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Abstract. In the standard framework for worst-case execution time
(WCET) analysis of programs, the main data structure is a single in-
stance of integer linear programming (ILP) that represents the whole
program. The instance of this NP-hard problem must be solved to find an
estimate for WCET, and it must be refined if the estimate is not tight. We
propose a new framework for WCET analysis, based on abstract segment
trees (ASTs) as the main data structure. The ASTs have two advantages.
First, they allow computing WCET by solving a number of independent
small ILP instances. Second, ASTs store more expressive constraints,
thus enabling a more efficient and precise refinement procedure. In or-
der to realize our framework algorithmically, we develop an algorithm
for WCET estimation on ASTs, and we develop an interpolation-based
counterexample-guided refinement scheme for ASTs. Furthermore, we
extend our framework to obtain parametric estimates of WCET. We ex-
perimentally evaluate our approach on a set of examples from WCET
benchmark suites and linear-algebra packages. We show that our anal-
ysis, with comparable effort, provides WCET estimates that in many
cases significantly improve those computed by existing tools.

1 Introduction

Worst-case execution time (WCET) analysis [18] is important in many classes
of applications. For instance, real-time embedded systems have to react within a
fixed amount of time. For another example, consider computer algebra libraries
that provide different implementations for the most heavily-used methods. Users
have to choose the most suitable method for their particular system architecture.
In both cases, a tool that soundly and tightly approximates the WCET of a
program on a given architecture would thus be very helpful.
State of the art. Most state of the art WCET estimation tools proceed in three
phases (see for instance the survey [18]):
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– First phase: Architecture-independent flow analysis, which computes invari-
ants, loop bounds, and finds correlations between the number of times dif-
ferent basic blocks in the program are executed. Such facts are called flow
facts in the WCET literature, and the analysis is called flow analysis.

– Second phase: Architecture-dependent low-level analysis, which finds WCET
for each basic block, using a model of a particular architecture, and abstract
interpretation over domains that model for instance caches and pipelines.

– Third phase: Path analysis, which combines the results of the previous two
phases. The commonly-used algorithm is called Implicit Path Enumeration
Technique (IPET) [15]. It constructs an Integer Linear Programming (ILP)
problem using WCET estimates for each basic block and constraints arising
from flow facts to rule out some infeasible paths.

Recently, several approaches to refining WCET estimates were proposed.
These works [14, 3] use an approach named “WCET squeezing” in [14], which
adds constraints to the ILP problem arising from IPET.

The main data structure used is a single ILP problem for the whole program.
We make two observations about the standard approach: first, flow facts (gath-
ered in the first phase, or obtained by refinement) lead to global constraints in
the ILP constructed in the third phase. Hence, the ILP problem (an instance of
an NP-hard problem) cannot be decomposed into smaller problems. Second, the
current approaches to refinement add constraints to the ILP; and in this way
eliminate only one path at a time.

Our thesis. The main thesis of this paper is that hierarchical segment abstrac-
tion [8] is the right framework for WCET analysis. Segments are sequences of
program instructions. Segment abstractions are those where an abstract state
represents a set of segments, rather than set of concrete states. We represent hi-
erarchical segment abstraction in a data structure called abstract segment trees
(ASTs). The concept of segment abstraction [8] and its quantitative version [6]
were introduced only very recently. We believe that WCET analysis is a prime
application for segment abstraction.

We give two main arguments in support of the thesis. First, hierarchical seg-
ment abstraction allows us to compute the WCET by solving a number of inde-
pendent ILP problems, instead of one large global ILP problem. This is because
ASTs allow storing constraints locally. Second, hierarchical segment abstraction
enables us to develop a more precise and efficient refinement procedure. This is
because ASTs store more expressive constraints than ILP.

Algorithm. In order to substantiate our thesis, we develop an algorithm for
producing increasingly tight WCET estimates. There are three key ingredients
to the algorithm. First, we define an abstraction of programs that contains quan-
titative information necessary to estimate WCET. Second, we develop an algo-
rithm for WCET estimation on ASTs. Third, we develop counterexample-guided
refinement for segment abstraction based on interpolation.

Abstractions for WCET: abstract segment trees. The main idea of hi-
erarchical segment abstraction is that an abstract state corresponds to a set of
concrete segments, rather than to a set of concrete states, as in state-based ab-



stractions. Reasoning about segments is suitable for WCET estimation, where
the analysis needs, for example, to distinguish execution times for different paths
through a loop body, and store the relative number of times these paths are
taken. Consider a simple example of a loop through which there are two paths,
P1 and P2. Let us assume that the path P1 takes a long time to execute, but is
taken only once every 4 iterations of the loop; otherwise, a cheaper path P2 is
taken. To obtain a precise estimate of WCET, we thus need to store two types
of numerical facts: the first one is the current estimates of execution time of P1

and P2, and the second fact is that an iteration taking path P1 is followed by
3 iterations taking path P2. We show that both these facts about paths can be
stored locally if the basic object in the representation is a set of segments. To
contrast with the standard approach to WCET analysis, note that the second
quantitative fact is stored as a global constraint in the ILP.

The abstraction is hierarchical in order to capture the hierarchical nature of
traces of structured programs with loops and procedures. For example, we split
the set of traces through a nested loop into repeated iterations of the outer loop,
and each outer loop iteration is split into repeated inner loop iterations. The
hierarchical abstraction is represented by an abstract segment tree.

Each node of the abstract segment tree represents a set of segments. The
nodes in our abstract segment trees contain quantitative information so that the
WCET of the program can be estimated using only the abstraction.

Evaluation of WCET on abstractions. After constructing the abstraction of
the program (an AST), the next step is to evaluate the WCET on the AST. The
AST is a hierarchical structure. Each node of the AST gives rise to a problem
that can be solved using an ILP encoding. The key difference to the standard
IPET approach is that IPET constructs one global ILP problem for the whole
program, and the ILP cannot be decomposed due to global constraints. segment
abstractions and the hierarchical nature of ASTs enable us to decompose the
solving into smaller problems, with one such problem for each node.

We propose a new encoding of the constraint-solving problem that arises at
each node into ILP. The problem at each node could be reduced to ILP by a
technique presented in [16], but this would lead to a possibly exponential number
of constraints, whereas our encoding produces linear number of constraints.

Abstraction-refinement for WCET. After evaluating the WCET on ASTs,
we obtain a witness trace, that is, a trace through the AST that achieves the
WCET. It might be that the trace is feasible in the current abstraction but is
infeasible in the program. Hence, we need a refinement as the next phase, in order
to obtain a more precise WCET estimate. The algorithm refines the abstraction
based on the current WCET estimate and the corresponding worst-case path.

We use the classical abstraction-refinement loop approach, adapted to ASTs.
If the witness trace is feasible in the original program, the current WCET es-
timate is tight and we report it. Otherwise, we refine the abstraction using a
novel interpolation-based approach for refinement of segment predicates. The
refinements are monotonic w.r.t. WCET estimates, i.e., they are monotonically
decreasing. Having expressive constraints (relational predicates) stored in ASTs



allows us to perform more efficient and more precise refinement than state-of-
the-art WCET refinement techniques that add constraints to the ILP problem.
Our refinement is more efficient, as we can potentially eliminate many traces
at a time, and it is more precise, as the constraints that determine how the set
represented by abstract nodes can be combined are more expressive than the
constraints in ILP.

Parameters. Furthermore, we extend our framework to provide parametric es-
timates of WCET, following [4, 1]. In many cases, a single number as a WCET
estimate is a pessimistic over-estimate. For instance, for a program that trans-
poses a n × n matrix, a single numeric WCET is the WCET for the largest
possible value of n. We adapt our evaluation algorithm to compute parametric
WCET estimates as disjunctive linear-arithmetic expressions.

Experimental Evaluation. Our goal was to evaluate the idea of using ASTs
as the basic data structure for WCET estimation. We built a tool IBART for
computing (parametric) WCET estimates for C programs. For obtaining WCET
estimates for basic blocks of programs, we used two low-level analyzers from ex-
isting frameworks, r-TuBound [13] and OTAWA [2]. The low-level analyzers Cal-
cWCET167 and owcet included in r-TuBound and OTAWA respectively provide
basic block WCET estimates for the Infineon C167 processor and the LPC2138
ARM7 processor. We re-used the low-level analyzers of these frameworks, and
show that our high-level analyzer provides more precise constraints that our
solver uses to compute tighter WCET estimates than these two frameworks.

We evaluated IBART on challenging examples from WCET benchmark suites
and open-source linear algebra packages. These examples were parametric (with
parameters such as array sizes and loop bounds), and our tool provided paramet-
ric estimates. All the examples we considered were solved under 20 seconds. To
compare our estimates with the non-parametric results provided by r-TuBound
and OTAWA, we instantiated the parameters to a number of sample values.

