
Simulation Distances⋆

Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna

IST Austria

Abstract. Boolean notions of correctness are formalized by preorders on
systems. Quantitative measures of correctness can be formalized by real-
valued distance functions between systems, where the distance between
implementation and specification provides a measure of “fit” or “desir-
ability.” We extend the simulation preorder to the quantitative setting,
by making each player of a simulation game pay a certain price for her
choices. We use the resulting games with quantitative objectives to define
three different simulation distances. The correctness distance measures
how much the specification must be changed in order to be satisfied by
the implementation. The coverage distance measures how much the im-
plementation restricts the degrees of freedom offered by the specification.
The robustness distance measures how much a system can deviate from
the implementation description without violating the specification. We
consider these distances for safety as well as liveness specifications. The
distances can be computed in polynomial time for safety specifications,
and for liveness specifications given by weak fairness constraints. We
show that the distance functions satisfy the triangle inequality, that the
distance between two systems does not increase under parallel composi-
tion with a third system, and that the distance between two systems can
be bounded from above and below by distances between abstractions of
the two systems. These properties suggest that our simulation distances
provide an appropriate basis for a quantitative theory of discrete sys-
tems. We also demonstrate how the robustness distance can be used to
measure how many transmission errors are tolerated by error correcting
codes.

1 Introduction

Standard verification systems return a boolean answer that indicates whether a
system satisfies its specification. However, not all correct implementations are
equally good, and not all incorrect implementations are equally bad. There is
thus a natural question whether it is possible to extend the standard specification
frameworks and verification algorithms to capture a finer and more quantitative
view of the relationship between specifications and systems.

We focus on extending the notion of simulation to the quantitative setting.
For reactive systems, the standard correctness requirement is that all executions

⋆ This work was partially supported by the European Union project COMBEST and
the European Network of Excellence ArtistDesign.

of an implementation have to be allowed by the specification. Requiring that
the specification simulates the implementation is a stricter condition, but it
is computationally less expensive to check. The simulation relation defines a
preorder on systems. We extend the simulation preorder to a distance function
that given two systems, returns a real-valued distance between them.

Let us consider the definition of simulation of an implementation I by a spec-
ification S as a two-player game, where Player 1 (the implementation) chooses
moves (transitions) and Player 2 (the specification) tries to match each move.
The goal of Player 1 is to prove that simulation does not hold, by driving the
game into a state from which Player 2 cannot match the chosen move; the goal
of Player 2 is to prove that there exists a simulation relation, by playing the
game forever. In order to extend this definition to capture how “good” (or how
“bad”) the simulation is, we make the players pay a certain price for their choices.
The goal of Player 1 is then to maximize the cost of the game, and the goal of
Player 2 is to minimize it. The cost is given by an objective function, such as the
limit average of transition prizes. For example, for incorrect implementations,
i.e., those for which the specification S does not simulate the implementation I,
we might be interested in how often the specification (Player 2) cannot match
an implementation move. We formalize this using a game with a limit-average
objective between modified systems. The specification is allowed to “cheat,” by
following a non-existing transition, while the implementation is left unmodified.
More precisely, the specification is modified by giving the transitions from the
original system a weight of 0, and adding new “cheating” transitions with a non-
zero positive weight. As Player 2 is trying to minimize the value of the game,
she is motivated not to cheat. The value of the game measures how often the
specification can be forced to cheat by the implementation, that is, how often the
implementation violates the specification (i.e., commits an error) in the worst
case. We call this distance function correctness.

Let us consider the examples in Figure 1. We take the system S1 as the
specification. The specification allows at most two symbols b to be output in
the row. Now let us consider the two incorrect implementations I3 and I4. The
implementation I3 outputs an unbounded number of b’s in a row, while the
implementation I4 can output three b’s in a row. The specification S1 will thus
not be able to simulate either I3 or I4, but I4 is a “better” implementation in
the sense that it violates the requirement to a smaller degree. We capture this
by allowing S1 to cheat in the simulation game by taking an existing edge while
outputting a different symbol. When simulating the system I3, the specification
S1 will have to output a b when taking the edge from state 2 to state 0. This
cheating transition will be taken every third move while simulating I3. The
correctness distance from S1 to I3 will therefore be 1/3. When simulating I4,
the specification S1 needs to cheat only one in four times—this is when I4 takes
a transition from its state 2 to state 3. The distance from S1 to I4 will be 1/4.

Considering the implementation I2 from Figure 1, it is easy to see that it
is correct with respect to the specification S1. The correctness distance would
thus be 0. However, it is also easy to see that I2 does not include all behav-

0 1 2

a

b b

a

a

(a) S1

0 1

a

b

a

(b) I2

0

b

(c) I3

0 1 2 3
b b b

a

(d) I4

Fig. 1. Example Systems

iors allowed by S1. Our second distance function, coverage, is the dual of the
correctness distance. It measures how many of the behaviors allowed by the
specification are actually implemented by the implementation. This distance is
obtained as the value for the implementation in a game in which I is required to
simulate S, with the implementation being allowed to cheat. Our third distance
function is called robustness. It measures how robust the implementation I is
with respect to the specification S in the following sense: we measure how often
the implementation can make an unexpected error (i.e., it performs a transition
not present in its transition relation), with the resulting behavior still being
accepted by the specification. Unexpected errors could be caused, for example,
by a hardware problem, by a wrong environment assumption, or by a malicious
attack. Robustness measures how many such unexpected errors are tolerated.

