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Abstract. Curriculum learning can improve neural network training by guiding
the optimization to desirable optima. We propose a novel curriculum learning
approach for image classification that adapts the loss function by changing the
label representation.
The idea is to use a probability distribution over classes as target label, where
the class probabilities reflect the similarity to the true class. Gradually, this label
representation is shifted towards the standard one-hot-encoding. That is, in the
beginning minor mistakes are corrected less than large mistakes, resembling
a teaching process in which broad concepts are explained first before subtle
differences are taught.
The class similarity can be based on prior knowledge. For the special case of the
labels being natural words, we propose a generic way to automatically compute
the similarities. The natural words are embedded into Euclidean space using a
standard word embedding. The probability of each class is then a function of the
cosine similarity between the vector representations of the class and the true label.
The proposed label-similarity curriculum learning (LCL) approach was empirically
evaluated using several popular deep learning architectures for image classification
tasks applied to five datasets including ImageNet, CIFAR100, and AWA2. In
all scenarios, LCL was able to improve the classification accuracy on the test
data compared to standard training. Code to reproduce results is available at
https://github.com/speedystream/LCL.

Keywords: Curriculum Learning; Deep Learning; Multi-modal Learning, Classi-
fication

1 Introduction

When educating humans, the teaching material is typically presented with increasing
difficulty. Curriculum learning adopts this principle for machine learning to guide an
iterative optimization method to a desirable optimum. In curriculum learning for neural
networks as proposed by Bengio et al. [1], the training examples are weighted. In the
beginning of the training, more weight is put on “easier” examples. The weighting is
gradually changed to uniform weights corresponding to the canonical objective function.

Inspired by Bengio et al. [1], we propose label-similarity curriculum learning (LCL)
as another way to “learn easier aspects of the task or easier sub-tasks, and then gradually
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increase the difficulty level.” If a toddler who is just learning to speak points at a car and
utters “cow”, a parent will typically react with some teaching signal. However, a young
infant is not expected to discriminate between a cheetah and a leopard, and mixing up
the two would only lead to a very mild correction signal – if at all. With increasing age,
smaller errors will also be communicated.

We transfer this approach to neural network training for classification tasks. Instead
of a one-hot-encoding, the target represents a probability distribution over all possible
classes. The probability of each class depends on the similarity between the class and
the true label. That is, instead of solely belonging to its true class, each input can also
belong to similar classes to a lesser extent. Gradually, this label representation is shifted
towards the standard one-hot-encoding, where targets representing different classes are
orthogonal. In the beginning of training, the targets of inputs with labels cheetah and
leopard should almost be the same, but always be very different from car. During the
training process, the label representation is gradually morphed into the one-hot encoding,
decreasing the entropy of the distribution encoded by the target over time. That is, in
the beginning small mistakes – in the sense that similar classes are mixed up – are
corrected less than big mistakes, resembling a teaching process in which broad concepts
are explained first before subtle differences are taught.

The question arises how to define a proper similarity between classes. One can get
a label-similarity matrix based on prior knowledge or some known structure. For the
case where the similarity is not explicitly given and the labels correspond to natural
language words, we propose a way to automatically infer a representation that reflects
semantic similarity. We map the labels into a Euclidean space using a word embedding.
Concretely, this is done by applying a generic document embedding to a document
explaining the label (its Wikipedia entry). Then the cosine similarities between the vector
representations of the label and all possible classes are computed. Based on these values,
a distribution over the possible classes is defined which serves as the learning target.

Our way to define the target representation resembles the idea of hierarchical loss
functions [27,32] (“We define a metric that, inter alia, can penalize failure to distinguish
between a sheepdog and a skyscraper more than failure to distinguish between a sheepdog
and a poodle.” [32]). However, there are two decisive differences. First, we propose to
gradually shift from a “hierarchical loss” to a “flat loss”. Second, unlike in [32], our
approach does not necessarily presume a given hierarchy. When dealing with natural
language labels, we propose a way to automatically infer the similarity from a generic
word embedding under the assumption that exploiting semantic similarity can be helpful
in guiding the learning process.

For evaluating label-similarity curriculum learning (LCL), we need data with some
structure in the label space that curriculum learning can exploit. Furthermore, there
should be sufficiently many classes and the task should not be easy to learn. To get label
similarity based on word embeddings, we need a dataset with natural language labels.
In this study, we focus on three popular benchmark datasets, ImageNet [4], CIFAR100
[17], and Animals with Attributes (AwA) [33]. To show the generality of our approach,
we consider different deep learning architectures, and also different preprocessing and
learning processes. The time schedule for increasing the “difficulty” of the learning
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task is an obvious hyperparameter, which we carefully study and show to have little
importance.

The next section points to related literature and Section 3 introduces the new label-
similarity curriculum learning. Section 4 describes the experiments and Section 5 the
results before we conclude.

2 Related Work

Starting from the work by Bengio et al. [1], a variety of curriculum learning approaches
has been studied. However, they all define a curriculum at the level of training exam-
ples. For instance, self-paced learning by Kumar et al. [18] introduces latent variables
for modelling “easiness” of an examples. Graves et al. [10] consider example-based
improvement measures as reward signals for multi-armed bandits, which then build
stochastic syllabi for neural networks. Florensa et al. [5] study curriculum learning in the
context of reinforcement learning in robotics. They propose to train a robot by gradually
increasing the complexity of the task at hand (e.g., the robot learns to reach a goal
by setting starting points increasingly far from the goal). In recent work, Weinshall et
al. [31] consider learning tasks with convex linear regression loss and prove that the
convergence rate of a perfect curriculum learning method increases with the difficulty
of the examples. In addition, they propose a method which infers the curriculum using
transfer learning from another network (e.g., ResNet-50 ) pretrained on a different task.
They train a linear classifier using features extracted from the pretrained model and score
each training example using the linear classifier’s confidence (e.g., the margin of an
SVM). Finally, they train a smaller deep neural network for the transfer learning task
following a curriculum based on these scores.

Buciluǎ et al. [2] have proposed compressing a large model into a simple model
which reduces space requirements and increases inference speed at the cost of a small
performance loss. This idea has been revisited in [13] under the name knowledge distil-
lation (KD) and received a significant amount of attention (e.g., [23,25,36,35,22]). KD
methods typically require a pretrained model to start with or train a series of models on
the same training data. Standard KD considers a teacher network and a student network.
The powerful teacher network is used to support the training of the student network
which may be less complex or may have access to less data for training. KD is related to
curriculum learning methods because the teacher network guides the learning of student
networks [13]. A variant of KD, born again neural network, trains a series of models,
not only one [7].

