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ABSTRACT 
Online controlled experiments (e.g., A/B tests) are now 

regularly used to guide product development and accelerate 
innovation in software.  Product ideas are evaluated as 
scientific hypotheses, and tested in web sites, mobile 
applications, desktop applications, services, and operating 
systems. One of the key challenges for organizations that run 
controlled experiments is to come up with the right set of 
metrics [1] [2] [3]. Having good metrics, however, is not 
enough.   

In our experience of running thousands of experiments 
with many teams across Microsoft, we observed again and 
again how incorrect interpretations of metric movements may 
lead to wrong conclusions about the experiment’s outcome, 
which if deployed could hurt the business by millions of 
dollars. Inspired by Steven Goodman’s twelve p-value 
misconceptions [4], in this paper, we share twelve common 
metric interpretation pitfalls which we observed repeatedly in 
our experiments. We illustrate each pitfall with a puzzling 
example from a real experiment, and describe processes, 
metric design principles, and guidelines that can be used to 
detect and avoid the pitfall.  

With this paper, we aim to increase the experimenters’ 
awareness of metric interpretation issues, leading to 
improved quality and trustworthiness of experiment results 
and better data-driven decisions. 1 
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1 INTRODUCTION 
Online controlled experiments (e.g., A/B tests) are rapidly 

becoming the gold standard for evaluating improvements to 
web sites, mobile applications, desktop applications, services, 
and operating systems [5]. Big companies such as Amazon, 
Facebook, Google, LinkedIn, Microsoft  invest in in-house 
experimentation systems, while multiple startups (e.g., 
Apptimize, LeanPlum, Optimizely, Taplytics) provide A/B 
testing solutions for smaller sites. At Microsoft, our 
experimentation system [6] supports experimentation in Bing, 
MSN, Cortana, Skype, Office, xBox, Edge, Visual Studio, etc. 
running thousands of experiments a year. 

The attractiveness of controlled experiments comes from 
their ability to establish a causal relationship between the 
feature being tested and the measured changes in user 
behavior. Therefore, having the right metrics is critical to 
successfully executing and evaluating an experiment  [1] [2] 
[3]. Indeed, metrics play a key role throughout the 
experimentation lifecycle – experiment design, running of the 
experiment, and overall evaluation of the experiment to make 
a ship/no-ship decision.  

Having the right set of metrics, however, is not enough. 
There are situations when despite the experiment having been 
setup and run correctly and a good set of metrics used, the 
interpretation that the new feature caused the observed 
statistically significant change in a metric is incorrect. In other 
cases, the causal relationship holds but the standard 
interpretation of the metric movement, such as being 
indicative of positive or negative user experience, is wrong. 
We call such situations metric interpretation pitfalls. In our 
experience of working with many teams across Microsoft, we 
observed again and again how metric interpretation pitfalls 
lead to wrong or incomplete conclusions about the 
experiment’s outcome. 

Perhaps the most common type of metric interpretation 
pitfall is when the observed metric change is not due to the 
expected behavior of the new feature, but due to a bug 
introduced when implementing the feature. While having a 
rich set of Data Quality metrics may help catch some such 
issues, often they are domain specific and there is no clear 
general pattern for detecting and mitigating them. In this 
paper, we share twelve common metric interpretation pitfalls 
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which we observed repeatedly in different teams at Microsoft, 
and for which we are able generalize. We illustrate each pitfall 
with a puzzling example from a real experiment, and describe 
processes, metric design principles, and guidelines that can be 
used to detect and avoid the pitfall. Some of these pitfalls were 
studied before in statistics or other domains, while others, to 
our knowledge, were not. Whenever possible we provide 
references to those related works. 

Our contribution in this paper is to increase 
trustworthiness of online experiments by disseminating the 
common metric interpretation pitfalls, explaining them, and 
sharing ways to avoid them in some cases, and detect and 
mitigate them in others. At Microsoft, it is not uncommon to 
see experiments that impact annual revenue by millions of 
dollars, sometimes tens of millions of dollars.  An incorrect 
decision, whether deploying something that appears positive, 
but is really negative, or deciding not to pursue an idea that 
appears negative, but is really positive, is detrimental to the 
business. Online controlled experimentation is a rapidly 
evolving discipline and best practices are still emerging. 
Others who run online controlled experiments should be 
aware of metric interpretation issues, build the proper 
safeguards, and consider the root causes mentioned here to 
improve the quality and trustworthiness of their results, 
leading to better data-driven decisions.   

The paper is organized as follows. Section 2 briefly 
introduces online controlled experiments. Section 3 discusses 
related work. Section 4 describes a metric taxonomy, a useful 
way to organize metrics according to their role in experiment 
analysis. Section 5 is the main part of the paper discussing 
twelve metric interpretation pitfalls. Section 6 concludes.  

2 ONLINE CONTROLLED EXPERIMENTS 
In the simplest controlled experiment or A/B test users are 
randomly assigned to one of the two variants: control (A) or 
treatment (B). Usually control is the existing system, and 
treatment is the existing system with a new feature X added. 
User interactions with the system are recorded, and metrics 
are computed. If the experiment was designed and executed 
correctly, the only thing consistently different between the 
two variants is the feature X. External factors such as 
seasonality, impact of other feature launches, competitor 
moves, etc. are distributed evenly between control and 
treatment and therefore do not impact the results of the 
experiment. Hence any difference in metrics between the two 
groups must be due to the feature X. This establishes a causal 
relationship between the change made to the product and 
changes in user behavior, which is the key reason for 
widespread use of controlled experiments for evaluating new 
features in software. 

3 RELATED WORK 
Controlled experiments are an active research area, fueled by 
the growing importance of online experimentation in the 
software industry. Research has been focused on topics such 
as scalability of experimentation systems [7], rules of thumb 
and lessons learned from running controlled experiments in 
practical settings [8] [9], new statistical methods to improve 
metric sensitivity [10], projections of results from a short-

term experiment to the long term [11] [12]. These works 
provide good context for our paper and, in a similar style to 
this work, share lessons and learnings from running online 
controlled experiments in practice. These works, however, do 
not address the practical problem of metric interpretation.  