In addition to safety specifications, we consider liveness specifications given
by weak (Büchi) fairness constraints or strong (Streett) fairness constrains. In
order to define distances to liveness specifications, the notion of quantitative
simulation is extended to fair quantitative simulation. We study variations of
the correctness, coverage, and robustness distances using limit-average and dis-
counted objective functions. Limit-average objectives measure the long-run fre-
quency of errors, whereas discounted objectives count the number of errors and
give more weight to earlier errors than later ones.

The correctness, coverage, and robustness distances can be calculated by
solving the value problem in the corresponding games. Without fairness require-
ments, we obtain limit-average games or discounted games with constant weights.
The values of such games can be computed in polynomial time [20]. We obtain
polynomial complexity also for distances between systems with weak-fairness
constraints, whereas for strong-fairness constrains, the best known algorithms
require exponential time.

We present composition and abstraction techniques that are useful for com-
puting and approximating simulation distances between large systems. Finally,
we present an application of the robustness distance. We consider error correc-
tion systems for transmitting data over noisy channels. Three implementations
based on the Hamming code, triple modular redundancy, and no error correction
with different robustness properties are analyzed.

Related work Weighted automata [4, 10] provide a way to assign values to words,
and to languages defined by finite-state systems. Distances between systems can
be defined using weighted automata, analogically to boolean language inclusion.
However, the complexity of computation of such distance is not known [4]. Our
solution of using a quantitative version of simulation games corresponds in the

boolean case to the choice of using simulation instead of language inclusion.
There have been several attempts to give a mathematical semantics to reactive
processes which is based on quantitative metrics rather than boolean preorders
[18, 6]. In particular for probabilistic processes, it is natural to generalize bisim-
ulation relations to bisimulation metrics [9, 19], and similar generalizations can
be pursued if quantities enter not through probabilities but through discounting
[7] or continuous variables [2] (this work uses the Skorohod metric on contin-
uous behaviors to measure the distance between hybrid systems). We consider
distances between purely discrete (nonprobabilistic, untimed) systems, and our
distances are directed rather than symmetric (based on simulation rather than
bisimulation). Software metrics measure properties such as lines of code, depth
of inheritance (in an object-oriented language), number of bugs in a module
or the time it took to discover the bugs (see for example [12, 16]). These func-
tions measure syntactic properties of the source code, and are fundamentally
different from our distance functions that capture the difference in the behavior
(semantics) of programs.

2 Quantitative Simulation Games

Transition Systems. A transition system is a tuple 〈S, Σ, E, s0〉 where S is a
finite set of states, Σ is a finite alphabet, E ⊆ S × Σ × S is a set of labeled
transitions, and s0 is the initial state. We require that for every s ∈ S, there exists
a transition from s. The set of all transition systems is denoted by S. A weighted
transition system is a transition system along with a weight function v from
E to Q. A run in a transition system T is an infinite path ρ = ρ0σ0ρ1σ1ρ2σ2 . . . ∈
(S · Σ)ω where ρ0 = s0 and for all i, (ρi, σi, ρi+1) ∈ E.
Fairness Conditions. A Büchi (weak fairness) condition for a (weighted) tran-
sition system is set of states F ⊆ S. Given a Büchi condition F and a run ρ =
ρ0σ0ρ1σ1 . . . of a transition system, the run ρ is fair iff ∀n ≥ 0 : (∃i > n : ρi ∈ F).
A Streett (strong fairness) condition for a (weighted) transition system is a
set of request-response pairs F = {〈E1, F1〉, 〈E2, F2〉, . . . , 〈Ed, Fd〉} where each
Ei, Fi ∈ 2S. Given a Streett condition, a run ρ = ρ0σ0ρ1σ1 . . . is fair iff
∀k ≤ d :

(

(|{i | ρi ∈ Ek}| = ∞) ⇒ (|{i | ρi ∈ Fk}| = ∞)
)

. We denote a transition
system A with a fairness condition F as AF .
Game Graphs. A game graph G is a tuple 〈S, S1, S2, Σ, E, s0〉 where S, Σ, E
and s0 are as in transition systems and (S1, S2) is a partition of S. The choice
of the next state is made by Player 1 (Player 2) when the current state is in S1

(respectively, S2). A weighted game graph is a game graph along with a weight
function v from E to Q. A run in the game graph G is called a play. The set of
all plays is denoted by Ω.

When the two players represent the choices internal to a system, we call
the game graph an alternating transition system. We only consider alternating
transition systems where the transitions from Player 1 states go only to Player 2
states and vice-versa. We use AF to denote an alternating transition system A
with fairness condition F .

Strategies. Given a game graph G, a strategy for Player 1 is a function π :
(S · Σ)∗S1 → S × Σ such that ∀s0σ0s1σ1 . . . si ∈ (S · Σ)∗S1, we have that
if π(s0σ0s1σ1 . . . si) = (s, σ), then (si, σ, s) ∈ E. A strategy for Player 2 is
defined similarly. The set of all strategies for Player p is denoted by Πp. A play
ρ = ρ0σ0ρ1σ1ρ2σ2 . . . conforms to a player p strategy π if ∀i ≥ 0 : (ρi ∈ Sp =⇒
: (ρi+1, σi+1) = π(ρ0σ0ρ1σ1 . . . ρi)). The outcome of strategies π1 and π2 is the
unique play out(π1 , π2) that conforms to both π1 and π2.

