Ψ (φ . ⊥) is decidable.

3.3 Boolean Combinations

IfQ is a set of basic elements or atoms then B(Q) denotes the Boolean closure overQ using | for disjunction,

& for conjunction, and ~ for complement. B+(Q) denotes the positive Boolean closure ofQ (without use of ~).

Both & and | are treated as idempotent, associative and commutative operators and lifted to finite nonempty

subsets S ⊆ Q through AND(S) and OR(S), respectively.

3.4 Symbolic Regexes

Let A = (Σ, Ψ, [[_]], ⊥,., ∨, ∧, ¬) be a fixed effective Boolean algebra called an alphabet theory. Note that

Σmay be infinite. We first recall the definitions of the two standard subclasses of regexes and extended

regexes, where φ ∈ Ψ. We always work modulo A and we do not mention this explicitly every time.

RE ::= φ | ε | ⊥ | RE1 · RE2 | RE∗ | RE1|RE2

ERE ::= φ | ε | ⊥ | ERE1 · ERE2 | ERE∗ | B(ERE)

The class RE corresponds to all standard regexes. The fragment B(RE) ⊂ ERE comprises all Boolean

combinations over RE and covers all of our practical scenarios. The language accepted by R is L(R) ⊆ Σ∗
:

L(φ) = [[φ]], L(ε) = {ϵ}, L(⊥) = ∅,

L(R1 · R2) = L(R1) · L(R2), L(R∗) = L(R)∗,
L(R1 | R2) = L(R1) ∪ L(R2), L(R1 & R2) = L(R1) ∩ L(R2),

L(~R) = Σ∗ \ L(R)

A regex R is nullable (ν (R)) iff ϵ∈L(R): ν (φ)=ν (⊥)=false; ν (ε)=ν (R∗)=true; ν (R1·R2) ⇔ ν (R1) andν (R2);

ν (R1&R2) ⇔ ν (R1) andν (R2); ν (R1|R2) ⇔ ν (R1) orν (R2); ν (~R)⇔notν (R).

Symbolic Boolean Derivatives 9

4 SYMBOLIC DERIVATIVES

Here we formally introduce the concept of transition regexes TR, define symbolic derivatives for R ∈ ERE in

terms TR, and prove their correctness in Theorem 4.3. We also discuss some algebraic laws that hold in TR

— used as simplification rules in dZ3 — as illustrated in Section 2.

4.1 Transition Regexes

In order to define symbolic derivatives we first introduce the key concept of transition regexes TR in which

regexes are augmented with conditionals. The definition of TR depends on a parameter Q — referred to

below as TRQ — here Q = ERE. Let � ∈ {|, &}, &̄ =| and
¯| =&.

TR ::= Q | if(φ, TR1, TR2) | B(TR)

We call if(φ,τ1,τ2) a conditional regex. A transition regex τ denotes the function τ : Σ→ B(Q) defined as

follows.
3

R(x) = R (for R ∈ Q)

if(φ,τ , ρ)(x) =

{
τ (x), if x ∈ [[φ]];

ρ(x), otherwise.

τ � ρ(x) = τ (x) � ρ(x)

~τ (x) = ~(τ (x))

Transition regexes τ and ρ are equivalent, denoted τ ≡ ρ, when ∀x ∈ Σ, τ (x) ≡ ρ(x). The concatenation

operation of regexes is lifted to transition regexes τ in τ · R for R ∈ ERE.

if(φ,τ , ρ) · R = if(φ,τ · R, ρ · R)

(τ|ρ) · R = (τ · R)|(ρ · R)

~τ · R = τ · R

(τ&ρ) · R = lift(τ&ρ) · R

Negation τ of τ is defined as follows.

R = ~R, ~τ = τ , τ � ρ = τ �̄ ρ, if(φ,τ , ρ) = if(φ,τ , ρ)

The definition of lift(τ) is such that if τ ∈ Q then lift(τ) = τ else τ is transformed into an equivalent

conditional regex by lifting the character predicates to the top while pushing conjuction into the leaves. Lift

rules are discussed in Section 4.3 below.

3
Function application of (x) binds weakest, so τ � ρ(x) stands for (τ � ρ)(x).

10 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

The following lemmas represent key semantic properties that are used in several contexts. Lemma 4.1 is

used in the proof of Theorem 4.3 and Lemma 4.2 is correctness of negation that is for example exploited in

normal forms. Both lemmas are proved by induction over τ using various algebraic laws of TR.

Lemma 4.1. L(τ · R(x)) = L(τ (x)) · L(R)

Lemma 4.2. ~τ ≡ τ

The symbolic derivative δ (R) of a regex R ∈ ERE is defined as the following transition regex, where φ ∈ Ψ.

δ (ε) = δ (⊥) = ⊥

δ (φ) = if(φ, ε,⊥)

δ (R · R′) =

{
δ (R) · R′|δ (R′); if R is nullable,

δ (R) · R′
; otherwise.

δ (R∗) = δ (R) · R∗

δ (R � R′) = δ (R) � δ (R′) (for � ∈ {&, |})

δ (~R) = ~δ (R)

Theorem 4.3 is the correctness theorem of symbolic derivatives. For L ⊆ Σ∗
and a ∈ Σ, recall the classical

definition of the derivative of L wrt a, Da(L) = {v | av ∈ L}, and for R ∈ ERE we use Brzozowski

derivatives Da(R) ∈ ERE (modulo A [26]), and the classical result L(Da(R)) = Da(L(R)) [9, Theorem 3.1].

Let Da(R) = L(Da(R)).

Theorem 4.3. δ (R)(a) ≡ Da(R).

Proof. By induction over R. The base cases ⊥ and ε are trivial.

Base case φ: δ (φ) = if(φ, ε,⊥). If a ∈ [[φ]]

then if(φ, ε,⊥)(a) = ε(a) = ε = Da(φ)

else if(φ, ε,⊥)(a) = ⊥(a) = ⊥ = Da(φ).

Induction case R · R′
and R nullable:

L(δ (R·R′)(a)) = L(δ (R)·R′ | δ (R′)(a))

= L(δ (R)·R′(a) | δ (R′)(a))

= L(δ (R)(a))·L(R′) ∪ L(δ (R′)(a))
IH

= Da(R)·L(R′) ∪ Da(R
′) = Da(R·R

′)

Induction case R · R′
and R not nullable:

L(δ (R·R′)(a)) = L(δ (R)·R′(a)) = L(δ (R)(a))·L(R′)
IH

= Da(R)·L(R′) = Da(R·R
′)

Symbolic Boolean Derivatives 11

a)
.*01.*

0
1.* .*1

. .

b)

.*01.* 0 1.* .*

.
1

⊥ .

| .

c)

.*01.* 0 1.*

.*

.
1 ⊥

.

& .

d)

r r&~(1.*) ⊥
.

10 0

Fig. 2. a-c) Symbolic derivations viewed as transitions between regexes; d) DNF form of (c) where r = ~(.*01.*).

Induction case R∗:
L(δ (R∗)(a)) = L(δ (R)·R∗(a)) = L(δ (R)(a))·L(R∗)

IH

= Da(R)·L(R∗) = Da(R∗)

Induction case R�R′
: Let � ∈ {|, &}. ˆ| = ∪ and &̂ = ∩.

L(δ (R�R′)(a)) = L(δ (R)(a)) �̂ L(δ (R′)(a))
IH

= Da(R) �̂ Da(R
′) = Da(R�R

′)

Induction case ~R:

L(δ (~R)(a)) = Σ∗ \ L(δ (R)(a)) IH

= Σ∗ \ Da(R) = Da(~R)

The statement follows by the induction principle. �

A useful property to observe about the proof of Theorem 4.3 is the following corollary.

Corollary 4.4. If R ∈ B(RE) then δ (R)(a) ∈ B(RE).

Proof. If R ∈ B(RE) then lifting is never invoked. Complement and conjunction remain as top level

operators only and are never nested within a concatenation or loop. �

Example 4.5. Consider the regex .∗01.∗ from above. We write individual characters also for the cor-

responding singleton predicates when this is unambiguous, except that [[.]] = Σ. We implicitly use the

simplification rule that if(.,τ , _) ≡ τ . Thus, e.g., δ (.) simplifies to ε (and so δ (.)r simplifes to r).