The results show that IBART provides better WCET estimates, though based
on the same low-level analyzers. This demonstrates that our segment algorithm
improves WCET estimates independently of the low-level analyzer. We thus
expect that ASTs and our framework could be used by other WCET tools.

2 Illustrative Examples

This section illustrates our approach to WCET computation. We use Exam-
ple 1 to demonstrate the main differences between our approach and the stan-
dard approach to WCET analysis. We then use Example 2 to present the main
steps of our method: segment abstraction, estimation of WCET on ASTs, and
counterexample-guided abstraction refinement with interpolation.

Example 1. The program in Figure 1 performs operation work() (of execution
cost 3 time units) within a loop. Every 3 loop iterations, it logs some values into
a file, by using operation logValue whose execution takes 50 time units.



for (i=0;i<1000;i++)

if ((i mod 4) == 0)

logValues() cost=50
work1() cost=3

else

work2() cost=3

Fig. 1. Example 1.

l1 l2 l3 l4 l5

l6

l7

l8

ϕ9

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ6 ϕ7ϕ8

Fig. 2. CFG of Example 1.

Consider the CFG of Example 1 in Figure 2 where edges have been marked by
instructions. For instance, the edge labels ϕ4, ϕ5, and ϕ7 correspond to instruc-
tions logValues(), work1(), and work2(), respectively. The standard IPET al-
gorithm would construct an ILP as follows. For each instruction ϕi, the variable
Xi represents the number of times the instruction is executed in the worst-case
path. The objective function for the ILP is to maximize

∑
iXi · cost(ϕi), where

cost(ϕi) is the time taken to execute ϕi. The ILP constraints correspond to either
conservation of flow, for instance, X7 +X5 = X9 and X2 +X9 = X3 +X6 +X8,
or loop bounds, for instance 1000X2 = X3 + X6. Solving the ILP gives a way
to estimate the WCET. However, the estimate would be imprecise, as it would
find a solution that takes the expensive branch every time.

We could add a constraint specifying that the expensive branch is taken once,
every 4 iterations: 3X3 = X6. However, two important points are to be noted:

– First, this type of constraint that relates edges in different branches of the
program is non-local. In general, the two branches that need to be related,
can be far apart in the CFG. This makes decomposing the single large ILP
(representing the whole program) into smaller problems hard, and to the
best of our knowledge, no existing tool attempts this.

– Second, consider a version where the if-condition is replaced by ((i mod 30)

== 0). We cannot use the constraint 29X3 = X6, as this would not have a
solution: the number of iterations (1000) is not divisible by 30. Alternatively,
we could use less precise constraints like 29X3 ≥ X6 ≥ 29(X3 − 1). Most
current WCET tools would not handle the example precisely.

Consider in contrast how we obtain local bounds by reasoning about hier-
archies of sets of segments. Let B2 be the set of segments representing a single
iteration of the loop. For example, B2 contains segments that start at l3, and go
through l4, l5, l7 (see Figure 2). This represents an iteration that goes through the
expensive branch. The set of segments B2 is represented by the regular expres-
sion l3(l4l5 ∨ l6)l7. Let B1 denote a set of segments through the loop - the set of
segments that start at l3 and exit the loop. The set B1 can be over-approximated
by B∗2 . We also store the loop bound with B1, and thus the over-approximation
effectively becomes B1000

2 .

The counterexample-guided refinement will then refine the segment set of B2,
by splittingB2 into two sets: the set (Bt2) where the formula ((i mod 4) = 0) holds

(the expensive iteration), and the set (Bf2 ) where the formula ((i mod 4) = 0)
does not hold (the cheap iteration). The set of segments Bt2 is represented by



if (a<b)

for (i=0;i<n;i++)

if (i<bn/2c)
op1(); cost=10

else

op2(); cost=1
else

op3(); cost=50

Fig. 3. Example 2 (above);
written in a while-language
(right).

l1: if (*)

assume a<b; (ϕ1)
l2: i:=0; (ϕ2)
l3: while (*)

assume (i<n); (ϕ3)
l4: if (*)

assume i<bn/2c; (ϕ4)
l5: op1(); (ϕ5), cost=10

else

assume i≥bn/2c; (ϕ6)
l6: op2(); (ϕ7), cost=1
l7: i:=i+1; (ϕ8)

assume (i≥n); (ϕ9)
else

assume a≥ b; (ϕ10)
l8: op3(); (ϕ11), cost=50

the regular expression l3l4l5l7, and the set of segments Bt2 is represented by
the regular expression l3l6l7. The over-approximation B1 will therefore become
((Bt2)1(Bf2 )3)∗. Note that this keeps the information locally: it says that one
expensive iteration is followed by 3 cheap iterations. The node B2 is hence refined
into 1 iteration of Bt2, followed by 3 iterations of Bf2 . The loop bound of 1000
would still be stored locally with B1, requiring the total number of calls to Bt2
and Bf2 be 1000. This information is enough to obtain a precise WCET estimate.
The same approach would work for the variant considered above.

Example 2 (Running example). We now explain our approach in detail using
the program in Figure 3, which will be our running example through the paper.
Program blocks op1(), op2(), and op3() are operations whose executions take
10, 1, and 50 time units, respectively (these costs are derived from a low-level
timing analysis tool). In this example, we assume that program conditionals and
simple assignments take 1 time unit.

It is not hard to see that for small values of the loop bound n, the WCET
path of this program visits the outermost else branch containing op3() – when
n is small, the execution cost of op3() dominates the cost of the loop. However,
for larger values of n, the WCET path visits the then branch of the outermost if
and the for-loop. The WCET of this example thus depends on n. Our approach
discovers this fact, and infers the WCET of the program as a function of n as
follows: if n ≤ 5 ; 51 else 3 + 4n+ 9bn/2c. The computation proceeds as follows.
Control-flow graph. We construct the control-flow graph (CFG) of the pro-
gram in Figure 3. First, for clarity of presentation, we transform the program in a
while-loop language with assume statements — see Figure 3 (right column). We
have labeled the assumptions and the transition relations (i.e. transition predi-
cates) of instructions. For example, (ϕ1) denotes the assumption a < b; and (ϕ8)
represents the transition predicate i′ = i+ 1 of the assignment i := i+ 1.
Hierarchical segment-base abstraction. We next apply segment abstraction
on the CFG of Figure 4. The initial abstraction is given by the abstract segment
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Fig. 4. CFG of Example 2.

Name: A0

Shape: A1 ∨A2

Trans: true

Name: A1

Shape: l1l8l9
Trans: true

Name: A2

Shape: A3A4A5

Trans: true

Name: A4

Shape: An
6

Trans: true

Name: A3

Shape: l1l2l3
Trans: true

Name: A5

Shape: l3l9
Trans: true

Name: A6

Shape: l3l4(l5 ∨ l6)l7l3
Trans: true

Fig. 5. Initial abstraction for Example 2.

Name: A4

Shape: A
bn/2c
6f A

n−bn/2c
6t

Trans: i = 0

Name: A6f

Shape: l3l4l5l7l3
Trans: i′ = i + 1 ∧ i < bn/2c

Name: A6t

Shape: l3l4l6l7l3
Trans: i′ = i + 1 ∧ i ≥ bn/2c

Fig. 6. Partial structure of the
refined tree of Figure 5.

tree (AST) (Figure 5). The tree structure arises from the hierarchical nature
of the CFG. Nodes of the tree (denoted by Ak) represent a set of execution
segments, i.e., parts of program executions. Each node stores a shape predicate
(denoted Shape) describing the paths of the segments through the CFG, and a
transition predicate (denoted Trans) characterizing the transition relation of the
segments. A shape predicate is an extended regular expression over either the
children of the node, or over the CFG nodes. It is an extended regular expression,
as it may contain symbolic exponents obtained, for example, from loop bounds.
The transition predicate is a formula over the values of program variables at the
beginning and end of segments. Note that in the formal definitions, the shape is
a transition system rather than a regular expression and the nodes store more
detailed information. Here, we use a regular expression for better readability.

We describe node A2 in more detail—the other nodes are constructed simi-
larly. The construction of A2 in the initial abstraction is done syntactically. Node
A2 represents all segments corresponding to the then-branch of the outermost
if. It is split into three sets of segments: (a) node A3 denoting the set of seg-
ments before the loop, i.e., segments through the CFG nodes l1l2l3; (b) node A4

denoting the set of segments given by the loop of the CFG; and (c) node A5

representing the set of segments after the loop of the CFG. Take n as the bound
on the number of loop iterations in the CFG. For building A4 we use node A6

describing all segments in one iteration of the loop in the CFG. The segments in
A6 can be concatenated to cover all segments in A4. For computing loop bounds,
we use [13]. The loop bound n is noted in the shape predicate of A4.
WCET estimation on ASTs. For each node in Figure 5, we next calculate the
cost of the segments represented by it, i.e., its WCET. As each node is defined
in terms of its children, we traverse the tree bottom-up. The root contains then
a WCET estimate of the complete set of segments, and hence of the program.

