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ABSTRACT

Personalization of HRTF is essential for spatial sound
rendering, for which a possible solution is based on
one or more anthropological measures of the sub-
ject. Measuring these anthropometrics seamlessly, ac-
curately and reliably is still a challenge. In this pa-
per, we propose a system for obtaining anthropometric
measurements, suitable for HRTF personalization, di-
rectly from a high-end headphone. The proposed sys-
tem is multi-modal and leverages existing sensors to
extract features related to listener’s head dimensions.
We propose three signal processing methodologies for
three modalities of sensors and a fusion algorithm to
aggregate these extracted features for a robust anthro-
pometry estimation. To verify the design we use a data
set, collected from 35 subjects. The proposed algo-
rithm achieves a low error (RMSE) of 0.58−1.21 cm
for human anthropometry estimation.

1 Introduction

With the emergence of new generation devices, such
as Augmented Reality (AR) and Virtual Reality (VR)
glasses and corresponding software platforms, immer-
sive experience in visual and audible media consump-
tion has become a priority for users. Current genera-
tion headphones and computers support spatial sound
rendering which encodes localization cues in audio to
provide a perception in the listener that the sound is
coming from a particular location. This has many ap-
plications ranging from gaming, live streaming, con-
certs, and VR interactions [5] where users get real-
istic experience of audio in terms of location of the
sound sources. The spatial audio technologies impact
even such everyday tasks as listening to stereo music,
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which, rendered properly, provides much better expe-
rience via externalization of the stereo sound.

The methodology behind spatialized sound rendering
is to model the propagation of sound from source to
the human ear. The sound wave is scattered around
the human head, reflected by the shoulders and the
torso, and additionally modified by the pinna on its
path to enter the person’s ear canal. These human
anthropometry-induced changes to the sound signal
can be modelled with a filtering function known as
head-related transfer function (HRTF) [38]. Apply-
ing HRTF to monoaural sound and playing it back on
headphone results into binaural [38] sound which al-
lows us to synthesize sound from virtual source at any
location around the user. Due to the difference in hu-
man anthropometric features, the HRTF is unique to
each listener.

Common practice [35] in spatial sound rendering is to
apply a generic HRTF set to encode the spatial cues
in the audio. Because the HRTF is person dependent,
applying a generic HRTF set leads to sub-optimal im-
mersive sound experience. While measured HRTF for
each person leads to improved perceptual quality of
spatial sound, measuring HRTF [7] for every person is
not feasible as it requires overly complex and costly
equipment. This is why the research [36, 18] in this
area is focused on personalization of the HRTF, most
frequently using several anthropometric features of the
individual. They can be obtained by direct measure-
ments, or indirectly, by using a depth camera, for ex-
ample.

In this paper, we propose a novel approach for ob-
taining the listener’s anthropometrics such as head
width, depth, circumeference and height for the needs
of HRTF personalization. Our proposed system uses
non-intrusive sensing with sensors available on high
end headphones. The proposed approach can estimate
the listeners anthropometrics in real time and provides
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seamless transition of the HRTF even when the head-
phone is passed from one listener to another.

The basic principle behind our system is multi-modal
sensing with three different types of sensors: micro-
phone, magnetometer and Inertial Measurement Unit
(IMU) [22]. We exploit the basic principles of sound
propagation around the head, magnetic field intensity
attenuation with the distance, and acceleration caused
by the human head movement, to extract features that
are representative of human head dimensions. Each
one of these modalities can be used separately for es-
timation of certain dimensions of the human head. We
also propose a fusion algorithm to aggregate the ex-
tracted information from the three modalities and build
a more robust and accurate estimator. To evaluate the
feasibility and accuracy of these approaches we built
an end-to-end system as is shown in Figure 1 and col-
lected data from 35 subjects.