δ (.∗01.∗) = δ (.∗)·01.∗|δ (01.∗)

= δ (.)·.∗01.∗|δ (0)·1.∗ =.∗01.∗|if(0, 1.∗,⊥)

δ (1.∗) = if(1,.∗,⊥)

The two transition regexes are shown as classical transitions in Figure 2a where ⊥ is hidden. The equivalent

complete view of the transition regexes is shown in Figure 2b where the dashed arrows represent the false

12 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

branches of conditional regexes. The negation of the complete form is seen in Figure 2c as the dual of

Figure 2b, where ⊥ =.∗, and.∗ = ⊥. A regex q is final (has double boundary) when q is nullable. �

4.2 Algebraic Properties

Transition regexes form a particular kind of an effective Boolean algebra.
4
The regex.∗ is treated as the

absorbing element of | and the unit element of &. Conversely, ⊥ is treated as the unit element of | and the

absorbing element of both & and ·. For example r &.∗ = r and ⊥ · r = ⊥. We also treat |, &, · as associative

operators and |, & as commutative idempotent operators. This is important in reducing the number of

different but equivalent regexes from arising during search. However, the algebra is not extensional, i.e.,

τ ≡ ρ does in general not imply τ = ρ.

We exploit this algebra for different algebraic simplifications and normal forms. The most important

one is disjunctive normal form or DNF. Here we consider τ = δ (R) for R ∈ B(RE) but DNF generalizes to

all R ∈ ERE by using lift(τ). For DNF we apply standard laws of distributivity. Perhaps the most relevant

case here is if(φ,τ1,τ2)&ρ that in general expands to if(φ,τ1&ρ,τ2&ρ) but is also subject to simplifications

discussed next that integrate satisfiability checks of A into the rules.

(1) If φ ∧ψ ≡ ⊥ then if(φ,τ ,⊥)&if(ψ , ρ,⊥) ≡ ⊥

else if(φ,τ ,⊥)&if(ψ , ρ,⊥) ≡ if(φ ∧ψ ,τ & ρ,⊥).

(2) Cleaning of unsatisfiable branches of a nested conditional regex. For example ifτ = if(φ, if(ψ ,τ1,τ2), ρ)

and φ ∧ψ ≡ ⊥ then τ simplifies to if(φ,τ2, ρ) or if φ ∧ ¬ψ ≡ ⊥ then τ simplifies to if(φ,τ1, ρ).

(3) It is useful to push complement intoA when possible, e.g., by using the rule ~if(φ,.∗,⊥) ≡ if(¬φ,.∗,⊥).

Example 4.6. Recall the computation of δ (.∗01.∗) from Example 4.5. Let r = ~(.∗01.∗). In Section 2 we

showed that δ (r) can be computed initially as ~δ (.∗01.∗) and then we take its DNF so that in the end

δ (r) ≡ if(0, r & ~(1.∗), r). It is also easy to see that δ (~(1.∗)) ≡ if(1,⊥,.∗). We continue with the regex

r & ~(1.∗) and get that

δ (r & ~(1.∗)) = δ (r) & δ (~(1.∗))

≡ if(0, r & ~(1.∗), r) & if(1,⊥,.∗)

≡ if(0, r&~(1.∗) & if(1,⊥,.∗), r&if(1,⊥,.∗))

≡ if(0, r&~(1.∗), if(1,⊥, r))

where the last equality uses, among other simplifications, the fact that 0 ∧ 1 ≡ ⊥ to keep the resulting

conditional regex clean. The resulting transitions are shown in Figure 2(d). �

4
One can view TR as a Boolean algebra over Σ+ where f : Σ→ 2

Σ∗
is represented by

⋃
a∈Σ af (a) ⊆ Σ+ where aL = {av | v ∈ L }.

Symbolic Boolean Derivatives 13

When working with the two algebras A and TR, it is important to keep in mind that their Boolean

operations have different semantics.
5
For example, the predicate ¬φ as a singleton regex denotes the

language L(¬φ) = Σ \ [[φ]], while the regex ~φ denotes the language L(~φ) = Σ∗ \ [[φ]].

We show in Theorem 7.4 that for R ∈ B(RE) the number of individual regexes that are formed after

computing the fixpoint of all regexes through derivation is linear in R.

4.3 Lift rules

The lifting rule lift(τ) propagates the intersection into the leaves and thus lifts the conditionals to the top

level. Here we also pass the branch conditionψ that is initally., that can be maintained to be satisfiable, so

that dead branches are eliminated on-the-fly and the resulting transition regex is clean — in all conditional

regexes all branches are satisfiable. Assume here that τ is in NNF. The NNF rules are specified below.

lift(τ) = lift.(τ)

liftψ (τ) = ⊥ if ψ ≡ ⊥

In the remainderψ is assumed satisfiable (ψ . ⊥).

liftψ (R) = R if R ∈ ERE and ψ ≡.

liftψ (R) = if(ψ ,R,⊥) if R ∈ ERE and ψ . .

liftψ (if(φ, t , f)) = if(φ, liftψ∧φ (t), liftψ∧¬φ (f))

liftψ (if(φ, t , f) & ρ) = liftψ (if(φ, t & ρ, f & ρ))

liftψ ((τ1 | τ2) & ρ) = liftψ (τ1 & ρ) | liftψ (τ2 & ρ)

4.3.1 NNF. The negation normal form of a transition regex τ , NNF(τ), is defined as follows. The correct-

ness of these rules rests on Lemma 4.2.

NNF(if(φ,τ , ρ)) = if(φ,NNF(τ),NNF(ρ))

NNF(~if(φ,τ , ρ)) = if(φ,NNF(~τ),NNF(~ρ))

NNF(~~τ) = NNF(τ)

NNF(~R) = ~R if R ∈ ERE

The remaining cases are standard applications of DeMorgan’s laws.

5 SOLVING EXTENDED REGULAR EXPRESSION CONSTRAINTS IN SMT

Here we show that derivatives of extended regexes, defined in Section 4, form the basis for a decision

procedure that can be integrated in the context of an SMT solver to solve Boolean combinations of ERE

5
This is also true in the context of SMT where they are distinct primitive operators. Here we avoid ambiguities by not overloading the

operators.

14 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

constraints. The regex solver for ERE constraints is part of the sequence theory solver in dZ3. One challenge

here is that the problem is not an isolated decision procedure but needs to be integrated into the main

satisfiability engine of the solver, and in particular, interact with the solver for the given background theory

of characters. We describe our algorithm following our implementation that builds on Z3. A brief overview

was given in Section 2.

We focus here on assertions of the form of s ∈ r , called membership constraints, where s is a term

whose sort
6
is sequence over Σ or Σ∗

and r is an ERE over Σ∗
. Such constraints exist in a broader context of

formulas, including possibly other string contraints on s . We assume that regexes are concrete (i.e. there

are no variables of type regex or equations between regexes, only membership constraints for concrete

regexes). While this restriction is standard, it can be partially relaxed without additional work: for example,

inequivalence constraints of the form r . r ′ for regexes r , r ′ (this includes nonemptiness constraints) can

also be reduced to membership using the Boolean operators. In particular r . ⊥ iff ∃x(x ∈ r), and r1 . r2

iff (r1 & ~r2) | (r2 & ~r1) . ⊥.

The regex solver dynamically maintains a graph G = (V ,E, F ,C) with additional derived components

Dead and Alive. The vertices V ⊆ ERE represent the set of all encountered regexes so far, and E ⊆ V ×V

is a set of directed edges such that (v,w) ∈ E implies thatw ∈ Q(δdnf(v)), i.e.,w is derived from v . In this

context δdnf(v) is equivalent to the abstract definition δ (v) (defined in Section 4) but in a normal form; the

required normal form is discussed further below.

We write E∗ for the reflexive and transitive closure of E and we write E∗(v) for {w | (v,w) ∈ E∗}, i.e.,

E∗(v) is the set of all vertices in G that are reachable from v .

• F ⊆ V is a set of final vertices (nullable regexes).

• C ⊆ V is the set of all closed v : ∀w∈Q(δdnf(v)) : (v,w)∈E. In other words, a closed vertex is a vertex

all of whose outgoing edges have been added to E.

• Alive ⊆ V is the set of all v s.t. E∗(v) ∩ F , ∅.

• Dead ⊆ V is the set of all v s.t. E∗(v) ⊆ (C \ Alive). In other words, all vertices in Dead are dead-end

regexes whose status can never change because all of them are closed (have been fully explored).

For modularity,G does not have knowledge of its vertices being regexes, but they are treated as abstract

elements. Therefore, for the abstract description here, we consider the sets F and C to be represented

explicitly. The event that all immediate (partial) derivatives from v have been added then causes v to be

added to the set C. On the other hand, we consider Alive and Dead to be inferred from (V ,E, F ,C) rather

than being explicitly represented here.

