
Quantitative Synthesis for Concurrent Programs?

Pavol Černý†, Krishnendu Chatterjee†, Thomas A. Henzinger†, Arjun Radhakrishna†, and
Rohit Singh∗

IST Austria† IIT Bombay∗

Abstract. We present an algorithmic method for synthesizing the optimal placement of
synchronization constructs in concurrent programs. The input consists of a partial pro-
gram with possibly some synchronization constructs missing, and a performance model.
The quantitative synthesis problem is to automatically complete the program by trans-
forming and adding synchronization constructs so that both correctness is guaranteed
and worst-case (or average-case) performance is optimized. As is standard for shared
memory concurrency, correctness is formalized “specification free”, in particular, as
race freedom and deadlock freedom. To capture different system architectures, we use a
parametric performance model, specified as a weighted automaton that assigns different
costs to actions such as locking, context switching, and memory and cache accesses.
For worst-case performance, we show that the problem is equivalent to 2-player graph
games with quantitative limit-average objectives; and for average-case performance, it
is equivalent to 2 1

2
-player graph games (i.e., games with probabilistic transitions). In

both cases, the optimal correct program is derived from an optimal strategy in the corre-
sponding quantitative game. While the respective games are computationally expensive
(NP-complete), we present an algorithmic method and implementation that works effi-
ciently for concurrent programs and performance models of practical interest. We have
implemented a prototype tool and used it successfully for synthesizing finite-state con-
current programs that exhibit different paradigmatic patterns in concurrency: optimistic
execution, producer-consumer cooperation, and work sharing. In each case, the tool au-
tomatically synthesized the optimal correct program for several different performance
models representing different architectures.

1 Introduction
Developing concurrent programs that fully harness the power of modern multi-core machines
is a difficult and error-prone task, as witnessed by a number of errors found in published al-
gorithms [3, 16], and in production code (see for example [4]). A very promising approach to
the development of correct concurrent programs is partial program synthesis. The goal here is
to allow the programmer to specify a part of her intent declaratively, by saying what needs to
be done or what conditions need to be maintained. The synthesizer then constructs a program
that satisfies the specification (see for example [21, 20, 23]). However, quantitative considera-
tions, so far, have been largely missing from previous frameworks for partial synthesis. Thus,
there is no way for a programmer to ask the synthesizer for a program that is not only correct,
but also efficient with respect to a performance model. We claim that this considerably hinders
the potential usability of synthesis. We support the claim with the following examples.
Motivating Examples: Example 1. Consider a producer-consumer program, where there are
k producer and k consumer threads accessing a buffer of n cells. The threads can call the
store procedure which checks if one of the cell of the buffer is empty, and if so, stores
the input value into it. Similarly, the procedure load finds a nonempty cell, and returns a
value in this cell. The programmer writes a partial program that implements the procedures
sequentially, and specifies that at each control location a global lock or a cell-local lock can be
? Full version with appendices available at http://pub.ist.ac.at/∼aradha/QuantSynthFull.pdf

taken. The task of the synthesizer is to construct a correct program (that is, a program with no
data races). It is easy to see that there are at least two different ways of implementing correct
synchronization. The first is to use a global lock, which locks the whole buffer. The second
is to use cell-local locks, with each thread locking only the cell it is currently accessing.
The second program allows more concurrent behavior, and could be better in many settings.
However, if the cost of locks is high (relatively to the other operations), the program that
uses global locking might be more efficient. In our experiments on a desktop machine, the
fine-grained implementation was out-performed by the coarse-grained implementation by a
factor of 3 for very natural parameters. Thus in order to construct an efficient program, the
synthesizer has to have at least a rudimentary performance model representing the architecture
of the system on which the program is to be run.

Example 2. Second, consider the program in Figure 1.
1: while(true) {
2: lver:=gver;
3: ldata=gdata;
4: n = choice(1..10);
5: i = 0;
6: while (i < n) {
7: work(ldata); i++;
8: }
9: if (trylock(lock)) {
10: if (gver==lver) {
11: gdata = ldata;
12: gver = lver+1;
13: unlock(lock);
14: } else { unlock(lock) }
15:} }

Fig. 1. Partial program — opti-
mistic

It uses the locking mechanism from the transactional mem-
ory manager TL2, and illustrates optimistic concurrency. The
shared variables are gdata on which some operation (given
by the function work()) is to be performed repeatedly, and
gver, the version number of the data. Each thread has local
variables ldata and lver that store local copies of these
two variables. The example uses a standard pattern where
data is read (line 3) and operated on (line 7) without acquiring
any locks. When the data has to be written back, the shared
data is locked (line 10) and it is checked that no other thread
has changed the data since it had been read. This check is
performed using the version number (line 11). If the global
version number has not changed while the thread has been
working on the local copy of the data, the new value of data

is written back to the shared memory (line 12), and the global version number is increased
(line 13). If the global version number has changed, the whole procedure has to be retried.
The number of operations (calls to work) performed optimistically without writing back to
shared memory can influence the performance significantly. For very optimistic approaches
which perform many operations before writing back, there are a lot of retries and the perfor-
mance drops. On the other hand, when only a few operations are performed optimistically,
the data has to be written back often, which also might lead to a performance drop. Thus, the
programmer would like to leave the task of finding the optimal number of operations to be
performed optimistically to the synthesizer. This is done via the choice statement in line 4.

The partial program resolution problem. Our aim is to synthesize concurrent programs that
are both correct and optimal with respect to a quantitative performance model. As quantitative
performance requirements were not present in previous approaches, we introduce a flexible
framework for specifying performance models for concurrent programs. The input for syn-
thesis consists of (1) a finite-state partial program, (2) a performance model, (3) a model of a
scheduler, (4) a correctness condition. A partial program is a finite-state concurrent program
which includes non-deterministic choices which the synthesizer has to resolve. We say that
a program is allowed by a partial program if it can be obtained by resolving the nondeter-
ministic choices. The second input to the synthesis problem is a performance model, given
by a weighted automaton. The automaton assigns different costs to actions such as locking,
context-switching, or memory and cache access. It is a flexible model that allows assigning
costs based on past sequences of actions. For instance, if a context-switch happens soon after
the preceding one, then its cost might be lower due to cache effects. Similarly, we can use
the model to specify complex cost models for memory and cache access. Note that the per-
formance model can be fixed for a particular architecture and hence, need not be constructed

separately for every partial program. The fourth input is a scheduler. Our schedulers are state-
based models, and hence support flexible scheduling schemes (e.g., a thread waiting for long
may be scheduled with higher probability). In performance analysis, the average-case analysis
is as natural as worst-case analysis. For the average-case (randomized) analysis, a probabilis-
tic scheduler is needed. The fourth input, the correctness condition is a safety condition. We
use “specification-free” conditions such as data-race freedom or deadlock-freedom.