Deep mutual learning (DML) is also loosely related to our proposed approach
[13,38]. In DML, two models solve the same classification problem collaboratively and
are jointly optimised [38]. Each model acts as a teacher for the other model, and each
network is trained with two losses. The first loss is the standard cross-entropy between
the model’s predictions and target labels. The second is a mimicry loss that aligns both
model’s class posteriors with the class probabilities of the respective other model.

Another related approach is CurriculumNet [11], a clustering based curriculum
strategy for learning from noisy data. CurriculumNet consists of three steps. First, a deep
neural network is trained on the noisy label data. Second, features are extracted by using
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the model trained in the first step. Using clustering algorithms, these features are then
grouped into different sets and sorted into easy and difficult examples. Finally, a new
deep neural network is trained using example-weighted curriculum learning. Sorting of
examples from easy to hard and clustering algorithms add many hyper-parameters (e.g.,
number of clusters), and one has to train two neural network models of almost the same
size.

Our algorithm can be considered as a multi-modal deep learning method, where text
data is used for estimating the class similarity matrix to improve image classification.
However, it is different from standard multimodal methods as it does not use text data
as an input to the deep neural network. The DeVise algorithm is a popular multi-modal
method which utilizes the text modality in order to learn a mapping from an image
classifier’s feature space to a semantic space. [6]. DeVise requires a pretrained deep
neural network. Furthermore, as stated in [6], it does not improve the accuracy on the
original task but aims at training a model for zero-shot learning.

There is an obvious relation between LCL and label smoothing (LS) [21], which we
will discuss in Section 4.

The computational requirements of KD, DML, and CurriculumNet are significantly
higher compared to our method, which is rather simple. Furthermore, our method does
not require training more than one model and adds only a single hyper-parameter.

3 Method

We assume a discrete set of training examples (x1, c1), . . . , (x`, c`) ∈ X ×C, with input
space X and finite label space C with cardinality |C| = C. Let n : C → {1, . . . , C} be a
bijective mapping assigning each label to a unique integer. This allows a straight-forward
definition of the one-hot encoding yi ∈ RC for each training example (xi, ci). The j-th
component of yi, which is denoted by [yi]j , equals 1 if n(ci) = j and 0 otherwise.

3.1 Document embedding for defining label similarity

Our learning curriculum is based on the pairwise similarities between the C classes,
which are defined based on the semantic similarity of the class labels. Now assume that
the labels are natural language words, for example C = {. . . , flute, . . . , strawberry,
. . . , backpack, . . . }. To quantify semantic similarity, we embed the natural language
labels into Euclidean space using a word embedding [20] such that similar words are
nearby in the new representation.

ImageNet labels are given by WordNet identifiers representing synsets, and we re-
define the labels for other datasets in a similar way. First, we convert synsest to words,
for example, n02119789 to “fox”. Then, we find the Wikipedia article describing each
word, for instance, “Orange (fruit)” was selected for orange. Then we apply doc2vec
[19] for mapping the article into Euclidean space. We used a generic doc2vec embed-
ding trained on the English Wikipedia corpus. This gives us the encoding fenc : C → Rd,
mapping each class label to the corresponding Wikipedia article and then computing the
corresponding vector representation using doc2vec (with d = 100, see below). Now
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Epoch 0

Epoch 4

Epoch 8

Epoch 16

Labels for SL Labels for LS Labels for LCL

1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 1.0







1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 1.0







1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 1.0







1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 1.0







0.92 0.02 0.02 0.02 0.02

0.02 0.92 0.02 0.02 0.02

0.02 0.02 0.92 0.02 0.02

0.02 0.02 0.02 0.92 0.02

0.02 0.02 0.02 0.02 0.92







0.92 0.02 0.02 0.02 0.02

0.02 0.92 0.02 0.02 0.02

0.02 0.02 0.92 0.02 0.02

0.02 0.02 0.02 0.92 0.02

0.02 0.02 0.02 0.02 0.92







0.92 0.02 0.02 0.02 0.02

0.02 0.92 0.02 0.02 0.02

0.02 0.02 0.92 0.02 0.02

0.02 0.02 0.02 0.92 0.02

0.02 0.02 0.02 0.02 0.92







0.92 0.02 0.02 0.02 0.02

0.02 0.92 0.02 0.02 0.02

0.02 0.02 0.92 0.02 0.02

0.02 0.02 0.02 0.92 0.02

0.02 0.02 0.02 0.02 0.92







0.422 0.307 0.049 0.161 0.062

0.291 0.4 0.078 0.153 0.078

0.074 0.125 0.641 0.133 0.026

0.163 0.164 0.089 0.429 0.155

0.085 0.111 —0.023 0.207 0.573







0.819 0.054 0.037 0.047 0.044

0.061 0.821 0.036 0.039 0.043

0.035 0.03 0.818 0.065 0.052

0.04 0.03 0.059 0.816 0.055

0.04 0.035 0.05 0.059 0.817







0.943 0.017 0.012 0.015 0.014

0.019 0.944 0.011 0.012 0.014

0.011 0.009 0.943 0.02 0.016

0.012 0.009 0.018 0.943 0.017

0.012 0.011 0.016 0.018 0.943







0.985 0.004 0.003 0.004 0.004

0.005 0.985 0.003 0.003 0.004

0.003 0.002 —0.985 0.005 0.004

0.003 0.002 0.005 0.985 0.004

0.003 0.003 0.004 0.005 0.985







Fig. 1. A deep network (left) trained with three different encodings on a five-class dataset with
labels Lion, Tiger, Aircraft Carrier, Alaskan Wolf and Mushroom. The SL (standard learning, see
Section 4 for details) column shows the label matrix for one-hot-encoding. When using LS (label
smoothing, see Section 4), the loss between the network output and a smoothed version of the
label, which does not change over time, is minimized. We propose to use a probability distribution
over classes as target label, where the class probabilities reflect the similarity to the true class. This
is shown in the LCL column. Unlike LS the proposed label encoding changes during training and
converges to the original optimization problem solved when using SL.

we can compute the similarity between two classes ci and cj by the cosine similarity

s(ci, cj) =
〈fenc(ci), fenc(cj)〉
‖fenc(ci)‖‖fenc(cj)‖

, (1)

which in our setting is always non-negative. The resulting label dissimilarity matrix for
the ImageNet labels is visualized in Figure 2.