The importance of metrics as a mechanism to encourage 
the right behavior has been recognized and studied in the 
management domain since at least 1956 [13]. It is articulated 
using statements such as “What gets measured, gets managed” 
[14], “What you measure is what you get” [15], and “You are 
what you measure” [16]. In recent years, several works were 
published focusing specifically on defining metrics for online 
controlled experiments [1] [2] [3]. In [1] and [2], several 
principles for designing good Overall Evaluation Criteria 
(OEC) metrics are outlined.  In [3] a data-driven approach is 
described for evaluating different OEC metrics. These works 
are related to this paper in that some interpretability pitfalls 
we describe are due to poor metric design. We, however, 
discuss a broader set of pitfalls, most of which apply to 
metrics designed according to the best practices, and affect all 
metrics rather than just the OEC metrics.  

Few works have focused directly on the topic of 
interpretability of metrics in an online controlled experiment. 
Three such works are [17] [18] [19]. These works discuss two 
issues with the null hypothesis testing framework: early 
stopping of experiments, and p-value misinterpretation, and 
propose solutions. As part of the discussion below, we present 
a practical view on these issues, share examples, and discuss 
the solutions proposed in [17] [18] [19] in the context of other 
approaches to avoiding these pitfalls. In addition, we also 
share many pitfalls which can occur even after the issues with 
null hypothesis testing framework have been addressed. 

4 METRIC TAXONOMY 
Most teams at Microsoft compute hundreds of metrics to 
analyze the results of an experiment. While only a handful of 
these metrics are used to make a ship decision, we need the 
rest of the metrics to make sure we are making the correct 
decision. In this section we describe a metric taxonomy that 
we have found useful for both guiding the metric design 
process and interpreting experiment results. The taxonomy 
assigns clear roles to different types of metrics and specifies 
their usage in evaluating the experiment outcome. 

Data Quality Metrics. The first question we answer when 
looking at the outcome of an experiment is whether we can 
trust that the experiment was configured and run correctly 
such that we can trust the experiment results. It is not 
uncommon to have telemetry inconsistencies in the new 
feature, bugs in its implementation, or other issues. The 
purpose of Data Quality metrics is to alert of such issues.  

One metric that has proven effective in spotting data 
quality issues in an experiment is the ratio of the number of 
users in the treatment to the number of user in the control. A 
fundamental requirement in A/B testing is that treatment and 
control samples are drawn at random from the same 
population. This means that the number of users in the 
samples should satisfy the expected ratio. If the actual ratio is 
different than the expected (a chi-square test can be used), it 
means something is wrong with the sampling process. We call 
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this situation Sample Ratio Mismatch (SRM).  Most of the time 
SRM implies a severe selection bias, enough to render the 
experiment results invalid [20] [21]. 

We give more examples of Data Quality metrics later in the 
paper. Having a comprehensive set of Data Quality metrics is 
key to detecting many pitfalls described below. 

Overall Evaluation Criteria (OEC) Metrics. After 
checking the Data Quality metrics, next we want to know the 
outcome of the experiment. Was the treatment successful, and 
what was its impact? The set of metrics we look at to answer 
this question are called the OEC (Overall Evaluation Criteria) 
metrics [9] [22]. 

The OEC metrics are usually leading metrics that can be 
measured during the short duration of an experiment, but at 
the same time are indicative of long term business value and 
user satisfaction. It is ideal to have just a single metric as the 
OEC for a product. It can be a composite metric which is a 
combination of a few other metrics. Designing a good OEC is 
not easy, and is a topic of active research [1] [2] [3]. A 
discussion of an OEC for a search engine can be found in [9]. 

Guardrail Metrics. In addition to OEC metrics, we have 
found that there is a set of metrics which are not clearly 
indicative of success of the feature being tested, but which we 
do not want to significantly harm when making a ship 
decision. We call these metrics Guardrail metrics. For 
instance, on a web site like Bing or MSN, Page Load Time 
(PLT) is usually a guardrail metric. Small degradations in 
guardrail metrics can be expected – any additional feature on 
a site usually causes a slight increase in PLT due to, for 
example, a slightly larger HTML size. Large degradations, 
however, are generally not allowed.  

Local Feature and Diagnostic Metrics. Local feature 
metrics measure the usage and functionality of individual 
features of a product. Examples of feature metrics are metrics 
measuring click-through Rate (CTR) on individual elements on 
a web page, or metrics measuring the fraction of users 
transitioned from one stage of a purchasing funnel to another. 
These metrics often serve as Diagnostic metrics for the OEC, 
helping understand where the OEC movement (or lack of it) is 
coming from. 

While improvement in a local metric is usually a good 
thing, it is often accompanied by a degradation in another 
related local metric. For example, as discussed in [8], it is very 
hard to increase Overall CTR on a search engine page, but it is 
very easy to increase CTR on some element of the page at the 
expense of other elements. There can also be cases where 
large unexpected improvement in a local metric is due to 
undesirable side effects of the treatment. Therefore, 
movements in local metrics need to be interpreted carefully. 

5 METRIC INTERPRETATION PITFALLS 
In this section, we share twelve common metric interpretation 
pitfalls we observed when running experiments at Microsoft. 
All the numbers reported below are statistically significant at 
p-value 0.05 level or lower, unless noted otherwise.    

5.1 Metric Sample Ratio Mismatch 
We ran an experiment on the MSN.com homepage where, 
when users clicked on a link, in treatment the destination page 

opened in a new browser tab while in control it opened in the 
same tab. The results showed 8.32% increase in Page Load 
Time (PLT) of the msn.com homepage. How could this one line 
JavaScript change cause such a large performance 
degradation? Was there a bug introduced during this change? 

The key to uncovering the mystery was to carefully 
examine the definition of the metric: 

 

(ݐ݊ܽ݅ݎܽݒ)ܶܮܲ =  
∑ ௛௢௠௘௣௔௚௘ ௟௢௔ௗ௦ ௣(݌)ܶܮܲ

∑ 1௛௢௠௘௣௔௚௘ ௟௢௔ௗ௦
 

 
There was a statistically significant difference in the 

number of home page loads, with the treatment having 7.8% 
fewer home page loads then the control. Clearly, the set of 
page loads over which the metric was computed were 
different between the treatment and the control. In a situation 
like this the metric value cannot be trusted. 

What happened is that in the control after users clicked a 
link on the homepage and then wanted to come back, they 
used the browser back button causing a homepage reload. In 
the treatment, there was no back button option after opening 
a link in the new tab, but the homepage remained open in the 
old tab so users could come back to it without a reload. The 
back button page reloads in the control were generally faster 
than the first page load in a session due to browser caching. 
With the faster back button page loads omitted in the 
treatment, treatment’s average PLT was substantially worse. 