The primary purpose ofG is to enable dead-end detection and to block search and to infer unsatisfiability

of dead-end regexes, as indicated by the bot-rule in Figure 3a. It is important to note thatG is independent

of the current logical scope because the property of a vertex in G being dead is independent of other side

constraints that may exist on the input sequence s , i.e., this means that any satisfiability checks of branches

6
We say sort for type as is custom in the context of SMT.

Symbolic Boolean Derivatives 15

in-tr(s, if(φ, t , f))

(φ(s0) ∧ in-tr(s, t)) ∨ (¬φ(s0) ∧ in-tr(s, f))
(ite)

in-tr(s, r)

in(s1.., r)
(ere)

in-tr(s, t1|t2)

in-tr(s, t1) ∨ in-tr(s, t2)
(or)

in(s, r) r < G .Dead

(|s | = 0 ∧ ν (r))∨ (|s | > 0 ∧ in-tr(s,δdnf(r)) ∧ Upd[r→Q(δdnf(r))])
(der)

in(s, r) r ∈ G .Dead

⊥
(bot)

(a) Membership propagation rules for EREs and transition predicates. Here r ∈ ERE. Recall that ν (r) iff r is nullable. All
rules are equivalence preserving in their respective contexts. In particular in-tr(s, t) rules are applied only when |s | > 0.

An implicit assumption is that r ∈ G .V .

Upd[r→Q] G = (V ,E, F ,C)

G:=(V∪Q,E∪{(r ,q) | q∈Q}, F∪{q∈Q | ν (q)},C∪{r })
(upd)

(b) Graph update rule. An implicit assumption is that r ∈ G .V . Observe that the rule has no effect if r ∈ G .C.

Fig. 3. Decision procedure propagation rules.

are performed in a global scope, independent of local assertions. Therefore G can persist across different

logical scopes.

Initially G = (V0, ∅, {r ∈ V0 | r is nullable}, ∅) where V0 is some initial set of regexes that occur in initial

membership constraints. An unsolved membership constraint in(s, r) trigger a call to the regex solver that

performs the steps below.

(1) As shown in Figure 3a the der-rule either allows the solution s = ε if r is nullable, or it propagates

the goal in-tr(s,δdnf(r)) provided that r is not dead and s is nonempty.

(2) The propagation rules for in-tr(s,δdnf(r)) create a search space where the leaves of δdnf(r) eventually

trigger new membership subgoals for s1.. as shown by the ere-rule.

(3) In this process G is incrementally updated, triggered by Upd[r→Q] where Q is the set Q(δdnf(r)) of
all the derivative regexes for r and r is consequently closed, as shown by the upd-rule in Figure 3b.

5.1 Transition regex normal form

Ensuring that these rules eventually prove unsatisfiability for regexes r denoting the empty language

requires care. Notice that Figure 3a does not contain propagation rules for conjunction (intersection) and

negation (complement) of transition regexes. This is because such rules would result in incompleteness.

For example, consider the hypothetical rule that we reduce in-tr(s, r1&r2) to in-tr(s, r1) ∧ in-tr(s, r2). Then, if

we apply this to the constraint in-tr(s, (.*a)&(.*b)), we obtain two separate constraints which propagate

separately, and we never arrive at the required contradiction and conclude the original transition regex is

16 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

unsatisfiable. More specifically, this would occur after propagating rules der and then ite starting from

in(s, (a.*a)&(a.*b)), since δdnf(r) = if(a, (.*a)&(.*b),⊥).

To avoid such issues with intersection and complement propagation is why we require that δdnf(r) is a

normal form of δ (r): specifically, we require a DNF form where union and if-then-else are always pushed

outwards over complement and intersection, and we enforce this when computing derivatives. In particular

this requires using the lift rules for r ∈ ERE (not for r ∈ B(RE)). The implication is that when simplifying

in-tr(s, r), after applying ite and or as necessary, we can directly apply rule ere to the conjunctions, which

are plain regexes not involving if-then-else.

Using this strategy, we can then prove the following summary theorem about the properties of the

membership propagation rules. Here ⊢ refers to infererce with respect to the rules in Figure 3a and Figure 3b.

Recall that r ≡ ⊥ means that L(r) = ∅. The theorem states that the rules provide a decision procedure

for emptiness of EREs modulo any decidable character theory. The proof then uses the property that G

represents an accurate reachability graph of the underlying symbolic automaton, where states that end up

in G .Dead are eqivalent to ⊥, and where states may be intersection regexes.

Theorem 5.1. Let r ∈ ERE and s be an uninterpreted constant. Then in(s, r) ⊢ ⊥ iff r ≡ ⊥.

5.2 Complexity

Theorem 5.1 states that the decision procedure is sound and complete for regex emptiness, but does not

discuss its complexity. In the worst case, complexity relates to the number of regexes in the space of all

derivatives (recursively) of a regex. Studying this is a primary motivation for why we develop a theory of

automata corresponding to symbolic extended regexes in Section 7. In particular, we give a complexity

bound for the common case in practice of regexes in B(RE) in Theorem 7.4: for this case, we show that the

number of states in an SBFA is linear. As leaves in the DNF δdnf(r) correspond to conjunctions of states

in B(RE), this implies exponential worst-case complexity for the decision procedure here, for B(RE). For

general extended regexes, nonemptiness is known to be non-elementary [44], so we can only hope for

concrete complexity bounds in practical subclasses.

5.3 Alive and dead state detection

In the implementation the graphG incrementally maintains a DAG of strongly connected componets (SCCs)

using the Union-Find datastructure [45] for implementing SCCs, and it implements explicit marking of

SCCs corresponding to the Dead and Alive subsets ofV . We let Find(v) denote the SCC that contains v . The

event of adding a new batch of edges to E causes an incremental cycle detection algorithm to be executed,

that is immediately followed by an algorithm that incrementally updates the DAG of SCCs and propagates

the markings of Dead and Alive vertices.

We implemented a custom variant of incremental cycle detection and SCC maintenance algorithms, that

is similar in spirit to the algorithm described in [6]. A unique aspect of our algorithm is that it makes use

Symbolic Boolean Derivatives 17

of an additional dissimilarity heuristic asserting that certain states p and q can never belong to the same

SCC, denoted by p � q, because they can never be both in the same cycle. For example if p = abc then

δ (p) = if(a, bc,⊥) and, let q = bc, trivially p � q. This information is used by the DFS search algorithms in

our incremental SCC algorithm to prune the search space during cycle detection.

6 EXPERIMENTS

We have implemented symbolic Boolean derivatives as an extension to Z3, together with the strategies for

normalizing derivatives and the sound decision procedure described in section 5. Our solver, dZ3, fully

replaces the existing solver in Z3 for regular expression constraints which is based on symbolic automata.

We carried out a series of experiments to compare our solver with Z3 and other state-of-the-art string

solvers. Our interest is in evaluating the following questions:

Q1 Overall, does dZ3 match the performance of existing regular expression solvers on standard string

constraint benchmarks?

Q2 How does dZ3 specifically fare on standard benchmarks which contain Boolean combinations of

regular expression constraints on the same regex (which are equivalent to Boolean operations on

SEREs), compared to the state of the art?

Q3 Finally, how does dZ3 fare on handcrafted difficult examples, designed to showcase the interaction of

Boolean operations with other regex operators, compared to the state of the art?

To evaluate Q1, we assembled a collection of standard benchmark suites from the literature: Kaluza,

Norn, Slog, and SyGuS-qgen, as collected by SMTlib [41, 42]. We add to this an existing set of benchmarks

provided in [8, 40], which we call RegExLib: these ask for the answer to an intersection or containment

problem between regular expressions taken from regexlib.com, an online library of regular expressions.

From all of these sets, we removed benchmarks that do not contain any regular expression constraints, and

some Norn benchmarks which contained existential quantification, as this was not allowed by the stated

logic.

To evaluate Q2, the challenge arises of how to fairly compare with solvers which do not support explicit

intersection and complement. To address this issue, we observe that although most standard benchmarks do

not explicitly contain intersection and complement, a large number of benchmarks contain multiple regex

membership consraints on the same string, which is logically equivalent to (and can be treated as) a Boolean

combination. Therefore, we parsed the benchmarks from Q1 to divide them into simple benchmarks, which

do not contain multiple regular expression constraints on the same string variable, and Boolean benchmarks,

which contain at least one instance of multiple regular expression constraints on the same string. Our

hypothesis is that our solver is particularly suited to the Boolean case, as it translates such constraints

succinctly to SEREs.