3.2 Label encoding

We adopt the formal definition of a curriculum from the seminal paper by Bengio et
al. [1]. In [1], a weighting of the training data is adapted, so that in the beginning a larger
weight is put on easy examples. To distinguish this work from our approach, we refer to
it as example-weighting curriculum.

Let t ≥ 0 denote some notion of training time (e.g., a counter of training epochs).
In [1], there is a sequence of weights associated with each example i = 1, . . . , `, which
we denote by w(t)

i ∈ [0, 1]. These weights are normalized so that
∑`
i=1 w

(t)
i = 1 to

describe a proper probability distribution over the training examples.
For the weight sequence to be a proper (example-weighting) curriculum, Bengio et

al. [1] demand that the entropy of the weights

H(w(t)) = −
∑̀

i=1

w
(t)
i lnw

(t)
i (2)
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Fig. 2. Label dissimilarity matrix visualizing 1− s(ci, cj), 1 ≤ i, j ≤ 1000, for ImageNet.

is monotonically increasing with t (the weights should converge to the uniform distribu-
tion).

We define our label-weighting curriculum in a similar axiomatic way. Instead of a
sequence of weights for the training examples varying with t, we have a sequence of
label vectors for each training example. Let v(t)

i denote the C-dimensional label vector
for training pattern i at time t. For the sequence to be a label-weighting curriculum, the
entropy of the label vector components

∀i = 1, . . . , ` : H(v
(t)
i ) = −

C∑

c=1

[vi]
(t)
c ln[vi]

(t)
c (3)

should be monotonically decreasing under the constraints that for each label vector
v
(t)
i we have [v]j ≥ 0 for all j, ‖v(t)

i ‖1 = 1, and argmaxj [v]
(t)
j = n(ci) for all t. The

conditions imply that vi is always an element of the probability simplex, the class label
given in the training set always gets the highest probability, and v

(t)
i converges to yi.

We now give an example of how to adapt the label vectors. Similar as in [1], we
define for each training example i the simple update rule:

[vi]
(t+1)
j =





1

1+ε
∑

k 6=n(ci)
[vi]

(t)
k

if j = n(ci)

ε[vi]
(t)
j

1+ε
∑

k 6=n(ci)
[vi]

(t)
k

otherwise
(4)

The constant parameter 0 < ε < 1 controls how quickly the label vectors converge to the
one-hot-encoded labels. This update rule leads to a proper label-weighting curriculum.
During learning, the entries for all components except n(ci) drop with O(εt). Note that
[vi]

(t+1)
n(ci)

≥ [vi]
(t)
n(ci)

. The vectors are initialized using the label similarity defined in (1):

[vi]
(0)
j =

s
(
ci, n

−1(j)
)

∑C
k=1 s

(
ci, n−1(k)

) (5)
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Recall that n−1(j) denotes the “j-th” natural language class label.

3.3 Loss function

Let L be a loss function between two probability distributions and fθ(x) be the predicted
distribution for example x for some model parameters θ. At time step t we optimize
J (t)(θ) =

∑n
i=1 L(fθ(xi),v

(t)
i ) + λr(θ), where λ is a positive constant and r(θ) is

a regularization function. In this paper, the networks are trained using the standard
cross-entropy loss function with normalized targets vi for the inputs xi, i = 1, . . . , `.
Hence, in the beginning, predicting the correct one-hot encoded label yi causes an error
signal. That is, initially it is less penalized if an object is not correctly classified with
maximum confidence. Later in the training process, vi converges to yi and the classifier
is then pushed to build up confidence.

4 Experiments

We evaluated our curriculum learning strategy by running extensive experiments on
ImageNet [4], CIFAR100 [17], and AWA2 [33] plus additional experiments on CUB-
200-2011 [30] and NABirds [29] (see supplementary material). On CUB-200-2011 and
AwA2, we evaluated our approach using both the proposed semantic similarity of the
labels as well as visual similarity. On NABirds, we evaluated our approach also using
similarity based on the given (biological) hierarchy, where we used simrank [16] for
calculating the similarity matrix.

For each dataset we considered at least two different models and two different
baselines. Descriptive statistics of the datasets and a summary of the experimental
setup are given in Table 1 and Table 2. We considered different training set sizes, where
DR ∈ {5%, 10%, 20%, 100%} refers to the fraction of training data used. The remaining
training data was discarded (i.e., not used in the training process at all); the test data
were always the same.

Table 1. `train denotes the number of training images, `test denotes the number of test images and
C the number of classes in a given dataset; DR indicates the data set sizes (percentage of `train), ε
the cooling parameters, and #Rep the number of repetitions with different initializations/seeds.
The column Sim. indicates which similarity measures were used, where l stands for the semantic
similarity using the word embedding of the labels, v for a measure based on the similarity of the
images, and h for similarity based on a given label hierarchy.

`train `test C DR #Rep ε Sim.

AWA2 29865 7457 50 5%, 10%, 20%, 100% 4 0.9, 0.99, 0.999 l, v
CIFAR100 50000 10000 100 5%, 10%, 20%, 100% 4 0.9, 0.99, 0.999 l
ImageNet 1281167 50000 1000 5%, 10%, 20%, 100% 4 0.9, 0.99, 0.999 l
NABirds 23912 24615 555 100% 4 0.9,0.99,.999 l, h
CUB-200-2011 5994 5794 201 100% 4 0.9,0.99,.999 l, v
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We empirically compared the following algorithms:

1. Label-similarity curriculum learning (LCL): Proposed method with label update
rule (4). The time step t is the epoch number.

2. Standard Learning (SL): This is a standard setup with fixed one-hot encoding.
3. Label Smoothing (LS): Label smoothing uses soft targets instead of one-hot encod-

ing. It has been argued that LS prevents the network from becoming over-confident
and improves the empirical performance of the algorithm [21]. For 0 ≤ α ≤ 1 label
smoothing uses following label vector

[vi]
(t)
j =

{
(1− α) + α

C if j = n(ci)
α
C otherwise

for all t. (6)

We setα = 0.1 for the evaluations in this study.
4. Deep Mutual Learning (DML): In DML, two models, referred to as DML1and

DML2, solve the same classification problem collaboratively and are optimised
jointly [38]. It uses one hot-encoding along with cross-entropy loss as in SL but adds
additional terms KL(v̂(t)

DML1
‖ v̂(t)

DML2
) + KL(v̂(t)

DML2
‖ v̂(t)

DML1
), where KL denotes

the Kullback–Leibler divergence and v̂
(t)
DML1

and v̂
(t)
DML2

are the predicted label
probability vectors for both models. We report the classification performance of
both DML1 and DML2.