2 Related Work

Usage of parametric models of head and torso for
HRTF personalization is explored in [19, 6]. Authors
in [21, 8] propose to use high resolution 3D head-scans
for HRTF modeling. [7, 18, 36] model HRTF based on
anthropometrical features. Recent works [26, 25, 28]
use neural networks for HRTF estimation from anthro-
pometric features. [14, 13] uses 3D head-scans for ITD
modelling. These works require high resolution com-
plete head-scan as input to estimate ITD of the user.
Head shape and dimension estimation has been ex-
plored in computer vision research. In [?] the head
dimensions are extracted from image data to use them
for facial recognition. Ear detection and shape esti-
mation from a side view image of the head has been
explored in [33]. Recent works [29, 31] explore deep
neural networks for facial landmark detection from
image. All of these works rely on image for landmark
detection and often have poor result for exact dimen-
sion estimation. In this paper, we deal with a novel
problem as we do not have any visual information as
input for anthropometric feature estimation.

3 Overview

In this section, we provide an overview of our pro-
posed system for multi-modal human anthropometry
estimation.

IMU Board

Microphone

Right Earphone

Left Earphone

Fig. 1: Hardware Setup

3.1 Hardware Overview

Our experimental hardware is shown in Figure 1. On
the right ear-cup of a Microsoft Surface headphone [3]
we attached an IMU board [2] with integrated magne-
tometer, acceleromete and gyroscope. We also added
an WM-60 omnidirectional microphone to have full
end-to-end control of the entire hardware. The sam-
pling rate of the IMU board is 100 Hz, the microphone
signal is sampled at 48 KHz. It was connected to the
computer via a USB interface.

3.2 System Overview

In Figure 2, we show the signal processing pipeline
of our system. There are three main sensing modules:
a) Acoustic feature extraction, b) Magnetic feature ex-
traction, c) Inertial feature extraction. We also pro-
pose to use sensor fusion and combine them for ob-
taining more reliable measurements and better accu-
racy.

4 Acoustic Feature Extraction

The sound propagation time from source to receiver
is a basic principle for distance estimation [10]. The
main idea is to play a signal from one of the earphones
and record it with the microphone on the other ear-
phone. The time-delay between transmitted and re-
ceived signals depends on the distance traveled. It is
proportional to the relatively constant speed of sound
and the half-circumference of the user’s head.
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Fig. 2: System Pipeline

4.1 Probing Signal

To make the probing signal inaudible and consider-
ing the sampling rate of earphones we choose to use
as probing signal a linear chirp of two seconds dura-
tion with 20− 22 KHz frequency range. The dura-
tion is chosen to be short to make our feature extrac-
tion faster. The signal is played first through the right
earphone, where the microphone is placed. We refer
to this transmitted signal as calibration signal, T xc.
Then, after a short pause, the same chirp is played
through the left earphone. We denote this as response
signal, T xr. The two signals T xc and T xr are recorded
with the microphone in a single channel and in one
recording session. They are denoted as Rxc and Rxr,
respectively.

4.2 Signal Pre-processing

Due to prior knowledge about the transmitted signal’s
frequency band we can apply a band-pass filter and
remove the background noise. The frequency band
20−22 kHz is relatively quiet and doesn’t contain in-
terfering sounds. We designed one high-pass and one
low-pass finite impulse response (FIR) filters [9] using
the Kaiser algorithm [24]. They were applied consec-
utively to the microphone signal, containing both Rxc
and Rxr.

4.3 Signal Calibration

Because of delay caused by system calls and hardware
pipeline [32] there is an additional system-induced de-
lay between the transmitted and the received signal.
Furthermore, this system-specific delay varies from
recording to recording. To remove this random off-
set, we use a calibration step. The acoustical delay

between the right earphone and the microphone, also
placed on the right side, is small and constant, i.e. it
doesn’t depend on the listeners’ anthropometrics. As-
suming that the propagation time between T xc and Rxc
is close to zero, then the delay between these two sig-
nals is just the system induced delay. We estimate the
system delay by first computing the cross-correlation
function:

XCORRT xc,Rxc(K) =
1
N

N−k−1

∑
m=1

T xc[m]×Rxc[m+ k] (1)

Note that, we use unbiased cross-correlation [17] to re-
duce the variance of a standard cross-correlation func-
tion. Here, N is the signal length and k is the amount
of shift or lag. The maximum value of XCORRT xc,Rxc

defines the required shift to align T xc and Rxc, i.e. the
shift in samples between the transmitted and received
signal. This is the system-induced delay we denote as
calibration delay, or Dc.

