
Dynamic ReLU

Yinpeng Chen[0000−0003−1411−225X], Xiyang Dai[0000−0003−1761−8715], Mengchen
Liu[0000−0002−9040−1013], Dongdong Chen[0000−0002−4642−4373], Lu
Yuan[0000−0001−7879−0389], and Zicheng Liu[0000−0001−5894−7828]

Microsoft Corporation, Redmond WA 98052, USA
{yiche,xidai,mengcliu,dochen,luyuan,zliu}@microsoft.com

Abstract. Rectified linear units (ReLU) are commonly used in deep
neural networks. So far ReLU and its generalizations (non-parametric or
parametric) are static, performing identically for all input samples. In
this paper, we propose Dynamic ReLU (DY-ReLU), a dynamic rec-
tifier of which parameters are generated by a hyper function over all
input elements. The key insight is that DY-ReLU encodes the global con-
text into the hyper function, and adapts the piecewise linear activation
function accordingly. Compared to its static counterpart, DY-ReLU has
negligible extra computational cost, but significantly more representation
capability, especially for light-weight neural networks. By simply using
DY-ReLU for MobileNetV2, the top-1 accuracy on ImageNet classifica-
tion is boosted from 72.0% to 76.2% with only 5% additional FLOPs.

Keywords: ReLU, Convolutional Neural Networks, Dynamic

1 Introduction

Rectified linear unit (ReLU) [27,17] is one of the few milestones in the deep learn-
ing revolution. It is simple and powerful, greatly improving the performance of
feed-forward networks. Thus, it has been widely used in many successful architec-
tures (e.g. ResNet [11], MobileNet[13,30,12] and ShuffleNet [44,24]) for different
vision tasks (e.g. recognition, detection, segmentation). ReLU and its generaliza-
tions, either non-parametric (leaky ReLU [25]) or parametric(PReLU [10]) are
static. They perform in the exactly same way for different inputs (e.g. images).
This naturally raises an issue: should rectifiers be fixed or adaptive to input (e.g.
images)? In this paper, we investigate dynamic rectifiers to answer this question.

Fig. 1. Dynamic ReLU. The piecewise linear function is determined by the input x.

ar
X

iv
:2

00
3.

10
02

7v
2

 [
cs

.C
V

]
 5

 A
ug

 2
02

0

2 Chen Y., Dai X., Liu M., Chen D., Yuan L., Liu Z.

We propose dynamic ReLU (DY-ReLU), a piecewise function fθ(x)(x) whose
parameters are computed from a hyper function θ(x) over input x. Figure 1
shows an example that the slopes of two linear functions are determined by the
hyper function. The key idea is that the global context of all input elements x =
{xc} is encoded in the hyper function θ(x) for adapting the activation function
fθ(x)(x). This enables significantly more representation capability, especially for
light-weight neural networks (e.g. MobileNet). Meanwhile, it is computationally
efficient as the hyper function θ(x) is simple with negligible computational cost.

Furthermore, we explore three variations of dynamic ReLU, which share acti-
vation functions across spatial locations and channels differently: (a) spatial and
channel-shared DY-ReLU-A, (b) spatial-shared and channel-wise DY-ReLU-B,
and (c) spatial and channel-wise DY-ReLU-C. They perform differently at dif-
ferent tasks. Channel-wise variations (DY-ReLU-B and DY-ReLU-C) are more
suitable for image classification. When dealing with keypoint detection, DY-
ReLU-B and DY-ReLU-C are more suitable for the backbone network while the
spatial-wise DY-ReLU-C is more suitable for the head network.

We demonstrate the effectiveness of DY-ReLU on both ImageNet classifica-
tion and COCO keypoint detection. Without bells and whistles, simply replacing
static ReLU with dynamic ReLU in multiple networks (ResNet, MobileNet V2
and V3) achieves solid improvement with only a slight increase (5%) of computa-
tional cost. For instance, when using MobileNetV2, our method gains 4.2% top-1
accuracy on image classification and 3.5 AP on keypoint detection, respectively.

2 Related Work

Activation Functions: activation function introduces non-linearity in deep
neural networks. Among various activation functions, ReLU [9,27,17] is widely
used. Three generalizations of ReLU are based on using a nonzero slopes α for
negative input. Absolute value rectification [17] fixes α = −1. LeakyReLU [25]
fixes α to a small value, while PReLU [10] treats α as a learnable parameter.
RReLU took a further step by making the trainable parameter a random number
sampled from a uniform distribution [40]. Maxout [7] generalizes ReLU further,
by dividing input into groups and outputs the maximum. One problem of ReLU
is that it is not smooth. A number of smooth activation functions have been
developed to address this, such as softplus [6], ELU [4], SELU [19], Mish [26].
PELU [33] introduced three trainable parameters into ELU. Recently, empow-
ered by neural architecture search (NAS) techniques [45,29,46,22,39,2,32,35], Ra-
machandran et al. [28] found several novel activation functions, such as Swish
function. Different with these static activation functions that are input indepen-
dent, our dynamic ReLU adapts the activation function to the input.
Dynamic Neural Networks: Our method is related to recent work of dy-
namic neural networks [20,23,34,37,42,15,14,41,3]. D2NN [23], SkipNet [34] and
BlockDrop [37] learn a controller for skipping part of an existing model by using
reinforcement learning. MSDNet [15] allows early-exit based on the prediction
confidence. Slimmable Net [42] learns a single network executable at different