5. Knowledge Distillation (KD): In KD, one model is trained first using one-hot
encoded targets, and then the class probabilities produced by the first model are used
as “soft targets” for training the second model [13].

6. Curriculum Net (CN): In CN, example-weighted curriculum is built by sorting
examples from easy to hard [11].

Table 2. ResNeXt-101 denotes ResNeXt-101 (32×8d) , WRN denotes WRN (28-10-dropout),
and DenseNet-BC denotes DenseNet-BC (k = 40, depth=190) .

Model Dataset Baselines
ResNet-18 [34] CUB-200-2011 LS, DML, SL, KD, CN
ResNet-34 [34] CUB-200-2011, NABirds LS, DML, SL, KD, CN
ResNet-50 [12] ImageNet, NABirds SL, LS, KD, CN
ResNeXt-101 [34] ImageNet SL, LS, KD, CN
SENet-154 [14] ImageNet SL, LS, KD, CN
ResNet-101 [12] AWA2 LS, DML, SL, KD, CN
InceptionResNetV2 [28] AWA2 LS, DML, SL, KD, CN
WRN [37] CIFAR100 LS, DML, SL, KD, CN
DenseNet-BC [15] CIFAR100 LS, DML, SL, KD, CN

For all architectures, we have followed the experimental protocols described in the
original publications [12,37,34,14,28,15]. All experiments were conducted using the
PyTorch deep learning library [24].3 For all experiments, except ImageNet DR = 100%,

3 The code to reproduce our results is available in the supplementary material.
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we used stochastic gradient descent (SGD) for optimization. For ImageNet DR = 100%
we used the distributed SGD algorithm [9] with Horovod4 [26] support because of the
computational demands. The distributed SGD algorithm [9] is one of the state-of-the-art
methods for large scale training. It is expected to lead to a slight loss in performance
when a large batch size is used (see [9] for details).

Our approach introduces the hyperparameter ε, see (4). In order to assess the stability
of the proposed method, we present results for ε ∈ {0.9, 0.99, 0.999}.5 We repeated all
experiments four times. We report the top-1 and top-5 classification accuracy on the test
datasets (standard deviations are reported in the supplementary material).

For estimating the label similarity matrix, we used pretrained doc2vec emebed-
dings with dimensions d ∈ {100, 300, 500} with ResNet-50 and ResNet-101 . We did
not observe any significant differences in the classification accuracies. The maximum
difference between compatible settings were less than 0.06 %. Hence, we only report
results for the d = 100 dimensional doc2vec embeddings.

For each experiment, we used workstations having 4 Tesla P100 GPUs (with 16GB
GPU RAM) each. For network communication we used InfiniBand, which is a computer-
networking communications standard designed for high throughput and low-latency
scenarios.

We tuned the hyperparameters for the baseline method (SL) only. For 100% data,
we took the hyperparameters from the original publications. For all other settings,
we optimized learning rate, batch size and weight-decay for the standard baseline
(SL). Then we use the very same parameters for our approach (we just varied the
new parameter epsilon). Thus, hyperparameter tuning would rather increase the gain
from using our method. Thus, one might argue that the new algorithm is using sub-
optimal hyperparameters compared to the baselines. However, our goal was to show
that the proposed algorithm can improve any model on different datasets without tuning
hyperparameters.

5 Results and Discussion

We will focus on the results for ImageNet, CIFAR100, and AWA2 and the similarity
measure introduced in Section 3, result tables for the other data sets and other similarity
measures can be found in the supplementary material. Before we present the learning
results, we will discuss the structure of the label similarity matrices for the data sets
ImageNet, CIFAR100, and AWA2.

Label Similarities. For a better understanding of the label similarity matrices, we
visualized their eigenspectra in Figure 3. Consider two extreme scenarios: If a label
similarity matrix has rank 1, all classes are exactly the same and there cannot be any

4 Horovod is a method which uses large batches over multiple GPU nodes and some accuracy
loss is expected for the baseline method and this is well established. For more details please see
Table 1 and Table 2.c in [24].

5 We have tried ε ∈ {0.8, 0.9, 0.91, . . . , 0.98, 0.99, 0.992, . . . , 0.998, 0.999} for ResNet-50
and ResNet-101 . The results showed that the search space for ε can be less granular and we
have limited the search space accordingly.
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Fig. 3. Eigenvalue distributions of the class similarity matrices for ImageNet, CIFAR100, and
AwA2.

discriminatory learning. In contrast, the full rank case with equal eigenvalues is the
standard learning case where all classes are orthogonal to each other (one-hot-encoding).
Figure 3 shows exponential eigenvalues decays, which means there are clusters of
similar classes. Distinguishing between these clusters of classes is an easier task than
distinguishing between classes within one cluster.

Table 3. ImageNet. Top-1 results, averaged over four trials.

ε

SL LS KD CN 0.9 0.99 0.999

DR = 5%

ResNet-50 38.21 38.43 39.81 36.12 41.24 41.6 42.21
ResNeXt-101 45.46 45.71 46.21 44.14 46.1 46.92 47.12
SENet-154 48.29 48.57 48.44 46.21 49.8 50.04 50.19

DR = 10%

ResNet-50 51.95 52.25 53.64 52.17 55.39 55.62 55.64
ResNeXt-101 58.63 58.92 58.94 57.64 59.78 60.07 59.92
SENet-154 60.61 60.74 60.82 60.14 60.99 61.18 62.28

DR = 20%

ResNet-50 61.87 62.11 63.17 62.41 64.41 64.42 64.44
ResNeXt-101 67.96 68.13 68.29 68.14 68.48 68.47 68.57
SENet-154 67.77 67.71 67.64 67.43 68.14 68.4 68.33

DR = 100%

ResNet-50 76.25 76.4 76.38 76.1 76.71 76.75 76.89
ResNeXt-101 78.05 78.17 78.21 77.94 78.31 78.5 78.64
SENet-154 79.33 79.65 79.44 79.44 80.11 80.03 80.21
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Table 4. ImageNet. Top-5 results, averaged over four trials.