In order to evaluate WCET on an AST, we need to supply an ILP at each
node of the AST. Here, instead of presenting each ILP and solving it, we give only



a simple explanation tailored to the example under consideration. To estimate
the WCET of a node, we consider the graph represented by the node. The vertices
in this graph correspond to children of the node. We use the shape predicate of
the node to construct the graph, and use the WCET of the children nodes to
estimate the cost of the node. For example, for node A2, we construct a graph
with three nodes, with directed edges from A3 to A4 and from A4 to A5. For
node A4, we obtain a graph with one node (A6) that can repeat at most n times.
The costs of the AST nodes are calculated as:
– cost(A6) = cost(ϕ3)+max(cost(ϕ4)+cost(ϕ5), cost(ϕ6+cost(ϕ7))+cost(ϕ8) = 13
– cost(A4) = n ·A6 = 13n
– cost(A3) = cost(ϕ1) + cost(ϕ2) = 2
– cost(A5) = cost(ϕ9) = 1
– cost(A2) = cost(A3) + cost(A4) + cost(A5) = 3 + 13n
– cost(A1) = cost(ϕ10) + cost(ϕ11) = 51
– cost(A0) = max(cost(A1), cost(A2)) = max(51, 3+13n) = if n ≤ 3 ; 51 else 3+13n

The WCET estimate of our running example is given by cost(A0), and de-
pends on the value of n, i.e., when 0 ≤ n ≤ 3 the WCET is different than in
the case when n > 3. To ensure that the computed WCET estimate is precise,
we need to ensure that our abstraction did not use an infeasible program path
to derive the current WCET estimate. We therefore pick a concrete value of n
for each part of the WCET estimate, and check whether the corresponding wit-
ness worst-case path is feasible. If it is, the derived WCET estimate is actually
reached by the program and we are done. Otherwise, we need to refine our AST.
In our example, we thus have the following two cases:

• Case 1: n ≤ 3. We pick n = 1. The WCET estimate of A0 is then 51. Here,
the witness trace is l1l8l9. This trace is a feasible trace of Figure 3.

• Case 2: n > 3. We pick n = 4 and the witness trace is l1l2 (l3l4l5l7)4l3l9, which
is infeasible, and we proceed to the refinement step.

Counterexample-guided refinement using interpolation. We refine the
AST of Figure 5 using the infeasible trace. We traverse the tree top-down to refine
each node of the counterexample. We refine the children of the node correspond-
ing to a node in the counterexample with new context information obtained
from the counterexample, via interpolation. We detail our refinement approach
only for A4, the rest of the nodes are refined in a similar way. By analyzing the
predecessor segments of A4 in the counterexample, we derive i = 0 as a useful
property for our refinement. This property is obtained using the same refinement
process that we now describe for A4.

To refine A4, we analyze its children, that is n repetitions (i.e., iterations)
of A6. In what follows, we denote by ik the value of the variable i after the
k-th iteration of A6, for 0 ≤ k ≤ n. Let i0 denote the value of i before A4. We
compute the property i1 = i0+1 summarizing the first iteration of A6, where the
summarization process includes interpolation-based refinement. Similarly, from
the second iteration of A6 we compute i2 = i1 +1. Hence, at the second iteration
of A6 the formula i0 = 0 ∧ i1 = i0 + 1 ∧ i2 = i1 + 1 ∧ n = 4 is a valid property
of the witness trace; let us denote this formula by A (recall that we fixed n = 4
above). However, after the second iteration of A6 we have (i2 < n)∧(i2 < bn/2c)



as a valid property of the witness trace; we denote this formula by B. Observe
that A ∧ B is unsatisfiable, providing hence a counterexample to the feasibility
of the current witness trace. From the proof of unsatisfiability of A∧B, we then
compute an interpolant I such that A =⇒ I, I ∧B is unsatisfiable, and I uses
only symbols common to both A and B. We derive i2 ≥ bn/2c as the interpolant
of A and B.

We now use the interpolant i2 ≥ bn/2c to refine the segment abstraction of
A6, as follows. The interpolant i2 ≥ bn/2c is mapped to the predicate i ≥ bn/2c
over the program variables. We then split A6 into two nodes: node A6f denoting
segments where i ≥ bn/2c does not hold, and node A6t describing segments
where i ≥ bn/2c holds. The interpolants i1 = i0 + 1 and i2 = i1 + 1 computed
from the first and second iteration of A6 yield the transition predicate i′ = i+1;
this formula holds for every segment in A6, and hence also in A6f and A6t. The
transition predicates of A6t and A6f are then used to compute the new shape

predicate A
bn/2c
6f A

n−bn/2c
6t for A4. The resulting (partial) refined AST is given in

Figure 6. This refined AST yields the WCET estimate if n ≤ 5 ; 51 else 3 +
4n+ 9bn/2c, which is a precise WCET estimate for the program in Figure 3.

3 Problem Statement

Instruction and predicate language. We express program instructions, pred-
icates, and assertions using standard first-order logic. Let F(X) represent the
set of linear integer arithmetic formulae over integer variables X. We represent
an instruction of a program as a formula from F(V ∪ V ′). Intuitively, a variable
v ∈ V and its primed version v′ ∈ V ′ represent the values of the program variable
v before and after the execution of the instruction, respectively. For example, an
instruction i := i + j in a C-like language would be represented as i′ = i+ j.
Program model. We model programs with assignments, conditionals, and
loops, over a finite set of scalar integer variables V . While we do not handle
procedure calls, our techniques can be generalized to non-recursive procedure
calls. We represent programs by their control-flow graphs. A control-flow graph
(CFG) is a graph G = 〈C, E, V,∆, ι0, init , F 〉, where (a) C is a set of nodes
(representing control-flow locations); (b) E ⊆ C × C is a set of edges; (c) V
is the set of program variables; (d) ι0 ∈ C is an initial control-flow location;
(e) init ∈ F(V ) is an initial condition on variables; (f) F ⊆ C is a set of final
program locations; and (g) ∆ : E → F(V ∪ V ′) maps edges to the instruction
that is executed when the edge is taken. We denote program states by pairs of
the form (l, σ) where l ∈ C and σ is a valuation of program variables V .
Semantics. The semantics JGK of a CFG G is the set of finite sequences of
program states (called traces) (l0, σ0) . . . (lk, σk) such that: (a) l0 = ι0 and σ0 |=
init , (b) lk ∈ F , and (c) ∀0 ≤ i < k.(li, li+1) ∈ E ∧ (σi, σi+1) |= ∆((li, li+1)).
Note that we assume that the program represented by G is terminating.
Cost model. We assume a simple cost model for instructions given by a func-
tion cost : E → N where cost((l1, l2)) is the maximum execution time of the
instruction from l1 to l2. We also refer to costs as weights. The weight cost(π) of



a trace π = (l0, σ0) . . . (lk, σk) is Σk−1
i=0 cost((li, li+1)). In practice, costs of edges

are obtained from a low-level architecture dependent analyzer. Note that even
this simple cost model can already capture some information about the context
of an instruction’s execution such as some cache hit/miss information. For ex-
ample, if the low-level analysis determines that an instruction will always be a
cache hit, it can provide a lower cost accordingly.
Problem statement. The worst-case execution time WCET (G) of a CFG G is
defined by WCET (G) = maxπ∈JGK cost(π). The task of the WCET estimation
problem is: Given a CFG G, compute a number e such that e ≥WCET (G). The
additional aim is to compute an estimate e that is tight, i.e., close to WCET (G).

The rest of this paper describes the main steps of our approach to solving
this problem: segment abstraction (Section 4), WCET estimation for segment
abstractions (Section 5), and counterexample-guided refinement (Section 6). We
summarize our algorithm in Section 7, describe the parametric extension in Sec-
tion 8, and present our tool and experimental results in Section 9.

4 Segment Abstraction for Flow Analysis

Our abstraction technique for flow analysis is based on the hierarchical segment
abstraction of [8, 6]. We adapt the definitions of hierarchical segment abstraction
from [6] to the setting of worst-case execution time analysis.