Dynamic ReLU 3

widths. Once-for-all [1] proposes a progressive shrinking algorithm to train one
network that supports multiple sub-networks. Hypernetworks [8] generates net-
work parameters using anther network. SENet [14] squeezes global context to
reweight channels. Dynamic convolution [41,3] adapts convolution kernels based
on their attentions that are input dependent. Compared with these works, our
method shifts the focus from kernel weights to activation functions.
Efficient CNNs: Recently, designing efficient CNN architectures [16,13,30,12,44,24]
has been an active research area. MobileNetV1 [13] decomposes a 3× 3 convolu-
tion to a depthwise convolution and a pointwise convolution. MobileNetV2 [30]
introduces inverted residual and linear bottlenecks. MobileNetV3 [12] applies
squeeze-and-excitation [14], and employs a platform-aware neural architecture
search approach [32] to find the optimal network structure. ShuffleNet further
reduces MAdds for 1×1 convolution by group convolution. ShiftNet [36] replaces
expensive spatial convolution by the shift operation and pointwise convolution.
Our method provides an effective activation function, which can be easily used
in these networks (by replacing ReLU) to improve representation capability with
low computational cost.

3 Dynamic ReLU

Dynamic ReLU (DY-ReLU) is a dynamic piecewise function, of which parame-
ters are input dependent. It does NOT increase either the depth or the width of
the network, but increases the model capability efficiently with negligible extra
computational cost. This section is organized as follows. We firstly introduce
the generic dynamic activation. Then, we present the mathematical definition of
DY-ReLU, and how to implement it. Finally, we compare it with prior work.

3.1 Dynamic Activation

For a given input vector (or tensor) x, the dynamic activation is defined as a
function fθ(x)(x) with learnable parameters θ(x), which adapt to the input x.
As shown in Figure 1, it includes two functions:

1. hyper function θ(x): that computes parameters for the activation function.

2. activation function fθ(x)(x): that uses the parameters θ(x) to generate ac-
tivation for all channels.

Note that the hyper function encodes the global context of all input elements
(xc ∈ x) to determine the appropriate activation function. This enables sig-
nificantly more representation power than its static counterpart, especially for
light-weight models (e.g. MobileNet). Next, we will discuss dynamic ReLU.

3.2 Definition and Implementation of Dynamic ReLU

Definition: Let us denote the traditional or static ReLU as y = max{x, 0},
where x is the input vector. For the input xc at the cth channel, the activation

4 Chen Y., Dai X., Liu M., Chen D., Yuan L., Liu Z.

is computed as yc = max{xc, 0}. ReLU can be generalized to a parametric
piecewise linear function yc = maxk{akcxc + bkc}. We propose dynamic ReLU to
further extend this piecewise linear function from static to dynamic by adapting
akc , bkc based upon all input elements x = {xc} as follows:

yc = fθ(x)(xc) = max
1≤k≤K

{akc (x)xc + bkc (x)}, (1)

where the coefficients (akc , bkc) are the output of a hyper function θ(x) as:

[a11, . . . , a
1
C , . . . , a

K
1 , . . . , a

K
C , b

1
1, . . . , b

1
C , . . . , b

K
1 , . . . , b

K
C]T = θ(x), (2)

where K is the number of functions, and C is the number of channels. Note that
the activation parameters (akc , bkc) are not only related to its corresponding input
xc, but also related to other input elements xj 6=c.
Implementation of hyper function θ(x): We use a light-weight network to
model the hyper function that is similar to Squeeze-and-Excitation (SE) [14].
For an input tensor x with dimension C × H × W , the spatial information
is firstly squeezed by global average pooling. It is then followed by two fully
connected layers (with a ReLU between them) and a normalization layer. The
output has 2KC elements, corresponding to the residual of a1:K1:C and b1:K1:C ,
which are denoted as ∆a1:K1:C and ∆b1:K1:C . We simply use 2σ(x) − 1 to normalize
the residual between -1 to 1, where σ(x) denotes sigmoid function. The final
output is computed as the sum of initialization and residual as follows:

akc (x) = αk + λa∆a
k
c (x), bkc (x) = βk + λb∆b

k
c (x), (3)

where αk and βk are initialization values of akc and bkc , respectively. λa and λb are
scalars that control the range of residual. αk, βk, λa and λb are hyper parameters.
For the case of K = 2, the default values are α1 = 1, α2 = β1 = β2 = 0,
corresponding to static ReLU. The default λa and λb are 1.0 and 0.5, respectively.

3.3 Relation to Prior Work

Table 1 shows the relationship between DY-ReLU and prior work. The three
special cases of DY-ReLU are equivalent to ReLU [27,17], LeakyReLU [25] and
PReLU [10], where the hyper function becomes static. SE [14] is another special
case of DY-ReLU, with a single linear function K = 1 and zero intercept b1c = 0.

DY-ReLU is a dynamic and efficient Maxout [7], with significantly less com-
putations but even better performance. Different with Maxout that requires
multiple (K) convolutional kernels, DY-ReLU applies K dynamic linear trans-
forms on the results of a single convolutional kernel, and outputs the maximum
of them. This results in much less computations and even better performance.