Two restricted notions of a strategy are sufficient for many classes of games.
A memoryless strategy is one where the value of the strategy function depends
solely on the last state in the history, whereas a finite-memory strategy is one
where the necessary information about the history can be summarized by a finite
amount of information.

Games and Objectives. A game is a game graph and a boolean or quantitative
objective. A boolean objective is a function Φ : Ω → {0, 1} and the goal of
Player 1 in a game with objective Φ is to choose a strategy so that, no matter
what Player 2 does, the outcome maps to 1; and the goal of Player 2 is to
ensure that the outcome maps to 0. A quantitative objective is a value function
f : Ω → R and the goal of Player 1 is to maximize the value f of the play,
whereas the goal of Player 2 is to minimize it. We only consider quantitative
objectives with which map plays to values in [0, 1]. Given a boolean objective Φ,
a play ρ is winning for Player 1 (Player 2) if Φ(ρ) = 1 (Φ(ρ) = 0). A strategy
π is a winning strategy for Player p if every play conforming to π is winning for
Player p.

For a quantitative objective f , the value of the game for Player 1 is defined as
the supremum of the values of plays attainable against any Player 2 strategy, i.e.,
supπ1∈Π1

infπ2∈Π2
f(out(π1 , π2)). The value of the game for Player 2 is defined

analogously. A strategy is an optimal strategy for a player if it assures a outcome
equal to her value of the game. Similarly, a strategy is an ǫ-optimal strategy for
a maximizing (resp. minimizing) player if it assures an outcome that is no more
that ǫ smaller (resp. larger) than the value of the game.

We consider ω-regular boolean objectives and the following quantitative
objectives. Given a game graph with the weight function v and a play ρ =
ρ0ρ1ρ2 . . ., for all i ≥ 0, let vi = v((ρi, σi, ρi+1)).

– LimAvg(ρ) = lim infn→∞
1
n
·
∑n−1

i=0 vi

– Discλ(ρ) = lim infn→∞(1 − λ) ·
∑n−1

i=0 λi · vi where 0 < λ < 1.

LimAvg is the long-run average of the weights occurring in a play, whereas Discλ

is the discounted sum of the weights. Therefore, LimAvg gives more importance
to the infinite suffix of a play whereas Discλ gives more importance to the finite
prefix of a play.

Note that for LimAvg and Disc objectives, optimal memoryless strategies
exist for both players [11, 20]. Also, for qualitative objectives specified as Büchi
conditions, memoryless winning strategies exist for both players, and for other
ω-regular conditions, finite-memory winning strategies exist.

Also, consider the following family of objectives where a boolean ω-regular
objective and a quantitative objective f are combined as follows. If a play ρ

satisfies the boolean objective, then the value of ρ is the value according to f ;
otherwise, the value of the ρ is the maximum possible value of f (in our case, it is
always 1). When f = LimAvg and the ω-regular objective is a parity objective,
ǫ-optimal finite-memory strategies exist [5]. This result can be extended to arbi-
trary ω-regular objectives as all ω-regular objectives can be expressed as parity
objectives with the latest appearance records memory [13]. Such objectives are
called ω-regular LimAvg objectives.

2.1 Qualitative Simulation Games

The simulation preorder [17] is a useful and polynomially computable relation to
compare two transition systems. In [1] this relation was extended to alternating
simulation between alternating transition systems. For systems with fairness
conditions, the simulation relation was extended to fair simulation in [15]. These
relations can be computed by solving games with boolean objectives.
Simulation and Alternating Simulation. Consider two transition systems
A = 〈S, Σ, E, s0〉 and A′ = 〈S′, Σ, E′, s′0〉. The system A′ simulates the system
A if there exists a relation H ⊆ S×S′ such that (a) (s0, s

′
0) ∈ H ; and (b) ∀s, t ∈

S, s′ ∈ S′ : (s, s′) ∈ H ∧ (s, σ, t) ∈ E ⇒ (∃t′ : (s′, σ, t′) ∈ E′ ∧ (s′, t′) ∈ H).
For two alternating transition systems A = 〈S, S1, S2, Σ, E, s0〉 and A′ =

〈S′, S′
1, S

′
2, Σ, E′, s′0〉, alternating simulation of A by A′ holds if there exists a

relation H ⊆ S × S′ such that (s0, s
′
0) ∈ H and ∀s ∈ S, s′ ∈ S′ : (s, s′) ∈ H ⇒

(s ∈ S1 ⇔ s′ ∈ S′
1); and

– ∀s ∈ S, s′ ∈ S′ : ((s, s′) ∈ H ∧ s ∈ S1) ⇒ ∀(s, σ, t) ∈ E : (∃(s′, σ, t′) ∈ E′ :
(t, t′) ∈ H).

– ∀s ∈ S, s′ ∈ S′ : ((s, s′) ∈ H ∧ s ∈ S2) ⇒ ∃(s′, σ, t′) ∈ E′ : (∀(s, σ, t) ∈ E :
(t, t′) ∈ H).