The output of synthesis is a program that is (a) allowed by the partial program, (b) correct
with respect to the safety condition, and (c) has the best performance of all the programs
satisfying (a) and (b) with respect to the performance and scheduling models.
Methods: Quantitative Games. We show that the partial program resolution problem is
equivalent to imperfect information stochastic graph games with quantitative (limit-average
or mean-payoff) objectives. Traditionally, imperfect information games have been studied to
answer the question of existence of general history-dependent optimal strategies, and then the
problem becomes undecidable for quantitative objectives [9]. We show that the partial pro-
gram resolution problem gives rise to a new game theoretic question that asks for the existence
of memoryless optimal strategies (strategies that are independent of the history) in imper-
fect information games. We establish that the memoryless problem for imperfect information
stochastic games is NP-complete, and show that the partial program resolution problem is
NEXPTIME-complete for both average and worst-case performance based synthesis.

We present several techniques that overcome the theoretical difficulty of NEXPTIME-
hardness in cases of programs of practical interest. We present three practical techniques for
the partial program resolution problem: (1) First, we use a lightweight static analysis tech-
nique for efficiently eliminating parts of the strategy tree for Player 1. This reduces the num-
ber of strategies to be examined significantly. For each strategy that we need to examine, we
obtain a (perfect information) Markov decision process (MDP). For MDPs, efficient strategy
improvement algorithms exist that require solving Markov chains. (2) Second, Markov chains
obtained for concurrent programs typically satisfy certain progress conditions, and we exploit
that to develop a forward propagation technique along with Gaussian elimination to solve
Markov chains efficiently. (3) The third technique is to use an abstraction that preserves the
value of the quantitative (limit-average) objective. An example of such an abstraction is the
classical data abstraction.
Experimental results. In order to evaluate our synthesis algorithm, we have implemented
a prototype tool and applied it to four finite-state examples that illustrate basic patterns in
concurrent programming. In each case, the tool automatically synthesized the optimal correct
program for various performance models that represent different architectures. The running
time of the tool was under a minute for all cases but one, where the running time was under
five minutes.

For the producer-consumer example, we synthesized from a partial program where two
producer and two consumer threads are accessing a buffer with four cells. The most important
parameters of the performance model are the cost of locking/unlocking l and the cost c of
copying data from/to shared memory. If the cost c was higher than l (by a factor 100:1),
then the fine-grained locking approach is better (by 19 percent), and would be the result of
synthesis. If the cost l is equal to c, then the coarse-grained locking approach was found to
perform better (by 25 percent), and thus the coarse-grained program would be the result of
the synthesis.

Referring back to the code in Figure 1, for the optimistic concurrency example and a
particular performance model, the analysis found that increasing n improves the performance
initially, but after a small number of increases (3) the performance started to decrease. We
have measured the running time of the program on a desktop machine, and observed the same
phenomenon.

Summary. To summarize, our main contributions are: (1) we develop a technique for synthe-
sizing concurrent programs that are both correct and optimal; (2) we introduce a parametric
performance model, and thus provide a flexible framework for specifying performance char-
acteristics of architectures; (3) (a) we show how to use a imperfect information game theoretic
framework to model the synthesis of concurrent programs (to the best of our knowledge, this
is the first application of imperfect information games for synthesis of concurrent programs),
and (b) establish optimal complexity results for new game-theoretic problems; (4) (a) we
present practical techniques to efficiently solve partial program synthesis, and (b) implement
a prototype and apply it to several case studies which illustrate common patterns in concurrent
programming.

Related work. The problem of synthesis from specifications was originally posed by
Church [7]. Synthesis for synchronization constructs is also an old problem and the cele-
brated paper [8] presented an algorithm for synthesis of synchronization skeletons. Synthesis
of reactive systems was considered in [18]. In contrast to our work, all these works focused on
qualitative synthesis without any performance measure. Recent works have considered quan-
titative synthesis [2, 5]; however the focus of these works has been the synthesis of sequential
systems from temporal logic specifications. Moreover, all these works consider perfect infor-
mation games. Neither imperfect information games nor quantitative objectives were consid-
ered before for synthesis for concurrent programs. We require imperfect information due to
concurrency and quantitative objectives for performance measures.

Sketching is a technique where a partial implementation, with some nondeterministic
choices, of a program is given and a correct program is generated automatically. Sketch-
ing [21, 19] for concurrent programs has been studied in [20]. However, none of the above
works consider performance-aware algorithms for sketching. Abstract interpretation based
synthesis was presented in [23], and is only optimal with respect to the number of inter-
leavings, which might not translate into being optimal in performance. Automated lock place-
ment has also been considered in literature. In [10], no user-specified performance objectives
are considered. The paper [6] optimizes lock placement always in favor fine-grained locking,
which again might not be optimal for performance for all programs on all architectures. We
show that the synthesis problem for concurrent programs in general is equivalent to imperfect
information games. However, none of the above works consider the general framework of
games for synthesis, or the parametric performance model.

2 The Quantitative Synthesis Problem
2.1 Partial Programs
In this section we define threads, partial programs, programs and their semantics. We start
with the definition of guards and operations.

Guards and operations. Let L, G, and I be finite sets of variables (representing local, global
(shared), and input variables, respectively) ranging over finite domains. A term t is either a
variable in L, G, or I , or is defined by t1 op t2, where t1 and t2 are terms and op is an
operator. Formulas are defined by the following grammar, where t1 and t2 are terms and rel
is a relational operator: e := t1 rel t2 | e1 ∧ e2 | ¬e. Guards are formulae over L, G, and
I . Operations are simultaneous assignments to variables in L and G, where each variable is
assigned a term over L, G, and I .

Threads. A thread is a tuple 〈Q,L,G, I, δ, ρ0, q0〉, where:
– Q is a finite set of control locations and q0 is an initial location;
– L, G and I are finite sets of local, global, and input variables respectively, ranging over

finite domains;
– ρ0 is the initial valuation of variables in L, G, and I; and

– δ is a set of tuples of the form (q, g, a, q′), where q and q′ are locations from Q, and g and
a are guards and operations over variables in L, G and I .