4.4 Feature Extraction

Because Rxc and Rxr are recorded in one iteration the
estimated system delay is the same as between T xr
and Rxr. The delay Dtotal between the left earphone
and the microphone is estimated using the cross-
correlation function as in Equation 1. It is the sum-
mation of the system-induced calibration delay (Dc)
and signal propagation delay (Dpropagation), measured
in samples. Therefore Dpropagation can be estimated as
follows: Dpropagation = Dtotal−Dc.

Dpropagation is the propagation delay between the left
earphone and the microphone on the right earphone
and encodes information about user’s head circum-
ference. It is expressed in samples and we can cal-
culate the travelled distance as follows: fS = v×
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Dpropagation×T . Here, fS is the acoustic feature, i.e.
the traveled distance of the sound signal, v is the speed
of sound, T is the sampling period. fS carries informa-
tion about the head circumference of the listener. We
can use non-linear curve-fitting [23] to estimate an-
thropometric parameter. fS is also input for the fusion
algorithm.

5 Magnetic Feature Extraction

Speakers, placed in the earphones, consist of con-
stant magnet and a coil, connected to a diaphragm [1].
When a sound is played through the speaker, the coil
generates variable magnetic field. The magnetic flux
density is inversely proportional to the distance [30].
The magnetic sensor is mounted on the right earphone,
i.e. at a constant distance to the sensor, while the dis-
tance to the left earphone depends on the head width
of the listener.

5.1 Probing Signal

Here we also would like to have inaudible probing sig-
nal, aiming unobtrusive continuous sampling of the
user’s anthropometry. The magnetometer is sampled
at 100 Hz, which limits us to infrasound below 20 Hz.
We use a linear chirp of 8−10 Hz frequency range as
a probing signal. Similar to the acoustic signal, the
magnetic probing signal also has a duration of two
seconds. First, the signal is played through the right
earphone, where the magnetometer is placed. This is
denoted as calibration signal, T xc. Next the same sig-
nal is played through the left earphone and is denoted
as the response signal, T xr. The received signals from
the three axis magnetometer (Rx, Ry, and Rz) are com-
prised of the magnetic fields induced from both the
calibration and response signals.

5.2 Signal Pre-processing

The magnetic field produced by headphone’s speaker
usually gets masked by noises and magnetic interfer-
ence due to the presence of other ferromagnetic ob-
jects in the environment. We apply a band-pass filter
to remove the interference outside of probing signal’s
frequency band. This step also takes care of earth’s
magnetism [15]. We designed one high-pass and one
low-pass finite impulse response (FIR) filters using the
same approach as with the audio feature and applied
them consecutively to the magnetometer signals.

5.3 Signal Alignment

First we down-sample the transmitted stereo signal
from 48 kHz sampling rate to 100 Hz sampling rate to
match the sampling rate of the magnetometer. Then
we sum the left and right channels to get a mono
transmitted signal. The alignment of the transmitted
and received signals is done by computing the cross-
correlation function, finding its maximum, and shift-
ing the received signals (Rx, Ry, and Rz) given num-
ber of samples. Note that in this case we compute the
cross-correlation function on the entire signal, as the
magnetic field propagates with the speed of light and
the signals from left and right earphones are practi-
cally in phase.

5.4 Synchronous Detection

Even after the band-pass filtering the magnetometer
signals are still very noisy for Rx. To suppress the
non-correlated signals and increase the signal-to-noise
ratio we use synchronous detection [11]. The idea of
synchronous detection is to multiply the already pre-
pared mono transmitted signal with the received signal
to amplify the modulated segments of the received sig-
nal.

5.5 Feature Extraction

We use Root Mean Square (RMS) [12] to estimate the
average magnetic flux density. This is done for two
time intervals: during the right chirp and during the
left chirp. In the process we combine the signals from
the three axes (Rx, Ry, and Rz):

B(m1,m2)=

√√√√ 1
(m2−m1 +1)

m2

∑
k=m1

(
Rx(k)2 +Ry(k)2 +Rz(k)2

)
,

(2)

where m1 and m2 are the beginning and ending sam-
ples of the corresponding time interval. Lets denote
them BC and BR for the right and left ear-cup signal.
The magnetic sensors provide the magnetic flux den-
sity in Tesla (N.A−1.m−1). It is inversely proportional
to the distance, i.e., BC ∝

1
dC
,BR ∝

1
dR

and BC
BR

= dR
dC
.