Simulation and Alternating Simulation Games. Given two (alternating)
transition systems, A and A′, we can construct a game such that, (alternating)
simulation of A by A′ holds if and only if Player 2 has a winning strategy in the
game

Given two weighted transition systems A and A′ with the same alphabet, we
define the corresponding quantitative simulation game graph GA,A′ as 〈S× (Σ∪
{#})×S′∪{serr}, S

G
1 , SG

2 , Σ, EG, (s0, #, s′0)〉 where SG
1 = (S×{#}×S′)∪{serr}

and SG
2 = (S × Σ × S′). Each transition of the game graph corresponds to a

transition in either A or A′ as follows:
– ((s, #, s′), σ, (t, σ, s′)) ∈ EG ⇔ (s, σ, t) ∈ E
– ((s, σ, s′), σ, (s, #, t′)) ∈ EG ⇔ (s′, σ, t′) ∈ E′

For each of the above transitions, the weight is the same as the weight of the
corresponding transition in A or A′. If there is no outgoing transition from a
particular state, transitions to serr are added with all symbols. The state serr

is a sink with transitions to itself on all symbols. Each of these transitions has
weight 1 (the maximum possible value of a quantitative objective).

For classical simulation games, we consider the same game graph without
weights. The objective for Player 2 is to reach serr and for Player 1 to avoid it.
Intuitively, in every state, Player 1 chooses a transition of A and Player 2 has to

match it by picking a transition of A′. If Player 2 cannot match at some point,
Player 1 wins that play. It is easy to see that A′ simulates A iff there is a winning
strategy for Player 2 in this game.

We can extend the simulation game to an alternating simulation game. We
informally define the quantitative alternating simulation game graph. The formal
definition can be found in the companion report [3]. Given two quantitative
alternating transition systems A and A′ , we define the quantitative alternating
simulation game graph HA,A′ as follows. If A is at state s and s ∈ S1, Player 1
chooses a transition of A and Player 2 has to match it with a transition of A′; and
if A is at s and s ∈ S2, Player 2 has to choose a transition of A′ and Player 1 has
to choose a transition of A to match it. If there cannot be a match, the control
moves to the error state serr. As before, the transitions have the same weight as
in the individual systems.

We consider the game graph without weights to define the alternating simu-
lation game HA,A′

and the objective of the Player 1 is to ensure that the play
reaches serr. It can be seen that alternating simulation holds iff there exists a
winning strategy for Player 2 .
Fair Simulation. Given two (alternating) transitions systems with fairness con-
ditions AF and A′F ′

, the fair simulation game is played in the same game graph
GA,A′ (HA,A′) as the simulation game. However, in addition to matching the
symbol in each step, Player 2 has to ensure that if the sequence of transitions of
A chosen by Player 1 satisfies the fairness condition F , then the sequence of A′

transitions chosen satisfy the fairness condition F ′.

2.2 Quantitative Simulation Games

We define a generalized notion of simulation games called quantitative simulation
games where the simulation objectives are replaced by quantitative objectives.
Quantitative Simulation Games. Given two quantitative (alternating) tran-
sition systems A and A′, and f ∈ {LimAvg,Discλ}, the quantitative (alter-
nating) simulation game is played on the quantitative (alternating) simulation
game graph GA,A′ (HA,A′) with the objective of Player 1 being to maximize the

f value of the play. We denote this game as Qf
A,A′ (Pf

A,A′).
Quantitative Fair Simulation Games. Analogous to quantitative (alternat-
ing) simulation games, the fair versions between two transition systems with
fairness conditions. The quantitative objective for this game is the ω-regular
LimAvg objective which is the combination of LimAvg objective and the boolean
fair (alternating) simulation game objective.

We do not use f = Discλ along with fairness conditions as the two objectives
are independent. The Discλ objectives mainly consider the finite prefix of a play,
whereas fairness conditions consider only the infinite suffix.

2.3 Modification Schemes

We will use quantitative simulation games to measure various properties of sys-
tems. For computing these properties, we need to use small modifications of

the original systems. For example, when trying to compute the distance as the
number of errors an implementation commits, we add to the specification some
error recovery behavior. However, we impose strict rules on these modifications
to ensure that the modified system retains the structure of the original system.

A modification scheme is a function m from transition systems to quantitative
(alternating) transition systems, which can be computed using the following
steps: (a) Edges may be added to the transition system and each state may
be replaced by a local subgraph. All edges of the graph have to be preserved;
(b) Every edge of the system is associated with a weight from Q. We present
two examples of modification schemes.

Output Modification. This scheme is used to add behavior to a system
that allows it to output an arbitrary symbol while moving to a state specified by
an already existing transition. For every transition (s, σ, s′), transitions with dif-
ferent symbols are added to the system i.e., {(s, α, s′) | α ∈ Σ}. These transitions
are given a weight of 2 to prohibit their free use. All other transitions have the
weight zero. Given a system T , we denote the modified system as OutMod(T).