We call an effect like this the metric sample ratio mismatch. 
It is similar to the Sample Ratio Mismatch (SRM)  problem 
mentioned in Section 4, and similarly to how an SRM 
invalidates the results of the whole experiment, a metric 
sample ratio mismatch usually invalidates the metric: the 
treatment-control delta may change in an arbitrary direction, 
and the statement “the new feature X caused Y amount of 
metric change” is no longer valid.  

There is a variety of causes for metric sample ratio 
mismatch. Sometimes, like in the example above, it is directly 
caused by a change in user behavior. Other times it could be 
due to indirect reasons such as different loss rates of 
telemetry between control and treatment, incorrect 
instrumentation of new features, etc. Some of the pitfalls 
described later in the paper may cause metric sample ratio 
mismatches.  

Not being aware that a metric is affected by a sample ratio 
mismatch could lead to a wrong ship decision, send the 
experimenter down a wrong investigation path, or result in a 
wrong estimate of the experiment impact. For this reason, it is 
critical that the experimentation system automatically detects 
sample ratio mismatches and warns the user about them.  

What to do when a metric sample ratio mismatch occurs? 
The general strategy is to decompose the metric with the goal 
of (1) understanding what parts of the metric differ, and (2) 
isolate the parts that are not affected by the mismatch and can 
still be trusted. The specifics of the decomposition vary case 
by case. A good start is to look separately at the numerator 
and the denominator of the metric. For the PLT example 
above, the breakdown could proceed as follows. 

 
Homepage PLT  

1. Average homepage PLT per user 
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a. Average homepage PLT per user with 1 
homepage visit 

b. Average homepage PLT per user with 2+ 
homepage visits 

2. Number of homepage loads per user 
a. Number of back-button loads 
b. Number of non-back-button loads 

i. PLT for non-back-button loads 
 

First, two separate metrics at user level could be created 
for numerator and denominator: 1 and 2 (as discussed in 
section 5.2, it is a good idea to always have such a 
decomposition on the scorecard). Decomposing 1 into 1.a and 
1.b would show that only 1.b part has a statistically significant 
difference between the treatment and the control. This may 
give a hint to decompose 2 into 2.a and 2.b. Seeing that only 
2.a part changes, one can then compute 2.b.i – a metric that 
does not suffer from a sample ratio mismatch and gives useful 
information about whether there is any difference in PLT on 
the subset of page loads that could be compared fairly. 

5.2 Misinterpretation of Ratio Metrics 
Click Through Rate (CTR) of an online ad or content site is 
usually considered a good indicator that users find the ad or 
content relevant and helpful [23]. This metric is widely used 
in online advertising [24] and often used in content websites 
like MSN.com as well. 

The main page of MSN.com consists of a series of modules, 
each of which contains links to pages under the same topic 
area such as entertainment, sports, etc. The positions of such 
modules have been frequently tested to optimize users' 
experience. In one experiment a module located close to the 
bottom of the main page was moved to a higher position 
which requires users to scroll less to reach it. The result 
showed a 40% decrease in CTR of the module! 

The metric definition is given below, computing an average 
over users of the CTR of each user. 

 

ݎ݁ݏܷ/ܴܶܥ ݃ݒܣ =  
∑ ൬

݈݁ݑ݀݋݉ ℎ݁ݐ ݊݋ ݏ݈݇ܿ݅ܿ #
 ൰௨௦௘௥௦݈݁ݑ݀݋݉ ℎ݁ݐ ݂݋ ݏ݊݋݅ݏݏ݁ݎ݌݉݅ #

∑ 1௨௦௘௥௦
 

 
In our example, there was no metric sample ratio mismatch 

as the ratio of users in treatment and control was balanced. 
The movement in the average CTR/user was valid and caused 
by the treatment. The question was whether 40% drop in 
CTR/user of a module meant that the treatment was bad? 

When the numerator, the number of clicks on the module, 
and denominator, the number of times that the module was 
displayed to the users, of the metric were checked separately, 
it turned out that both were improved significantly but the 
denominator moved relatively more than the numerator; 
200% and 74%, respectively. CTR is usually interpreted as 
measure of quality of content or recommendation. This 
interpretation does not hold when there is a change in the 
number of times the module was displayed to the users or 
when there is a change in the population of users who saw the 
module. The whole page CTR remained flat, which is known to 
be a typical result of an experiment [8], because both total 

numbers of clicks and impressions for the whole page were 
not changed significantly. At the same time, revenue increased 
due to the promoted module being more monetizable than 
other modules that lost clicks. Thus, the result of the 
experiment turned out to be good. 

Ratio metrics are very common in experiment analysis, 
both due to intuitive interpretation and due to increase in 
sensitivity they usually provide compared to count metrics, 
because of their bounded variance. For example, the Avg CTR 
/ User metric is usually more sensitive than Click Count / 
User, because the value of the CTR metric is between 0 and 1, 
while the value of Click Count / User is unbounded. In fact, for 
many count metrics the confidence interval does not shrink as 
the experiment runs longer [22]. However, as shown in the 
example above, ratio metrics can be misleading or potentially 
invalid if the denominator of the metric changed. 

There are two ways to compute ratio metrics: (A) the 
average of ratios, and (B) the ratio of averages. For instance, 
the CTR metric can be computed as described above (method 
A) or as the ratio of the total number of clicks to that of page 
views from all users (method B). We find that method A has 
several practical advantages over method B. It tends to have 
higher sensitivity. Since it equally weighs each user regardless 
of one's activity level, it is more resilient to outliers. Since the 
denominator of method A is the number of users which is one 
of the controlled quantities in an experiment, it is less likely to 
suffer from having a metric-level SRM (Section 5.1). In 
addition, method A allows us to compute the variance of a 
metric in a simpler way compared to method B, because 
method A computes an average over users, which is typically 
the unit of randomization in an experiment. More detailed 
discussion on this can be found in [1]. 

To detect denominator mismatch in ratio metrics, we 
recommend to always define count metrics for the numerator 
and the denominator, and provide those in the result 
alongside the ratio metric. 