To evaluate Q3, we wrote four sets of examples. Unlike in Q2, we incorporate explicit intersection and

complement. The first set contains problems involving date constraints, where a string is constrained to look

regexlib.com

18 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

Solver Solved Avg (s) Med (s)

NB B H NB B H NB B H

dz3 95.6% 88.1% 87.6% 0.47 1.28 1.85 0.016 0.06 0.08

cvc4 97.6% 86.4% 57.3% 0.31 1.92 4.82 0.019 0.30 3.18

z3str3 94.3% 60.9% – 0.64 4.02 – 0.018 0.03 –

z3trau 89.6% 48.7% – 1.22 6.56 – 0.020 TO –

ostrich 84.5% 42.3% 85.4% 2.59 6.41 2.34 1.091 TO 0.92

z3 81.8% 29.0% 41.6% 1.99 7.70 6.05 0.018 TO TO

(a) Summary of the experimental results on non-Boolean (NB), Boolean (B), and additional handcrafted benchmarks (H):

percent of benchmarks solved, average time to solve, and median time to solve. Best solver is in bold. For comparison,

errors, wrong answers, and crashes are treated as timeouts (10s). The average time in the table is plotted on the left.

(b) Cumulative number of benchmarks solved on non-Boolean (left), Boolean (middle), and handcrafted (right)

benchmarks. The x-axis is time on a log-scale, and the y-axis shows number of benchmarks solved in that amount of

time or less.

Benchmark Quantity Benchmark Quantity Benchmark Quantity

Kaluza 5452 Norn 147 Date 20

Slog 1976 SyGuS-qgen 343 Password 34

Norn 813 RegExLib Intersection 55 Boolean + Loops 21

RegExLib Subset 100 Determinization Blowup 14

Total Non-Boolean 8241 Total Boolean 645 Total Handwritten 89

(c) Benchmarks used for the evaluation. Existing benchmark suites (Kaluza, Slog, Norn, SyGuS, RegExLib) are classified

as Boolean if they contain multiple constraints on the same regex.

Fig. 4. Results of the experimental evaluation. (A full table of results can be found in the appendix.)

Symbolic Boolean Derivatives 19

like a date, as in Figure 1: the questions ask, e.g. whether one such constraint implies another or whether an

intersection of such constraints is satisfiable. Such constraints naturally incorporate Boolean combinations:

for example, if the month is February, then the day must not be 30 or 31. The second set contains problems

involving password constraints, e.g. a password must contain at least one number and a letter, and no more

than 20 characters, like the example in Section 2. Third, we have a set of regexes where Boolean operations

interact with concatenation and iteration, in particular to create nontrivial unsatisfiable regexes. These also

serve to test the dead state elimination described in section 5. Finally, we include classical examples which

have small nondeterministic state spaces but blowup when determinized, to test efficiency of derivatives in

avoiding determinization: these include variants of (.*a.{k})&(.*b.{k}) where k is constant. Together

with the benchmarks for Q1 and Q2, the number of benchmarks from various sources is summarized in

Figure 4(c).

For all experiments, we compared dZ3 with a representative list of state-of-the-art and actively maintained

solvers: Z3 [20, 49], Z3str3[7, 51], Z3-Trau [1, 50], CVC4 [5, 15], and OSTRICH [14, 35].We exclude Z3str3 and

Z3-Trau from the Q3 handwritten examples, since explicit intersection and complement are not supported.

We ran each solver with a 10s timeout, and compared the answer with the correct label (if provided with

the benchmark); otherwise, we compared with the answer provided by a baseline solver that appears to

be trained (and sound) for the benchmark set in question: for this purpose we used OSTRICH for the

Norn benchmarks and CVC4 for Kaluza, Slog, and SyGuS-qgen (all others were labeled). If the baseline

solver did not return a result, we marked the answer as “unchecked” and conservatively considered it

correct. An answer of “unknown” is counted as an error. In summary, a correct result can be either sat,

unsat, or unchecked, while an incorrect result can be either wrong, a timeout, or an error. We manually

inspected solver errors and incorrect answers to ensure that they all appear to be unsupported cases, bugs,

or crashes, and never a result of a malformed input (which we correct by replacing the input in question).

The experiments were run on a Dell XPS13 with an Intel Core i7 CPU and 16GB of RAM.

6.1 Results

The results are summarized in Figure 4. dZ3 shows state-of-the-art performance and is consistently the

best or near the best solver —- in terms of average time, median time, or number of benchmarks solved,

across all three benchmark sets (Figure 4(a)). dZ3 shows particularly good performance on Boolean and

handwritten benchmarks, where only CVC4 (on Boolean) and Ostrich (on handwritten) compare. However,

compared to CVC4, dZ3 solves 87% of the handwritten benchmarks rather than 57.3%; and compared to

Ostrich, dZ3 solves 88% of the Boolean benchmarks rather than 42.3%. No other solver does consistently

well in all three categories. Overall, the plots in Figure 4(b) demonstrate that symbolic Boolean derivatives

reach state-of-the-art performance in practice, while on benchmarks with Boolean combinations the solver

solves more benchmarks faster than any existing tool.

20 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

7 SYMBOLIC BOOLEAN FINITE AUTOMATA

In order to formally study the efficiency of our ERE implementation, and in particular, the state space of

the set of derivatives, we explore a connection to automata. In particular, we formally define symbolic

Boolean finite automata or SBFAs, a variant of alternating automata adapted to the symbolic setting. We

show that derivatives of symbolic extended regexes correspond to states in a corresponding SBFA, and in

the case of R ∈ B(RE), we prove a theorem that the state space size is linear in the size of R. This allows us

to analyze the worst-case complexity of our decision procedure. SBFAs will also prove useful in comparing

with alternative approaches and existing extensions of automata in Section 8.

7.1 SBFA

A Symbolic Boolean Finite Automaton or SBFA is a tuple M = (A,Q, ι, F ,q⊥,∆) where A is the alphabet

theory; Q is a finite set of states; ι ∈ B(Q) is the initial state combination; F ⊆ Q is the set of final states;

q⊥ ∈ Q \ F is the bottom state; ∆ : Q → TRQ is the transition function such that ∆(q⊥) = q⊥, where TRQ is

defined in Section 4.

We lift the final condition to q ∈ B(Q) denoted νF (q) as follows: νF (q) iff q ∈ F , νF (p|q) iff νF (p) or νF (q),
νF (p&q) iff νF (p) and ∧νF (q), and νF (~q) iff not νF (q).

The definition of ∆ is lifted similarly to B(Q) → TRQ .

7.1.1 Semantics. M denotes M : B(Q) → Σ∗
by the equations

∀q ∈ B(Q) : M(q) = {ϵ | νF (q)} ∪
⋃
a∈Σ

a ·M(∆(q)(a))

The language accepted byM is L(M) = M(ι).

7.2 Construction from Regexes

The construction of an SBFA from a regex R ∈ ERE starts with the initial state combination ι = R and

computes the rest of the states in Q as the fixpoint of all the states reachable as terminals of δ (q) for q ∈ Q ,

where, what constitutes as a terminal depends on the state granularity and/or normal form of the intended

SBFA. With respect to the granularity that is as assumed below, a terminal of if(φ,τ , ρ) is a terminal of τ

or ρ, a terminal of ~τ is a terminal of τ , and a terminal of τ � ρ is a terminal of τ or ρ. If τ ∈ RE then τ is

a terminal. In this case, states (other than potentially ι and ~⊥ = .∗) are themselves not conjunctions or

negations.

The regex ⊥, that is the bottom state q⊥, and the dual top state regex.∗ (= ~⊥) are called trivial. Let Q(τ)
denote the set of all nontrivial terminals of a transition regex τ .

Symbolic Boolean Derivatives 21

Given a regex R, let δ+(R) denote Q(δ (R)) unioned with all states of derivatives that can be reached from

Q(δ (R)). Formally, δ+(R), is the least fixed point of the following equations, where S is a set of regexes,

δ+(R) = Q(δ (R)) ∪ δ+(Q(δ (R))), δ+(S) =
⋃
R∈S

δ+(R).

Observe that δ+(R) is the set of regexes reached after one or more derivations, which may but need not

include R itself, e.g., δ+(b(ab)*) = {(ab)*, b(ab)*} includes the start regex while δ+(ab) = {b, ε} does not.

Proposition 7.1. δ+(R) is finite.

Proof. The are finitely many different states reached in δ+(R) because L(R) is regular and because the

various algebraic operations are represented concisely, e.g., & is idempotent, associative, commutative with

unit element.∗ and absorbing element ⊥. Similarly for | and ·. �

SBFA(R). The SBFA of R ∈ ERE is defined as follows, where Q = δ+(R) ∪ {R,⊥,.∗} and F = {q ∈ Q |

q is nullable}.7

SBFA(R) = (A,Q,R, F ,⊥,δ�Q)

The following is the correctness theorem of SBFA(R).