The set of sketch locations Sk(C) of a thread C = 〈Q,L,G, I, δ, ρ0, q0〉 is the subset of
Q containing exactly locations where δ is non-deterministic, i.e., locations q where for a
valuation of variables in L, G and I , there is more than one transition whose guard evaluates
to true.

Partial programs and programs. A partial program M is a set of threads that have the same
set of global variables G and whose initial valuation of variables in G is the same. Informally,
the semantics of a partial program is a parallel composition of threads. The set G represents
the shared memory. A program is a partial program, where the set Sk(c) of each thread c is
empty. A program P is allowed by a partial program M if it can be obtained by removing
the outgoing transitions from sketch locations of all the threads of M , so that at most one
transition from every location is enabled for a given valuation of variables from L, G and I ,
i.e., for a program all component threads are deterministic.

The guarded operations allow us to easily model basic concurrency constructs such as
lock (where lock is modeled as a variable in G and locking/unlocking is done using guarded
operations) and compare-and-set. The control structures inside a thread are not limited. A
partial program is a collection of threads, thus thread creation is not supported.

Semantics. A transition system is a tuple 〈S,A,∆, s0〉 where S is a finite set of states, A is
a finite set of actions, ∆ ⊆ S × A × S is a set of transitions and s0 is the initial state. The
semantics of a partial program M is given in terms of a transition system, and we denote
the transition system of a partial program M as Tr(M). Given a partial program M with n
threads, let C = {1, . . . , n} represent the set of threads of M .

– State space. A state s in the set of states S of Tr(M) contains a location per thread in C, a
valuation of all input and local variables of each thread in C, and a valuation of the global
variables. In addition, the state s contains a value σ from C ∪ {∗}, indicating which (if
any) thread is currently scheduled. The initial state contains the initial location for each
thread in C, the initial valuation ρ0 of all variables, and the value ∗ indicating that no
thread is currently scheduled.

– Transition. The transition function ∆ defines interleaving semantics for the partial pro-
gram. There are two types of transitions: thread transitions, which model one step of a
scheduled thread, and environment transitions, that model input from the environment
and the scheduler. Let c be a thread in C, and let (q, g, a, q′) be a transition of c. There is
a thread transition labeled by c from a state s to a state s′ if and only if (i) the value σ in
s is c (indicating that the thread c is scheduled) and the value σ in s′ is ∗, (ii) the location
of C in s is q and the location of C in s′ is q′, (iii) the guard g evaluates to true in s, and
(iv) the valuation of local and input variables of C in s, and of global variables in s is
obtained from the valuation of variables in s′ by performing the operation a. There is an
environment transition labeled by c from state s to state s′ in Tr(M) if and only if (i) the
value σ in s is ∗ and the value σ in s′ is c and (ii) the valuations of variables in s and s′

differs only in input variables of the thread c.

2.2 The performance model
We define a flexible and expressive performance model via a weighted automaton that speci-
fies costs of actions. A performance automaton W is a tuple W = (QW , Σ, δ, q0, γ), where
QW is a set of states, Σ is a finite alphabet, δ ⊆ QW ×Σ ×QW is a transition relation, q0 is
an initial location and γ is a cost function γ : QW ×Σ×QW → Q. The labels inΣ represent
(concurrency-related) actions that incur costs, while the values of the function γ specify these
costs. The symbols in Σ are matched with the actions (edge symbols) performed by the sys-
tem to which the performance measures are applied. There is a special symbol in Σ, denoted

by ot, that signifies that no action of the ones we are tracking occurred. The costs that can be
specified in this way include for example the cost of locking, the access to the (shared) main
memory or the cost of context switches.

q0(l, 3) (cs, 2)

(m, 5), (ot, 1)

Fig. 2. Perf. Aut.

An example specification that uses the costs mentioned above is
the automaton W in Figure 2. The automaton describes the costs for
locking (l), context-switching (cs), and main memory access (m).
Specifying the costs via a weighted automaton is more general than
only specifying a list of costs. For example, the fact the automaton
based specification enables us to model a cache, and the cost of read-
ing from a cache versus reading from the main memory, as shown
in Figure 5 in Section 5. Note that the performance model is fixed
for a particular architecture. This eliminates the need to construct a
performance model for the synthesis of each partial program.

2.3 The partial program resolution problem
Weighted probabilistic transition system (WPTS). A probabilistic transition system (PTS) is a
generalization of a transition system with probabilistic transition function. Formally, letD(S)
denote the set of probability distributions over S. A PTS consists of a tuple 〈S,A,∆, s0〉
where S, A, s0 are defined as for transition systems, and ∆ : S ×A→ D(S) is probabilistic,
that is, given a state and an action, it returns a probability distribution over successor states.
A WPTS consists of a PTS and a weight function γ : S × A × S → Q ∪ {∞} that assigns
costs (given as rational values or infinite cost) to transitions. An execution of a probabilistic
weighted transition system is an infinite sequence of the form (s0a0s1a2 . . .) where si is in
S, ai is in A, and ∆(si, ai)(si+1) > 0, for all i ≥ 0. We now define boolean and quantitative
objectives for WPTS.
Safety objectives. A safety objective SafetyB is defined by a set B of “bad” states. It requires
that states in B are never reached by a program execution. An execution e = (s0a0s1a2 . . .)
is safe (denoted by e ∈ SafetyB) if si 6∈ B, for all i ≥ 0.
Limit-average and Limit-average safety objectives. The limit-average objective is a quantita-
tive objective that assigns a real-valued number to every infinite execution e. For an execution
e = (s0a0s1a1s2 . . .), we have LimAvgγ(e) = lim supn→∞

1
n

∑n
i=0 γ((si, a, si+1)) if there

is no infinite cost transition, and∞ otherwise. The limit-average safety objectives are a lex-
icographic combination of safety and limit-average objectives: the objective is defined by a
weight function γ, and a set B of bad states. For an execution e, we have that if e ∈ SafetyB
(that is e never visits the set B), then LimAvgBγ (e) is LimAvgγ(e), otherwise it is∞ (if the
safety objective is satisfied, then we have the limit-average value, ∞ otherwise). The limit-
average safety objective can be reduced to limit-average objectives by making the states in B
absorbing (states with only self-loops) and assign them weight∞.
Value of WPTS. We now define the value of a WPTS given a limit-average safety objective.
Given a WPTS T with weight function γ, a policy pf : (S × A)∗ × S → A is a func-
tion that given a sequence of states and actions chooses an action. A policy pf defines a
unique probability measure on the executions and we denote by Epf (·) the associated ex-
pectation measure. Given a WPTS T with weight function γ, and a policy pf , the value
Val(T, γ,SafetyB , pf) is the expected value Epf (LimAvgBγ) of the limit-average safety ob-
jective. The value of the WPTS is then defined as the supremum over all possible policy
functions, i.e., Val(T, γ,SafetyB) = suppf Val(T, γ,SafetyB , pf).
Schedulers. A scheduler has a finite set of internal memory states QSch. At each step, it con-
siders all the active threads and chooses one either (i) non-deterministically (non-deterministic
schedulers) or (ii) according to a probability distribution (probabilistic schedulers), which de-
pends on the current internal memory state.