4 Variations of Dynamic ReLU

In this section, we introduce another two variations of dynamic ReLU in addition
to the option discussed in section 3.2. These three options have different ways
of sharing activation functions as follows:

Dynamic ReLU 5

Type K relation to DY-ReLU

ReLU [27,17] static 2

special case
a1c(x) = 1, b1c(x) = 0
a2c(x) = 0, b2c(x) = 0

LeakyReLU [25] static 2

special case
a1c(x) = 1, b1c(x) = 0
a2c(x) = α, b2c(x) = 0

PReLU [10] static 2

special case
a1c(x) = 1, b1c(x) = 0
a2c(x) = ac, b

2
c(x) = 0

SE [14] dynamic 1

special case
a1c(x) = ac(x), b1c(x) = 0
0 ≤ ac(x) ≤ 1

Maxout [7] static 1,2,3,...
DY-ReLU is a dynamic
and efficient Maxout.

DY-ReLU dynamic 1,2,3,... identical

Table 1. Relation to prior work. ReLU, LeakyReLU, PReLU and SE are special cases
of DY-ReLU. DY-ReLU is a dynamic and efficient version of Maxout. α in LeakyReLU
is a small number (e.g. 0.01). ac in PReLU is a parameter to learn.

DY-ReLU-A: the activation function is spatial and channel-shared.

DY-ReLU-B: the activation function is spatial-shared and channel-wise.

DY-ReLU-C: the activation function is spatial and channel-wise.

DY-ReLU-B has been discussed in section 3.2.

4.1 Network Structure and Complexity

The network structures of three variations are shown in Fig. 2. The detailed
explanation is discussed as follows:

DY-ReLU-A (Spatial and Channel-shared): the same piecewise linear ac-
tivation function is shared across all spatial positions and channels. Its hyper
function has similar network structure (shown in Fig. 2-(a)) to DY-ReLU-B,
except the number of outputs is reduced to 2K. Compared to DY-ReLU-B,
DY-ReLU-A has less computational cost, but less representation capability.

6 Chen Y., Dai X., Liu M., Chen D., Yuan L., Liu Z.

Fig. 2. Three DY-ReLU variations. They have different ways of sharing activation
functions. The top row illustrates the piecewise linear function across spatial locations
and channels, and the bottom row shows the network structure for the hyper function.
Note that the first FC layer reduces the dimension by R, which is a hyper parameter.

DY-ReLU-B (Spatial-shared and Channel-wise): the implementation de-
tails are introduced in section 3.2 and the network structure is shown in Fig.
2-(b). The hyper function outputs 2KC parameters (2K per channel).
DY-ReLU-C (Spatial and Channel-wise): as shown in Fig. 2-(c), each in-
put element xc,h,w has a unique activation function maxk{akc,h,wxc,h,w + bkc,h,w},
where the subscript c,h,w indicates the cth channel at the hth row and wth col-
umn of the feature map that has dimension C×H×W . This introduces an issue
that the output dimension is too large (2KCHW), resulting in significantly more
parameters in the fully connected layer. We address it by decoupling spatial loca-
tions from channels. Specifically, another branch for computing spatial attention
πh,w is introduced.The final output is computed as the product of channel-wise
parameters ([a1:K1:C , b

1:K
1:C]T) and spatial attentions ([π1:HW]). The spatial atten-

tion branch is simple, including a 1×1 convolution with a single output channel
and a normalization that is a softmax function with upper cutoff as follows:

πh,w = min{ γ exp(zh,w/τ)∑
h,w exp(zh,w/τ)

, 1}, (4)

where zh,w is the output of 1 × 1 convolution, τ is the temperature, and γ
is a scalar. The softmax is scaled up by γ is to prevent gradient vanishing.
We empirically set γ = HW

3 , making the average attention πh,w to 1
3 . A large

Dynamic ReLU 7

Top-1

ReLU 60.32± 0.13
DY-ReLU-A 63.28± 0.12(2.96)

DY-ReLU-B 66.36 ± 0.12(6.04)

DY-ReLU-C 66.31± 0.14(5.99)

Table 2. Comparing three DY-
ReLU variations on Imagenet [5]
classification. MobileNetV2 with
width multiplier ×0.35 is used.
The mean and standard devia-
tions of three runs are shown.
The numbers in brackets de-
note the performance improvement
over the baseline. Channel-wise
variations (DY-ReLU-B and DY-
ReLU-C) are more effective than
the channel-shared (DY-ReLU-A).
Spatial-wise (DY-ReLU-C) does
NOT introduce additional im-
provement.

Backbone Head AP

ReLU ReLU 59.26± 0.21

DY-ReLU-A ReLU 58.97± 0.15(−0.29)

DY-ReLU-B ReLU 61.76± 0.27(+2.50)

DY-ReLU-C ReLU 62.23± 0.32(+2.97)

ReLU DY-ReLU-A 57.12± 0.25(−2.14)

ReLU DY-ReLU-B 58.72± 0.35(−0.54)

ReLU DY-ReLU-C 61.03± 0.11(+1.77)

DY-ReLU-C DY-ReLU-C 63.27 ± 0.15(+4.01)

Table 3. Comparing three DY-ReLU varia-
tions on COCO [21] keypoint detection. We use
MobileNetV2 ×0.5 as backbone and use up-
sampling and inverted residual bottleneck blocks
[3] in the head. The mean and standard devia-
tions of three runs are shown. The numbers in
brackets denote the performance improvement
over the baseline. Channel-wise variations (DY-
ReLU-B and DY-ReLU-C) are more effective in
the backbone and the spatial-wise variation (DY-
ReLU-C) is more effective in the head.