Theorem 7.2. Let R ∈ ERE and M = SBFA(R). Then for all q ∈ B(QM), M(q) = L(q). In particular

L(M) = L(R).

Proof. The statement follows by proving that ∀q ∈ B(Q) : v ∈ M(q) ⇔ v ∈ L(q) by induction over |v |.

The base case v = ϵ follows because νF (q) ⇔ ν (q). The induction case is: av ∈ M(q) iff v ∈ Da(M(q)) iff
v ∈ M(δ (q)(a)) iff (by the IH) v ∈ L(δ (q)(a)) iff (by Theorem 4.3) v ∈ L(Da(q)) iff (by [9, Theorem 3.1])

av ∈ L(q). �

Theorem 7.4 is another key result. Here a regex is normalized when all concatenations are in right-

associative form. A regex is clean if it contains no ⊥ and no unsat predicates. Let ♯(R) denote the number of

predicate nodes in R. We need the following lemma.

Lemma 7.3. If X ,Z ∈ RE are clean and normalized then δ+(XZ) = δ+(X)Z ∪ δ+(Z); if X = S∗ then

δ+(X) = δ+(S)X .

Proof. We prove by induction over X that

δ+(XZ) = δ+(X)Z ∪ δ+(Z).

It follows from working with normalized regexes that in a concatenation node the first element is not a

concatenation and we apply case analysis over the first element, that is not an intersection or complement

because here we only consider standard regexes.

7
We write δ�Q to denote δ restricted to the finite set Q — to follow the SBFA definition strictly.

22 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

Base case X = ε . Follows immediately because δ (ε) = ∅.

Induction case X = ψY .

Then δ (XZ) = if(ψ , ε,⊥) · YZ = if(ψ ,YZ ,⊥), so Q(δ (XZ)) = {YZ } and thus

δ+(XZ) = {YZ } ∪ δ+(YZ)

IH
= {YZ } ∪ δ+(Y)Z ∪ δ+(Z)

= ({Y } ∪ δ+(Y))Z ∪ δ+(Z)

= δ+(X)Z ∪ δ+(Z)

Induction case X = (X1 |X2)Y .

Then δ (XZ) = (δ (X1YZ)|δ (X2YZ)), so

δ+(XZ) = δ+(X1YZ) ∪ δ
+(X2YZ)

2×IH
= δ+(X1Y)Z ∪ δ+(X2Y)Z ∪ δ+(Z)

2×IH
= (δ+(X1)Y ∪ δ+(Y))Z ∪

(δ+(X2)Y ∪ δ+(Y))Z ∪ δ+(Z)

= (δ+(X1)Y ∪ δ+(X2)Y ∪ δ+(Y))Z ∪ δ+(Z)

= (δ+(X1 |X2)Y ∪ δ+(Y))Z ∪ δ+(Z)

(⋆)
= δ+(X)Z ∪ δ+(Z)

In (⋆), if Y = ε , the equality holds by definition of derivatives of a choice node. If Y , ε , then X1 |X2 is

smaller than X , and one can apply the IH on (X1 |X2)Y with X1 |X2 as X and Y as an instance of the universal

variable Z in the lemma.

Induction case X = S∗Y .

Then δ (X) = δ (S)X|δ (Y) because S∗ is nullable. The proof step uses (1), for any normalizedW :

δ+(S∗W) = δ+(S)S∗W ∪ δ+(W) (1)

Equation (1) is proved first as follows:

δ+(S∗W) = δ+(SS∗W) ∪ δ+(W)

(IH)

= δ+(S)S∗W ∪ δ+(S∗W) ∪ δ+(W)

(lfp)

= δ+(S)S∗W ∪ δ+(W)

Symbolic Boolean Derivatives 23

where (lfp) holds because δ+(S∗W) ⊆ δ+(S)S∗W ∪ δ+(W) that can be shown separately. It follows that

δ+(XZ) = δ+(S∗(YZ))

(1)
= δ+(S)S∗YZ ∪ δ+(YZ)

IH
= δ+(S)S∗YZ ∪ δ+(Y)Z ∪ δ+(Z)

= (δ+(S)S∗Y ∪ δ+(Y))Z ∪ δ+(Z)

(1)
= δ+(S∗Y)Z ∪ δ+(Z)

= δ+(X)Z ∪ δ+(Z)

The statement follows by the induction principle. Observe that (1) implies the second part of the lemma by

settingW = ε . �

Theorem 7.4. Let R ∈ B(RE). If R is clean and normalized then |QSBFA(R) | ≤ ♯(R) + 3.

Proof. If R is normalized we can use a slighltly condensed definition of δ (R) that is inlined in the proof.

We prove (2)

|δ+(R)| ≤ ♯(R) (2)

by induction over R = R1·Z where R1 is not a concatenation and possibly Z = ε , corresponding to the case

that R is not a concatenation or that R is a conjuction or complement.

Base case R = ε . Then |δ+(R)| = 0 = ♯(R).

Induction case R = ψZ . Then δ (ψZ) = if(ψ ,Z ,⊥) and so δ+(R) = {Z } ∪ δ+(Z). Here Z ∈ RE counts for

one terminal andψ counts for one predicate node. Thus

|δ+(R)| = |δ+(Z)| + 1

IH

≤ ♯(Z) + 1 = ♯(R).

Induction case R = (X |Y)Z . Then δ (R) = δ (XZ) | δ (YZ) and so δ+(R) = δ+(XZ) ∪ δ+(YZ). Then, by

Lemma 7.3,

δ+(R) = δ+(XZ) ∪ δ+(YZ) = δ+(X)Z ∪ δ+(Y)Z ∪ δ+(Z)

which implies that (observe that, for a set S , |S ·Z | = |S |)

|δ+(R)| ≤ |δ+(X)| + |δ+(Y)| + |δ+(Z)|
IH

≤

♯(X) + ♯(Y) + ♯(Z) = ♯(R).

Induction case R = S∗Z . Then δ (R) = δ (S)S∗Z | δ (Z) and so, by using Lemma 7.3, δ+(R) = δ+(S)S∗Z ∪

δ+(Z). Then

|δ+(R)| ≤ |δ+(S)| + |δ+(Z)|
IH

≤ ♯(S) + ♯(Z) = ♯(R).

24 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

a)

rl

rd

.∗ .r
ϕd

ϕl
&

b)

.
rl

rd

.∗

.
..

r

ϕd

ϕd ϕl

ϕl

Fig. 5. SBFA(r); r = rl & rd; rl =.∗[a-z].∗; rd =.∗\d.∗.

Induction case R = (X&Y). Then δ (R) = δ (X)&δ (Y) and thus δ+(R) = δ+(X) ∪ δ+(Y). It follows that

|δ+(R)| ≤ |δ+(X)| + |δ+(Y)|
IH

≤ ♯(X) + ♯(Y) = ♯(R).

Induction case R = ~X . Here δ (R) = ~δ (X). It follows that

|δ+(R)| = |δ+(X)|
IH

≤ ♯(X) = ♯(R).

Equation (2) follows by the induction principle So QSBFA(R) = δ
+(R) ∪ {R,⊥,.∗}, where.∗ = ~⊥, and, by (2),

|QSBFA(R) | ≤ |δ+(R)| + 3 ≤ ♯(R) + 3. �

For R ∈ ERE we do not have a linear bound on |QSBFA(R) | because the lifting in (τ&ρ)·R = lift(τ&ρ)·R that

first transforms τ&ρ into DNF, may lead to an exponential blowup.

Example 7.5. Recall rd =.∗\d.∗ from Section 2 and let rl =.∗[a-z].∗ . So rl matches any string containing

at least one lower-case letter. Let φl = [a-z] and φd = \d. Then

δ (rl) = rl|if(φl,.∗,⊥) ≡ if(φl,.∗, rl)

δ (rd) = rd|if(φd,.∗,⊥) ≡ if(φd,.∗, rd)

δ (r) = δ (rl) & δ (rd) = if(φl,.∗, rl) & if(φd,.∗, rd)

SBFA(r) is shown in Figure 5a. The DNF equivalent is shown in Figure 5b where the default operation is

disjunction. �

8 RELATEDWORK

Here we provide a formal study of the relationship between symbolic derivatives and related formalisms

that can be used in the context of decision procedures for ERE. In particular, we first compare with classical

derivatives of regular expressions and existing extensions. Next, we compare with existing extensions of

classical finite automata and symbolic automata. Finally, we discuss work related to string solvers and

implementation of the proposed techniques in the context of SMT solvers.