Composing a program with a scheduler and a performance model. In order to compute the
value of a program allowed by a partial program, we need to take into account the scheduler
and the performance model. Let P be a program, Sch be a scheduler, and W a performance
model. We construct a PTS, denoted Tr(P,Sch,W), with a weight function γ as follows.
A state s in the set of states S of Tr(P,Sch,W) is composed of a state of Tr(P) (where
Tr(P) is the transition system of P), a state of the scheduler Sch and a state of W . The
transition function matches environment transitions of Tr(P) with the scheduler transitions
(which allows the scheduler to schedule threads) and it matches thread transitions with the
performance model transitions. The weight function γ assigns costs to edges as given by the
weighted automatonW . Furthermore, as the limit average objective is defined only for infinite
executions, for terminating safe executions of the program we add an edge back to the initial
state. The value of the limit average objective function of the infinite execution is the same as
the average over the original finite execution. Note that the performance model can specify a
locking cost, while the program model does not specifically mentioned locking. We thus need
to specifically designate which shared memory variables are used for locking.

Correctness. We restrict our attention to safety conditions for correctness. We illustrate how
various correctness conditions for concurrent programs can be modelled as Safety objectives:
(a) Data-race freedom. Data-races occur when two or more threads access the same shared
memory location and one of the accesses is a write access. Absence of data races (data-race
freedom) is a safety property. The unsafe states are those where there are two different threads,
each having an enabled transition accessing a particular shared variable, and at least one of
these transitions writes to these variables. (b) Deadlock freedom. One of the major problems
of synchronizing programs using blocking primitives such as locks is that deadlocks may
arise. A deadlock occurs when two (or more) threads are waiting for each other to finish an
operation. Deadlock-freedom is a safety property. A deadlock can be detected by checking
for cycles in a wait graph, that is, a graph whose nodes represent threads and edges indicate
whether a thread waits for a resource (a lock) held by another thread.

Value of a program and of a partial program. Given a program P , together with a sched-
uler Sch, a performance model W , and a safety objective SafetyB , the value of the pro-
gram, defined using the PTS Tr(P,Sch,W) and the weight function γ, is as follows:
ValProg(P,Sch,W,SafetyB) = Val(Tr(P,Sch,W), γ, SafetyB). (Note that the value is
defined using the limit-average safety objective. The safety part is defined by the parameter
SafetyB , while the quantitative part is defined by the costs defined by the performance model
W .) Let M be a partial program and let P be the set of all programs which are allowed by the
partial program M . Given a scheduler Sch, a performance model W , and a safety objective
SafetyB , the value for the partial program is defined by ValParProg(M,Sch,W,SafetyB) =
minP∈P ValProg(P,Sch,W,SafetyB).

Partial Program resolution problem. The central technical questions we address are as
follows: (1) The partial program resolution optimization problem consists of a par-
tial program M , a scheduler Sch, a performance model W and a safety condition
SafetyB , and asks for a program P allowed by the partial program M such that the
value ValProg(P,Sch,W,SafetyB) is minimized. Informally, we have: (i) if the value
ValParProg(M,Sch,W,SafetyB) is ∞, then it means no safe program exists; (ii) if it is
less than ∞, then the answer is the optimal safe program, i.e. a program that is correct
and optimal with respect to the performance model. The partial program resolution de-
cision problem consists of the above inputs and a rational threshold λ, and asks whether
ValParProg(M,Sch,W,SafetyB) ≤ λ.

3 Quantitative Games on Graphs
The use of games for controller synthesis and synthesis of sequential systems from speci-
fications have been well studied in literature. In this section, we show how the partial pro-
gram resolution problems can be solved through quantitative imperfect information games on
graphs. Moreover we show that the technical questions on game graphs for partial program
resolution is different from the classical problems studied for quantitative graph games. We
start with the basic definitions about games on graphs.

3.1 Imperfect information games with quantitative objectives
A imperfect information stochastic game graph is a tuple G =
〈S,A,En, ∆, (S1, S2), O, η, s0〉, where S is a finite set of states, A is a finite set of
actions, En : S → 2A \ ∅ is the action enabledness function that assigns to every state s
the non-empty set En(s) of actions enabled at s, and s0 is an initial state. The transition
function ∆ is a probabilistic function ∆ : S ×A→ D(S) that, given a state s and an enabled
action a gives the probability distribution ∆(s, a) over the successor states. The sets (S1, S2)
define a partition of S into Player-1 and Player-2 states, respectively; and O is a finite set of
observations. The function η : S → O maps every state to an observation. We will refer to
these games as ImpIn 2 1

2 -player game graphs: ImpIn for imperfect information, 2 for the two
players and 1

2 for the probabilistic transitions.
The informal semantics for a imperfect information game is as follows: the game starts

with a token being placed on the initial state. In each step, Player 2 can observe the exact state
s in which the token is placed whereas, Player 1 can observe only η(s). If the token is in S1

(resp. S2), Player 1 (resp. Player 2) chooses an action a enabled in s. The token is then moved
to a successor of s based on the distribution ∆(s, a). To formalize these semantics, we define
the notion of strategies.

Strategies. Informally, a strategy is “recipe” to play a ImpIn 2 1
2 -player game. A Player 1

strategy is a function σ : (O×A)∗ ·O → A, which picks an enabled action for Player 1 given
the observable history of the game. A Player 2 strategy is a function τ : (S × A)∗ · S →
A, which picks an enabled action for Player 2 given the history of the game. A strategy
must always choose among enabled actions. Observe that Player 1 has imperfect information,
whereas Player 2 has perfect-information. A Player 1 strategy is called memoryless if σ(h1 ·
o) = σ(h2 · o) for all h1, h2 ∈ (O × A)∗. Similarly, a Player 2 strategy is memoryless if
τ(h1 · s) = τ(h2 · s) for all h1, h2 ∈ (S × A)∗. A memoryless strategy for Player 1 (resp.
Player 2) can be simply represented as functions O → A (resp. S → A). We denote the set of
Player 1 and Player 2 strategies by Σ and Γ , respectively, and the set of Player 1 and Player 2
memoryless strategies by ΣM and ΓM , respectively.