Let us fix a CFG G = 〈C, E, V,∆, ι0, init , F 〉. A segment is a finite sequence
of program states (i.e., pairs of control-flow locations and variable valuations).
Abstract Segment Trees (ASTs). An abstract segment tree T is a rooted
tree, where each node represents a set of segments. Intuitively, the segments of
each node are composed from the segments of its children. Each node is a tuple
(segPred , children, shape, Init ,Exit , slMin, slMax , gMax ) where:
– segPred ∈ F(V ∪V ′) is a relational predicate satisfied by the initial and final

variable valuations of all the segments represented by the current node;
– For internal nodes, the set children is the set of its children in T , and for

leaf nodes, children is a subset of the control-flow edges E of the CFG G;
– shape ⊆ children × children is a transition relation on children — for leaf

nodes, where children ⊆ E, we have that ((l0, l1), (l2, l3)) ∈ shape if l1 = l2;
– Init ,Exit ⊆ children are a set of initial child nodes and exit child nodes;
– gMax ∈ N ∪ {∞} is a bound on the maximal number of segments of child

nodes in a segment of the current node; and
– slMin, slMax : children → N ∪ {∞} are functions that map each child to

the minimum and maximum possible consecutive repetitions of segments
represented by the child in a segment represented by the current node.

We use the functions gMax , slMin, and slMax to store information about bounds
on the number of times certain iterations of a loop can be repeated. In practice,
these are computed using standard loop bound computation techniques.

Remark 1. Note that the quantitative information stored in the AST, i.e., slMin,
slMax , and gMax , is different from the quantitative information in [6]. In [6],



the interest was in limit-average estimation where storing bounds on segment
length is useful; while here, bounds on the number of segments is more useful.

Example 3. We clarify the definition of ASTs using Figures 5 and 6. In node
A0 from Figure 5 and node A4 from Figure 6 (with parameter n = 4), the AST
representation is in Table 1. In Figure 5 and Figure 6, the components shape,
Init , Exit , slMin, and slMax have been combined into one regular expression.

Component Value in A1 (Fig. 5) Value in A4 (Fig. 6)
segPred true i = 0
children {A1, A2} {A6t, A6f}

shape ∅ {(A6f , A6f ), (A6f , A6t),
(A6t, A6t)}

Init {A1, A2} {A6f}
Exit {A1, A2} {A6t}

gMax 1 4

slMax
slMax (A1) = 1 slMax (A6f ) = 2
slMax (A2) = 1 slMax (A6t) = 2

slMin
slMin(A1) = 1 slMin(A6f ) = 2
slMin(A2) = 1 slMin(A6t) = 2

Table 1. Definition of ASTs
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m) be two segments.

– the function form(s1) represents the serial composition of formulas
∆((li, li+1)) for 0 ≤ i < k, i.e., it is the relation on the initial and final
program states of s1 implied by the instructions of s1; and

– the segment s1 ⊕ s2 is the concatenation of s1 and s2 where the
last state of s1 is substituted for the first state of s2, i.e., s1 ⊕ s2 =
(l10, σ

1
0) . . . (l1n, σ

1
n)(l21, σ

2
1) . . . (l2m, σ

2
m).

Let A = (children, shape, segPred , Init ,Exit , slMin, slMax , gMax ) be a node
in T . Segment s is in JAK iff s = s0⊕ . . .⊕ sn and there exist c0, . . . cn such that:
(a) for each i, si ∈ JciK where ci ∈ children—for leaf nodes, ci is a control-flow

edge (say (li, lj)) and we let ((li, σi), (lj , σj)) ∈ JciK if (σi, σj) |= ∆((li, lj));
(b) for all 0 ≤ i < n, we have that (ci, ci+1) ∈ shape;
(c) initial and final variable valuations of s satisfy segPred : form(s)⇒segPred ;
(d) c0 ∈ Init and cn ∈ Exit , and for each maximal contiguous sequence

cpcp+1 . . . cq of the same child, slMin(cp) ≤ q − p+ 1 ≤ slMax (cp), and
(e) n ≤ gMax .

Example 4. Consider the CFG from Figure 4, and its AST in Figure 5. A segment
π passing through locations l1l2l3l4l5l7l3l9 is in the semantics of the node A2,
as it can be split into three segments: (a) the prefix π1 through l1l2l3; (b) the
middle π2 through l3l4l5l7l3; and (c) the suffix π3 through l3l9. As π1 is in JA3K,
π2 is in JA4K, and π3 is in JA5K, we have that π ∈ JA2K.

Reducibility of CFGs and the Initial Abstraction. We assume that CFGs
are reducible, i.e., that every loop has a unique entry. This assumption holds for



programs in high-level programming languages. The function InitAbs(G) takes a
CFG an input, and constructs an AST T such that JGK ⊆ JT K. The construction
is simple (see, for example, Figure 5). The main point to note is that each
maximal strongly connected component (i.e., a loop) corresponds to a node
with just one child. The child represents segments corresponding to individual
iterations. The segPred predicate for each node is initially set to true.

Proposition 1. Let G be a CFG. If T = InitAbs(G), we have that JGK ⊆ JT K.

5 Evaluating WCET on ASTs

In the previous section, we discussed segment abstractions (ASTs). Here, we
present a method to compute WCET estimates from ASTs. Given an AST T , let
WCET (T ) = supπ∈JT K cost(π). If T is a sound abstraction of G, JT K ⊇ JGK and
hence, WCET (T ) ≥WCET (G). Therefore, if an AST T is a sound abstraction
of a CFG G, WCET (T ) is an over-approximation of WCET (G).

5.1 Maximum-Weight Length-Constrained Paths

We take a recursive approach to computing WCET (T ) for an AST T . The
WCET of each node is computed using the WCET values of its children by re-
ducing the problem to the the length-constrained maximum-weight path problem.

Let 〈V,E〉 be a graph with vertices V and edges E. Given initial and final
vertices vin and vout, cost function cost : V → N, global length bound gmax ∈
(N ∪ {∞}), and local bounds lmin, lmax : V → N ∪ {∞}, the length-constrained
maximum-weight path problem asks for the maximum weight path: (a) starting
at vin and ending at vout; (b) of length at most gmax; and (c) with every maximal
contiguous repetition of a vertex v in the path having length at least lmin(v) and
at most lmax(v). Without loss of generality, we assume that vin 6= vout and that
vin and vout have only outgoing and incoming edges, respectively.
Reduction. Given a node A = (children, shape, segPred , Init ,Exit , slMin,
slMax , gMax ), we define a graph with vertices being children ∪{vin, vout}, edges
being shape ∪ {(vin, v) | v ∈ Init} ∪ {(v, vout) | v ∈ Exit}, starting and ending
vertices being vin and vout, and the global bound being gMax , respectively. For
a child c, we have cost(c) = WCET (c), lmin(c) = slMin(c), and lmax(c) =
slMax (c). We call this graph with the corresponding functions the semantic
structure graph for A and denote it by Gr(A).

Theorem 1. For each node A in an AST, WCET (A) is equal to the weight of
the length-constrained maximum-weight path in Gr(A).

Hardness. The length-constrained maximum-weight path problem is at least as
hard as Unambiguous-SAT. Hence, a Ptime algorithm implies that Np = Rp,
i.e., non-deterministic and randomized polynomial time are the same. However,
considering gmax as a parameter, the problem is fixed parameter tractable Fpt.



5.2 Encoding Optimal Paths

We first discuss the standard technique used in WCET tools to find optimal
paths in graphs—the implicit path enumeration technique (IPET) [15, 16]. We
emphasize that the graph in standard techniques for WCET estimation is the
control-flow graph (i.e., a syntactic object), while in our technique it is the se-
mantic structure graph. However, similar principles apply for the graph problem
in both cases and we briefly recall the IPET approach as a starting point.
Implicit path-enumeration technique. IPET encodes paths in a graph as
an integer linear program (ILP). The encoding uses variables Xv and X(u,v) to
represent the number of times vertex v and edge (u, v) occur in the path.
Objective function. The weight of a path is given by

∑
v∈V cost(v) ·Xv. Hence,

the objective of the ILP is to maximize
∑
v∈V cost(v) ·Xv.

Kirchhoff’s law. To ensure that Xv and X(u,v) values correspond to a real path,
we have: for each v ∈ V , we haveXv =

∑
(u,v)Xu,v+startv =

∑
(v,w)Xv,w+endv

where startv = 1 (resp. endv = 1) for v = vin (resp. v = vout); otherwise,
startv = 0 (resp. endv = 0). Intuitively, for each vertex, the number of incoming
edges is equal to the number of outgoing edges, except for vin and vout.
Connectivity. However, Kirchhoff’s laws are not sufficient to ensure that the
values for Xv and X(u,v) form a feasible path. This is because the disconnected
components problem, i.e., the values may correspond to a feasible path along
with additional cycles that are disconnected from the path.