8.1 Relation to Classical Derivatives

The theory of derivatives of regular expressions has evolved in parallel and largely independently of the

mainstream automata research. One of the key features of derivatives is that they provide a lazy and a more

algebraic perspective on how finite automata and their regular expression counterparts are related; basic

theoretical properties between various classical automata and their derivatives are discussed in [2].

Symbolic Boolean Derivatives 25

The connection between ERE (modulo A) and symbolic derivatives was initially studied in-depth in [26],

with the main application of language containment in ERE. An important side result [26, Section 5] is that

classical derivatives do not directly generalize to predicates, and a workaround is to combine positive and

negative derivatives. We have shown here that a remedy is to use conditionals.

In the following we discuss the exact relationship to well-established related classical notions, first

Brzozowski derivatives [9] and then Antimirov derivatives [3] and its generalization to ERE [12]. We show

how they relate to δ (R) for R ∈ RE. Assume Σ is finite, let a ∈ Σ, and let Ra = δ (R)(a).

8.1.1 Brzozowski Derivatives. Ra is precisely the Brzozowski derivative [9, Theorem 3.1] Da(R) of R

wrt a.8 If regexes are viewed as DFA states, Da is the transition function for a.

8.1.2 Antimirov Derivatives. If Ra = ⊥ then ∂a(R) = ∅ else Ra = |ni=1
Ri and ∂a(R) = {Ri }

n
i=1

is the

Antimirov derivative [3, Definition 2.8] of R wrt a as a set of partial derivatives Ri . When viewed as states,

each Ri corresponds to a separate target state of a transition (R, a,Ri) of an NFA.

8.1.3 Partial Derivatives of ERE. The Antimirov construction is extended to ERE in [12]. The formal

construction
∂
∂a
(R) in [12, Definition 2] inlines negation, inlines concatenation propagation, and inlines

conjuction distribution, in the definition of
∂
∂a

so that the result is essentially an |-set of &-sets. Intuitively
∂
∂a
(R) = DNF(Ra).

8.2 Relation to Classical Automata

Parallel finite automata by Kozen [28], subsequently renamed to alternating finite automata or AFAs in [13],

and Boolean finite automata or BFAs by Brzozowski and Leiss [10], were introduced independently (cf [10,

p.25]) and use fairly different formalizations and application contexts in doing so. While both work over a

finite state space Q and are equivalent classically, their differing notation becomes important symbolically:

BFAs use transitons to B(Q) while AFAs use transitions to 2
2
Q
encoding DNF(B+(Q)).

Algebra A is assumed to be such that Σ is finite and for each a ∈ Σ there is a predicate â such that

[[â]] = {a}. In a pure classical setting of finite automata, transition functions are usually parameterized by

single characters, so the notion of character predicates seems vacuous. In our translation below we will make

use of A, where input predicates such as ¬â arise implicitly, because for example, a transition predicate

~if(â,q,⊥) simplifies to if(â,q,q⊥) that logically corresponds to if(â, ~q,⊥)|if(¬â,q⊤,⊥). Perhaps the

most common use of predicates is that if(α ,q,⊥)|if(β ,q,⊥) reduces to if(α ∨ β ,q,⊥), and, analogously,

if(α ,q,⊥)&if(β ,q,⊥) reduces to if(α ∧ β ,q,⊥).

We provide a description of SBFAs over finite alphabets as BFAs next.

8.2.1 SBFA to BFA. Let M = (A,Q, ι, F ,q⊥,∆) be a SBFA. The equivalent BFA of M is BFA(M) =

(Σ,Q, λ(q,a).∆(q)(a), ι, F).

8Da applies to the whole ERE class.

26 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

Proposition 8.1. L(M) = L(BFA(M)) with L as in [10, p.25].

8.2.2 BFA to SBFA. BFAs over Σ have a finite set of states Q an initial function ι ∈ B(Q), a set of final

states F ⊆ Q , and a transition function δ : Q × Σ → B(Q).

We translateMbfa = (Σ,Q,δ , ι, F) into an equivalent SBFA as follows. The translation uses the fresh state

q⊥ < Q .

SBFA(Mbfa) = (A,Q ∪ {q⊥}, ι, F ,q⊥, {q⊥ 7→ q⊥}
⋃

p∈Q {p 7→ ORa∈Σif(â,δ (p,a),q⊥)})

where â is the predicate in A such that [[â]] = {a}.

Proposition 8.2. L(SBFA(Mbfa)) = L(Mbfa) with L as in [10].

8.2.3 AFA to SBFA. Alternating finite automata [13, 28] (AFAs) have a finite input alphabet Σ, a finite

set of states Q = {qi }
k−1

i=0
, a start state ι ∈ Q , a set of final states F ⊆ Q , and a transition function д :

Q→(Σ×{0, 1}(k))→{0, 1}. Let дp = д(p) for p ∈ Q . A sequence v ∈ {0, 1}(k) represents the conjuction

qv = AND{qi ∈ Q | vi = 1}

and for a∈Σ, p∈Q , λv .дp (a,v) represents the disjunction

дp,a = OR{qv | дp (a,v) = 1,v ∈ {0, 1}(k)},

where OR(∅) = q⊥ is a new state and AND(∅) = ~q⊥. The translation of Mafa = (Q, Σ, ι, F ,д) into an

equivalent SBFA is as follows

SBFA(Mafa)=(A,Q ∪ {q⊥}, ι, F ,q⊥, {q⊥ 7→q⊥}
⋃

p∈Q {p 7→ORa∈Σif(â,дp,a ,q⊥)})

Proposition 8.3. L(SBFA(Mafa)) = L(Mafa) with L as in [13].

8.2.4 Remarks. Observe that the main difference betweenMafa andMbfa besides the initial state formula

is that д relies essentially on DNF(B+(Q)) while δ uses the full B(Q) for state predicates. In that respect, the

BFA formulation is closer in spirit to SBFAs. Thus, because of DNF, the size of δ can be exponentially more

succinct than д (if д is represented explicitly as its type suggests). Negation does not play a big role here

because it can be eliminated at a linear cost. Therefore, AFAs and BFAs are to a large extent considered to be

equivalent notions. As we know, this is not true in the symbolic case, when comparing SAFAs and SBFAs.

8.3 Relation to Symbolic Extensions of Automata

Symbolic alternating finite automata (s-AFAs) [16] and alternating data automata (ADAs) [25] are two

orthogonal symbolic extensions of finite automata, in the former case via SFAs and in the latter case via

data automata [24].

8.3.1 Symbolic Alternating Finite Automata. An s-AFA [16] (modulo A) is a generalization of an SFA by

allowing transition targets to be elements in B+(Q) where Q is a finite set of states. There is an initial state

Symbolic Boolean Derivatives 27

combination ι ∈ B+(Q), a set of final states F ⊆ Q , and a finite set of transitions ∆ ⊆ Q × Ψ × B+(Q). Let

Msafa = (A,Q, ι, F ,∆)

The equivalent SBFA ofMsafa is defined as follows with a bottom state q⊥ < Q , and where OR(∅) = q⊥.

SBFA(Msafa) = (A,Q ∪ {q⊥}, ι, F ,q⊥, {q⊥ 7→q⊥} ∪
⋃

q∈Q {q 7→OR{if(ψ ,p,q⊥) | (q,ψ ,p) ∈ ∆}})

Proposition 8.4. L(SBFA(Msafa)) = L (Msafa)

Going from SBFAM = (A,Q, ι, F ,q⊥,∆) to s-AFA is possible but not easy in general. This is also related

to why ~ is not supported in s-AFA [16]. W.l.o.g., assume that ∆ does not contain complement. This is

achieved by adding negated states q̄ to Q and for each negated state q̄ letting ∆(q̄) = NNF(~∆(q)) where

NNF(τ) computes the negation normal form of τ meaning that all negations are pushed down to states. In

particular, NNF(~if(φ,τ , ρ)) = if(φ,NNF(~τ),NNF(~ρ)), and NNF(~q) = q̄. The other cases are standard.

The equivalent s-AFA of M is defined as follows where τ (α) = τ (a) for some a ∈ [[α]] — which is

well-defined (independednt of choice) due to the local mintermization.

SAFA(M) = (A,Q,NNF(ι), F , {(q,α ,∆(q)(α)) | q ∈ Q,α ∈ Minterms(Guards(∆(q)))})

Proposition 8.5. L(M) = L (SAFA(M))

The problem with this construction is that |Minterms(Γ)| can be exponential in |Γ | so the construction of

SAFA(M) is exponential in the worst case. The same problem arises in s-AFA normalization [16] used for

complementation.