Special cases. We will also consider the following special cases of ImpIn 2 1
2 -player games:

– ImpIn 2-player games are the special case when the transition function is deterministic,
i.e., ∆(s, a)(s′) = 1 for some s′ ∈ S.

– Perfect information games where both player have perfect information and can view the
states, i.e., every state has an unique observation, O = S, and η(s) = {s}.

– 1 1
2 -player games (or Markov decision processes) are the special case of ImpIn 2 1

2 -player
games, where every Player 1 state has exactly one action enabled, i.e., |En(s)| = 1 for
all s ∈ S1 (recall that Player 2 has perfect information).

– Markov chains are special cases of MDPs where all states have exactly only one action
enabled.

Paths and probability space. Given a game graph G, we denote by ΠG the set of paths of
the game graph G. Given a Player 1 strategy σ and a Player 2 strategy τ , we denote by
Prσ,τ (·) the unique probability measure over the set of paths of the game graph. For details

on the probability measure, refer to any standard work on 2 1
2 -player stochastic games (for

example, [22]).
Objectives. In a graph game, we consider boolean or quantitative objectives for both players.
A boolean objective for a game graph G is a function from φ : ΠG → {0, 1} and a quan-
titative objective is a function f : ΠG → R. We will consider boolean objectives defined
by safety objectives, and quantitative objectives defined by limit-average and limit-average
safety objectives.
Values. The goal of Player 1 in a game with game graph G and boolean or quantitative ob-
jective f , is to minimize the expected value of f whereas, the goal of Player 2 is to max-
imize it. In this report, we only consider the LimAvg-Safety objectives which were de-
fined in Section 2. Formally, the value of a Player 1 strategy σ for an objective function
f is defined as ValGame(f,G, σ) = supτ∈Γ Eσ,τ [f]. The value of the game is defined as
ValGame(f,G) = infσ∈Σ ValGame(f,G, σ).
Decision problems. We now present the decision problems for ImpIn 2 1

2 and 2-player
game graphs, and study the complexity. Given a game graph G, an objective f and a ra-
tional threshold q ∈ Q, the general decision problem (resp. memoryless decision prob-
lem) asks whether there is a strategy (resp. memoryless strategy) σ for Player 1 such that
ValGame(f,G, σ) ≤ q. Similarly, the value problem (memoryless value problem) is to com-
pute infσ∈Σ ValGame(f,G, σ) (minσ∈ΣM ValGame(f,G, σ) resp.). The traditional game
theory study always considers the general decision problem which is undecidable for limit-
average objectives [9] in imperfect information games.

Theorem 1. [9] The decision problems for LimAvg and LimAvg-Safety objectives are un-
decidable for ImpIn 2 1

2 - and ImpIn 2-player game graphs.

3.2 From partial programs to games
In the previous section we have seen that the general decision problem is undecidable. How-
ever, we show here that the partial program resolution problems reduce to the memoryless
decision problem for imperfect information games. In Section 3.3, we establish the complex-
ity of the memoryless decision problem for imperfect information games with LimAvg and
LimAvg-Safety objectives.

Theorem 2. Given a partial program M , a scheduler Sch, performance model W , and a
correctness condition φ: We construct an exponential size ImpIn 2 1

2 -player game graph
GpM with a LimAvg-Safety objective such that the memoryless value of GpM is equal to
ValParProg(M,Sch,W,Safety).

Proof. The proof relies on the construction of a imperfect information game graph, de-
noted G(M,Sch,W), in which fixing a memoryless strategy σ for Player 1 yields a WPTS
Tr(Pσ,Sch,W) with weight function γ that corresponds to the product of a program Pσ
allowed by the partial program M , composed with the scheduler Sch and the performance
model W . The construction of this game graph is similar to the construction of the product
of a program, scheduler and performance model, but with a partial program replacing the
program. Due to the non-deterministic transition function of the partial program, there will
exist extra non-deterministic choices in the WPTS (in addition to the choice of inputs). This
non-determinism is resolved by Player 1 choices and the non-determinism due to input (and
possibly scheduling) is resolved by Player 2 choices. We refer to this game as the program
resolution game.

The crucial point of the construction is the observations, i.e., the information about the
state that is visible to Player 1. Since Player 1 is to resolve the non-determinism from the
partial program, he is allowed only to observe the scheduled thread and its current location.

He may choose a set of transitions, from that location, such that only one of the set is enabled
for any valuation of the variables. The formal description is given in the full version.

To complete the proof, we show that given a memoryless Player 1 strategy σ, there exists
a program Pσ allowed by M such that Tr(Pσ,Sch,W) corresponds to the MDP obtained by
fixing σ in G(M,Sch,W) and vice-versa.

Given a program Pσ allowed by the partial program, we construct a memoryless σ as
follows: σ((t, q)) is the action consisting of the set of transitions from location q in thread
t in Pσ . As Pσ is deterministic, only one of them will be enabled for a valuation of the
variables. Similarly, given a memoryless Player 1 strategy, we construct Pσ by preserving
only those transitions from location q of thread t which are present in σ((t, q)). From the
above construction we conclude the desired correspondence. ut
3.3 Complexity of ImpIn Games and partial program resolution
We now study the complexity of the memoryless decision problems for ImpIn 2 1

2 - and ImpIn
2-player game graphs. The problem has not been studied before in the literature. We have
shown in Theorem 2 that it is the relevant problem for partial program resolution. We will
first prove that the memoryless decision problems for imperfect information games are NP-
complete. Using the NP-membership of these problems, we establish an upper bound for
the partial program resolution problems. We establish a matching lower bound and thereby
establish precisely the computational complexity of the partial program resolution problems.
Firstly, for the special case of MDPs, the answer to the decision and memoryless decision
problems coincide and can be solved in polynomial time [11] (using linear-programming to
solve MDPs with safety and limit-average objectives).

Theorem 3. [11] The memoryless decision problem for LimAvg-Safety objectives can be
solved in polynomial time for MDPs.

Theorem 4. (Complexity). The memoryless decision problems for Safety, LimAvg, and
LimAvg-Safety objectives are NP-complete for ImpIn 2 1

2 - and ImpIn 2-player game graphs.