ε

SL LS KD CN 0.9 0.99 0.999

DR = 5%

ResNet-50 64.04 64.35 67.22 65.12 64.41 67.59 67.94
ResNeXt-101 70.52 70.76 71.84 70.92 70.67 72.05 72.18
SENet-154 73.35 73.52 74.54 73.92 73.56 74.65 74.92

DR = 10%

ResNet-50 76.86 77.04 79.73 78.14 77.1 79.8 79.69
ResNeXt-101 81.52 81.87 82.56 81.92 81.67 82.66 82.74
SENet-154 82.53 83.71 83.38 82.76 82.94 83.6 83.5

DR = 20%

ResNet-50 84.41 84.57 86.1 85.36 84.91 86.15 86.14
ResNeXt-101 87.96 88.11 88.2 88.04 87.84 88.36 88.36
SENet-154 88.16 88.23 88.17 88.17 88.11 88.37 88.31

DR = 100%

ResNet-50 92.87 92.91 92.94 92.41 92.84 92.95 92.93
ResNeXt-101 93.95 93.92 93.96 93.85 93.87 94.07 96.15
SENet-154 94.33 94.44 94.84 94.02 94.35 94.93 94.79

Classification Performance. We measured the top-1 classification accuracy and top-
5 classification accuracy after the last epoch. The results are summarized in Table 3
and Table 4 for ImageNet, in Table 5 and Table 6 for CIFAR100, and in Table 7 and
Table 8 for AWA2 (for standard deviations see the supplementary material). All results
are averaged over four trials. It is important to keep in mind that we compare against
baseline results achieved with architectures and hyperparameters tuned for excellent
performance. Furthermore, we compare to baseline results from our own experiments,
not to results taken from the literature. We ran each experiment 4 times with same seeds
for all algorithms. This allows for a fair comparison. Our averaged results also provide
a more reliable estimate of the performance of the systems compared to single trials
reported in the original works.

The results show that for all datasets and in all experimental cases using LCL
outperformed all baselines, with SeNet with DR = 10% and top-5 metric being the
only exception. The improvement was more pronounced when DR < 100%. It is quite
intuitive that a curriculum is much more important when the training data is limited (i.e.,
the learning problem is more difficult). Loosely speaking, the importance of a teacher
decreases when a student has access to unlimited information without any computational
and/or time budget.

For example, for ResNet-50 on ImageNet LCL improved the top-1 accuracy on
average by 4 percentage points (p.p.) over the baseline when DR = 5%, and 2 p.p. in
top-5 accuracy were gained with DR = 100% on ImageNet for the ResNeXt architecture.
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Table 5. CIFAR100. Top-1 results, averaged over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

WRN 40.2 40.31 40.16 40.47 40.94 38.14 41.36 41.86 41.92
DenseNet-BC 43.34 43.5 43.89 44.14 43.76 43.42 44.66 45.37 44.53

DR = 10%

WRN 60.2 60.1 60.38 60.34 60.45 60.14 60.49 60.86 61.19
DenseNet-BC 60.85 61.1 61.22 61.34 60.81 59.83 61.5 61.4 61.65

DR = 20%

WRN 71.05 71.25 71.61 71.65 71.53 71.37 71.64 71.67 71.83
DenseNet-BC 72.38 72.39 71.5 71.34 72.24 71.54 72.71 72.65 72.87

DR = 100%

WRN 79.52 79.84 80.32 80.20 80.14 78.64 81.17 81.15 81.25
DenseNet-BC 82.85 83.01 82.91 82.57 82.67 81.14 82.96 83.11 83.2

Table 6. CIFAR100. Top-5 results, averaged over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

WRN 68.82 68.95 68.74 68.89 68.94 69.12 69.47 69.39 69.63
DenseNet-BC 70.61 70.85 70.7 70.92 71.14 71.27 72.1 71.13 72.52

DR = 10%

WRN 83.64 83.82 84.05 84.11 83.94 83.77 83.99 84.15 84.3
DenseNet-BC 84.07 84.21 84.27 84.45 84.07 84.31 84.34 84.63 84.52

DR = 20%

WRN 90.52 90.38 90.3 90.27 90.71 90.45 91.02 91.19 90.95
DenseNet-BC 91.24 91.37 91.33 91.30 91.39 91.38 91.4 91.31 91.47

DR = 100%

WRN 94.04 94.23 94.44 94.42 94.52 94.52 95.29 95.17 95.49
DenseNet-BC 95.22 95.28 95.34 95.27 95.37 95.63 95.72 95.74 95.88

The biggest improvements were achieved on the AWA2 dataset. For ResNet-101 and
DR = 5%, average improvements of more than 22 p.p. and 23 p.p. could be achieved in
the top-1 and top-5 accuracy, respectively. As could be expected, the performance gains
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Table 7. AWA2. Top-1 results, averaged over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

ResNet-101 23.09 27.82 39.22 37.19 41.58 24.1 45.51 45.55 45.78
InceptionResNetV2 57.42 57.95 58.69 58.14 59.3 56.9 60.85 61.07 60.71

DR = 10%

ResNet-101 41.86 44.98 48.92 50.5 44.02 43.12 47.21 51.67 53.39
InceptionResNetV2 71.47 71.86 71.82 72.37 71.49 72.01 72.61 72.97 73.01

DR = 20%

ResNet-101 77.11 78.23 78.34 78.32 78.28 77.64 80.03 80.07 79.86
InceptionResNetV2 83.64 83.92 83.87 83.76 83.83 84.12 84.27 84.05 84.27

DR = 100%

ResNet-101 88.73 89.25 89.01 89.11 89.17 88.92 89.44 89.64 89.63
InceptionResNetV2 89.69 89.94 90.05 90.22 89.94 89.29 90.49 90.34 90.47

Table 8. AWA2. Top-5 results, averaged over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

ResNet-101 53.31 54.19 65.14 63.12 56.19 54.17 76.02 76.14 76.47
InceptionResNetV2 83.06 83.14 84.07 84.18 84.12 83.77 84.94 85.24 84.84

DR = 10%

ResNet-101 72.59 72.43 75.07 76.14 76.61 76.34 77.04 80.46 80.11
InceptionResNetV2 91.37 91.42 91.35 91.43 91.48 91.35 91.9 91.89 91.71

DR = 20%

ResNet-101 94.21 94.56 94.79 95.01 94.61 94.45 95.2 95.07 95.12
InceptionResNetV2 96.03 96.23 96.28 96.13 96.21 95.19 96.18 96.49 96.57

DR = 100%

ResNet-101 97.85 97.92 98.1 97.95 97.43 97.32 98.11 98.14 98.1
InceptionResNetV2 98.01 98.07 98.25 98.17 97.67 97.56 98.25 98.41 98.2

in the top-5 setting were typically smaller than for top-1. Still, nothing changed with
respect to the ranking of the network architectures.