Error Modification. In a perfectly functioning system, errors may occur
due to unpredictable events. We model this with an alternating transition system
with one player modeling the original system (Player 1) and the other modeling
the controlled error (Player 2). At every state, Player 2 chooses whether or
not a error occurs by choosing one of the two successors. From one of these
states, Player 1 can choose the original successors of the state and from the
other, she can choose either one of the original successors or one of the error
transitions. We penalize Player 2 for the choice of not allowing errors to happen.

s

s′

s′′

c

¬c
E(s)

E(s) ∪ X(s)

Fig. 2. Graph for ErrMod

Given T = 〈S, Σ, E, s0〉 we define
ErrMod(T) to be the quantitative alternating
transition system obtained by replacing each
state s by the graph in Figure 2. If an er-
ror is allowed (modeled by the c edge), then
all transitions that differ from original transi-
tions only in the symbol are added (represented by X(s) in Figure 2). Only the
transitions labeled ¬c are given the weight 2. The rest are given the weight 0.
The system ErrMod∅(T) denotes a system where no additional transitions where
introduced, only the states were replaced by a subgraph from Figure 2 (with X
being the empty set).
In addition to the above schemes, we define the trivial modification scheme
NoMod where no changes are made except to give every edge the weight 0.

3 Simulation Distances

Correctness Given a specification T2 and an implementation T1, such that
T1 is incorrect with respect to T2, the correctness distance measures the degree
of “incorrectness” of T1. Even a single nonconformant behavior can destroy the
boolean simulation relation. Here we present a game which is not as strict and

0

a

(a) I1

0 1 2 3 4
b b b b

a

(b) I5

0 1 2
b

b a

b

(c) SL

0 1
a

b

(d) IL

Fig. 3. Example Systems

measures the minimal number of required errors, i.e. the minimal number of
times the specification has to use nonmatching symbols when simulating the
implementation.

Definition 3.1 (Correctness distance). Let f = LimAvg or f = Discλ. The
correctness distance df

cor
(T1, T2) from system T1 to system T2 is the Player 1

value of the quantitative simulation game Cf
T1,T2

= Qf

NoMod(T1),OutMod(T2)
.

The game C can be intuitively understood as follows. Given two systems T1

and T2, we are trying to simulate the system T1 by T2, but the specification T2 is
allowed to make errors, to “cheat”, but she has to pay a price for such a choice. As
the simulating player is trying to minimize the value of the game, she is motivated
not to cheat. The value of the game can thus be seen as measuring how often
she can be forced to cheat, that is, how often on average the implementation
commits an error. If the implementation is correct (T2 simulates T1), then the
correctness distance is 0. The value of the game is either the LimAvg or the
Disc of the number of errors. If the objective f is LimAvg , then the value is the
long run average of the errors, whereas if the objective f is Discλ, the errors
which occur earlier are given more importance and the value is the discounted
sum of the position of the errors. Therefore, the Disc and LimAvg games are
concerned with prefixes and infinite suffixes of the behaviors respectively.

We present a few example systems and their distances here to demonstrate
the fact that the above game measures distances that correspond to intuition.
In Figure 3 and Figure 1, S1 is the specification system against which we want
to measure the systems I1 through I5. In this case, the specification says that
there cannot be more than two b’s in a row. Also, we have a specification with
a liveness condition SL against which we want to measure the implementation
IL. The distances between these systems according to the LimAvg correctness
game are summarized in Table 1.

T1 T2 dLimAvg
cor (T1, T2) dLimAvg

cov (T1, T2) d
LimAvg
rob

(T1, T2)

S1 S1 0 0 1
S1 I1 0 2/3 1/3
S1 I2 0 1/3 2/3
S1 I3 1/3 1 1
S1 I4 1/4 3/4 1
S1 I5 1/5 4/5 1
SL IL 1/2 1 1

Table 1. Distances according to the Correctness, Coverage and Robustness game

Among the systems which do not satisfy the specification S1, i.e. I3, I4 and
I5, we showed in the introduction that the distance from I3 to S1 is 1/3, while

the distance from I4 to S1 is 1/4. However, surprisingly the distance from I5 to
S1 is less than the distance from I4. In fact, the distances reflect on the long run
the number of times the specification has to err to simulate the implementation.

In case of the specification SL and implementation IL with liveness condi-
tions, the specification can take the left branch to state 0 to get a penalty of 1

2
or take the right branch to state 2 to get a penalty of 1. However, it needs to
take the right branch infinitely often to satisfy the liveness condition. To achieve
the distance of 1

2 , the specification needs infinite memory so that it can take the
right branch lesser and lesser number of times. In fact, if the specification has a
strategy with finite-memory of size m, it can achieve a distance of 1

2 + 1
2m

.

Coverage We present the dual game of the one presented above. Here, we mea-
sure the behaviors that are present in one system but not in the other system.
Given a specification T2 and an implementation T1, the coverage distance corre-
sponds to the behavior of the specification which is farthest from any behaviour
of the implementation. Hence, we have that the coverage distance from a system
T1 to a system T2 is the correctness distance from T2 to T1.

Definition 3.2 (Coverage distance). Let f = LimAvg or f = Discλ. The cov-
erage distance df

cov
(T1, T2) from system T1 to system T2 is the Player 1 value of

the quantitative simulation game Vf
T1,T2

= Qf

NoMod(T2),OutMod(T1).

V measures the distance from T1 to T2 as the minimal number of errors that
have to be committed by T1 to cover all the behaviors of T2. We present examples
of systems and their distances according to VLimAvg . We use the example systems
in Figures 3 and 1. The distances are summarized in Table 1.

Robustness Given a specification system and a correct implementation, the
notion of robustness presented here is a measure of the number of errors by
the implementation that makes it nonconformant to the specification. The more
such errors tolerated by the specification, the more robust the implementation.
In other words, the distance measures the number of critical points, or points
where an error will lead to an unacceptable behavior. The lower the value of the
robustness distance, the more robust an implementation is. In case of an incorrect
implementation, the simulation of the implementation does not hold irrespective
of implementation errors. Hence, in that case, the robustness distance will be 1.