temperature (τ = 10) is used to prevent sparsity during the early training stage.
The upper bound 1 constrains the attention between zero and one.
Computational Complexity: DY-ReLU is computationally efficient. It in-
cludes four components: (a) average pooling, (b) the first FC layer (with ReLU),
(c) the second FC layer (with normalization), and (d) piecewise function fθ(x)(x).
For a feature map with dimension C × H ×W , all three DY-ReLU variations
share complexity for average pooling O(CHW), the first FC layer O(C2/R) and
piecewise function O(CHW). The second FC layer has complexity O(2KC/R)
for DY-ReLU-A and O(2KC2/R) for DY-ReLU-B and DY-ReLU-C. Note that
DY-ReLU-C spends additional O(CHW) on computing spatial attentions. In
most of the layers of MobileNet and ResNet, DY-ReLU has much less computa-
tion than a 1× 1 convolution, which has complexity O(C2HW).

4.2 Ablations

Next, we study the three DY-ReLU variations on image classification and key-
point detection. Our goal is to understand their differences when performing
different tasks. The details of datasets, implementation and training setup will
be shown later in the next section.

The comparison among three DY-ReLU variations on ImageNet [21] clas-
sification is shown in Table 2. MobileNetV2 ×0.35 is used. Although all three
variations achieve improvement from the baseline, channel-wise DY-ReLUs
(variation B and C) are clearly better than the channel-shared DY-

8 Chen Y., Dai X., Liu M., Chen D., Yuan L., Liu Z.

ReLU (variation A). Variation B and C have similar accuracy, showing that
spatial-wise is not critical for image classification.

Table 3 shows the comparison on COCO keypoint detection. Similar to im-
age classification, channel-wise variations (B and C) are better than
channel-shared variation A in the backbone . In contrast, the spatial-
wise variation C is critical in the head . Using DY-ReLU-C in both back-
bone and head achieves 4 AP improvement. We also observe that the perfor-
mance is even worse than the baseline if we use DY-ReLU-A in the backbone or
use DY-ReLU-A and DY-ReLU-B in the head. We believe the spatially-shared
hyper function in DY-ReLU-A or DY-ReLU-B is difficult to learn when dealing
with spatially sensitive task (e.g. distinguishes body joints in pixel level), espe-
cially in the head that has higher resolutions. This difficulty can be effectively
alleviated by making hyper function spatial-wise, which encourages learning dif-
ferent activation functions at different positions. We observe that the training
converges much faster when using spatial attention in the head network.

Base upon these ablations, we use DY-ReLU-B for ImageNet classification
and use DY-ReLU-C for COCO keypoint detection in the next section.

5 Experimental Results

In this section, we present experimental results on image classification and single
person pose estimation to demonstrate the effectiveness of DY-ReLU. We also
report ablation studies to analyze different components of our approach.

5.1 ImageNet Classification

We use ImageNet [5] for all classification experiments. ImageNet has 1000 classes,
including 1,281,167 images for training and 50,000 images for validation. We
evaluate DY-ReLU on three CNN architectures (MobileNetV2 [30], MobileNetV3
[12] and ResNet [11]). We replace their default activation functions (ReLU in
ResNet and MobileNetV2, ReLU/hswish/SE in MobileNetV3) with DY-ReLU.
The main results are obtained by using spatial-shared and channel-wise DY-
ReLU-B with two piecewise linear functions (K = 2). Note that MobileNetV2
and V3 have no activation after the last convolution layer in each block, where
we add DY-ReLU with K = 1. The batch size is 256. We use different training
setups for the three architectures as follows:
Training setup for MobileNetV2: The initial learning rate is 0.05, and is
scheduled to arrive at zero within a single cosine cycle. All models are trained
using SGD optimizer with 0.9 momentum for 300 epochs. The label smoothing
0.1 is used. We use weight decay 2e-5 and dropout 0.1 for width ×0.35, and
increase weight decay 3e-5 and dropout 0.2 for width ×0.5, ×0.75, ×1.0. Random
cropping/flipping and color jittering are used for all width multipliers. Mixup
[43] is used for width ×1.0 to prevent overfitting.
Training setup for MobileNetV3: The initial learning rate is 0.1 and is
scheduled to arrive at zero within a single cosine cycle. The weight decay is 3e-5

Dynamic ReLU 9

Network Activation #Param MAdds Top-1 Top-5

MobileNetV2 ×1.0 ReLU 3.5M 300.0M 72.0 91.0
DY-ReLU 7.5M 315.5M 76.2(4.2) 93.1(2.1)

MobileNetV2 ×0.75 ReLU 2.6M 209.0M 69.8 89.6
DY-ReLU 5.0M 221.7M 74.3(4.5) 91.7(2.1)

MobileNetV2 ×0.5 ReLU 2.0M 97.0M 65.4 86.4
DY-ReLU 3.1M 104.5M 70.3(4.9) 89.3(2.9)

MobileNetV2 ×0.35 ReLU 1.7M 59.2M 60.3 82.9
DY-ReLU 2.7M 65.0M 66.4(6.1) 86.5(3.6)