Larger values of ε mean slower convergence to the one-hot-encoding and therefore
more emphasis on the curriculum learning. In most experiments, ε = 0.999 performed
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best. The observation that larger ε values gave better results than small ones provides
additional evidence that the curriculum really supports the learning process (and that we
are not discussing random artifacts).

Under the assumption that the experimental scenarios are statistically independent,
we performed a statistical comparisons of the classifiers over multiple data sets for all
pairwise comparisons following [3,8]. Using the Iman and Daveport test, all but one
result were statistically significant. If we consider all ImageNet top-1 accuracy results,
our method with ε = 0.999 ranked best, followed by ε = 0.99, ε = 0.9, LS and then SL.
This ranking was highly significant (Iman and Daveport test, p < 0.001). Similarly, our
method with ε = 0.999 was best for both CIFAR-100 and AWA2 (p < 0.001).

6 Conclusions

We proposed a novel curriculum learning approach referred to as label-similarity curricu-
lum learning. In contrast to previous methods, which change the weighting of training
examples, it is based on adapting the label representation during training. This adaptation
considers the semantic similarity of labels. It implements the basic idea that at an early
stage of learning it is less important to distinguish between similar classes compared to
separating very different classes.

The class similarity can be based on arbitrary a priori knowledge, in particular on
additional information not directly encoded in the training data. For the case where
the class labels are natural language words, we proposed a way to automatically define
class similarity via a word embedding. We also considered other similarity measures for
datasets where these similarity measures were available.

We extensively evaluated the approach on five datasets. For each dataset, two to three
deep learning architectures proposed in the literature were considered. We looked at
simple label smoothing and, for the two smaller datasets, also at deep mutual learning
(DML) as additional baselines. In each case, we considered four different training data
set sizes. Each experiment was repeated four times. The empirical results strongly
support our approach. Label-similarity curriculum learning was able to improve the
average classification accuracy on the test data compared to standard training in
all scenarios. The improvements achieved by our method were more pronounced for
smaller training data sets. When considering only 10% of the AWA2 training data, label-
similarity curriculum learning increased the Resnet101 top-1 test accuracy by more than
22 percentage points on average compared to the standard baseline.

Our curriculum learning also outperformed simple label smoothing and DML in
all but a single case. Our method turned out to be robust with respect to the choice of
the single hyperparameter controlling how quickly the learning process converges to
minimizing the standard cross-entropy loss. In contrast to related approaches such as
knowledge distillation and DML, the additional computational and memory requirements
can be neglected.

The proposed label-similarity curriculum learning is a general approach, which also
works for settings where the class similarity is not based on the semantic similarity of
natural language words (see supplementary material).
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A Standard Deviations for Results

Table A.9. ImageNet. Top-1 results, standard deviations over four trials.

ε

SL LS KD CN 0.9 0.99 0.999

DR = 5%

ResNet-50 0.6 0.47 0.08 0.17 0.89 0.62 0.78
ResNeXt-101 0.46 0.53 0.2 0.2 0.15 0.07 0.11
SENet-154 0.34 0.41 0.15 0.11 0.21 0.09 0.25

DR = 10%

ResNet-50 1.31 0.64 0.21 0.42 0.16 0.27 0.14
ResNeXt-101 0.39 0.27 0.13 0.28 0.24 0.08 0.16
SENet-154 0.02 0.3 0.23 0.28 0.15 0.21 0.23

DR = 20%

ResNet-50 0.1 0.34 0.34 0.3 0.08 0.18 0.1
ResNeXt-101 0.23 0.37 0.06 0.3 0.12 0.07 0.14
SENet-154 0.15 0.23 0.19 0.28 0.13 0.14 0.02

DR = 100%

ResNet-50 0.14 0.17 0.22 0.25 0.12 0.14 0.11
ResNeXt-101 0.05 0.23 0.42 0.25 0.04 0.06 0.08
SENet-154 0.12 0.24 0.19 0.31 0.14 0.11 0.14
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Table A.10. ImageNet. Top-5 results, averaged over four trials.

ε

SL LS KD CN 0.9 0.99 0.999

DR = 5%

ResNet-50 0.81 0.92 0.49 0.31 1.06 0.66 0.73
ResNeXt-101 0.4 0.72 0.41 0.29 0.18 0.1 0.18
SENet-154 0.56 0.41 0.29 0.31 0.13 0.22 0.26

DR = 10%

ResNet-50 1.02 0.86 0.62 0.34 0.16 0.17 0.07
ResNeXt-101 0.2 0.21 0.55 0.79 0.05 0.14 0.11
SENet-154 0.1 0.37 0.81 0.48 0.39 0.2 0.32

DR = 20%

ResNet-50 0.04 0.42 0.58 0.31 0.08 0.08 0.06
ResNeXt-101 0.16 0.22 0.5 0.78 0.13 0.1 0.08
SENet-154 0.05 0.17 0.32 0.42 0.15 0.1 0.11

DR = 100%

ResNet-50 0.09 0.1 0.18 0.39 0.07 0.09 0.06
ResNeXt-101 0.04 0.1 0.57 0.37 0.05 0.03 0.04
SENet-154 0.27 0.28 0.29 0.19 0.15 0.18 0.22

Table A.11. CIFAR100. Top-1 results, standard deviations over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

WRN 0.67 0.78 0.9 0.63 0.58 0.24 0.41 0.81 0.6
DenseNet-BC 0.42 0.61 0.45 0.35 0.19 0.13 0.57 0.51 0.59

DR = 10%

WRN 0.1 0.6 0.29 0.36 0.24 0.28 0.17 0.13 0.31
DenseNet-BC 0.44 0.53 0.18 0.21 0.28 0.36 0.28 0.29 0.17

DR = 20%

WRN 0.67 0.21 0.4 0.26 0.14 0.35 0.3 0.2 0.23
DenseNet-BC 0.23 0.41 0.15 0.21 0.41 0.21 0.18 0.18 0.17