Example 5. Consider a graph with vertices {vin, vout, v1, v2} and edges
{(vin, vout), (vin, v1), (v1, v2), (v2, v1)}. The values Xvin = Xvout

= 1, Xv1 =
Xv2 = 10, X(vin,vout) = 1, X(vin,v1) = 0, and X(v1,v2) = X(v2,v1) = 10 satisfy the
Kirchhoff’s law. However, these values do not correspond to a path as the cycle
(v1 → v2 → v1) is disconnected from the rest of the path.

Standard IPET formulations overcome this problem through loop bounds—
constraints are added to ensure that a loop is executed at most a constant
multiple of times an edge to enter the loop is taken. In Example 5, we would add
X(v1,v2) ≤ c ·X(vin,v1) where c is the loop bound for the cycle v1 → v2 → v1. For
structured (reducible) graphs, this approach works very well as each cycle has
a unique entry. However, for irreducible graphs, a cycle may not have a unique
entry—instead, we need to write such constraints for each subset of vertices
which may form a cycle, and each entry to such a cycle, adding an exponential
number of constraints just to ensure connectivity (see, for example, [16]).
Semantic structure of loops. While the IPET approach works well in the
standard WCET analysis framework even for irreducible graphs, the simple loop
bound approach to handling connectivity does not work directly as the vertices
in the semantic structure graph may represent not only instructions, but also
more complex segments (such as different iterations of a loop).
– While CFGs and graphs arising from real programs may be irreducible in

the IPET approach, the “degree of irreducibility” is usually low, i.e., only
a few additional constraints are necessary to ensure connectivity. On the
other hand, since the graphs arising from AST correspond to the semantic



structure of loops, they may be highly irreducible (for example, a clique)
and an exponential number of additional constraints may be necessary.

– A further reason why an IPET-like approach is not possible for semantic
graphs is that there may not exist bounds on cycles in the semantic graphs.

Example 6. Consider the logging example from Section 2 with the modification
of the if condition from i mod 4 == 0 to i mod 4 == 0 ∧ started logging.
The boolean variable started logging is set to false initially, and is non-
deterministically set to true at some point during the execution of the loop.
Now, consider the three segments sets corresponding to the iterations where the
following hold: (a) ¬started logging (say I1), (b) started logging ∧ i%4 == 0
(say I2), and (c) started logging ∧ i%4 6= 0 (say I3). In the semantic structure
graph, there is a cycle containing vertices corresponding to I2 and I3; and an
entry to this cycle from the vertex corresponding to I1. However, there is no
bound on the number of times this cycle can be executed in terms of the number
of times the entry is taken.

The LC-IPET encoding. We now present our ILP encoding for the length-
constrained maximum-weight path problem. This encoding works for (a) firstly,
irreducible graphs with only linearly many constraints; and (b) secondly, no
bounds on the execution of cycles are required. Hence, this encoding is of interest
for WCET analysis independent of the rest of our framework. Given a graph G,
we denote the encoding into ILP by LC-IPET(G).

Objective and Kirchhoff’s laws. The objective function and Kirchhoff’s law con-
straints are as in the classical IPET approach.

Global and local bounds. The global bound and the local bounds can be ensured
using

∑
v∈V Xv ≤ gmax and lmin(v) ·

∑
u|(u,v)∧v 6=uX(u,v) ≤ Xv ≤ lmax(v) ·∑

u|(u,v)∧v 6=uX(u,v) for each vertex v in the graph.

Connectivity flow. We ensure connectivity of the path generated by ILP using
an auxiliary flow that goes through only the edges in the path. Intuitively, we
ensure that some flow is lost at each visited vertex (i.e., it is a partial sink)
except the start vertex which may generate flow (i.e., only the start vertex can
be a source). Hence, flow in a component of the path is feasible if and only if
it is connected to the start vertex. We use the variables F(u,v) to represent the
auxiliary flow through an edge. We have the following:

– Flow is non-negative only in visited edges: for all edges, F(u,v) ≥ 0 and for
all edges, |V |X(u,v) ≥ F(u,v). Hence, if X(u,v) is zero, we have F(u,v) = 0.

– Every visited vertex other than the start vertex loses some flow: for all
vertices v 6= vin,

∑
(u,v) F(u,v) −

∑
(v,w) F(v,w) ≥ Xv. If Xv is positive (i.e., v

is visited), (
∑

(u,v) F(u,v) −
∑

(v,w) F(v,w)) is positive, i.e., the incoming flow
to v is greater than the outgoing flow from v.

Theorem 2. Given graph G, initial and final vertices, and local and global
length bounds, the optimal value of LC-IPET(G) is the cost of the length-
constrained maximum weight path in G.



Proof. Clearly, the objective function of LC-IPET(G) corresponds exactly to the
weight of a set of nodes in the graph. Hence, it is sufficient to show that every
feasible solution of LC-IPET(G) corresponds to a feasible path in G, and vice
versa. That every feasible solution of LC-IPET(G) encodes at least one path
that follows the local and global bounds is easy to check.

Given a solution to LC-IPET(G), we show that the Xv and X(u,v) values form
a path. By Kirchhoff’s laws, the value of Xv and X(u,v) consist of a path along
with some possibly disconnected components of visited vertices. We show that
there cannot be any disconnected components using the auxiliary flow. Suppose
V and E are the subset of vertices and subset of edges which form a discon-
nected component. Now, we have that for each vertex v ∈ V ,

∑
(u,v) F(u,v) −∑

(v,w) F(v,w) > 0. Hence, we have
∑
v∈V (

∑
(u,v) F(u,v) −

∑
(v,w) F(v,w)) > 0

or equivalently,
∑
v∈V

∑
(u,v) F(u,v) −

∑
v∈V

∑
(v,w) F(v,w) > 0 However, note

that for edges (u, v) or (v, w) that enter or leave the component we have
F(u,v) = 0 as the flow is positive if and only if (u, v) is visited. Therefore, we
have that both

∑
v∈V

∑
(u,v) F(u,v) and

∑
v∈V

∑
(v,w) F(v,w) are equal to the

sum of flow through all edges in E. This leads to a contradiction as we need∑
v∈V

∑
(u,v) F(u,v) −

∑
v∈V

∑
(v,w) F(v,w) > 0.

Now, given a length-constrained path π in G, we provide a satisfying assign-
ment to the variables in LC-IPET(G). Clearly, the Xv and X(u,v) variables are
assigned to the number of times v and (u, v) are visited in π, respectively. We
need to find satisfying assignments for F(u,v). For this, we construct separate
simple paths πv from vin to v for each visited vertex v through edges in π. We
let F(x,y) =

∑
vXv · πv[(x, y)] where πv[(x, y)] is equal to 1 if (x, y) occurs is πv

and 0 otherwise. It is easy to see that these F(u,v) values satisfy the auxiliary
flow constraints. Intuitively, the auxiliary flow is composed of separate flows of
magnitude Xv going from vin to v; call each such flow the flow to v. Now, for
every v′ 6= v, the flow to v′ enters and leaves v in the same magnitude. However,
the flow to v stops at v, ensuring that the incoming flow to each visited vertex
is greater than the outgoing flow by 1.

Given an optimal solution to LC-IPET(Gr(A)) the worst-case path can be
computed using an algorithm for finding Eulerian paths in multi-graphs. Summa-
rizing the approach, given an AST T , we compute the WCET of each node (using
its children’s WCET values) by reducing to the length-constrained maximum-
weight problem. This problem is then solved through the LC-IPET encoding,
and the worst-case path can be computed from the solution to the ILP.

Optimizations and practicality. The semantic structure graphs that arise in
practice often allow us to avoid the flow variables in the LC-IPET encoding.

The first case where we can avoid the flow variables is the case where we have
no global bound. In our methodology, global bounds arise due to loop bounds in
the input program and hence, in each AST node that does not deal with loops,
there is no global bound (gmax =∞). In this case, either no cycle is reachable in
the graph Gr(A), or the worst-case path has weight ∞. Hence, in this case, one
can avoid solving the ILP and instead use simpler polynomial time algorithms.



If we have a global bound, we are analyzing different kinds of iterations of a
loop, i.e., branches through a loop. While the semantic structure of the loops may
be arbitrarily complicated, most of the programs generate semantic structures
that fall into several common easily analyzable patterns:

– Progressive phases: These are cases where the execution of the loop is di-
vided into phases, i.e., in each phase only one particular branch through the
loop is taken, and this branch is never taken after the completion of the
phase. For example, the loop from Example 2 instantiated with n = 10 is
divided into two phases, one for i < 5 and one for i ≥ 5. The evaluation
is easy in such cases as the semantic structure graph is a directed acyclic
graph and there cannot be any disconnected cycles. A large number of loops
in practice fall into this class (see [17] for an empirical study).