For the lower bound we show a reduction from 3SAT problem and for the upper bound we use
memoryless strategies as polynomial witness and Theorem 3 for polynomial time verification
procedure (details in the full version).

Remark 1. We observe that the NP-completeness of the memoryless decision problems rules
out the existence of the classical strategy improvement algorithms. The reason is as follows:
the existence of strategy improvement algorithm also implies existence of randomized sub-
exponential time algorithms (using the techniques of [1]), and hence a strategy improvement
algorithm for the memoryless decision problem would imply a randomized sub-exponential
upper bound for a NP-complete problem.

Theorem 5. The partial program resolution decision problem is NEXPTIME-complete for
both non-deterministic and probabilistic schedulers.

Proof. (a) The NEXPTIME upper bound is as follows: an exponential reduction to the mem-
oryless decision problem for imperfect information games follows from Theorem 2, and then
by Theorem 4 the NEXPTIME upper bound follows.

(b) We reduce the NEXPTIME-hard problem succinct 3-SAT (see [17]) to the partial
program resolution problem to show that it is NEXPTIME-hard, which will complete the
proof. The idea of the proof is to construct a two thread partial program in which one of
the threads will choose a clause from the satisfiability. The second thread will determine the
literals in this clause and then, check whether the clause is satisfied. If it is not, the thread
enters an error state. The safety condition is to stay away from the error state.

Suppose we are given an instance of succinct 3-SAT over variables v1, v2, . . . vM , i.e., a
circuit Q which takes pairs (i, j) (i ∈ {1, 2, . . . , N − 1} and j ∈ {1, 2, 3}) as inputs and
returns the literal in the jth position in the ith clause. The first thread of the partial program
just changes the global variable i, looping through all values in {1, 2, . . . , N − 1}.

The second thread will first have a sequence of partial pro-
GLOBALS: var i;

THREAD 1:
while (true)

i = (i + 1) mod N;

THREAD 2:
choice: {

val[v1] = true;
val[v1] = false;

}
...

while (true)
l1 = compute_Q(i,1);
l2 = compute_Q(i,2);
l3 = compute_Q(i,3);
if(not (val[l1] ∨

val[l2] ∨
val[l3]))

assert(false);

Fig. 3. The reduction of suc-
cinct 3-SAT to partial pro-
gram resolution

gram locations where it non-deterministically chooses a valu-
ation V for all literals. It then does the following repeatedly:
(a) Read global i, (b) Compute the ith clause by solving the
circuit value problem for Q with (i, 1), (i, 2) and (i, 3) as in-
puts. (c) If the ith clause is not satisfied with the valuation V , it
goes to an error state.

As the circuit value can be solved in polynomial time, we
can construct code (of polynomial size in Q) which will read
a global variable i and compute the output of Q. The code for
both threads is shown in Figure 3.

Now, to show the validity of the reduction: if there exists
a valuation satisfying the formula generated by Q, choosing
that valuation in the first step in the second thread will obvi-
ously generate a safe program. If there exists no such valuation,
for any valuation V chosen in the partial program, there exists
a clause (say k) which is not satisfied. To generate an unsafe
behavior we let the first thread run till i becomes equal to k
and then let the second thread run which will obviously enter
the error state. Observe that the hardness result is independent
of the scheduler, and in particular holds for non-deterministic

and probabilistic schedulers. Note that our hardness result uses only safety objective and no
weighted automaton for limit-average objectives. ut

4 Practical Solutions for Partial Program Resolution
In the previous section, we showed that the partial program resolution problem is compu-
tationally hard (NEXPTIME-complete). In this section, we present heuristics and practical
solutions for the problem. For each memoryless strategy (equivalently, allowed program) in
a partial program, the evaluation involves both correctness and performance checks, i.e., in-
volves solving a LimAvg-Safety objective on a MDP. We present three practical methods for
examining and evaluating memoryless strategies and they are as follows: (1) We use partial
correctness checks on strategies to eliminate sets of programs that resolve some of the partial
program choices in the same way. (2) We show that quantitative probabilistic bisimilarity is
sound with respect to limit-average objectives, use this result to show that abstraction tech-
niques can be used to reduce the size of MDPs. (3) We show how properties of commonly
written programs and partial programs can be used to efficiently solve the MDPs that arise in
the evaluation of a memoryless strategy.

4.1 Strategy elimination
Before the presentation of the elimination of strategies using partial correctness check, we
present the general strategy enumeration scheme for partial program resolution. We first in-
troduce the notions of a partial strategy and strategy tree.

Partial strategy and strategy trees. A partial memoryless strategy for Player 1 is a partial
function that maps observations to actions. A strategy tree is a finite branching tree labelled
with partial memoryless strategies of Player 1 such that:

– Every leaf node in the tree is labelled with a complete strategy.

– If a node and its parent are labelled with σ1 (defined on O1) and σ2 (defined on O2)
respectively, then O2 (O1.

– Two nodes, neither of which are the ancestor of the other, are labelled with partial strate-
gies which are incompatible (i.e., there exists an observation for which they choose dif-
ferent actions).

A complete strategy tree for Player 1 is a strategy tree in which all Player 1 memoryless
strategies are present as labels.

Algorithm 1 Strategy Elimination
Input: M : partial program;
W : performance model;
Sch: a scheduler;
Safety: a safety condition

Output: Candidates: Strategies
StrategySet ← CompleteTree(M)
{It returns a complete strategy tree}
Candidates ← ∅
while StrategySet 6= ∅ do

Pick Tree from StrategySet
σ ←Root(Tree)
{Root returns the root of the tree}
if PartialCheck(σ,Safety) then

StrategySet =
StrategySet ∪ children(Tree)

if Tree is singleton then
Candidates = Candidates ∪ {σ}

return Candidates

In the strategy enumeration scheme, we
maintain a set of candidate strategy trees and
check each one for partial correctness. If the par-
tial strategy of the root of the tree fails the par-
tial correctness check, then we can remove the
whole tree from the set. Otherwise, we replace
the tree with the set of children of the tree. Once
we reach a complete strategy, we evaluate for full
correctness and compute the value. The initial set
consists of a complete strategy tree. In practice,
the choice of this tree can be instrumental in the
success of partial correctness checks in elimina-
tion of strategies. In particular, trees which fix
the choices from the beginning of the partial pro-
gram at the top of tree are more useful to partial
correctness checks. The scheme for solving the
partial program resolution problems is shown in
Algorithm 1, and the full details are presented in
the full version.