DR = 100%

WRN 0.21 0.23 0.14 0.28 0.51 0.19 0.12 0.08 0.11
DenseNet-BC 0.27 0.65 0.21 0.32 0.37 0.34 0.17 0.11 0.07
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Table A.12. CIFAR100. Top-5 results, standard deviations over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

WRN 0.88 0.57 0.63 0.41 0.56 0.14 0.3 0.29 0.32
DenseNet-BC 0.64 0.54 0.27 0.33 0.41 0.14 1.02 0.57 0.44

DR = 10%

WRN 0.32 0.45 0.23 0.24 0.21 0.24 0.18 0.15 0.11
DenseNet-BC 0.29 0.32 0.25 0.37 0.25 0.39 0.18 0.11 0.17

DR = 20%

WRN 0.31 0.71 0.21 0.27 0.24 0.42 0.25 0.25 0.2
DenseNet-BC 0.12 0.54 0.11 0.17 0.32 0.27 0.19 0.36 0.14

DR = 100%

WRN 0.18 0.55 0.24 0.24 0.39 0.24 0.1 0.14 0.06
DenseNet-BC 0.22 0.38 0.14 0.24 0.36 0.29 0.08 0.1 0.04

Table A.13. AWA2. Top-1 results, standard deviations over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

ResNet-101 9.15 6.72 4.94 5.42 0.1 0.25 1.74 1.99 1.14
InceptionResNetV2 1.17 1.43 1.21 0.94 0.21 0.079 0.71 0.93 0.6

DR = 10%

ResNet-101 8.21 5.27 3.5 2.85 0.16 0.1 4.78 2.85 2.91
InceptionResNetV2 0.8 0.95 0.45 0.63 0.11 0.11 0.34 0.58 0.25

DR = 20%

ResNet-101 1.44 1.45 0.4 0.83 0.23 0.27 0.88 1.02 0.73
InceptionResNetV2 0.19 0.34 0.21 0.24 0.26 0.41 0.18 0.16 0.22

DR = 100%

ResNet-101 0.68 0.54 0.42 0.45 0.32 0.12 0.37 0.38 0.24
InceptionResNetV2 0.32 0.21 0.16 0.09 0.32 0.46 0.11 0.15 0.11
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Table A.14. AWA2. Top-5 results, standard deviations over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

ResNet-101 11.73 9.82 4.79 4.12 0.29 0.34 1.77 1.97 0.79
InceptionResNetV2 0.64 0.65 0.54 0.13 0.37 0.16 0.61 0.81 0.21

DR = 10%

ResNet-101 7.84 0.45 3.02 2.19 0.34 0.3 4.72 2.01 2.94
InceptionResNetV2 0.22 0.23 0.38 0.44 0.25 0.31 0.23 0.27 0.3

DR = 20%

ResNet-101 0.37 0.32 0.51 0.32 0.14 0.22 0.28 0.74 0.23
InceptionResNetV2 0.07 0.27 0.07 0.23 0.23 0.33 0.14 0.22 0.16

DR = 100%

ResNet-101 0.08 0.23 0.23 0.34 0.35 0.25 0.02 0.18 0.05
InceptionResNetV2 0.12 0.29 0.11 0.2 0.24 0.3 0.06 0.37 0.17
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B Similarity Measures

Details on the semantic similarity are given in subsection 3.1. For computing visual
similarity, we used attribute vectors provided with the images. For example, an image of
an animal in the AWA2 dataset may have a d-dimensional attribute vector describing its
color, if it has stripes, if it is a water animal, and if it eats fish. Visual similarity is then
defined as the cosine similarity between two attribute vectors. Hierarchical similarity for
the NABirds data was calculated using simrank [16].
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C Extra AWA-2 Results

Table C.15. AWA2. Top-1 results, averaged over four trials. We used our method both with the
proposed semantic similarity of natural language labels as well as with a visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 5%

ResNet-101 23.09 27.82 39.22 37.19 41.58 24.1 45.51 45.55 45.78 45.74 45.85 46.13
InceptionResNetV2 57.42 57.95 58.69 58.14 59.3 56.9 60.85 61.07 60.71 61.14 61.39 60.71

DR = 10%

ResNet-101 41.86 44.98 48.92 50.5 44.02 43.12 47.21 51.67 53.39 47.34 51.85 53.67
InceptionResNetV2 71.47 71.86 71.82 72.37 71.49 72.01 72.61 72.97 73.01 72.82 73.2 73.34

DR = 20%

ResNet-101 77.11 78.23 78.34 78.32 78.28 77.64 80.03 80.07 79.86 80.09 80.8 79.94
InceptionResNetV2 83.64 83.92 83.87 83.76 83.83 84.12 84.27 84.05 84.27 85.02 84.47 84.65

DR = 100%

ResNet-101 88.73 89.25 89.01 89.11 89.17 88.92 89.44 89.64 89.63 90.15 90.11 90.19
InceptionResNetV2 89.69 89.94 90.05 90.22 89.94 89.29 90.49 90.34 90.47 90.27 90.33 90.46
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Table C.16. AWA2. Top-5 results, averaged over four trials. We used our method both with the
proposed semantic similarity of natural language labels as well as with a visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 5%

ResNet-101 53.31 54.19 65.14 63.12 56.19 54.17 76.02 76.14 76.47 76.17 76.23 76.41
InceptionResNetV2 83.06 83.14 84.07 84.18 84.12 83.77 84.94 85.24 84.84 85.02 85.17 84.78

DR = 10%

ResNet-101 72.59 72.43 75.07 76.14 76.61 76.34 77.04 80.46 80.11 79.54 80.78 80.56
InceptionResNetV2 91.37 91.42 91.35 91.43 91.48 91.35 91.9 91.89 91.71 91.65 91.92 91.53

DR = 20%

ResNet-101 94.21 94.56 94.79 95.01 94.61 94.45 95.2 95.07 95.12 95.23 95.02 95.08
InceptionResNetV2 96.03 96.23 96.28 96.13 96.21 95.19 96.18 96.49 96.57 96.31 96.67 96.43

DR = 100%

ResNet-101 97.85 97.92 98.1 97.95 97.43 97.32 98.11 98.14 98.1 98.43 98.51 98.17
InceptionResNetV2 98.01 98.07 98.25 98.17 97.67 97.56 98.25 98.41 98.2 98.64 98.44 98.52

Table C.17. AWA2. Top-1 results, standard deviations over four trials. We used our method both
with the proposed semantic similarity of natural language labels as well as with a visual similarity
measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 5%