Definition 3.3 (Robustness distance). Let f = LimAvg or f = Discλ. The ro-

bustness distance df
rob(T1, T2) from system T1 to system T2 is the Player 1 value of

the quantitative alternating simulation game Rf
T1,T2

= Pf

ErrMod(T1),ErrMod∅(T2)
.

The game RErrMod(T1),ErrMod∅(T2) is played in the following steps: (a) The
specification T2 chooses whether the implementation T1 is allowed to make an
error; (b) The implementation chooses a transition on the implementation sys-
tem. It is allowed to err based on the specification choice in the previous step;
and (c) Specification chooses a matching move to simulate the implementation.

The specification tries to minimize the number of moves where it prohibits
implementation errors (without destroying the simulation relation), whereas the

implementation tries to maximize it. Intuitively, the positions where the specifi-
cation cannot allow errors are the critical points for the implementation.

In the game played between S1 and S1, every position is critical. At each
position, if an error is allowed, the system can output three b’s in a row by
using the error transition to return to state 0 while outputting a b. The next two
moves can be b’s irrespective whether errors are allowed or not. This breaks the
simulation. Now, consider I1. This system can be allowed to err every two out of
three times without violating the specification. This shows that I1 is more robust
than S1 for implementing S1. The list of distances is summarized in Table 1.
Computation of Simulation Distances The computational complexity of
computing the three distances defined here is the same as solving the value
problem for the respective games.

For systems without fairness conditions, the dcor, dcov and drob games are
simple graph games with LimAvg or Discλ objectives. The decision problem
for these games is in NP ∩ co-NP [20], but no PTIME algorithm is known.
However, for LimAvg objectives the existence of an algorithm polynomial in
unary encoded weights implies that the computation of the distances can be
achieved in polynomial time as we use constant weights. Using the algorithm
of [20], in the case without fairness conditions dcor, dcov and drob distances can
be computed in time O((|S||S′|)3 · (|E||S′| + |E′||S|)) where S and S′ are state
spaces of the two transition systems; and E and E′ are the sets of transitions of
the two systems. A variation of the algorithm in [20] gives a PTIME algorithm
for the Discλ objectives (given a fixed λ).

For systems with Büchi (weak fairness) conditions, the corresponding games
are graph games with LimAvg parity games, for which the decision problem
is in NP ∩ co-NP. However, the use of constant weights and the fact that the
implication of two Büchi conditions can be expressed as a parity condition with
no more than 3 priorities leads to a polynomial algorithm. Using the algorithm
presented in [5], we get a O((|S||S′|)3 · (|E||S′| + |E′||S|)) algorithm.

For systems with Streett (strong fairness) conditions, the corresponding
games are graph games with LimAvg ω-regular conditions. For an ω-regular
LimAvg game of n states, we can use the latest appearance records to convert
into an equivalent parity game of 2O(n log(n)) states and edges; and n priorities.
The algorithm of [5] gives a 2O(n log(n)) algorithm where n = |S| · |S′|.

4 Properties of Simulation Distances

We present quantitative analogues of boolean properties of the simulation pre-
orders. Proofs omitted are included in the companion report [3].
Triangle Inequality Classical simulation relations satisfy the reflexivity and
transitivity property which makes them preorders. In an analogous way, we show
that the correctness and coverage distances satisfy the quantitative reflexivity
and the triangle inequality properties. This makes them directed metrics [8].

Theorem 1. df
cor

is a directed metric for f ∈ {LimAvg,Discλ}, i.e.:
– ∀S ∈ S : df

cor
(S, S) = 0

– ∀S1, S2, S3 ∈ S : df
cor

(S1, S3) ≤ df
cor

(S1, S2) + df
cor

(S2, S3)

Proof: We will prove the result for systems with fairness conditions. The case
without fairness conditions is analogous. Consider any ǫ > 0. Let τ2 and τ3 be
ǫ
2 -optimal finite strategies for Player 2 in CS1,S2

and CS2,S3
respectively. Now, we

construct a finite-memory strategy τ∗ for Player 2 in CS1,S3
. If M2 and M3 are

the memories of τ2 and τ3 respectively, the memory of τ∗ will be M2 ×S2 ×M3.
The strategy τ∗ works as follows. Let the state of the game be (s1, #, s3) and
the memory of τ∗ be (m2, s2, m3).

– Let Player 1 choose to move according to the S1 transition (s1, σ1, s
′
1) to the

game state (s′1, σ1, s3). Consider the game position (s′1, σ1, s2) in CS1,S2
and

let the τ2 memory be at state m2. Say τ2 updates its memory to m′
2 and

chooses the successor (s′1, #, s′2) with transition symbol σ1. Let the corre-
sponding OutMod(S2) transition be (s2, σ1, s

′
2).

– If the transition (s2, σ1, s
′
2) exists in S2, then let σ′

2 = σ1. Otherwise, there
will exist (s2, σ2, s

′
2) in S2 for some σ2. Let σ′

2 = σ2. Now, consider the game
position (s′2, σ

′
2, s3) in CS2,S3

and the memory state m3 of τ3. Say τ3 updates
its memory to m′

3 and chooses the successor (s′2, #, s′3) and the transition
symbol σ′

2. Let the corresponding OutMod(S3) transition be (s3, σ
′
2, s

′
3).