5.3 Telemetry Loss Bias 
Skype recently ran an experiment that evaluated changing to a 
different protocol for delivering push notifications to Skype’s 
iPhone app, with the goal of increasing the reliability of 
notification delivery. While the experimenters could foresee 
some impact on message-related metrics, they did not expect 
it to impact call-related metrics in any way. Surprisingly, the 
results showed strong statistically significant changes in some 
call-related metrics, such as the fraction of attempted calls 
that were successfully connected. Even more puzzling was the 
fact that the pattern of movement did not follow a typical 
“improvement” or “degradation” pattern. Some metrics moved 
strongly while other, related metrics stayed flat. What went 
wrong? 

First some background. An unavoidable aspect of analyzing 
mobile app experiments is that a substantial fraction of 
telemetry coming from mobile clients gets lost. To optimize 
bandwidth usage, most telemetry events are buffered on the 
client and then sent in batches only when the client is on wifi. 
The buffer is fixed size, and if the client is not on wifi for a long 
time, the buffer fills up and old events are dropped.  



 

 5

In this experiment, when the app was woken up by a push 
notification via the new protocol used by the treatment, it 
stayed up a few seconds longer, allowing more time for 
checking whether it is on wifi and, if so, preparing the 
telemetry batch and sending it over. Treatment showed 
reductions in loss rate of all the client events that were used to 
compute the metrics. For some metrics, this caused a metric 
SRM (see Section 5.1). For others, the impact was subtler.  

Different rates of telemetry loss between the variants is a 
common way to bias experiment results. It is not limited to 
mobile experiments. In web site experiments, the tradeoff 
between the site performance and the reliability of click 
tracking [25] leads to lossy click tracking mechanisms being 
used, that could be affected by experiments. For example, 
opening links in a new tab, as in the MSN.com experiment 
described in Section 5.1, improves click tracking reliability 
due to the original page staying open and having more time to 
execute the javascript code that sends click tracking beacon 
[22].      

Since the new events that make it (or events that are lost) 
are typically a highly biased set, telemetry loss bias practically 
invalidates any metrics that are based on the affected events. 
In the MSN.com example, this means that all click-based 
metrics were invalid. In the Skype example, all client event 
based metrics were invalid. Metrics based on the server-side 
events, however, remained valid. The puzzling pattern of 
movement in call-related metrics was the result of there being 
a mix of server and client event based metrics. 

The results of overlooking telemetry bias could be severe, 
potentially leading to an incorrect ship decision. Therefore, for 
every client event used in metrics, a Data Quality metric 
measuring the rate of event loss should be created. The two 
common ways to measure event loss are 

 
1. Compare to a corresponding server event. For example, 

in Skype there are both client and server versions of the 
“call” event (each containing different fields). The server 
event has almost no loss, so the number of client events 
received could be compared to that received from the 
server to compute the client event loss rate. 

2. Use event sequence numbers. The client can assign a 
sequence number to every event. Gaps in the sequence 
can be used to compute a loss rate estimate.  

 
Approach 1 is superior and should be used wherever 

possible, while approach 2 can be used where there is no 
server-side baseline event to compare to. Event loss rate 
should be tracked and a focused effort needs to be made to 
improve it via, e.g., reducing the size of the event and 
optimizing the timing and the priority of sending a different 
event. As much as possible metrics should be based on more 
reliable server-side events. 

Telemetry loss bias is one of many ways how issues with 
instrumentation, data collection, and data processing – the 
steps leading up to the metric computation – can bias metric 
values. Having standard instrumentation guidelines, 
documenting the data flow for each metric, and implementing 
a rich set of Data Quality metrics are all helpful for preventing 
and detecting such issues. 

5.4 Assuming Underpowered Metrics had no 
Change 

The total number of page views per user is an important 
metric in experiments on MSN.com. In one MSN.com 
experiment, this metric had a 0.5% increase between the 
treatment and control, but the associated p-value was not 
statistically significant. For a mature online business like 
MSN.com, 0.5% change of the total page views is often 
interpreted as a meaningful impact on the business. But since 
it was not statically significant can we assume that there was 
no impact on page views? 

 More careful look at the result revealed that the 
confidence interval of the metric lied over about ±5% and the 
experiment was not configured to have an enough power for 
the metric; it turned out that only 7.8% or larger change could 
be detected with 80% power, given the configuration of the 
experiment. Therefore, we cannot assume that we did not 
impact the underpowered metric. 

Power is the probability of rejecting the null hypothesis 
given that the alternative hypothesis is true. Having a higher 
power implies that an experiment is more capable of detecting 
a statistically significant change when there is indeed a 
change. If an underpowered metric turns out to be statistically 
significant, then it is more likely that the observed change of 
the metric will be exaggerated compared to the true effect size 
[26], which is often referred to as an example of Winner’s 
curse [27]. 

To avoid the aforementioned issues, a priori power 
analysis should be conducted to estimate sufficient sample 
sizes, at least for the OEC and the Guardrail metrics, and to 
allocate at least that number of samples to the experiment, so 
that changes which are small but meaningful to business can 
be detected as being statistically significant. The 
recommendation from such a priori power analysis can be 
simplified for typical scenarios of experiments for a given 
product. For example, for Bing experiments run in the US, it is 
recommended to run with at least 10% of the users for one 
week, if the feature being tested impacts most users. 
Sometimes, the recommended number of samples given an 
effect size to detect can be larger than the traffic availability of 
a product. In such a case, it is important to know the least 
effect sizes of the metrics of interest given the full usage of the 
traffic so that experimenters are aware of the limits in the 
detectability of changes imposed by configurations of 
experiments. 

We recommend to have at least 80% power to detect small 
enough changes in success and guardrail metrics to properly 
evaluate the outcome of an experiment. 

5.5 Claiming Success with a Borderline P-
value 

We ran an experiment in Bing.com where we observed a 
statistically significant positive increase for one of the key 
Bing.com OEC metrics with a p-value of 0.029. The metric tries 
to capture user satisfaction and is a leading indicator of user 
retention. Very few experiments succeed in improving this 
metric. Given that we have verified the trustworthiness of the 
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experiment is there anything left but to celebrate such a good 
result? 

In Bing.com whenever key metrics move in a positive 
direction we always run a certification flight which tries to 
replicate the results of the experiment by performing an 
independent run of the same experiment. In the above case, 
we reran the experiment with double the amount of traffic 
and observed that there were no statistically significant 
changes for the same metric. 