– Cyclic phases: These are cases where the execution of the loop is divided
into phases, which repeat in a cycle. For example, the loop in the program
from Example 1 is divided into two phases, one for (i % 4 == 0) and one for
(i % 4 6= 0). Again, in such cases, auxiliary flow variables are unnecessary as
there is exactly one cycle in the semantic structure graph.

6 Interpolation for AST Refinement

Once the WCET path is computed from an AST, we check if the computed
worst-case path is feasible in the CFG. If such a path is infeasible, we call
it an infeasible witness trace. Formally, a witness trace (wit) is a sequence of
CFG nodes that witnesses the current WCET estimate. It is obtained from the
techniques presented above. We now describe our interpolation-based AST ab-
straction refinement algorithm for an infeasible witness trace.

AST refinement algorithm. The main idea of Algorithm 1 is to trace the
infeasible witness trace (wit) through the abstract segment tree (AST), and
refine the AST nodes touched by wit . For each node N , we discover the segment
predicates that are important at the interface of the subtree rooted at N and
the rest of the AST. When processing an AST node, we split each child (visited
by the wit) with some new “context” information, obtained via interpolation.
Algorithm 1 takes four inputs: (a) an AST T , (b) a node N in T , (c) an infeasible
witness trace wit that is a segment in N , and (d) a formula SumAbove that
summarizes the part of the original witness trace wit outside of the subtree
rooted at N . Initially, the algorithm is called with N being the root of the AST,
and the formula SumAbove is set to true.

Refinement procedure. We now detail the Refine procedure of Algorithm 1
and illustrate it on our running example. For a node N , the procedure Refine
obtains a sequence s = s0s1 . . . sk of children of N that the witness trace wit
passes through (line 1 of Alg. 1). Note that a child can be repeated in s. The wit
can be split into segments, where the i-th segment wit i of wit belongs to the i-th
child si. Recall that the infeasible wit of Example 2 was wit = l1l2 (l3l4l5l7)4l3l9
for n = 4. The CFG of Example 2 is Figure 4, and its AST is in Figure 5.



Algorithm 1 Procedure Refine

Input: AST T , node N in T , witness trace wit and formula SumAbove
Output: Refined AST T
1: s ← TraceWit(N ,wit)
2: for all i ∈ {0, . . . , |s|} do
3: context ← SumAbove ∧ SumLR(s,wit ,N) ∧ segPred(N)
4: child ← form(projection(wit ,si))
5: I ← Interpolate(child,context) . context ∧ child unsat
6: rt ← addToTree(si,I); rf ← addToTree(si,¬I)
7: Refine(T , rt, I∧ segPred(si), projection(wit ,si)) . Recursively refine.
8: StrengthenDown(rf )
9: RemoveFromTree(T ,si)

10: StrengthenUp(N)

Consider the node A4 in Figure 5 as the node N . The node A4 represents a loop
and the node A6 a single iteration. The sequence s is then A4

6.

Next, each child si is refined using wit i (loop at line 2). The variable context
stores a formula that summarizes what we know about wit outside of si (line 3).
It is obtained as a conjunction of the formula SumAbove, the segment predi-
cate of N , and the information computed by the function SumLR(). The func-
tion SumLR() computes information about the trace wit as it passes through
the children of N other than si. When refining si, SumLR() returns a formula
∧k<|s|∧(k 6=i)Jk, where Jk is form(witk) and witk is the part of the wit going
through the node sk. (form was defined in Section 4.) The variable child stores
a formula that summarizes what we know about the wit inside of si (line 4).
It is computed as form(wit i), where wit i was obtained by the projection of wit
to the node si. For our running example, consider the third iteration of A6. In
this case, the value of context is i0 = 0 ∧

∧1
k=0 ik+1 = ik + 1 (we show only the

relevant part of the formula) and the value of child is i2 < 4 ∧ i2 < 2 (4 and 2
are n and n/2, respectively).

Note that child ∧ context is unsatisfiable, as (a) the original wit is infeasible,
and (b) context and child summarize the wit . We hence can use interpolation
to infer a predicate explaining the infeasibility at the boundary of the subtree
of child si and the rest of the AST. We compute an interpolant I from the
proof of unsatisfiability context ∧ child (line 5) such that context =⇒ I and
child ∧ I =⇒ ⊥, where I is over only those variables that are common to both
context and child . In our running example, we obtain the interpolant i2 ≥ 2.

Using the computed interpolant I, we next replace the node si by two nodes
rt and rf (line 6). The node rt is like si (in terms of its children in the AST), but
has a transition predicate equal to segPred(si) ∧ I. Similarly, for rf we take its
transition predicate segPred(rf ) as segPred(si) ∧ ¬I. In this way, each of these
nodes has more information about its context than si had. We can further refine
these two nodes and use them in the AST T instead of si.

Observe that for rt we added the predicate I to its transition predicate. As
child ∧ I is unsatisfiable, the trace wit is not represented in rt. The node rt
can thus be refined by a recursive call to the Refine procedure (line 7). As



Algorithm 2 Precision Refinement for WCET

1: Input: Program P; Output: WCET of P
2: Build the CFG G of P;
3: Construct the AST T corresponding to G; // Abstraction
4: for each node A in T (post-order traversal) do // Evaluation
5: construct the LC-IPET(Gr(A));
6: WCET (A)← optimum of LC-IPET(Gr(A));

7: wi ← witness trace corresponding to WCET (T )
8: if wi is infeasible then
9: Refine(T ,wi,root(T ),true) (Algorithm 1) // Refinement

10: go to line 4;

11: return WCET (T ).

child ∧ ¬I is satisfiable, for rf there is nothing more to learn from the wit . We
simply strengthen the node, that is, propagate the new predicate, ¬I, to the
children of rf . This is done by calling the StrengthenDown() function (line 8),
which propagates the new information ¬I to the children t of the node rf . To
this end, it checks whether it finds a segment in the node t which is excluded
from the node by ¬I, and then calls the Refine procedure to perform refinement
with the discovered segment used as a witness trace. In our running example rf
corresponds to A6f and rt is A6t. Finally, the function StrengthenUp() uses the
information discovered during the refinement process for the children of a node
N , and strengthens the segPred predicate of N (line 10).

7 WCET Computation Algorithm

Algorithm 2 describes our approach to computing precise WCET estimates.
Given a program P, we first construct its CFG (line 2), and build the corre-
sponding initial AST T (line 3). For the AST T , we compute the WCET (T )
(lines 4-6), using the LC-IPET approach detailed in Section 5. The WCET is
precise if a feasible program path exhibits the WCET. We therefore check if the
witness trace exhibiting the WCET is indeed feasible (line 8). If not, we refine
our current AST using Algorithm 1 (line 9).

8 Parametric WCET Computation

We now extend our techniques to handle parametric programs and return a
parametric WCET estimate, i.e., one that may depend on the parameter values.
Parameters. Program parameters P ⊆ V are program variables whose values
do not change in any execution. Given a valuation val(P ) : P → N of P , the
CFG Gval(P ) is obtained by replacing variables in P by their values given by
val(P ).
Solution language. Let A(P ) be the set of arithmetic expressions over P . The
language of disjunctive expressions E(P ) consists of sets of pairs W = {D0 7→
N0, . . . , Dk 7→ Nk}i where Di and Ni are boolean and arithmetic expressions



over P , respectively; and we have
∨
iDi = true and ∀i 6= j.Di ∧ Dj =⇒ ⊥.

Intuitively, the value of W is Ni when Di holds. Given a valuation val(P ), we
write W [val(P )] for the explicit integer value of Ni[P ] where Di(val(P )) holds.