Here dC is the distance between the right earphone and
the magnetic sensor, which is constant, and dR is the
distance between the left earphone and the magnetic
sensor, which is proportional to the listener’s head
width. The ratio between the two densities is propor-
tional to the head width, but for increased precision we
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use a non-linear curve-fitting methodology to estimate
this anthropometric parameter.

For the fusion, we extract four features ({ fM}:
BC, BR,

BC
BR
, BC +BR) . We use the RMS values of

both signals, the proportion between them, and the
summation. These four features are fed into the fusion
algorithm as input.

6 Inertial Feature Extraction

The third modality for feature extraction uses the sig-
nals from the accelerometer and gyroscope of the
IMU. With these two sensors, we track human head
rotation and exploit the relationship between linear ac-
celeration and angular acceleration. Horizontal head
movement can be modeled as a circular motion where
the center of the circle is the center of the head and
the radius is half the head width. For any circular mo-
tion, there are two types of accelerations associated
with it: a) Centripetal Acceleration: The centripetal
acceleration (ac) [4] denotes the change in direction
of the tangential velocity. b) Tangential Acceleration:
Tangential acceleration (aT ) [27] defines the change
in magnitude of the tangential velocity of an object. In
Figure 3 (a) we show the two accelerations and their
associated directions. There is another kind of accel-
eration related with circular movement. This is called
angular acceleration (α) [27] that defines the change
of angular velocity of the moving object, α = ∆ω/∆t,
where ω is the angular velocity. Tangential accelera-
tion is related to the angular acceleration [27] as fol-
lows:

aT = α× r. (3)

Here r is the radius of the circular movement. From
the accelerometer and the gyroscope we can calculate
the tangential aT and angular acceleration α , and to
estimate half of user’s head width r.

6.1 Signal Pre-processing

To denoise the signals from the sensors, we use a mov-
ing average window, normalized with the mean of the
entire signal. In general such procedure is equivalent
of a FIR filter, but is simpler to design and compute.

x

y
z

ω%

(a) (b)

a* = Centripetal
Acceleration

a7 = Tangential
Acceleration

Fig. 3: (a) Circular head movement (b) The reference axis
for the head movement.

6.2 Tangential Acceleration Estimation

From the accelerometer we receive accelerations along
three axis: ax, ay, az. Due to the orientation of the
IMU board in our prototype, shown in Figure 3 (b),
the linear acceleration along y axis, ay, contains the
tangential acceleration. However, due to the tilt of hu-
man head, the linear acceleration also gets affected by
the acceleration due to gravity. We use a dead reckon-
ing module [34] to extract the tilt angles of the head
from the gyroscope. Then we remove the effect of
gravity by subtracting from the accelerometer read-
ings: ay = ay−gsin(θ). Here θ is the tilt of head with
respect to the reference axis.

6.3 Angular Acceleration Estimation

The gyroscope gives us the angular rotation, or veloc-
ity of the head movement, along three axis: wx,wy,wz.
The first order derivative yields the angular accelera-
tion:

αxt =
ωxt −ωxt−1

∆t
. (4)

Here, αxt is the angular acceleration along x axis, ωxt
is the angular velocity we get from the gyroscope at
timestamp t. Due to the orientation of the sensor, the
horizontal movement is captured by the angular move-
ment along x axis and we calculate αx to get the angu-
lar acceleration of the head movement.

6.4 Feature Extraction

Once we calculated the tangential acceleration (aT )
and the angular acceleration (αx), we use Equation 3
to calculate the radius of the circular movement. For
additional stabilization of the estimation we apply an-
other moving average window to estimate the feature
( fI), and use non-linear curve fitting on that to estimate
the anthropometry – head width.
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Fig. 4: Sensor Fusion Network

7 Sensor Fusion

Our proposed system aggregates extracted
features from the three modalities f =
{ fS, fM1, fM2, fM3, fM4, fI} and creates a late-fusion
neural network for anthropometric feature estimation.
The input feature vector contains information of all
the modalities which make the representation robust
as it does not rely on a single sensor. We use an
Extreme Learning Machine (ELM) [20] in regression
mode to estimate the desired anthropometry. The
ELM network consists of one broad hidden layer
of neurons. ELM has better generalization and
performance with limited training data [20].