8.3.2 Alternating Data Automata. This class of automata goes far beyond regular languages because

registers are allowed to carry information across state boundaries so that consequtive data elements in

traces are functionally related. Data automata, as defined in [24], use registers and have the expressive

power of general Turing machines. In an alternating data automaton [25], arbitrary Boolean combinations

of predicates can be used to relate before and after values of registers. It is stated in [24] that complement

of alternating data automata is linear unlike in [16]. We are not aware of work relating ERE with ADAs.

8.3.3 Conditional Branching. Conditional transitions (although without Boolean combinations of states)

have been used before in a special class of deterministic symbolic transducers called Branching Symbolic

Transducers or BSTs [38]. The main motivation behind BSTs is in the context of data processing pipelines

where they preserve condition evaluation order and in this way support more direct and efficient serial

code generation. A BST has a finite state space Q , and when the BST acts as a finite state automaton, its

rules correspond to a subset of TRQ without Boolean operations. Conditional transitions are also used in

the implementation of MONA [27] where transitions are multi-terminal BDDs whose terminals are states.

We apply similar principles in dZ3 to represent transition regexes in a canoniocal way.

28 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

8.4 Related Work in SMT

String and regex constraints have been the focus of both SMT and CP solving communities, with several tools

being developed over the past decade. A theory of strings with regexes is a standard part of the SMTLIB2

format [46]. String solvers are integrated in the CDCL(T) architecture [34]. From the CP community, the

MiniZinc format integrates membership constraints over regular languages presented as either DFAs or

NFAs [32]. The solver presented in [29] is closely related to ours in that it relies on Antimirov derivatives to

reduce positive regular expression membership constraints. It diverges from our approach as it handles

intersection similar to [12], instead of using symbolic derivatives. Consistent with what the empirical

evaluation suggests, complementation is not treated in depth and is essentially out of scope of this work.

Ostrich is advertised as a symbolic solver for string formulas that come from path constraints [14], and

its solver is based on solving for pre-images. Our evaluation suggests that it performs either extremely

well, or not at all, depending on categories. While full handling of regexes seems out of scope of z3-Trau,

flat automata were recently applied [1] for solving symbolic constraints that include string-to-int and

int-to-string conversions. Z3Str3 [7] integrates several innovations around string equality solving. Many

of the advances previously developed in S3 [47] and now integrated within Z3’s default string solver,

hence dz3 benefits from these results. ZELKOVA is a tool used internally by Amazon to check AWS policy

configurations, it uses a custom NFA engine based extension of Z3 to handle regex constraints [4].

9 CONCLUSION

In this paper, we generalized the finite-alphabet based work of derivatives to work over a symbolic alphabet

and to incorporate Boolean combinations, and showed how to use such symbolic Boolean derivatives

to solve regular expression membership constraints in SMT. Our solver, dZ3, achieves state-of-the-art

performance on standard benchmark sets, and significant speedup on constraints involving intersection

and complement, where no existing solver does consistently well across benchmark sets. While we have

experimentally validated the main ideas, many further promising optimizations remain to be explored; in

particular taking advatage of algebraic laws of derivatives of EREs and designing heuristics that capture

common usage patterns and that can be exploited by CDCL-based solvers.

REFERENCES

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Julian Dolby, Petr Janku, Hsin-Hung Lin, Lukás Holík,

and Wei-Cheng Wu. 2020. Efficient handling of string-number conversion. In Proceedings of the 41st ACM SIGPLAN International

Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson

and Emina Torlak (Eds.). ACM, 943–957. https://doi.org/10.1145/3385412.3386034

[2] Cyril Allauzen andMehryar Mohri. 2006. A unified construction of the Glushkov, Follow, and Antimirov automata. In International

Symposium on Mathematical Foundations of Computer Science. Springer, 110–121.

[3] Valentin Antimirov. 1995. Partial Derivatives of Regular Expressions and Finite Automata Constructions. Theoretical Computer

Science 155 (1995), 291–319.

https://doi.org/10.1145/3385412.3386034

Symbolic Boolean Derivatives 29

[4] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek, Kasper Søe Luckow, Neha Rungta, Oksana

Tkachuk, and Carsten Varming. 2018. Semantic-based Automated Reasoning for AWS Access Policies using SMT. In 2018 Formal

Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, Nikolaj Bjørner and Arie

Gurfinkel (Eds.). IEEE, 1–9. https://doi.org/10.23919/FMCAD.2018.8602994

[5] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare

Tinelli. 2011. Cvc4. In International Conference on Computer Aided Verification. Springer, 171–177.

[6] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert Endre Tarjan. 2011. A New Approach to Incremental Cycle

Detection and Related Problems. CoRR abs/1112.0784 (2011). http://arxiv.org/abs/1112.0784

[7] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A string solver with theory-aware heuristics. In 2017 Formal

Methods in Computer Aided Design (FMCAD). IEEE, 55–59.

[8] Nikolaj Bjørner, Vijay Ganesh, Raphael Michel, and Margus Veanes. 2012. An SMT-LIB Format for Sequences and Regular

Expressions. In SMT’12, P. Fontaine and A. Goel (Eds.). 76–86.

[9] Janusz A. Brzozowski. 1964. Derivatives of regular expressions. JACM 11 (1964), 481–494.

[10] J. A. Brzozowski and E. Leiss. 1980. On equations for regular languages, finite automata, and sequential networks. Theoretical

Computer Science 10 (1980), 19–35.

[11] Tevfik Bultan, Fang Yu, Muath Alkhalaf, and Abdulbaki Aydin. 2017. String Analysis for Software Verification and Security.

Springer.

[12] Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. 2011. Partial Derivatives of an Extended Regular Expression. In

Language and Automata Theory and Applications, LATA 2011 (LNCS), Vol. 6638. Springer, 179–191.

[13] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. 1981. Alternation. JACM 28, 1 (1981), 114–133.

[14] Taolue Chen, Matthew Hague, Anthony W Lin, Philipp Rümmer, and Zhilin Wu. 2019. Decision procedures for path feasibility of

string-manipulating programs with complex operations. Proceedings of the ACM on Programming Languages 3, POPL (2019),

1–30.

[15] CVC4. 2020. (2020). https://github.com/CVC4/CVC4.

[16] Loris D’Antoni, Zachary Kincaid, and FangWang. 2018. A Symbolic Decision Procedure for Symbolic Alternating Finite Automata.

Electronic Notes in Theoretical Computer Science 336 (2018), 79–99.

[17] Loris D’Antoni and Margus Veanes. 2014. Minimization of Symbolic Automata. ACM SIGPLAN Notices – POPL’14 49, 1 (2014),

541–553. https://doi.org/10.1145/2535838.2535849

[18] Loris D’Antoni and Margus Veanes. 2020. Automata Modulo Theories. Commun. ACM (2020).

[19] James C Davis. 2019. Rethinking Regex engines to address ReDoS. In Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. 1256–1258.

[20] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS’08 (LNCS). Springer, 337–340.

[21] Dan Gusfield. 1997. Algorithms on stings, trees, and sequences: Computer science and computational biology. Acm Sigact News

28, 4 (1997), 41–60.

[22] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm. 1995. Mona: Monadic Second-order

logic in practice. In TACAS ’95 (LNCS), Vol. 1019. Springer.

[23] Hossein Hojjat, Philipp Rümmer, and Ali Shamakhi. 2019. On Strings in Software Model Checking. In APLAS (LNCS), A. Lin (Ed.),

Vol. 11893. Springer.

[24] R. Iosif, A. Rogalewicz, and T. Vojnar. 2016. Abstraction refinement and antichains for trace inclusion of infinite state systems. In

TACAS’16 (LNCS), Vol. 9636. Springer, 71–89.

[25] Radu Iosif and Xiao Xu. 2018. Abstraction Refinement for Emptiness Checking of Alternating Data Automata. In TACAS’18, Dirk

Beyer and Marieke Huisman (Eds.). Springer, 93–111.

[26] Matthias Keil and Peter Thiemann. 2014. Symbolic Solving of Extended Regular Expression Inequalities. In FSTTCS’14 (LIPIcs).

175–186.

https://doi.org/10.23919/FMCAD.2018.8602994
http://arxiv.org/abs/1112.0784
https://doi.org/10.1145/2535838.2535849

30 Caleb Stanford, Margus Veanes, and Nikolaj Bjørner

[27] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. 2002. MONA Implementation Secrets. International Journal of

Foundations of Computer Science 13, 4 (2002), 571–586.