ResNet-101 9.15 6.72 4.94 5.42 0.1 0.25 1.74 1.99 1.14 0.22 0.18 0.11
InceptionResNetV2 1.17 1.43 1.21 0.94 0.21 0.079 0.71 0.93 0.6 0.24 0.12 0.17

DR = 10%

ResNet-101 8.21 5.27 3.5 2.85 0.16 0.1 4.78 2.85 2.91 0.23 0.17 0.22
InceptionResNetV2 0.8 0.95 0.45 0.63 0.11 0.11 0.34 0.58 0.25 0.19 0.15 0.21

DR = 20%

ResNet-101 1.44 1.45 0.4 0.83 0.23 0.27 0.88 1.02 0.73 0.12 0.18 0.19
InceptionResNetV2 0.19 0.34 0.21 0.24 0.26 0.41 0.18 0.16 0.22 0.15 0.23 0.17

DR = 100%

ResNet-101 0.68 0.54 0.42 0.45 0.32 0.12 0.37 0.38 0.24 0.18 0.19 0.16
InceptionResNetV2 0.32 0.21 0.16 0.09 0.32 0.46 0.11 0.15 0.11 0.19 0.15 0.11
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Table C.18. AWA2. Top-5 results, standard deviations over four trials. We used our method both
with the proposed semantic similarity of natural language labels as well as with a visual similarity
measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 5%

ResNet-101 11.73 9.82 4.79 4.12 0.29 0.34 1.77 1.97 0.79 0.15 0.29 0.19
InceptionResNetV2 0.64 0.65 0.54 0.13 0.37 0.16 0.61 0.81 0.21 0.28 0.52 0.11

DR = 10%

ResNet-101 7.84 0.45 3.02 2.19 0.34 0.3 4.72 2.01 2.94 0.29 0.16 0.12
InceptionResNetV2 0.22 0.23 0.38 0.44 0.25 0.31 0.23 0.27 0.3 0.25 0.23 0.2

DR = 20%

ResNet-101 0.37 0.32 0.51 0.32 0.14 0.22 0.28 0.74 0.23 0.37 0.12 0.17
InceptionResNetV2 0.07 0.27 0.07 0.23 0.23 0.33 0.14 0.22 0.16 0.24 0.23 0.38

DR = 100%

ResNet-101 0.08 0.23 0.23 0.34 0.35 0.25 0.02 0.18 0.05 0.24 0.27 0.28
InceptionResNetV2 0.12 0.29 0.11 0.2 0.24 0.3 0.06 0.37 0.17 0.12 0.18 0.17
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D NABirds Results

Table D.19. NABirds. Top-1 results, averaged over four trials. The NABirds data set contains
images of North American birds. We used our method both with the proposed semantic similarity
of natural language labels as well as with a similarity measure based on the biological hierarchy of
the depicted animals.

ε ε biological hierarchy

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-34 52.61 52.72 52.84 53.14 53.19 52.78 55.05 55.83 55.53 54.11 55.83 55.16
ResNet-50 58.81 59.19 59.17 58.76 59.64 59.04 61.46 60.16 61.17 62.68 62.19 63.29

Table D.20. NABirds. Top-5 results, averaged over four trials. We used our method both with the
proposed semantic similarity of natural language labels as well as with a similarity measure based
on the biological hierarchy of the depicted animals.

ε ε biological hierarchy

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-34 76.42 77.14 76.98 77.42 77.84 77.19 78.64 79.12 79.45 79.11 79.21 79.14
ResNet-50 82.78 83.01 83.41 83.38 83.67 82.65 83.25 83.79 84.29 83.67 83.31 83.75

Table D.21. NABirds. Top-1 results, standard deviations over four trials. We used our method
both with the proposed semantic similarity of natural language labels as well as with a similarity
measure based on the biological hierarchy of the depicted animals.

ε ε biological hierarchy

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-34 0.14 0.61 0.21 0.72 0.25 0.29 0.19 0.22 0.19 0.1 0.12 0.06
ResNet-50 0.32 0.23 0.19 0.45 0.33 0.23 0.24 0.21 0.17 0.11 0.09 0.08
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Table D.22. NABirds. Top-5 results, standard deviations over four trials. We used our method
both with the proposed semantic similarity of natural language labels as well as with a similarity
measure based on the biological hierarchy of the depicted animals.

ε ε biological hierarchy

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-34 0.45 0.37 0.71 0.56 0.61 0.76 0.28 0.52 0.22 0.17 0.34 0.16
ResNet-50 0.39 0.42 0.23 0.73 0.43 0.39 0.28 0.31 0.27 0.32 0.23 0.22
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E CUB-200-2011 Results

Table E.23. CUB-200-2011. Top-1 results, averaged over four trials. We used our method both
with the proposed semantic similarity of natural language labels as well as with a visual similarity
measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-18 45.96 46.03 45.19 46.21 46.17 45.92 46.39 46.78 47.3 46.27 47.75 46.84
ResNet-34 46.39 46.74 46.45 46.94 46.77 46.58 47.35 47.96 47.2 48.15 48.08 48.17

Table E.24. CUB-200-2011. Top-5 results, averaged over four trials. We used our method both
with the proposed semantic similarity of natural language labels as well as with a visual similarity
measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-18 72.85 73.17 72.66 72.78 73.67 72.92 73.78 73.29 73.19 75.14 73.45 73.11
ResNet-34 74.47 74.86 74.55 74.88 74.83 74.55 76.52 75.71 75.64 75.76 75.97 75.3

Table E.25. CUB-200-2011. Top-1 results, standard deviations over four trials. We used our
method both with the proposed semantic similarity of natural language labels as well as with a
visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-18 0.18 0.21 0.23 0.35 0.21 0.29 0.24 0.19 0.19 0.16 0.16 0.09
ResNet-34 0.14 0.43 0.19 0.18 0.43 0.32 0.18 0.18 0.16 0.12 0.17 0.06
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Table E.26. CUB-200-2011. Top-5 results, standard deviations over four trials. We used our
method both with the proposed semantic similarity of natural language labels as well as with a
visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-18 0.27 0.42 0.43 0.28 0.22 0.61 0.21 0.23 0.19 0.15 0.29 0.23
ResNet-34 0.41 0.19 0.15 0.27 0.27 0.54 0.19 0.31 0.18 0.24 0.37 0.15