In Figure 4 is shown the architecture of the proposed
sensor fusion network. Lets denote the input feature
vector as f , the ground-truth value as Y , and the out-
put of ELM as Ŷ . The input f has a dimension of
N × d where N is the number of training samples, d
is the dimension of feature vector, six in our case. In
Figure 4 is also shown the single hidden layer (hN×L),
where L is the number of neurons in the hidden layer.
If we denote W1 and W2 to be the weights from input to
hidden layer and from hidden layer to output layer, the
output of the network is: Ŷ = W2×σ(W1× f ). Here,
σ is the non-linearity function, typically sigmoid [16].
For ELM W1 is randomly initialized. Then the one step
learning estimates W2 by least-squares fit [37] to match
the output of the network Ŷ to the ground truth value
Y . In our system we train an individual ELM for each
of the desired anthropometric features. For a dataset
with N subjects, we train the network with N−1 sub-
ject’s samples and test it with the subject’s data that
is not included in the training set. This leave one out
methodology for evaluation ensures our network is not
over-fitted to the training data and is generalizable to
samples from completely unseen data during inference
stage.

8 Data Collection

Using our prototype headphone we collected data
from 35 subjects, 27 males and 8 females, age ranging
from 20 to 59 years old. The data collection was done
in a standard office room with other people present.

Table 1: Anthropometric Feature Statistics
Feature Mean (cm) Maximum (cm) Minimum (cm)
Head width 16.1 18 15
Head height 22.1 27.5 19.2
Head depth 18.9 21.4 17
Head circumference 57.6 63.2 50

For ground truth we have measured the subject’s an-
thropometric features (head width, head height, head
depth, head circumference) using a measuring tape
and a caliper. Comparing to previous works [36], we
find that our dataset has adequate diversity in terms
of distribution. Statistics about all the anthropometric
features are presented in Table 1. For each of acous-
tic and magnetic features we took 10 measurements,
totaling 350 for each modality. For the inertial fea-
ture the subjects were instructed to move their head
left and right with commands through the headphones
for 5 seconds.

9 Evaluation

In this section we present each individual modality
and the fusion algorithm’s performance. For evalua-
tion metric we use Root mean square error (RMSE)
and Pearson Correlation Coefficient. Here, we report
the performance of individual sensing modalities and
fusion algorithm’s performance in anthropometry esti-
mation.

9.1 Root Mean Square Error (RMSE)

In Figure 5a are shown the RMSE for the individual
features and the fusion. For head width estimation
our proposed fusion-based model achieves the lowest
RMSE of 0.58 cm. From the individual features In-
ertial feature achieves the lowest RMSE of 0.61 cm.
This feature implicitly estimates the head width and is
less prone to environmental noise. The next best per-
formance is from the Magnetic feature, which mea-
sures exactly this parameter.

For head height estimation our proposed fusion algo-
rithm has a RMSE of 1.21 cm. On the other hand,
acoustic feature has a RMSE of 1.54 cm which is the
lowest among the individual features. The magnetic
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Fig. 5: (a) RMSE and (b) Pearson Correlation Coefficient of different methods for anthropometric feature estimation. (c)
Confusion matrices for individual sensing modalities and fusion based cluster analysis.

and inertial features have 1.78 and 1.56 cm RMSE,
respectively. There is no modality in our system that
actively senses head height. All the modalities rely on
the correlation between head height and width to esti-
mate the value of head height. Therefore the error is
larger in this case for both individual feature and fu-
sion.

For head depth estimation, fusion has a RMSE of 0.64
cm which is lower than the individual feature based es-
timations. The performance of the individual features
is quite similar in this case. Among the individual fea-
tures, inertial feature has the minimum RMSE. The
acoustic, magnetic and inertial features have 0.89 cm,
0.88 cm, 0.85 cm RMSE, respectively.