MobileNetV3-Large ReLU/SE/HS 5.4M 219.0M 75.2 92.2
DY-ReLU 9.8M 230.5M 75.9(0.7) 92.7(0.5)

MobileNetV3-Small ReLU/SE/HS 2.9M 66.0M 67.4 86.4
DY-ReLU 4.0M 68.7M 69.7(2.3) 88.3(1.9)

ResNet-50 ReLU 23.5M 3.86G 76.2 92.9
DY-ReLU 27.6M 3.88G 77.2(1.0) 93.4(0.5)

ResNet-34 ReLU 21.3M 3.64G 73.3 91.4
DY-ReLU 24.5M 3.65G 74.4(1.1) 92.0(0.6)

ResNet-18 ReLU 11.1M 1.81G 69.8 89.1
DY-ReLU 12.8M 1.82G 71.8(2.0) 90.6(1.5)

ResNet-10 ReLU 5.2M 0.89G 63.0 84.7
DY-ReLU 6.3M 0.90G 66.3(3.3) 86.7(2.0)

Table 4. Comparing DY-ReLU with baseline activation functions (ReLU, SE or h-
swish, denoted as HS) on ImageNet [5] classification in three network architectures.
DY-ReLU-B withK = 2 linear functions is used. Note that SE blocks are removed when
using DY-ReLU in MobileNetV3. The numbers in brackets denote the performance
improvement over the baseline. DY-ReLU outperforms its counterpart for all networks.

and label smoothing is 0.1. We use SGD optimizer with 0.9 momentum for 300
epochs. We use dropout rate of 0.1 and 0.2 before the last layer for MobileNetV3-
Small and MobileNetV3-Large respectively. We use more data augmentation
(color jittering and Mixup [43]) for MobileNetV3-Large.

Training setup for ResNet: The initial learning rate is 0.1 and drops by 10
at epoch 30, 60. The weight decay is 1e-4. All models are trained using SGD
optimizer with 0.9 momentum for 90 epochs. We use dropout rate 0.1 before the
last layer and label smoothing for ResNet-18, ResNet-34 and ResNet-50.

Main Results: We compare DY-ReLU with its static counterpart in three CNN
architectures (MobileNetV2, MobileNetV3 and ResNet) in Table 4. Without
bells and whistles, DY-ReLU outperforms its static counterpart by a clear mar-
gin for all three architectures, with small extra computational cost (∼ 5%). DY-
ReLU gains more than 1.0% top-1 accuracy in ResNet and gains more than 4.2%
top-1 accuracy in MobileNetV2. For the state-of-the-art MobileNetV3, our DY-
ReLU outperforms the combination of SE and h-swish (key contributions of Mo-
bileNetV3). The top-1 accuracy is improved by 2.3% and 0.7% for MobileNetV3-
Small and MobileNetV3-Large, respectively. Note that DY-ReLU achieves more

10 Chen Y., Dai X., Liu M., Chen D., Yuan L., Liu Z.

MobileNetV2 ×0.35 MobileNetV2 ×1.0
Activation K #Param MAdds Top-1 #Param MAdds Top-1

ReLU 2 1.7M 59.2M 60.3 3.5M 300.0M 72.0

RReLU [40] 2 1.7M 59.2M 60.0(−0.3) 3.5M 300.0M 72.5(+0.5)

LeakyReLU [25] 2 1.7M 59.2M 60.9(+0.6) 3.5M 300.0M 72.7(+0.7)

PReLU [10] 2 1.7M 59.2M 63.1(+2.8) 3.5M 300.0M 73.3(+1.3)

SE[14]+ReLU 2 2.1M 62.0M 62.8(+2.5) 5.1M 307.5M 74.2(+2.2)

Maxout [7] 2 2.1M 106.6M 64.9(+4.6) 5.7M 575.8M 75.1(+3.1)

Maxout [7] 3 2.4M 157.6M 65.4(+5.1) 7.8M 860.2M 75.8(+3.8)

DY-ReLU-B 2 2.7M 65.0M 66.4(+6.1) 7.5M 315.5M 76.2(+4.2)

DY-ReLU-B 3 3.1M 67.8M 66.6(+6.3) 9.2M 322.8M 76.2(+4.2)

Table 5. Comparing DY-ReLU with related activation functions on ImageNet [5] clas-
sification. MobileNetV2 with width multiplier ×0.35 and ×1.0 are used. We use spatial-
shared and channel-wise DY-ReLU-B with K = 2, 3 linear functions. The numbers in
brackets denote the performance improvement over the baseline. DY-ReLU outper-
forms all prior work including Maxout, which has significantly more computations.

improvement for smaller models (e.g. MobileNetV2 ×0.35, MobileNetV3-Small,
ResNet-10). This is because the smaller models are underfitted due to their model
size, and dynamic ReLU significantly boosts their representation capability.

The comparison between DY-ReLU and prior work is shown in Table 5.
Here we use MobileNetV2 (×0.35 and ×1.0), and replace ReLU with different
activation functions in prior work. Our method outperforms all prior work with a
clear margin, including Maxout that has significantly more computational cost.
This demonstrates that DY-ReLU not only has more representation capability,
but also is computationally efficient.