The PartialCheck function checks for the partial correctness of partial strategies. It
either returns “Incorrect” if it is able to prove that any strategy compatible with the input
is unsafe or it returns “Don’t know”. For example, in practice, for the partial correctness
checks the following steps are useful: (a) checking of lock discipline to ensure the absence of
deadlocks; (b) simulation of the partial program on small inputs; and (c) other similar static
checks.

Once the set of candidate strategies is obtained, we evaluate them separately, one by one.
Fixing a Player 1 memoryless strategy in a ImpIn 2 1

2 -player game will turn it into a perfect-
information MDP which can be solved efficiently due to the absence of imperfect information.

4.2 Quantitative probabilistic abstraction

Abstraction is a standard technique to handle state space explosion and it has been mainly
used for boolean objectives. However for the partial program resolution problem we require
abstraction that also preserves quantitative objectives such as LimAvg and LimAvg-Safety.
We show that an extension of probabilistic bisimilarity [14] with a condition for weight func-
tion preserves the quantitative objectives.

Quantitative probabilistic bisimilarity. A binary equivalence relation ≡ on the states of a
MDP is a quantitative probabilistic bisimilarity relation if

– ∀s ≡ s′ : s ∈ B ↔ s′ ∈ B, i.e., s is unsafe if and only if s′ is unsafe,
– ∀s ≡ s′, a ∈ A :

∑
t∈C ∆(s, a)(t) =

∑
t∈C ∆(s′, a)(t) where C is an equivalence class

of ≡, and
– ∀s, t ∈ C : ∀s′, t′ ∈ C ′ : γ(s, a, s′) = γ(t, a, t′).

Two states s and s′ are called quantitative probabilistic bisimilar if s ≡ s′.

We now define the notion of quotients. Informally, a quotient of an MDP G under qual-
itative probabilistic bisimilarity relation ≡ is an MDP (G/≡) where the states are the equiv-
alence classes of ≡ and: (i) γ(C, a,C ′) = γ(s, a, s′) where s ∈ C and s′ ∈ C ′, and (ii)
∆(C, a)(C ′) =

∑
t′∈C′ ∆′(s, a)(t) where s ∈ C. The following theorem states that quo-

tients preserve the LimAvg-Safety values of an MDP (proof in the full version).

Theorem 6. Given an MDP G, a quantitative probabilistic bisimilarity relation ≡, and a
limit-average safety objective f , the values in G and (G/≡) coincide for the limit-average
safety objective.

The previous theorem implies that any abstraction that respects quantitative probabilistic
bisimilarity is a sound abstraction. We will consider the following abstractions and all of them
respect the quantitative probabilistic bisimilarity.

– Standard data abstraction: This abstraction erases the values of the variables which do not
appear in any guard.

– Equality abstraction: This preserves only the equality relations between the variables and
erases the exact values.

– Order abstraction (in the presence of non-decreasing variables): This preserves only the
order relations between variables.

4.3 Evaluation of a memoryless strategy

We now examine how the structure of common programs and partial programs can be ex-
ploited to optimize the solving of the MDPs obtained by fixing a Player 1 memoryless strategy
in the ImpIn 2 1

2 -player game for partial program resolution.
In the case of a non-deterministic scheduler where the scheduling choices are made by an

antagonistic environment, fixing a Player 1 strategy in the program resolution game gives us
a non-deterministic transition system. The value of the strategy can be found on this graph by
using a standard min-mean cycle algorithm (for example, [15]).

In the case of analysis of probabilistic schedulers we are required to solve Markov chains
with limit-average objectives. Markov chains arise for two reasons: (1) In many cases, the
input can be abstracted away using data abstraction and the problem is reduced to solving
a Markov Chain with a LimAvg objective. (2) The most efficient algorithm to solve MDPs
with limit-average objectives is the strategy improvement algorithm [11], and each step of the
algorithm involves solving a Markov chain. Hence we focus on solving Markov chains with
limit-average objectives efficiently. In practice, a large percentage of concurrent programs
are written to ensure some progress conditions. For example, many terminating concurrent
programs ensure lock-freedom [12]. Lock-freedom ensures that some thread always makes
progress in a finite number of steps. This leads to a Markov chain with a directed-acyclic tree
like structure with only few cycles introduced to eliminate finite executions as mentioned in
Section 2.

We present a forward propagation technique to compute the stationary probabilities for
these Markov chains. The method to compute the stationary distribution for a Markov chain
involves solving a set of linear equalities using Gaussian elimination. For Markov chains that
satisfy the directed-acyclic tree like structure with few cycles we speed up the elimination of
variables by eliminating variables in the tree by forward propagating the root variable. Using
the forward propagation technique, we were able to handle the special Markov chains of up
to 100,000 states in a few seconds in the experiments.

5 Experiments
We describe the results of applying our prototype implementation. The implementation uses
techniques of Section 4 on four examples. In the examples, obtaining a correct program is
straightforward and we focus on the synthesis of optimal programs.

LC: CC Granularity Performance

1:100
Coarse 1

Medium 1.15
Fine 1.19

1:20
Coarse 1

Medium 1.14
Fine 1.15

1:10
Coarse 1

Medium 1.12
Fine 1.12

1:2
Coarse 1

Medium 1.03
Fine 0.92

1:1
Coarse 1

Medium 0.96
Fine 0.80

Table 1. Performance of shared
buffers under various locking strate-
gies: LC and CC are the locking cost
and data copying cost

The partial programs were manually abstracted (us-
ing the data and order abstractions) and translated into
PROMELA, the input language of the SPIN model
checker [13]. The abstraction step was straightforward and
could be automated. The transition graphs were generated
using SPIN. In the next step, our tool constructs the game
graph as the product with the scheduler and performance
model. The resulting game was solved for the LimAvg-
Safety objectives using our techniques in Section 4. The
examples we considered were small (each thread was run-
ning a procedure with 15 to 20 lines of code). The run-
ning time of the tool was under a minute for all but one
case (Example 2 with larger value of n), where the run-
ning time was under five minutes. The experiments were
run on a dual-core 2.5Ghz machine with 2GB of RAM.
For all examples, the tool reports normalized performance
metrics where higher values indicate better performance.

Example 1. We consider the producer-consumer example
described in Section 1. The partial program models a four
slot concurrent buffer which is operated on by producers

and consumers. Here, we try to synthesize lock granularity. The synthesis results are pre-
sented in Table 1. The most important parameters of the performance model are the cost of
locking/unlocking l and the cost c of copying data from/to shared memory. If the cost c was
higher than l (by a factor 100:1), then the fine-grained locking approach is better (by 19 per-
cent), and is the result of synthesis. If the cost l is equal to c, then the coarse-grained locking
approach was found to perform better (by 25 percent), and thus the coarse-grained program
is the result of the synthesis.