Since the formal introduction of a p-value by Pearson [28] 
and its statistical significance boundary of 5% by Fisher  [29], 
p-values have been very widely used as an indicator of the 
strength of evidences of scientific findings. However, as 
pointed out in [4] [30], p-values have been "commonly 
misused and misinterpreted". One of the notable cases is 
simply rejecting a null hypothesis when a p-value is close to 
the decision boundary without considering other supporting 
evidence. 

The behavior of metrics changing from not being 
statistically significant to statistically significant or vice versa 
is often observed in repeated A/A experiments which are 
configured to have no differences between the treatment and 
control groups. By the definition of p-value, there is a chance, 
typically 5%, that a metric comes with a p-value being less 
than 5% in an A/A experiment. Thus, when one tracks many 
metrics simultaneously, some of those metrics will have p-
values less than the decision boundary. However, again by the 
definition of p-value, such statistical significant p-values in 
A/A experiments are typically close to the boundary, e.g. 
between 1% to 5%  [31]. 

As shown in the example above, when a metric comes with 
a borderline p-value, it can be a sign of a false positive, and 
there are many such cases in the world of online A/B testing 
due to a large number of metrics computed for an experiment. 
We recommended for experimenters to evaluate experiment 
results by placing emphasis on strongly statistically significant 
metrics and rerunning with larger traffic when metrics, in 
particular the OEC metrics, have borderline p-values. In cases 
where repeated reruns provide borderline p-values either due 
to small treatment effects or when we cannot increase the 
traffic we can use Fishers Method to obtain more reliable 
conclusion.  

5.6 Continuous Monitoring and Early 
Stopping 

Example 1: A two-week long experiment was run in Bing, 
evaluating a new ranking algorithm. After the first week, the 
key success metric showed statistically significant 
improvement. Can the experiment owner stop the experiment 
after the first week, since the success criteria were already 
met? 

Example 2: A two-week long experiment was run at Xbox 
to evaluate teaching tips for users who get suspended from 
playing multiplayer games due to bad behavior. The goal of 
the experiment was to decrease customer support service 
calls about the suspensions. At the end of two weeks, we 
observed no such change in the number of calls made between 
the treatment and the control groups. Can the experiment 
owner keep running the experiment beyond the two weeks, to 

see if with increased power key metrics improve in a 
statistically significant way? 

The answer to both questions, in the standard scenario 
where null hypothesis testing (NHST) is used, is “no”. 
Continuously checking the results and stopping as soon as 
statistical significance is achieved leads to an increase in 
Type-I error, or the probability of a false positive. The reason 
for this is that allowing extra opportunities for evaluation, in 
addition to the evaluation at the end of the pre-defined 
experiment period, can only increase the chance of rejecting 
the null hypothesis. This may lead to shipping a feature that 
did not improve the metrics the experiment owner thought it 
improved, or assuming the feature had negative impact when 
it actually did not. 

In our experience, stopping early or extending the 
experiment are both very common mistakes experiment 
owners make. These mistakes are subtle enough to even make 
it into recommended practices in some A/B testing books 
[32]. The issue is exacerbated by the fact that in practice 
continuous experiment monitoring is essentially a 
requirement to be able to shut down the experiment quickly 
in case a strong degradation in user experience is observed. 

Making experiment owners aware of the pitfall, and 
establishing the guidelines that require making ship decision 
only at the pre-defined time point, is one approach to avoid 
this pitfall. Another approach is to adjust the p-values, to 
account for extra checking [33]. Finally, in [34] a Bayesian 
framework is proposed that, unlike NHST, naturally allows for 
continuous monitoring and early stopping. 

5.7 Assuming the Metric Movement is 
Homogeneous 

Multiple prior works [11] [12] discussed the revenue-
relevance tradeoff in web search. More and/or lower quality 
ads shown to users typically lead to a degradation in user 
experience, and vice versa. We ran an experiment in Bing that 
evaluated a new ad auction and placement algorithm, 
attempting to increase revenue by improving ad quality and 
keeping the number of ads shown roughly the same. The 
experiment seemed to be very successful, increasing revenue 
by 2.3%, while at the same time decreasing the number of ads 
shown per page by 0.6%.  

However, an interesting insight was obtained by 
segmenting the pages by whether it was the first page 
returned after the user typed the query (original), or one of 
the subsequent pages returned after the user clicked on a 
result and pressed the back button (dup). Dup pages are 
reloaded and are generally different from the original, 
potentially showing a different number of ads and web 
results. We found that while on dup pages the number of ads 
per page decreased dramatically, by 2.3%, the number of ads 
per page on the original pages actually increased by 0.3%. 
While the number of original pages is higher, the large delta 
on dup pages led to the overall decrease. Given the 
importance of original pages, it was determined that the 
experiment actually did not meet its goal of keeping the ad 
load the same. 

The lesson here is to avoid the pitfall of assuming that 
treatment effect is homogeneous across all users and queries. 
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We observe heterogeneous treatment effects quite often in 
our experiments, such as users in different countries reacting 
to the change differently, or the feature being tested not 
working correctly only in a certain version of a certain 
browser. Not being aware of such effects may result in 
shipping a feature that, while improving user experience 
overall, substantially hurts experience for a group of users. 
Conversely, a feature that is negative overall may actually be 
positive for a certain group.    

Due to a large number of metrics and segments that need 
to be examined in order to check whether there is a 
heterogeneous treatment effect, it’s pretty much impossible to 
reliably detect such effects via a manual analysis. Developing 
automated tools for detecting heterogeneous treatment 
effects is an active area of research [35]. Our system 
automatically analyses every experiment scorecard and warns 
the user if heterogeneous treatment effects are found. While 
there is a lot of value of monitoring running experiments, the 
experimenters should understand the caveats around 
continuous monitoring and build robust systems to help make 
these decisions easier. 

5.8 Segment Interpretation 
It is a common practice to segment the users in the 
experiment by various criteria. For example, in mobile app 
experiments commonly used segments are the user’s country, 
device type, operating system, app version, date the user 
joined the experiment, etc. Segmentation is useful for 
debugging, for example when trying to understand if a data 
quality issue applies to all users or is limited to a specific user 
segment, for understanding if some segments show stronger 
metric movement than others, and for detecting other types of 
heterogeneous treatment effects (see Section 5.7). However, 
one needs to interpret metric movements on segments with 
care. 