5.2 Inspecting DY-ReLU: Is It Dynamic?

We check if DY-ReLU is dynamic by examining its input and output over mul-
tiple images. Different activation values (y) across different images for a given
input value (e.g. x = 0.5) is expected to differentiate from static ReLU, which
has a fixed output (e.g. y = 0.5 when x = 0.5).

Fig. 3-(Top) plots the input and output values of DY-ReLU at different
blocks (from low level to high level) for 50,000 validation images in ImageNet
[5]. Clearly, the learnt DY-ReLU is dynamic over features as activation values
(y) vary in a range (that blue dots cover) for a given input x. The dynamic
range varies across different blocks, indicating different dynamic functions learnt
across levels. We also observe many positive activations for negative inputs.
Statistically, 51% of DY-ReLU have segments with either negative slope or slope
above 1, and 37% of DY-ReLU have at least one segment with intercept more
than 0.05. These cases cannot be handled by ReLU, SE or MaxOut of two SEs.

We also analyzed the angle between two segments in DY-ReLU (i.e. slope
difference |a1c − a2c |). The slope difference decreases from lower to higher levels

Dynamic ReLU 11

Fig. 3. Top: plots of input and output values of DY-ReLU in a well trained model
(using MobileNetV2 ×0.35) over 50,000 validation images in ImageNet [5]. We choose
the dynamic ReLU after the depthwise convolution in every other mobile block. Block
1 corresponds to the lowest block, and Block 17 corresponds to the highest block. The
two red lines correspond to y = x and y = −x, respectively. Bottom: Angle (or slope
difference |a1c − a2c |) between two segments in DY-ReLU across blocks. The bending of
the activation functions decreases from low levels to high levels. Best viewed in color.

(shown in Fig. 3-(Bottom)). This indicates that the activation functions tend to
have lower bending in higher levels.

5.3 Ablation Studies on ImageNet

We run a number of ablations to analyze DY-ReLU. We focus on spatial-shared
and channel-wise DY-ReLU-B, and use MobileNetV2 ×0.35 for all ablations.
By default, the number of linear functions in DY-ReLU is set as K = 2. The
initialization values of slope and intercept are set as α1 = 1, α2 = β1 = β2 = 0.
The range of slope and intercept are set as λa = 1 and λb = 0.5, respectively.
The reduction ratio of the first FC layer in the hyper function is set as R = 8.

12 Chen Y., Dai X., Liu M., Chen D., Yuan L., Liu Z.

K intercept bkc Activation Function Top-1 Top-5

ReLU 2 max{xc, 0} 60.3 82.9

2 max{ac(x)xc, 0} 63.8 85.1
2 X max{ac(x)xc + bc(x), 0} 64.0 85.2

DY-ReLU 2 max2
k=1{akc (x)xc} 65.7 86.2

2 X max2
k=1(akc (x)xc + bkc (x)} 66.4 86.5

3 max3
k=1{akc (x)xc} 65.9 86.3

3 X max3
k=1{akc (x)xc + bkc (x)} 66.6 86.8

Table 6. Different dynamic piecewise functions evaluated on ImageNet classifi-
cation. MobileNetV2 ×0.35 is used.

A1 A2 A3 Top-1 Top-5

ReLU – – – 60.3 82.9

X – – 64.2 84.9
– X – 65.3 85.9
– – X 62.7 83.8

DY-ReLU X X – 66.2 86.4
X – X 64.5 85.3
– X X 65.9 86.2
X X X 66.4 86.5

Table 7. DY-ReLU at different
layers evaluated on ImageNet. Mo-
bileNetV2 ×0.35 is used. A1, A2, A3 in-
dicate activations after three convolu-
tion layers in an inverted residual block.

R #param MAdds Top-1 Top-5

ReLU – 1.7M 59.2M 60.3 82.9

64 2.0M 64.3M 65.0 85.7
32 2.1M 64.4M 65.5 86.0

DY-ReLU 16 2.3M 64.6M 65.9 86.3
8 2.7M 65.0M 66.4 86.5
4 3.6M 65.9M 66.5 86.7

Table 8. Different reduction ratios R
for the first fully connected layer in the hy-
per function (see Fig. 2). Evaluation is on
ImageNet classification. MobileNetV2 ×0.35
is used. Setting R = 8 achieves a good trade-
off.

Dynamic Piecewise Functions: Table 6 shows the classification accuracy
using different piecewise functions. The major gain is due to making ReLU dy-
namic. Specifically, making the first segment dynamic boosts top-1 accuracy from
60.3% to 63.8%. Making the second segment dynamic gains additional 1.9%. The
intercept bkc is helpful consistently. The gap between K = 2 and 3 is small. In
most of DY-ReLU with K = 3 segments, 2 of the 3 segments have similar slopes.

Dynamic ReLU at Different Layers: Table 7 shows the classification accu-
racy for using DY-ReLU at three different layers (after 1×1 conv, 3×3 depthwise
conv, 1 × 1 conv) in an inverted residual block in MobileNetV2 ×0.35. The ac-
curacy is improved if DY-ReLU is used for more layers. Using DY-ReLU for all
three layers yields the best accuracy. If only one layer is allowed to use DY-ReLU,
using it after 3× 3 depth-wise convolution yields the best performance.

Reduction Ratio R: The reduction ratio of the first FC layer in the hyper
function θ(x) controls the representation capacity and computational cost of
DY-ReLU. The comparison across different reduction ratios is shown in Table
8. Setting R = 8 achieves a good trade-off.