In case of head circumference estimation, the fusion
based approach is again superior to the individual fea-
ture based estimations. Fusion has an RMSE of 1.18
cm for head circumference estimation. On the other
hand, acoustic feature’s RMSE is 1.29 cm which is
lower than other modalities, as acoustic feature is ex-
tracted by sound signal’s propagation around the head.
The maximum value of head circumference is 63.2 cm

which is more than 3 times than the maximum value
of head width. Therefore, the relative error is actually
lowest in this case. In all cases the fusion has lower
RMSE than single modality based anthropometry esti-
mation. This proves the advantage of fusion approach
over single modality sensing.

9.2 Pearson Correlation Coefficient

In Figure 5b we find that for head width estimation,
inertial feature has the maximum coefficient of 0.65
among the individual feature based algorithms. This
is consistent with the analysis based on RMSE as iner-
tial feature has the lowest RMSE for head width es-
timation. Our proposed fusion algorithm has a co-
efficient of 0.7, which is the highest among all the
modalities. This shows that fusion algorithm’s estima-
tion has similar trend with the ground truth value. For
head height estimation, fusion has the highest Pearson
correlation coefficient of 0.66, whereas the acoustic,
magnetic and inertial features have 0.61, 0.4, 0.6 co-
efficient, respectively. Therefore, acoustic feature has
the maximum Pearson correlation coefficient from in-
dividual features. This is also reflective of the analysis
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with RMSE value, as acoustic feature has the lowest
RMSE among the individual features. Consistent with
the RMSE analysis, the fusion based approach has the
best performance for head depth estimation as well
with Pearson correlation coefficient of 0.72. The iner-
tial feature has the maximum Pearson correlation co-
efficient among the individual modalities. The acous-
tic, magnetic and inertial features have 0.49, 0.5, 0.55
coefficient, respectively. For head circumference, the
fusion and acoustic feature have 0.61 and 0.59 Pear-
son correlation coefficient, respectively. On the other
hand, magnetic and inertial features suffer in this case
and have coefficient of only 0.49 and 0.51. These two
modalities sense head width only and it is evident in
their performance drop for head circumference esti-
mation.

9.3 Clustering Based Analysis

In this experiment we evaluate the algorithms’ per-
formance in terms of clustering heads with respect to
anthropometry. We divide listeners heads into three
groups based on the ground-truth head width: a) Small
(15–16 cm), b) Medium (16–17 cm), c) Big (>17 cm).

In Figure 5c we show the confusion matrices for indi-
vidual features and for the fusion algorithm. From Fig-
ure 5c (i) we see for acoustic feature based clustering,
the major misclassifications occur between medium
and big classes. The overall weighted accuracy for
acoustic feature based clustering is 35%. In Fig-
ure 5c (ii) we see an improvement in accuracy us-
ing magnetic feature for clustering. The accuracy in
this case is 53%. For inertial feature based cluster-
ing (Figure 5c (iii)) the accuracy goes up to 59%. Fi-
nally our fusion approach has a weighted accuracy
of 67% in terms of correct cluster prediction (Fig-
ure 5c (iv)). Note that the primary goal of this anal-
ysis is to evaluate the confusion matrix rather than
the accuracy. From confusion matrices we see that all
the approaches struggle with big heads. The acoustic
feature and fusion algorithms are better than the rest
as it classifies 78% of the big heads as medium, i.e.
the nearest cluster. For medium heads fusion outper-
forms the rest by predicting every one of them cor-
rectly. For small heads the individual feature-based
clustering have similar results, but our fusion based
approach has the maximum accuracy of 79%. Also,
fusion is the only algorithm with all the misclassifica-
tions in the nearest cluster.

10 Conclusion

In this paper, we propose a system for human anthro-
pometry estimation using existing sensors on current
high-end headphones for the need of HRTF personal-
ization. Our system allows seamless, real-time HRTF
personalization, which is scalable and feasible for
practical usage. We propose three algorithms for three
different sensing modalities to extract features repre-
sentative of listener’s head shape. We also propose a
fusion algorithm to create a multi-modal anthropome-
try estimator. We evaluate our system with collected
data using our prototype hardware. We find that our
algorithm has low error (RMSE) of 0.58−1.21 cm for
estimation of the parameters needed for HRTF person-
alization.
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