In a Bing experiment testing a new ranking algorithm, one 
of the segments used was whether the user saw a “deeplink” – 
one of the extra links that show up for some navigational 
queries. Figure 1 shows an example. Both groups of users, 
those who saw a deeplink (U1) and those who did not (U2), 
showed a statistically significant increase in Sessions per User, 
the key Bing metric. However, the combination (U1 + U2) did 
not show a statistically significant change in the metric. How 
can this be possible? 

 

 
Figure 1: “News”, “Schedule”, etc. are deeplinks for the 
“seattle seahawks” official site search result  
 

What happened here is that the experiment did not impact 
the Sessions per User metric. However, the fraction of users in 
U1 (those who saw a deeplink) decreased in the treatment. 
The users who “dropped out” from U1 were less active than 
average in that group, resulting in higher treatment Sessions 
per User for U1. These users joined the U2 group (those who 
did not see a deeplink), where they were more active than 
average, resulting in higher treatment Sessions per User for U2 
as well. This situation is known as Simpson’s paradox [36].  

The key lesson from this example is to ensure that the 
condition used for defining the segment is not impacted by the 
treatment. This can be tested by conducting an SRM test (see 
Section 4) for each segment group. Indeed, for the experiment 
described above, the sample ratio of users in both deeplink 
and no-deeplink segments was statistically significantly 
different. If statistically significant difference is observed, the 
results for that segment group, and often for all other groups 
in the segment, are invalid and should be ignored. 

A common way to run into a Simpson’s paradox is to keep 
recursively segmenting the users until a statistically 
significant difference is found. Experiment owners are 
particularly prone to this pitfall when the metric they were 
hoping to improve in the experiment did not show a 
statistically significant improvement. Trying to see if the 
metric improved at least for some subgroup of users, they 
keep recursively segmenting the user population until they 
see the desired effect.  

Aside from increasing the possibility of encountering a  
Simpson’s paradox, this is also an instance of multiple testing 
problem [37] and will result in an increased Type-I error. For 
example, for a commonly used Type-I error threshold of 5%, 
assuming segment groups are independent, 1 out of 20 
segment groups would show a statistically significant change 
in the metric simply by chance. To control the Type-I error, 
correction procedures such as Bonferroni correction [38] 
should be used when analyzing segments. 

5.9 Impact of Outliers 
Infopane is the module showing a slide show of large 

images at the top of MSN.com homepage. There was an 
experiment to increase the number of slides in the infopane 
from 12 to 16. Contrary to the expectation that increasing the 
number of slides would improve user engagement, the 
experiment showed significant regression in engagement. The 
experiment also had an SRM, with fewer users than expected 
in the treatment.  

Investigation showed that the cause of the SRM and the 
puzzling drop in engagement was bot filtering logic. Number 
of distinct actions the user takes was one of the features used 
by the bot filtering algorithm, resulting in users with outlier 
values labeled as bots and excluded from experiment analysis. 
Increasing the number of slides improved engagement for 
some users so much that these real users started getting 
labeled as bots by the algorithm. After tuning the bot filtering 
algorithm, SRM disappeared and experiment results showed a 
big increase in user engagement.  

Outliers can skew metric values and increase the variance 
of the metric making it more difficult to obtain statistically 
significant results. Because of this, it is common to apply some 
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kind of filtering logic to reduce the outlier impact. As the 
example above shows, however, one needs to ensure that all 
variants in the experiment are impacted by the outlier 
filtering logic in the same way. 

Common outlier handling techniques include trimming 
(excluding the outlier values), capping (replacing the outlier 
values with a fixed threshold value), and windsorizing 
(replacing the outlier values with the value at specified 
percentile). For all these approaches, we always recommend 
having a metric that counts the number of values affected by 
the outlier handling logic in the Data Quality section, to be 
able to detect situations like the one in our example. Changing 
the metric to compute a percentile (25th, median, 75th, 95th 
are common) instead of the average is another way to handle 
outliers, though percentile metrics are often less sensitive 
than averages, and are more expensive to compute. Applying a 
transformation, e.g. taking a log, also helps to reduce outlier 
impact, but makes the metric values difficult to interpret. 

5.10 Novelty and Primacy Effects 
The edge browser new tab page has a section at the top that 
shows frequently visited sites for a user (referred to as top 
sites) to allow the user to quickly navigate to that site. A user 
can also add a site to the top sites list. While top sites feature 
was used by many users, many did not have a full list of top 
sites, and never added a top site. An experiment was run for 
four weeks to test the idea of showing a coach mark  [39] to 
such users asking them to add a top site. This coach mark was 
shown just once to only those users who had an empty top site 
and had never added a top site before.  

The experiment result showed 0.96% increase in whole 
page clicks and 2.07% increase in clicks on the top sites. This 
result seemed positive. The question was how durable is the 
effect? Will it lead to long term increase in user engagement? 

When we looked at the experiment results for each day 
segment, we found that the percent delta in clicks on top sites 
between treatment and control declined quickly, suggesting a 
novelty effect. To test the hypothesis, we looked at the effect 
during the visit the user was shown the coach mark, and the 
effect during the subsequent visits, separately. While the 
former segment showed a large increase in user engagement 
and clicks on the top sites, the latter segment did not show 
any statistically significant movement in metrics. This 
indicated that the treatment effect did not last beyond the first 
visit. This result saved the feature team from spending too 
many resources on creating more coach marks and also saved 
the users from getting multiple coach marks.  

While experiments are typically run for a short duration, 
we are trying to estimate the long-term impact of the 
treatment on the business and users. To properly assess the 
long term impact, we need to consider if the treatment effect 
would increase or decrease over time. In the example above, 
the change appeared positive in the short period but it was 
flat in the long term. This is a novelty effect. Ignoring this 
effect could lead the product team to invest in wrong areas 
which do not produce durable positive treatment effects. It 
may also lead to an increase in features that capture user 
attention and engage with the product while distracting the 
users from the actual task they want to finish, increasing user 

unhappiness in the long term. Pop-up ads and rapidly 
changing UI elements on the page fall into this category. 

Conversely, some treatment effects might appear small in 
the beginning but they increase over time as user learning 
occurs over time or a machine learning system better adapts 
to the treatment. This is called a primacy effect. Typical 
examples here include decrease in users ignoring ads (ads 
blindness) when fewer and more relevant ads are shown to 
users [12], or increase in user engagement when a new 
content recommendation system gathers more information 
from users over time and adapts.  