Dynamic ReLU 13

α1 α2 Top-1 Top-5

1.0 0.0 66.4 86.5
1.5 0.0 65.7 86.2
0.5 0.0 66.1 86.3
0.0 0.0 not converge

1.0 -0.5 65.2 85.5
1.0 0.5 66.4 86.2
1.0 1.0 66.0 86.1

(a) Initialization of αk.

β1 β2 Top-1 Top-5

0.0 0.0 66.4 86.5
-0.1 0.0 66.4 86.5
0.1 0.0 66.2 86.4

0.0 -0.1 65.8 86.2
0.0 0.1 65.3 85.8

(b) Initialization of βk.

λa Top-1 Top-5

0.5 65.3 86.0
1.0 66.4 86.5
2.0 66.3 86.5
3.0 65.5 86.1

(c) Range of slope λa.

Table 9. Ablations of three hyper parameters in DY-ReLU on Imagenet classification.

Initialization of Slope (αk in Eq (3)): As shown in Table 9-(a), the classifi-
cation accuracy is not sensitive to the initialization values of slopes if the first
slope is not close to zero and the second slope is non-negative.
Initialization of Intercept (βk in Eq (3)): the performance is stable (shown
in Table 9-(b)) when both intercepts are close to zero. The second intercept is
more sensitive than the first one, as it moves the interception of two lines further
away from the origin diagonally.
Range of slope (λa in Eq (3)): Making slope range either too wide or too
narrow is not optimal, as shown in Table 9-(c). A good choice is to keep λa
between 1 and 2.

5.4 COCO Single-Person Keypoint Detection

We use COCO 2017 dataset [21] to evaluate dynamic ReLU on single-person
keypoint detection. All models are trained on train2017, including 57K images
and 150K person instances labeled with 17 keypoints. These models are evalu-
ated on val2017 containing 5000 images by using the mean average precision
(AP) over 10 object key point similarity (OKS) thresholds as the metric.
Implementation Details: We evaluate DY-ReLU on two backbone networks
(MobileNetV2 and MobileNetV3) and one head network used in [3]. The head
simply uses upsampling and four MobileNetV2’s inverted residual bottleneck
blocks. We compare DY-ReLU with its static counterpart in both backbone and
head. The spatial and channel-wise DY-ReLU-C is used here, as we show that
the spatial attention is important for keypoint detection, especially in the head
network (see section 4.2). Note that when using MobileNetV3 as backbone, we re-
move Squeeze-and-Excitation and replace either ReLU or h-swish by DY-ReLU.
The number of linear functions in DY-ReLU is set as K = 2. The initialization
values of slope and intercept are set as α1 = 1, α2 = β1 = β2 = 0. The range of
slope and intercept are set as λa = 1 and λb = 0.5, respectively.
Training setup: We follow the training setup in [31]. All models are trained
from scratch for 210 epochs, using Adam optimizer [18]. The initial learning
rate is set as 1e-3 and is dropped to 1e-4 and 1e-5 at the 170th and 200th epoch,

14 Chen Y., Dai X., Liu M., Chen D., Yuan L., Liu Z.

Backbone Activation Param MAdds AP AP0.5 AP0.75 APM APL

MBNetV2 ×1.0
ReLU 3.4M 993.7M 64.6 87.0 72.4 61.3 71.0

DY-ReLU 9.0M 1026.9M 68.1(3.5) 88.5 76.2 64.8 74.3

MBNetV2 ×0.5
ReLU 1.9M 794.8M 59.3 84.3 66.4 56.2 65.0

DY-ReLU 4.6M 820.3M 63.3(4.0) 86.3 71.4 60.3 69.2

MBNetV3 Large
ReLU/SE/HS 4.1M 896.4M 65.7 87.4 74.1 62.3 72.2

DY-ReLU 10.1M 926.6M 67.2(1.5) 88.2 75.4 64.1 73.2

MBNetV3 Small
ReLU/SE/HS 2.1M 726.9M 57.1 83.8 63.7 55.0 62.2

DY-ReLU 4.8M 747.9M 60.7(3.6) 85.7 68.1 58.1 66.3

Table 10. Comparing DY-ReLU with baseline activation functions (ReLU, SE or h-
swish, denoted as HS) on COCO Keypoint detection. The evaluation is on validation
set. The head structure in [3] is used. DY-ReLU-C with K = 2 is used in both backbone
and head. Note that SE blocks are removed when using DY-ReLU in MobileNetV3. The
numbers in brackets denote the performance improvement over the baseline. DY-ReLU
outperforms its static counterpart by a clear margin.

respectively. All human detection boxes are cropped from the image and resized
to 256 × 192. The data augmentation includes random rotation ([−45◦, 45◦]),
random scale ([0.65, 1.35]), flipping, and half body data augmentation.
Testing: We use the person detectors provided by [38] and follow the evaluation
procedure in [38,31]. The keypoints are predicted on the average heatmap of the
original and flipped images. The highest heat value location is then adjusted by
a quarter offset from the highest response to the second highest response.
Main Results: Table 10 shows the comparison between DY-ReLU and its static
counterpart in four different backbone networks (MobileNetV2 ×0.5 and ×1.0,
MobileNetV3 Small and Large). The head network [3] is shared for these four
experiments. DY-ReLU outperforms baselines by a clear margin. It gains 3.5
and 4.0 AP when using MobileNetV2 with width multipler ×1.0 and ×0.5, re-
spectively. It also gains 1.5 and 3.6 AP when using MobileNetV3-Large and
MobileNetV3-Small, respectively. These results demonstrate that our method is
also effective on keypoint detection.