It is easy to define standard arithmetic, comparison, and max operators over
E(V ). For example, if W 1 = {Di 7→ Ni}i and W 2 = {Dj 7→ Nj}j , then W 1 +
W 2 =

⋃
i,j{(Di ∧Dj 7→ Ni +Nj)}, and max(W 1,W 2) = {Di ∧Dj ∧Ni > Nj 7→

Ni} ∪ {Di ∧Dj ∧Ni ≤ Nj 7→ Nj}.
Problem statement. A parametric WCET estimate WCET p(G,P ) of a CFG
G is an expression in E(P ), such that for all valuations val(P ) of parameters,
WCET p(G,P )[val(P )] ≥ WCET (Gval(P )). The parametric WCET estimate,
WCET p(G,P ), is an over-approximation WCET (Gval(P )) for each valuation
val(P ). The task of our parametric WCET estimation problem is: Given a CFG
G and a set of parameters P , compute WCET p(G,P ), the parametric WCET.
The Parametric Framework. We describe the changes necessary to adapt
our WCET estimation framework to the parametric case.
Abstraction. A parametric AS T is similar to an AST, except that that for each
node, gMax has type A(P ), and slMax and slMin have type children → A(P ).
Evaluation. The evaluation of WCET (T ) for a parametric AST is more involved
than for a standard AST. This procedure is detailed in Section 8.1.
Refinement. The refinement procedure from Section 6 can be used directly in the
parametric framework. However, an important aspect is that the procedure works
best if the interpolants generated are independent of the parameter valuations. In
our implementation, the theorem prover was tuned to produce such interpolants.
The parametric WCET estimation algorithm. The parametric WCET estimation
algorithm follows Algorithm 2 with the major difference being the feasibility
checking of worst-case paths. As parametric WCET estimates are disjunctive, we
generate worst-case paths for each disjunct by choosing appropriate parameter
valuations and use them for feasibility analysis and refinement as in Algorithm 2.

8.1 Parametric Maximum-Weight Length-Constrained Paths

For evaluating the WCET of parametric ASTs, we proceed recursively as in
the non-parametric case. At each level, we reduce the problem to the paramet-
ric version of the length-constrained maximum-weight paths in a graph. Let
〈V,E〉, vin, and vout be as in the non-parametric case. Given a cost function
cost : V → E(P ), a global bound expression gmax ∈ A(P ), and local bound
functions lmin, lmax : V → A(P ), the parametric length-constrained maximum-
weight path problem asks for an expression W ∈ E(P ) such that for every valu-
ation of parameters val(P ), we have that W [val(P )] is equal to the cost of the
length-constrained maximum-weight path in the graph where cost , gmax, lmin,
and lmax have been instantiated with val(P ).
Restrictions. The problem is hard even in the case where lmin, lmax and gmax
range over polynomial expressions. Hence, we place restrictions on the expres-
sions and assume that gmax, lmin, and lmax are all linear expressions over a single
parameter. Further, we present our techniques for the case where cost(v) is a
numeric value instead of a disjunctive expression. The algorithm where cost(·)



yields disjunctive expressions is similar with all max and + operations over in-
tegers being replaced by max and + operations over E(P ). Note that restricting
lmin, lmax, and gmax to expressions in one parameter does not restrict the CFG
and the AST to one parameter—multiple parameters may appear in different
nodes of the AST. Before we present our algorithm for the parametric length-
constrained maximum-weight path problem, we need the following lemmata.

Lemma 1 (One non-extremal node). For every parametric length-
constrained maximum-weight problem and val(P ), there is an optimal path
π = vk00 v

k1
1 . . . vknn such that lmin(vi) < ki < lmax(vi) for at most one i.

The lemma holds as for any path having two non-extremal nodes (say vi1 and
vi2 with cost(vi1) ≥ cost(vi2)), we can build another path of equal or greater
weight where vi1 is taken more number of times and vi2 fewer times.

While the previous lemma bounds the number of repetitions of self-loops
we need to consider, the next one does the same for other cycles. The cycle
decomposition of a path π is given by 〈σ, (L0, n0), (L1, n1) . . . , (Lk, nk)〉 where:
(a) σ is a simple path from vin to vout; (b) each Li is a simple cycle; (c) together,
the multi-set of visited nodes in σ and the cycles Li’s each taken ni times is the
same as the visited nodes in π. Note that Li’s are not self-loops and that the
classification “simple” does not take into account self-loops. Every path has a
cycle decomposition and further, for every cycle decomposition where the simple
path and simple cycles are connected, there is a path for which it is a cycle
decomposition. In any worst-case path, the heaviest cycle is taken most often.

Lemma 2 (One heavy loop). For every parametric length-constrained
maximum-weight problem and val(P ), there exists an optimal path π with cy-
cle decomposition 〈σ, (L0, n0), (L1, n1), . . . , (Lk, nk)〉 such that for all i > 0:
(a) cost(L0)/|L0| ≥ cost(Li)/|Li|; and (b) ni|Li| < lcm(|L0|, |Li|).

The algorithm. We describe the algorithm for the restricted version of the
parametric length-constrained maximum weight problem. Intuitively, the algo-
rithm considers cycle decompositions 〈σ, (L0, n0), (L1, n1), . . . (Lk, nk)〉 where n0
is a linear expression in A(P ), and each ni < lcm(|L0|, |Li|)/|Li| is an integer
for i > 0, and a non-extremal node v and builds the disjunctive expression
{cond 7→ wt,¬cond 7→ 0} where cond and wt are explained below. The solution
is the maximum of such disjunctive expressions. Note that σ and Li’s can be
restricted to sequences where vertices only occur either lmax or lmin times; and
further, it can be assumed that |L0| is not a parametric expression, but an inte-
ger. The expression wt is the expression over the parameters P obtained as the
sum of weights in the guessed path, i.e., cost(σ)+

∑
i ni ·cost(Li). The condition

cond expresses that 〈σ, (L0, n0), (L1, n1), . . . (Lk, nk)〉 is a valid cycle decompo-
sition that respects Lemma 2, and that the total length is less than gmax. The
correctness of the algorithm depends on the above lemmata and the fact that
there are only a finite number of such parametric cycle decompositions.

Theorem 3. The restricted parametric length-constrained maximum-weight
problem can be solved in Expspace in the size of the inputs on a computing
model where operations on disjunctive expressions have constant cost.



Practical cases. As in the non-parametric case, we provide efficient algorithms
for the most commonly occurring practical cases.
– No global bounds. If the graph has gmax = ∞, we can use the standard

dynamic programming longest-path algorithm for DAGs with the integer
max and + operations being replaced by max and + operations over E(P ).

– Progressive phases. In the progressive phases case, the same maximum-
weight longest-path algorithm can be used with the modification of accumu-
lating the length of the path along with the weight, and then constraining the
final result with the condition that the length is at most the global bound.

9 Experimental Evaluation

We implemented our approach in a tool called IBART. It takes C programs (with
no procedure calls) as input, and returns a parametric WCET estimate.

Low-level analysis. IBART analyzesn:=0;

while(n < iters)

if(health==round0)

HighVoltageCurrent(health)

UpdatePeriod(temp, 5)

if(hit trigger flag==0)

ResetPeakDetector()

if(health==round1)

...

if(health==round4)

LowVoltageCurrent()

. . .
if(health!=0)

health--

else

health=9

n++

Fig. 7. from ex2 from Debie suite.

WCET for Infineon C167 and LPC2138
ARM7 processors, using CalcWcet167 [12]
and owcet [2] respectively, as low-level
analyzers to compute basic block execution
costs. These costs are then mapped from the
binary to the source level and used in our
analysis. Thus, IBART is platform-aware; it
can be easily extended to other architectures
by supplying the architecture-dependent
basic block execution times on source level.
However, we note that due to this approach,
we cannot refine the WCET estimates in
the case the infeasibility is due to caching
or pipeline effects between basic blocks,
and are beyond what is analyzable with the
low-level tools. This is an orthogonal issue,
as we focus on better estimates of WCET

by having a better approximation of feasible paths. However, in the future, we
plan to alleviate this issue by using our framework to automatically discovering
predicates about caches and pipelines, and by performing the loop unrolling
on-demand to aid the low-level analyzers.
Dependent loops. We implement a slight extension of the parametric algo-
rithm presented in Section 8 to handle dependent loops. Consider two loops
for(i=0;i<n;i++) for(j=0;j<i;j++){...}. The worst-case cost of an outer
loop iteration is n · k (where k is the cost of an iteration of the inner loop).
Using this worst-case cost, we get that the worst-case cost of the outer loop is
n2 · k. However, the inner-loop costs only k · i in the ith iteration. In this case,
we incorporate the precise cost of the child node while computing the cost of the
parent node, i.e., the more precise estimate for the outer loop is

∑n−1
i=0 i · k. In-

tuitively, when the child node costs a polynomial (say p(i)) in the ith repetition,



we can compute the more precise estimate as
∑n
i=1 p(i). Note that this extension

is equivalent to considering the loop counter of the outer loop a parameter while
evaluating the inner loop.

Benchmarks. We evaluated IBART on 10 examples (examples 2 to 11 in Ta-
ble 2) taken from WCET benchmark suites and open-source linear algebra pack-
ages. Of the 10 examples, 3 are small functions with less than 30 lines of code;
the remaining 7 have between 34 and 109 lines of code. While small, the exam-
ples were chosen to be challenging for WCET analysis, due to two features: (a)
branching statements within loops, leading to iterations with different costs, and
(b) nested loops, whose inner loops linearly depend on the outer loops.