It is not always easy to detect novelty and primacy effects 
in all cases. When it is known that the feature has primacy 
effect, for example when testing a new personalization 
algorithm that needs to gather some data about the user, we 
can mitigate these effects by doing a warm start so the 
marginal improvement in performance over time is smaller. 
We also recommend segmenting treatment effect by different 
days of the experiment, or different user visits, to see if the 
treatment effect changes over time. One can also run long-
term experiments to avoid the impact of novelty and primacy 
effects, though there are many pitfalls with analyzing long 
running experiments correctly [12] [11].   

5.11 Incomplete Funnel Metrics 
We ran an experiment in Xbox to test various promotion 
strategies for products that were on sale. Several tests were 
conducted wherein the images and messaging for the sale 
were changed to increase revenue. The results showed that 
such small changes have large positive impacts on the number 
of users who click through to the sale. What should we do 
next? 

While it is easy to increase the number of clicks we obtain 
on specific locations it does not directly relate to our aim of 
increasing revenue. In some of these experiments we did not 
see any corresponding revenue increase even when it had 
sufficient power. This was the primary goal of this 
experiment. On the other hand, it cost our users wasted time 
and effort.  

Several online user experiences can be modelled as a 
funnel process. The two main experiences for these include 
sign-ups to online services and online shopping on e-
commerce sites. In these processes, users need to perform 
several actions in a row until an eventual success goal is met. 
In real scenarios, the final success rates of less than 1% are 
not uncommon making it crucial to understand and optimize 
these processes.  

For funnel based scenarios it is crucial to measure all parts 
of the process. At every step of the funnel we need to ensure 
that the success rates are compared and not just the raw clicks 
or user counts. In addition, we should measure both 
conditional and unconditional success rate metrics. 
Conditional success rates are defined as proportion of users 
that complete the given step among users that attempted to 
start the step. Unconditional success rates compute the 
success rate taking into consideration all users who started at 
the top of the funnel. The combination of these two types of 
metrics along with detailed breakdowns at each step is the 
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best guiding light towards improving our main goal while 
maintaining at least the current success rate standards.  

While large ecommerce or social websites have millions of 
users attempting to perform these actions most smaller sites 
do not have such a luxury. Even with thousands of users 
starting the process we could lead to only a few hundred users 
successfully completing the final step. Hence it becomes 
crucial to ensure that our metrics at every step are sufficiently 
powered to detect any changes we deem significant to our 
business.  

5.12 Failure to Apply Twyman’s Law 
We recently ran an experiment on the MSN.com homepage 
where the Outlook.com button on the top of the page was 
replaced with a mail app button which, when clicked, would 
open the desktop mail app in treatment instead of navigating 
the user to outlook.com as it did in control. For this 
experiment we saw a 4.7% increase in overall navigation 
clicks on the page, and a 28% increase in the number of clicks 
on the button. There was also a 27% increase in the number of 
clicks on the button adjacent to the mail button. It seemed like 
we had hit a jackpot. The treatment was doing much better 
than we expected. What else was left than to ship this 
treatment to all users?  

Such a metric movement was too good to be true. While 
there was a massive increase in number of clicks, we did not 
see any stat-sig change in metrics related to user retention 
and satisfaction. Also looking at each day segment we found 
that the number of clicks on the mail app button were 
decreasing rapidly day over day (Figure 2). We believe that 
the treatment caused a lot of confusion to the users who were 
used to navigating to outlook.com from the msn homepage. 
When the button instead started opening the mail app, some 
users continued to click on the button expecting it to work like 
it used to. They may have also clicked on the button adjacent 
to mail button to check if other buttons are working. This is a 
likely reason to see such an outcome. Had this treatment been 
shipped to all users, it would have caused a lot of user 
dissatisfaction. In fact we shut down the experiment mid-way 
to avoid user dissatisfaction.  

In another experiment conducted in Windows Store where 
a new configuration of top-selling apps page was tried, an 
unexpected 10% increase in the number of views of one type 
of page was observed. The investigation revealed that the 
affected type of pages in the treatment was not properly 
configured and no content was displayed to the users, which 
led users to try opening those pages multiple times and 
resulted in 10% increase. 

Twyman's law says that any figure that looks interesting or 
different is usually wrong. Applying it to analyzing the results 
of online experiments, we can rephrase it as follows: any 
unexpected metric movement, positive or negative, usually 
means there is an issue. It is a common bias in all of us to view 
surprising negative results with a lot of skepticism as 
compared to surprising results that appear positive. 
Overlooking such issues, however, can lead us to ship a 
harmful feature or bug to our customers. 

Unexpected metric movements (positive or negative) 
should be investigated to prevent harm to customers and the 

business. Having a comprehensive set of metrics, segments 
and OEC helps in investigating such issues faster. At Microsoft 
we have configured automated alerts and auto-shutdown of 
the experiments if we detect unexpected large metrics 
movements in both the positive and the negative directions. 

 

Figure 2: The percentage difference in number of clicks, 
each day, between treatment and control on the 
mail/outlook button in the MSN.com experiment. 

5 CONCLUSION 
In this paper we shared twelve common metric interpretation 
pitfalls we observed while running online controlled 
experiments across different teams at Microsoft. We hope the 
knowledge of these pitfalls and the mitigation approaches we 
shared will help others engaged in running controlled 
experiments avoid these pitfalls and increase trustworthiness 
of their decisions. 

The twelve pitfalls discussed in this paper are by no means 
the complete list. The mitigation techniques we discussed, 
however, such as having a comprehensive set of Data Quality 
metrics, as well as alerts and power calculation tools, apply to 
a broader range of issues and have proved to be helpful in 
detecting other, less common pitfalls. 

We also hope that this paper will stimulate more research 
and sharing of best practices among the academia and 
industry in the rapidly evolving area of online 
experimentation. 

ACKNOWLEDGMENTS 
We wish to thank Ronny Kohavi, Greg Linden, and Widad 

Machmouchi for great feedback on the paper.  Multiple co-
workers on the Analysis and Experimentation team at 
Microsoft helped crystalize these ideas.  

REFERENCES 
 

[1]  A. Deng and S. Xiaolin, "Data-driven metric development for online 
controlled experiments: Seven lessons learned," in KDD, 2016.  

[2]  W. Machmouchi and G. Buscher, "Principles for the Design of Online A/B 
Metrics," in Proceedings of the 39th International ACM SIGIR, 2016.  