– The memory of τ∗ is updated to (m′
2, s

′
2, m

′
3) and τ∗ chooses the succes-

sor (s′1, #, s′3) with the transition symbol σ1. The corresponding transition
(s3, σ1, s

′
3) exists in OutMod(S3) as there exists a transition with the same

source and destination as (s3, σ
′
2, s

′
3).

s1,0
σ1(v1,0)
−−−−−→ s1,1

σ1(v1,1)
−−−−−→ s1,2 . . .

s2,0
σ1(v2,0)
−−−−−→ s2,1

σ1(v2,1)
−−−−−→ s2,2 . . .

}

ρ1

s2,0
σ′
2
(v2,0)

−−−−−→ s2,1
σ′
2
(v2,1)

−−−−−→ s2,2 . . .

s3,0
σ1(v3,0)
−−−−−→ s3,1

σ1(v3,1)
−−−−−→ s3,2 . . .







ρ2



























ρ

If Player 2 cannot match σ1

with a zero weight transition
while playing according to τ∗, ei-
ther τ2 or τ3 would have also taken
a non-zero weight transition. Us-
ing this fact, we can easily prove
the required property. Fix an ar-

bitrary finite-memory Player 1 strategy σ. Now, let the play proceed according
to the strategy τ∗. From the moves of the game and the state of the memory
of τ∗, we can extract four transitions for each round of play as above, i.e. an
S1 transition (s1, σ1, s

′
1), an OutMod(S2) transition (s2, σ1, s

′
2), an S2 transition

(s2, σ
′
2, s

′
2) and an OutMod(S3) transition (s3, σ1, s

′
3). We depict the situation in

the above figure.

The play ρ in CS1,S3
corresponds to the transitions in the first and the last

rows. This play can be decomposed into plays ρ1 and ρ2 in CS1,S2
and CS2,S3

by
taking only the transitions in the first two and last two rows respectively. Now,
by the observation in the previous paragraph, each move in ρ has weight 2 only
if one of the corresponding moves in ρ1 or ρ2 have weight 2. Let us denote the

nth move in a play η by ηn. If both S1 and S3 sequence of moves in ρ are fair
or if S1 sequence is unfair, we have the following for the LimAvg case.

ν(ρ) = lim inf
n→∞

1

n

n
∑

i=0

v(ρi) ≤ lim inf
n→∞

1

n

n
∑

i=0

(

v(ρi
1) + v(ρi

2)
)

= lim
n→∞

1

n

n
∑

i=0

(

v(ρi
1) + v(ρi

2)
)

= lim
n→∞

1

n

n
∑

i=0

v(ρi
1) + lim

n→∞

1

n

n
∑

i=0

v(ρi
2)

= lim inf
n→∞

1

n

n
∑

i=0

v(ρi
1) + lim inf

n→∞

1

n

n
∑

i=0

v(ρi
2)

≤ dcor(S1, S2) +
ǫ

2
+ dcor(S2, S3) +

ǫ

2
= dcor(S1, S2) + dcor(S2, S3) + ǫ

All the strategies we are considering are finite-memory, and hence, each sequence
of weights is ultimately repeating. Therefore, we can use lim and lim inf inter-
changeably in the above equations. The case for Discλ is much simpler and not
shown here.

Hence, we have that the value of the play satisfies the required inequality
for the case that both S1 and S3 perform fair computations. In the case that
S1 sequence is fair and S3 sequence is not fair, the value of the play will be 1.
However, by construction the value of either ρ1 or ρ2 will also be 1 and hence
the inequality holds.

Therefore, given an ǫ, we have strategy for Player 2 which assures a value less
than dcor(S1, S2) + dcor(S2, S3) + ǫ for both the LimAvg and Discλ case. Hence,
we have the required triangle inequality.

It can be shown by construction of a Player 2 strategy that copies every
Player 1 move that dcor(S, S) = 0. Hence, we have the result.

Theorem 2. df
cov

is a directed metric when f ∈ {LimAvg,Discλ}, i.e. :
– ∀S ∈ S : df

cov
(S, S) = 0

– ∀S1, S2, S3 ∈ S : df
cov

(S1, S3) ≤ df
cov

(S1, S2) + df
cov

(S2, S3)

The robustness distance satisfies the triangle inequality, but not the quan-
titative reflexivity. The system S1 in Figure 1 is a witness system that violates
drob(S1, S1) = 0. In fact, for LimAvg objectives and any rational value v ∈ [0, 1],
it is easy to construct a system Sv such that drob(Sv, Sv) = v.

Theorem 3. df
rob conforms to the triangle inequality for f ∈ {LimAvg ,Discλ},

i.e. : ∀S1, S2, S3 ∈ S : df
rob(S1, S3) ≤ df

rob(S1, S2) + df
rob(S2, S3)

Compositionality In the qualitative case, compositionality theorems help
analyse large systems by decomposing them into smaller components. For ex-
ample, simulation is preserved when components are composed together. We
show that in the quantitative case, the distance between the composed systems
is bounded by the sum of the distances between individual systems.