[28] Dexter Kozen. 1976. On parallelism in Turing machines. In 17th Annual Symposium on Foundations of Computer Science, FOCS’76.

IEEE Xplore, 89–97.

[29] Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. 2015. A Decision Procedure for Regular

Membership and Length Constraints over Unbounded Strings?. In FroCoS 2015: Frontiers of Combining Systems (LNCS), Vol. 9322.

Springer, 135–150.

[30] Microsoft. 2020. Azure Resource Manager documentation. https://docs.microsoft.com/en-us/azure/azure-resource-manager/.

[31] Microsoft. 2020. .NET regular expressions. https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions.

[32] MiniZinc. 2020. https://www.minizinc.org. (2020).

[33] Mehryar Mohri. 1996. On some applications of finite-state automata theory to natural language processing. Natural Language

Engineering 2, 1 (1996), 61–80.

[34] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2006. Solving SAT and SAT Modulo Theories: From an abstract Davis–

Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53, 6 (2006), 937–977. https://doi.org/10.1145/1217856.1217859

[35] Ostrich. 2020. (2020). https://github.com/uuverifiers/ostrich/.

[36] Scott Owens, John Reppy, and Aaron Turon. 2009. Regular-expression derivatives re-examined. Journal of Functional Programming

19, 2 (2009), 173–190.

[37] passwords generator.org. 2020. (2020). https://passwords-generator.org/.

[38] Olli Saarikivi, Margus Veanes, Todd Mytkowicz, and Madan Musuvathi. 2017. Fusing Effectful Comprehensions. In ACM SIGPLAN

Notices – PLDI’17. ACM.

[39] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast regular expression matching using FPGAs. In The 9th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines (FCCM’01). IEEE, 227–238.

[40] SMT. 2012. (2012). https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-

microsoft.automata.smtbenchmarks.zip.

[41] SMTLib. 2020. (2020). https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_S.

[42] SMTLib. 2020. (2020). https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA.

[43] stackoverflow.com. 2020. Regex for password must contain at least eight characters, at least one number and both lower and

uppercase letters and special characters. (2020). https://stackoverflow.com/questions/19605150/regex-for-password-must-contain-

at-least-eight-characters-at-least-one-number-a.

[44] Larry J Stockmeyer and Albert R Meyer. 1973. Word problems requiring exponential time (preliminary report). In Proceedings of

the fifth annual ACM symposium on Theory of computing. 1–9.

[45] Robert E. Tarjan. 1975. Efficiency of a good but not linear set union algorithm. JACM 22 (1975), 215–225.

[46] Cesare Tinelli, Clark Barrett, and Pascal Fontaine. 2020. (2020). http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml.

[47] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic String Solver for Vulnerability Detection in Web

Applications. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS ’14). Association

for Computing Machinery, New York, NY, USA, 1232–1243. https://doi.org/10.1145/2660267.2660372

[48] Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura. 2010. Symbolic Automata Constraint Solving. In Logic for Programming,

Artificial Intelligence, and Reasoning. LPAR 2010 (LNCS), C.G. Fermüller and A. Voronkov (Eds.), Vol. 6397. Springer, 640–654.

[49] Z3. 2020. (2020). https://github.com/z3prover/z3.

[50] Z3-Trau. 2020. (2020). https://github.com/diepbp/z3-trau.

[51] Z3str3. 2020. (2020). https://sites.google.com/site/z3strsolver/.

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/2660267.2660372

Symbolic Boolean Derivatives 31

A FULL EXPERIMENTAL RESULTS

Figure 6 contains the full experimental results, which were described in Section 6 and summarized in

Figure 4.

Solver Time (s) Result

< .04 < .12 < .37 < 1.1 < 3.3 < 10 sat unsat unchk wrong tmout err

K
a
l
u
z
a

dz3 5018 71 48 22 15 10 2608 2576 0 0 268 0

z3 4325 582 77 30 38 47 2521 2578 0 0 353 0

z3str3 4439 569 241 22 33 6 2728 2577 5 0 127 15

z3trau 3998 728 259 104 63 96 2657 2591 0 0 204 0

cvc4 3744 1323 62 183 6 122 2849 2591 0 0 12 0

ostrich 0 0 0 1747 2369 65 1665 2516 0 0 0 1271

S
l
o
g

dz3 1884 55 23 3 1 0 798 1168 0 0 10 0

z3 934 101 4 31 30 36 71 1065 0 0 840 0

z3str3 1143 542 89 36 25 21 784 1072 0 0 120 0

z3trau 1224 178 186 138 106 61 727 1166 0 1 82 0

cvc4 1887 61 24 4 0 0 808 1168 0 0 0 0

ostrich 0 0 0 1363 583 21 800 1167 0 0 1 8

N
o
r
n

dz3 366 282 69 13 2 0 594 138 0 0 81 0

z3 76 103 98 124 51 90 469 73 0 0 274 0

z3str3 626 2 0 1 0 0 567 62 0 0 187 0

z3trau 170 78 5 1 1 0 208 47 0 115 0 446

cvc4 544 132 27 2 30 5 591 149 0 0 73 3

ostrich 0 0 0 439 377 0 597 219 0 0 0 0

N
o
r
n

dz3 82 13 3 1 0 0 67 32 0 0 48 0

z3 44 30 9 6 3 2 63 31 0 0 53 0

z3str3 77 0 0 0 0 0 60 17 0 0 70 0

z3trau 47 50 4 0 0 0 34 67 0 27 0 19

cvc4 96 25 3 3 1 0 66 62 0 0 19 0

ostrich 0 0 0 90 57 0 67 80 0 0 0 0

S
y
G
u
S
-
q
g
e
n

dz3 126 176 41 0 0 0 331 0 12 0 0 0

z3 0 0 0 0 14 51 65 0 0 0 278 0

z3str3 277 4 0 0 0 0 273 0 8 0 41 21

z3trau 0 0 8 51 24 120 201 0 2 0 105 35

cvc4 21 17 124 102 62 7 333 0 0 0 10 0

ostrich 0 0 0 0 0 0 0 0 0 0 0 343

R
e
g
E
x
L
i
b

I
n
t
e
r
s
e
c
t
i
o
n

dz3 6 9 14 4 2 0 26 9 0 0 20 0

z3 1 2 3 12 9 0 4 23 0 0 28 0

z3str3 2 1 6 12 6 0 4 23 0 0 28 0

z3trau 2 0 4 12 8 0 3 23 0 0 29 0

cvc4 2 9 4 1 1 3 20 0 0 0 35 0

ostrich 0 0 0 11 34 0 25 20 0 0 0 10

R
e
g
E
x
L
i
b

S
u
b
s
e
t

dz3 26 28 27 5 5 0 90 1 0 0 9 0

z3 0 0 0 2 5 3 7 3 0 0 90 0

z3str3 0 0 0 2 4 3 6 3 0 0 91 0

z3trau 0 0 0 0 5 4 6 3 0 0 91 0

cvc4 17 46 12 2 1 2 80 0 0 0 20 0

ostrich 0 0 0 12 69 0 72 9 0 0 0 19

H
a
n
d
w
r
. dz3 35 14 7 9 7 6 42 36 0 0 10 1

z3 20 4 4 6 2 1 14 23 0 2 46 4

cvc4 28 6 3 2 7 5 28 23 0 0 25 13

ostrich 0 0 0 52 24 0 40 36 0 5 6 2

Fig. 6. Full results of the experiments, divided by double lines into non-Boolean benchmarks (regular expression

constraints are on separate variables, top), Boolean benchmarks (multiple regular expression constraints on the same

variable, middle), and additional handcrafted Boolean examples (bottom).

	Abstract
	1 Introduction
	2 Motivating Running Example
	3 Preliminaries
	3.1 Sequences
	3.2 Boolean Algebras
	3.3 Boolean Combinations
	3.4 Symbolic Regexes

	4 Symbolic Derivatives
	4.1 Transition Regexes
	4.2 Algebraic Properties
	4.3 Lift rules

	5 Solving Extended Regular Expression Constraints in SMT
	5.1 Transition regex normal form
	5.2 Complexity
	5.3 Alive and dead state detection

	6 Experiments
	6.1 Results

	7 Symbolic Boolean Finite Automata
	7.1 SBFA
	7.2 Construction from Regexes

	8 Related Work
	8.1 Relation to Classical Derivatives
	8.2 Relation to Classical Automata
	8.3 Relation to Symbolic Extensions of Automata
	8.4 Related Work in SMT

	9 Conclusion
	References
	A Full experimental results