WC: LC LWO
Performance for n

1 2 3 4 5
20:1 1 1.0 1.049 1.052 1.048 1.043
20:1 2 1.0 0.999 0.990 0.982 0.976
10:1 1 1.0 1.134 1.172 1.187 1.193
10:1 2 1.0 1.046 1.054 1.054 1.052

Table 2. Optimistic performance: WC, CC and
LWO are the work cost, lock cost and the
length of the work operation

Example 2. We consider the example of opti-
mistic concurrency described in detail in Sec-
tion 1. Referring back to the code in Figure 1,
the number of operations performed optimisti-
cally is controlled by the variable n. We syn-
thesized the optimal value for n for various per-
formance models and the results are summarized
in Table 2. In our experiments, we were able to
find correspondence between the program behav-
ior on a desktop machine and the behavior of our
models: (a) When the partial program was tested

on the desktop, we observed that the graph of performance-vs-n has a local maximum. In our
experiments, we were able to find parameters for the performance model which have similar
performance-vs-n curves. (b) Furthermore, changing the cost of locking operations on a desk-
top, by introducing small delays during locks, we were able to observe performance results
similar to those produced by other performance model parameters.

Example 3. In this example, we try to synthesize the optimal number of threads for work shar-
ing (details of the pseudocode is in the full version). In many concurrent programs, a number
of operations can be performed independently. It might be better to spawn many threads to
take advantage of multi-processor systems. However, for small number of operations, it is
likely that the thread initialization cost will overcome any performance gain in the threads.
We ran the experiments for various thread initial costs and number of operations.

Fig. 4. Work sharing for initialization costs and thread counts: (a), (b), (c) and (d) stand for increasing
amount of work to be shared

The results of the synthesis are summarized in Figure 4. In the graphs of Figure 4, the
x-axis measures the initialization cost and the y-axis measures the performance. Each plot in
the graph is for a different number of threads. The four graphs (a), (b), (c) and (d) are for a
different amounts of work to be shared (in our case, the length of the array to be operated was
varied between 8, 16, 32, and 64).

in cache ∧ dirty

in cache ∧ !dirty

!in cache ∧ !dirty

?WRITE /

!EVICT (0)

?FLUSH /

!EVICT (MEM WRITE)

?EVICT /

⊥ (0)

?READ /

!FLUSH

(MEM READ)

?FLUSH / ⊥ (0)

?READ / ⊥ (CACHE READ)

?WRITE / ⊥ (CACHE READ)

?READ / ⊥ (CACHE READ)

Fig. 5. Perf. Aut. for Example 4

As it can be seen from the figure, for smaller
amounts of work, spawning fewer threads usually
outperforms spawning more threads. However, for
larger amounts of work, greater number of threads
outperforms smaller number of threads, even in the
presence of higher initialization costs. The code was
run on a desktop (with scaled parameters) and similar
results were observed.

Example 4. In this example, we study the effects of
processor caches on programs using a performance
model for the caches. A cache for a memory line is
modeled as the weighted automaton shown in Fig-
ure 5. The performance model assigns costs to read
and write actions, and these costs are different based
on whether the memory line is currently in cache or
not. The complete performance model is the synchronous product of such automata, one per
memory line . Note that the only actions left in the performance model after taking the syn-
chronous product (where the caches synchronize on evict and flush edges) are the READ
and WRITE actions. These actions will be matched with the transitions of the partial program.

The partial program we consider is a pessimistic variation of the one used in Figure 1. The
pseudo-code is presented in the full version. In this example, increasing the value of n, i.e.,
the number of operations performed under locks, increases the temporal locality of memory

accesses. Hence, it is to be expected that increasing nwill increase performance. We were able
to observe the expected results from our experiments. For instance, the performance for n =
5 is 2.32 times the performance for n = 1. Furthermore, increasing n from 5 to 10 gives an
additional performance boost of about 20%. The result of the synthesis is the program where
n is equal to 10.
Future Work. There are several promising future research directions: (i) the first is to con-
sider synthesis of programs that access concurrent data structures; (ii) the second direction
is to create benchmarks using which a performance model can be automatically obtained for
different architecture.

References

1. H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm for parity games.
In STACS, pages 663–674, 2003.

2. R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better quality in synthesis through
quantitative objectives. In CAV, 2009.

3. S. Burckhardt, R. Alur, and M. Martin. Checkfence: checking consistency of concurrent data types
on relaxed memory models. In PLDI, 2007.

4. S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: a complete and automatic linearizabil-
ity checker. In PLDI, 2010.

5. K. Chatterjee, T. A. Henzinger, B. Jobstmann, and R. Singh. Measuring and synthesizing systems
in probabilistic environments. In CAV, 2010.

6. S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for atomic sections. In PLDI, pages
304–315, 2008.

7. A. Church. Logic, arithmetic, and automata. In Proceedings of the International Congress of
Mathematicians, 1962.

8. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branching time
temporal logic. In Proc. Workshop on Logic of Programs, 1981.

9. A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Toruńczyk. Energy and mean-payoff games
with imperfect information. In CSL, 2010.

10. M. Emmi, J. Fischer, R. Jhala, and R. Majumdar. Lock allocation. In POPL, pages 291–296, 2007.
11. J. Filar and K. Vrieze. Competitive Markov decision processes. 1996.
12. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier Inc., 2008.
13. G. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.
14. B. Jonsson and K. Larsen. Specification and refinement of probabilistic processes. In LICS, pages

266–277, 1991.
15. R. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, (23),

1978.
16. M. Michael and M. Scott. Correction of a memory management method for lock-free data struc-

tures. Technical report, U. of Rochester, 1995.
17. C. Papadimitriou. Computational Complexity. Addison-Wesley Publishing, Reading, MA, USA,

1994.
18. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, 1989.
19. A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. Saraswat, and S. Seshia. Sketching stencils.

In PLDI, pages 167–178, 2007.
20. A. Solar-Lezama, C. Jones, and R. Bodı́k. Sketching concurrent data structures. In PLDI, 2008.
21. A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioglu. Programming by sketching for bit-

streaming programs. In PLDI, 2005.
22. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In FOCS, pages

327–338, 1985.
23. M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of synchronization. In POPL,

2010.