If A and A′ are two transition systems, we define asynchronous and syn-
chronous composition of the two systems, written as A ‖ A′ and A × A′ respec-
tively as follows: (a) The state space is S×S′; (b) ((s, s′), σ, (t, t′)) is a transition

of A ‖ A′ iff (s, σ, t) is a transition of A and s′ = t′ or (s′, σ, t′) is a transition
of A′ and s = t, and (c) ((s, s′), σ, (t, t′)) is a transition of A×A′ iff (s, σ, t) is a
transition of A and (s′, σ, t′) is a transition of A′.

The following theorems show that the simulation distances between whole
systems is bounded by the sum of distances between the individual components.

Theorem 4. The correctness, coverage and robustness distances satisfy the fol-
lowing property, when f ∈ {LimAvg,Discλ}:

df (S1 × S2, T1 × T2) ≤ df (S1, T1) + df (S2, T2)

Theorem 5. The correctness, coverage and robustness dis-
tances satisfy the following property when f = LimAvg.

df (S1 ‖ S2, T1 ‖ T2) ≤ α.df (S1, T1) + (1 − α).df (S2, T2)
where α is the fraction of times S1 is scheduled in S1 ‖ S2 in the long run,
assuming that the fraction has a limit in the long run.

Existential and Universal Abstraction. Classically, properties of systems
are studied by studying the properties of over-approximations and under-
approximations. In an analogous way, we prove that the distances between sys-
tems is bounded from above and below by distances between abstractions of the
systems. Given T = 〈S, Σ, E, s0〉, an existential (universal) abstraction of it is
a system whose states are disjoint subsets of S and an edge exists between two
classes iff there exists an edge between one pair (all pairs) of states in the classes.

Theorem 6. Consider a specification S and an implementation I. Let S∃ and
I∃ be existential abstractions, and S∀ and I∀ be universal abstractions of S and I
respectively. The correctness, coverage and robustness distances satisfy the three
following properties when f ∈ {LimAvg ,Discλ}:
(a) df

cor
(I∀, S∃) ≤ df

cor
(I, S) ≤ df

cor
(I∃, S∀)

(b) df
cov

(I∃, S∀) ≤ df
cov

(I, S) ≤ df
cov

(I∀, S∃)

(c) df
rob(I

∀, S∃) ≤ df
rob(I, S) ≤ df

rob(I
∃, S∀)

5 Robustness of Forward Error Correction Systems

Forward Error Correction systems (FECS) are a mechanism of error control for
data transmission on noisy channels. A very important characteristic of these
error correction systems is the maximum tolerable bit-error rate, which is the
maximum number of errors the system can tolerate while still being able to
successfully decode the message. We show that this property can be measured
as the drob distance between a system and an ideal system (specification).

We will examine three forward error correction systems: one with no error
correction facilities, the Hamming(7,4) code [14], and triple modular redundancy
(TMR) that by design can tolerate no errors, one error in seven and three bits
respectively. We measure the robustness with respect to an ideal system which
can tolerate an unbounded number of errors. For the pseudo-code for the three
systems we are examining, the user is referred to the companion report [3]. The
only errors we allow are bit flips during transmission.

T1 T2 drob(T1, T2)
None Ideal 1

Hamming Ideal 6/7
TMR Ideal 2/3

Table 2. FECS’ robustness

These systems were modelled and the values
of drob of these systems measured against the ideal
system are summarized in Table 2. The robustness
values mirror the error tolerance values. In fact,
each robustness value is equal to 1 − e where e is
the corresponding error tolerance value.

References

1. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement rela-
tions. In CONCUR, pages 163–178, 1998.

2. P. Caspi and A. Benveniste. Toward an approximation theory for computerised
control. In EMSOFT, pages 294–304, 2002.

3. P. Černý, T. A. Henzinger, and A. Radhakrishna. Simulation distances. Technical
Report IST-2010-0003, IST Austria, June 2010.

4. K. Chatterjee, L. Doyen, and T. Henzinger. Quantitative languages. In CSL, pages
385–400, 2008.

5. K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity games. In
LICS, pages 178–187, 2005.

6. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching system metrics.
IEEE Trans. Software Eng., 35(2):258–273, 2009.

7. L. de Alfaro, T. Henzinger, and R. Majumdar. Discounting the future in systems
theory. In ICALP, pages 1022–1037, 2003.

8. L. de Alfaro, R. Majumdar, V. Raman, and M. Stoelinga. Game refinement rela-
tions and metrics. Logical Methods in Computer Science, 4(3), 2008.

9. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

10. M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

11. A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. In
International Journal of Game Theory, pages 163–178, 1979.

12. N. Fenton. Software Metrics: A Rigorous and Practical Approach, Revised (Paper-
back). Course Technology, 1998.

13. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC, pages
60–65, 1982.

14. R. W. Hamming. Error detecting and error correcting codes. Bell System Tech.
J., 29:147–160, 1950.

15. T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. In Infor-
mation and Computation, pages 273–287, 1997.

16. R. Lincke, J. Lundberg, and W. Löwe. Comparing software metrics tools. In
ISSTA, pages 131–142, 2008.

17. R. Milner. An algebraic definition of simulation between programs. In IJCAI,
pages 481–489, 1971.

18. F. van Breugel. An introduction to metric semantics: operational and denotational
models for programming and specification languages. Theor. Comput. Sci., 258(1-
2):1–98, 2001.

19. F. van Breugel and J. Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. Theo. Comp. Sci., 360(1-3):373–385,
2006.

20. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996.