[3]  P. Dmitriev and W. Xian, "Measuring Metrics," 2016, Proceedings of the 
25th ACM International on Conference on Information and Knowledge 



 

10 

 

Management.  

[4]  S. Goodman, "A Dirty Dozen: Twelve P-Value Misconceptions," in Seminars 
in Hematology, 2008.  

[5]  R. Kohavi and R. Longbotham, "Online Controlled Experiments and A/B 
Tests.," in Encyclopedia of Machine Learning and Data Mining, 2017.  

[6]  "Microsoft Experimentation Platform," [Online]. Available: 
http://www.exp-platform.com. 

[7]  R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu and N. Pohlmann, "Online 
Controlled Experiments at Large Scale," in KDD, 2013.  

[8]  R. Kohavi, A. Deng, R. Longbotham and Y. Xu, "Seven Rules of Thumb for 
Web Site Experimenters," in KDD, 2014.  

[9]  R. Kohavi, R. Longbotham, D. Sommerfield and R. M. Henne, "Controlled 
experiments on the web: survey and practical guide," Data Mining and 
Knowledge Discovery, vol. 18, no. 1, pp. 140-181, February 2009.  

[10] A. Deng, Y. Xu, R. Kohavi and T. Walker, "Improving the Sensitivity of 
Online Controlled Experiments by Utilizing Pre-Experiment Data," in Sixth 
ACM WSDM, Rome, Italy, 2013.  

[11] P. Dmitriev, B. Frasca, S. Gupta, R. Kohavi and G. Vaz, "Pitfalls of Long-Term 
Online Controlled Experiments," in IEEE International Conference on Big 
Data , 2016.  

[12] H. Hohnhold, D. O'Brien and D. Tang, "Focusing on the Long-term: It’s Good 
for Users and Business," in KDD, 2015.  

[13] V. F. Ridgway, "Dysfunctional Consequences of Performance 
Measurements," Administrative Science Quarterly, 1956.  

[14] R. W. Schmenner and T. E. Vollmann, "Performance Measures: Gaps, False 
Alarms and the “Usual Suspects”," International Journal of Operations & 
Production Management, 1994.  

[15] R. S. Kaplan and D. Norton, "The Balanced Scorecard - Measures that Drive 
Performance," Harvard Business Review, 1992.  

[16] J. R. Hauser and G. M. Katz, "Metrics: you are what you measure!," European 
Management Journal, 1998.  

[17] A. Deng, J. Lu and S. Chen, "Continuous monitoring of A/B tests without 
pain: Optional stopping in Bayesian testing," in DSAA, 2016.  

[18] A. Deng, "Objective Bayesian Two Sample Hypothesis Testing for Online 
Controlled Experiments," in Proceedings of the 24th International 
Conference on World Wide Web (WWW '15 Companion), 2015.  

[19] R. Johari, L. Pekelis and D. J. Walsh, "Always valid inference: Bringing 
sequential analysis to A/B testing.," In submission. Preprint available at 
arxiv.org/pdf/1512.04922, 2015.  

[20] R. Kohavi, "Lessons from running thousands of A/B tests," 2014. [Online]. 
Available: http://bit.ly/expLesssonsCode. 

[21] Z. Zhao, M. Chen, D. Matheson and M. Stone, "Online Experimentation 
Diagnosis and Troubleshooting Beyond AA Validation," in DSAA, 2016.  

[22] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker and Y. Xu, 
"Trustworthy online controlled experiments: Five puzzling outcomes 
explained,"  in KDD, 2012.  

[23] Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Click-
through_rate. 

[24] "Clickthrough rate (CTR): Definition," AdWords Google, 2016. [Online]. 
Available: https://support.google.com/adwords/answer/2615875. 

[25] R. Kohavi, Messner, S. Eliot, J. L. Ferres, R. Henne, V. Kannappan and J. 
Wang, "Tracking Users' Clicks and Submits: Tradeoffs between User 
Experience and Data Loss," October 2010. [Online]. Available: 
http://bit.ly/expTrackingClicks. 

[26] J. P. Ioannidis, "Why most discovered true associations are inflated," 
Epidemiology, vol. 19, no. 5, pp. 640-648, 2008.  

[27] R. H. Thaler, "Anomalies: The winner's curse," The Journal of Economic 
Perspectives, vol. 2, no. 1, pp. 191-202, 1988.  

[28] K. Peasron, "On the criterion that a given system of deviations from the 
probable in the case of a correlated system of variables is such that it can 
be reasonably supposed to have arisen from random sampling," 

Philosophical Magazine, vol. 50, no. 5, p. 157–175, 1900.  

[29] R. Fischer, Statistical Methods for Research Workers, Edinburgh: Oliver & 
Boyd, 1925.  

[30] R. L. W. a. N. A. Lazar, "The ASA's Statement on p-Values: Context, Process, 
and Purpose," The American Statistician, vol. 70, no. 2, pp. 129-133, 2016.  

[31] "Fisher's Method," [Online]. Available: 
https://en.wikipedia.org/wiki/Fisher%27s_method . 

[32] R. Kohavi, "Online Controlled Experiments: Lessons from Running A/B/n 
Tests for 12 years," 2015. [Online]. Available: 
http://bit.ly/KDD2015Kohavi. 

[33] R. Johari, P. Leo and J. W. David, "Always valid inference: Bringing 
sequential analysis to A/B testing," 2015. [Online]. Available: 
https://arxiv.org/abs/1512.04922. 

[34] A. Deng, J. Lu and S. Chen, "Continuous monitoring of A/B tests without 
pain: Optional stopping in Bayesian testing," in DSAA, 2016.  

[35] A. Deng, P. Zhang, S. Chen, D. Kim and J. Lu, "Concise Summarization of 
Heterogeneous Treatment Effect Using Total Variation Regularized 
Regression," in In submission.  

[36] "Simpson's paradox," [Online]. Available: 
https://en.wikipedia.org/wiki/Simpson%27s_paradox. 

[37] "Multiple Comparisons problem," [Online]. Available: 
https://en.wikipedia.org/wiki/Multiple_comparisons_problem. 

[38] "Bonferroni correction," [Online]. Available: 
https://en.wikipedia.org/wiki/Bonferroni_correction] . 

[39] "Mobile Patterns," [Online]. Available: 
https://mobilepatterns.wikispaces.com/Coach+Marks. 

 

 
 
 