6 Conclusion

In this paper, we introduce dynamic ReLU (DY-ReLU), which adapts a piece-
wise linear activation function dynamically for each input. Compared to its static
counterpart (ReLU and its generalizations), DY-ReLU significantly improves the
representation capability with negligible extra computation cost, thus is more
friendly to efficient CNNs. Our dynamic ReLU can be easily integrated into ex-
isting CNN architectures. By simply replacing ReLU (or h-swish) in ResNet and
MobileNet (V2 and V3) with DY-ReLU, we achieve solid improvement for both
image classification and human pose estimation. We hope DY-ReLU becomes a
useful component for efficient network architecture.

Dynamic ReLU 15

References

1. Cai, H., Gan, C., Han, S.: Once for all: Train one network and specialize it for
efficient deployment. ArXiv abs/1908.09791 (2019)

2. Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural architecture search on tar-
get task and hardware. In: International Conference on Learning Representations
(2019), https://openreview.net/forum?id=HylVB3AqYm

3. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution:
Attention over convolution kernels. ArXiv abs/1912.03458 (2019)

4. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

6. Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., Garcia, R.: Incorporating second-
order functional knowledge for better option pricing. In: Advances in neural infor-
mation processing systems. pp. 472–478 (2001)

7. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. arXiv preprint arXiv:1302.4389 (2013)

8. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. ICLR (2017)
9. Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.:

Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405(6789), 947–951 (2000)

10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: ICCV (2015)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

12. Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y.,
Pang, R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for mobilenetv3. CoRR
abs/1905.02244 (2019), http://arxiv.org/abs/1905.02244

13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (June 2018)

15. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.: Multi-
scale dense networks for resource efficient image classification. In: International
Conference on Learning Representations (2018), https://openreview.net/forum?
id=Hk2aImxAb

16. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size. CoRR abs/1602.07360 (2016), http://arxiv.org/abs/1602.07360

17. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-
stage architecture for object recognition? In: The IEEE International Conference
on Computer Vision (ICCV) (2009)

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (ICLR) (2015)

19. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neu-
ral networks. In: Advances in neural information processing systems. pp. 971–980
(2017)

https://openreview.net/forum?id=HylVB3AqYm
http://arxiv.org/abs/1905.02244
https://openreview.net/forum?id=Hk2aImxAb
https://openreview.net/forum?id=Hk2aImxAb
http://arxiv.org/abs/1602.07360

16 Chen Y., Dai X., Liu M., Chen D., Yuan L., Liu Z.

20. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural
Information Processing Systems, pp. 2181–2191 (2017), http://papers.nips.cc/
paper/6813-runtime-neural-pruning.pdf

21. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

22. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search. In: In-
ternational Conference on Learning Representations (2019), https://openreview.
net/forum?id=S1eYHoC5FX

23. Liu, L., Deng, J.: Dynamic deep neural networks: Optimizing accuracy-efficiency
trade-offs by selective execution. In: AAAI Conference on Artificial Intelligence
(AAAI) (2018)

24. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: The European Conference on Computer Vision
(ECCV) (September 2018)

25. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing (2013)

26. Misra, D.: Mish: A self regularized non-monotonic neural activation function. arXiv
preprint arXiv:1908.08681 (2019)

27. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML (2010)

28. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

29. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: AAAI Conference on Artificial Intelligence (AAAI)
(2018)

30. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4510–4520 (2018)

31. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: CVPR (2019)

32. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

33. Trottier, L., Gigu, P., Chaib-draa, B., et al.: Parametric exponential linear unit for
deep convolutional neural networks. In: 2017 16th IEEE International Conference
on Machine Learning and Applications (ICMLA). pp. 207–214. IEEE (2017)

34. Wang, X., Yu, F., Dou, Z.Y., Darrell, T., Gonzalez, J.E.: Skipnet: Learning dy-
namic routing in convolutional networks. In: The European Conference on Com-
puter Vision (ECCV) (September 2018)

35. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2019)

36. Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., Gholaminejad, A.,
Gonzalez, J., Keutzer, K.: Shift: A zero flop, zero parameter alternative to spatial
convolutions (2017)

37. Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L.S., Grauman, K., Feris, R.:
Blockdrop: Dynamic inference paths in residual networks. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2018)

http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf
http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

Dynamic ReLU 17

38. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: European conference on computer vision (04 2018)

39. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture
search. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=rylqooRqK7

40. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network. CoRR (2015)

41. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: Condconv: Conditionally parameterized
convolutions for efficient inference. In: NeurIPS (2019)

42. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. In: In-
ternational Conference on Learning Representations (2019), https://openreview.
net/forum?id=H1gMCsAqY7

43. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: International Conference on Learning Representations (2018),
https://openreview.net/forum?id=r1Ddp1-Rb

44. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2018)

45. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. CoRR
abs/1611.01578 (2017)

46. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2018)

https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=H1gMCsAqY7
https://openreview.net/forum?id=H1gMCsAqY7
https://openreview.net/forum?id=r1Ddp1-Rb

	Dynamic ReLU