WCET benchmark suites. We used the Debie and the Mälardalen benchmark
suite from the WCET community [18], which are commonly used for evaluating
WCET tools. We analyzed one larger example (109 lines) from the Debie exam-
ples (ex2 in Table 2) and 4 programs from the Mälardalen suite. The parametric
timing behavior of these examples comes from the presence of symbolic loop
bounds. An excerpt from the Debie example is shown in Figure 7.

Note that in Figure 7, different paths in the loop have different execution
times. Moreover, every conditional branch is revisited at every tenth iteration of
the loop. Computing the WCET of the program by taking the most expensive
conditional branch at every loop iteration would thus yield a pessimistic over-
estimate of the actual WCET. Our approach derives a tight parametric WCET
by identifying the set of feasible program paths at each loop iteration.

Linear algebra packages. We used 5 examples from the open-source Java
linear algebra libraries JAMA and Jampack. These packages provide user-level
classes for matrix operations including inverse calculation (ex7), SVD (ex8),
triangularization (ex9), and eigenvalue decomposition (ex10, ex11) of matrices.
We manually translated them to C. These benchmarks contain nested loops,
often with conditionals, and with inner loops linearly depending on outer loops.

Results. We evaluated IBART for parametric WCET computation, and com-
pared IBART with state-of-the-art WCET analyzers. All experiments were run
on a 2.2 GHz Intel Core i7 CPU with 8 GB RAM and took less than 20 seconds.

IBART results. Our results are summarized in Table 2. Column 3 shows the
parametric WCET (in the solution language of Section 8) calculated by IBART
with basic block execution times provided by CalcWCET167. In all cases, the
number of refinements needed was between 2 and 6.

Comparison with WCET tools. We compared the precision of IBART to r-
TuBound [13] supporting the Infineon C167 processor and OTAWA, supporting
the LPC2138 processor. Note that r-TuBound and OTAWA can only report a
single numeric value as a WCET estimate. Therefore, to allow a fair comparison
of the WCET results we use the basic block execution times of the respective
low-level analyzer in IBART, and instantiate the symbolic parameters in the flow
facts with concrete values when analyzing the WCET with r-TuBound, respec-
tively OTAWA. To this end, parameters were supplied to OTAWA by means of
(high-level) input annotations. r-TuBound does not support input annotations,
therefore parameters were encoded directly in the ILP, if possible.



Ex Source/File Parametric WCET (C167)
ex1 Section 2, Figure 3 n ≤ 5 7→ 24940,

n ≥ 6 7→ 5040 + 2800bn/2c+ 1900n
ex2 Debie/ n ≤ 0 7→ 2620,

health n > 0 7→ 2620 + bn/10c59100 + (n%10) ∗ 6800
ex3 Mälardalen/ dlt 6= 0 7→ 4180 + 5060n,

adpcm dlt = 0 7→ 4260 + 2500n
ex4 Mälardalen/ jrev > 0 7→ 5560 + 3860len,

crc jrev ≤ 0 7→ 4320 + 3380len
ex5 Mälardalen/ len ≥ −1 ∧ init = 0 7→ 7800 + 3840len,

crc init 6= 0 7→ 3060
ex6 Mälardalen/ n ≥ 0 7→ 1740 + 2460n,

lcdnum n < 0 7→ 1740
ex7 Jampack/ 2 > n ∧ n ≥ 0 7→ 13540 + 6420n,

Inv 0 > n 7→ 13380,
n > 2 7→ 13380− 3100n+ 9480n2

ex8 Jampack/ nc ≤ nr ∧ r ≥ c 7→ 3840,
Zsvd nc > nr ∧ c > r > b 7→ 18260 + 18820(r − b),

nc ≤ nr ∧ c < r 7→ 3920
...

ex9 JAMA/ 1 = n 7→ 44880,
Cholesky- 1 > n 7→ 14260,
Decomposition n > 1 7→ 14260 + 15447n+ 13419n2 + 1754n3

ex10 JAMA/ 1 > n 7→ 11780,
Eigenvalue-Decomposition n ≥ 1 7→ −11784 + 17602n− 5146n2 + 11108n3

ex11 Jampack / n < 0 7→ 25460,
Eigenvalue-Decomposition n ≥ 0 7→ 25460 + 28400n+ 9500n2 + 11220n3

Table 2. Parametric WCET computation for the C167 architecture

Our results, summarized in Table 3, show that IBART provides significantly
better WCET estimates than the respective framework. For larger values of
parameters, the difference increases rapidly. This is because r-Tubound and
OTAWA over-approximate each iteration much more than IBART; so if the
number of iterations increases, the difference grows. Column 2 lists the values
of parameters. Columns 3 and 4 show the WCET computed by IBART and
r-TuBound for the C167 architecture, while columns 5 and 6 show the WCET
computed by IBART and OTAWA for the LPC2138 architecture. Note that
Columns 3 and 4 are in nanoseconds, while Columns 5 and 6 are in cycles.

IBART reports a parametric formula instead of a single number. Instantiat-
ing with concrete parameter values (see Table 3), often gives a tighter WCET
estimate. In cases when the WCET estimate of IBART overlaps with the esti-
mate of r-TuBound or OTAWA, IBART usually allows to infer tighter estimates
for specific parameter configurations. For example, for ex4, in both architectures
the estimates are identical when jrev < 0. IBART automatically discovers the
predicate jrev ≥ 0 to specialize cases where a tighter estimate is possible. On
the other hand, this information cannot be used in r-TuBound, while OTAWA
fails to exploit the supplied input-annotations leading to over-estimation.

10 Related Work

We briefly summarize the large body of related work here.
Segment abstraction. Segment abstraction was introduced in [8] and was shown
to subsume a large class of program analysis techniques. In [6], it was extended



Ex Parameter assignments IBART r-TuBound IBART OTAWA
C167 (ns) LPC2138 (cycles)

ex1 n = 5 22,300 26,060 393 393
n = 100 388,040 48,0160 6,888 8,338

ex2 n = 10 62,020 124,920 2,115 2,258
n = 50 298,420 612,920 10,435 11,098
n = 200 1184,920 2442,920 41,635 44,248

ex3 n = 6, dlt = 0 19,260 345,040 246 295
n = 0, dlt 6= 0 4,180 4,260 56 56
n = 0, dlt = 0 4,260 4,260 55 56

ex4 len = 5, jrev < 0 24,860 24,860 520 520
len = 5, jrev ≥ 0 21,220 24,860 447 520
len = 0, jrev ≥ 0 4,320 5,560 112 140

ex5 init = 0, len = 255 987,000 987,000 18,534 18,534
init = 1, len = 255 2,920 987,000 102 18,534

ex6 n = 10 21,660 26,340 349 404
n = 5 13,960 13,960 214 214

ex7 n = 5 243,880 519,280 2,123 2,538
n = 1 19,760 19,960 263 346

ex8 r = 4, c = 5, 93,540 100,480 837 880
nr < nc, b = 0

ex9 n = 5 646,220 1545,760 2,902 6,993
n = 1 44,880 44,880 317 357

ex10 n = 5 1335,920 2606,180 6,059 23,089
n = 0 11,620 11,620 209 445

ex11 n = 5 1799,620 1799,620 6,371 22,946
n = 1 74,580 74,580 582 582

Table 3. WCET comparisons for the C167 and the LPC2138.

to quantitative properties. This paper brings a key contribution: a systematic
way for computing WCET using computation of local ILPs at each node of AST,
instead of one large global ILP. Furthermore, (a) we adapt segment abstraction
for the timing analysis by using global and local bound functions; (b) we re-
fine using a novel interpolation based technique (c) we propose the LC-IPET
encoding, and (d) the parametric bounds are novel.

Asymptotic analysis. Computing bounds automatically was explored (e.g., [9]).
Our work differs both conceptually and methodologically from these as we com-
pute the worst-case execution time rather than asymptotic complexity, and we
infer predicates using interpolation rather than using template-based methods.

Static WCET analysis. Most state-of-the-art static WCET tools, see e.g. [13,
2], compute a constant WCET, requiring numeric upper bounds for all loops.
Our parametric WCET is computed only once and replacing parameters with
their values yields the precise WCET for each set of concrete values, without
rerunning the WCET analysis as in [13, 2]. These and other WCET tools use
ILP as the basic data structure. Our basic data structure is ASTs, which leads
to more efficient, and more precise, algorithms. All these approaches to WCET
estimation (including ours) are dependent on low-level analysis developed for
modelling timing related features of architectures. For a survey of techniques in
this area, see [18].

Parametric WCET estimates. Parametric WCET calculation is also described
in [5, 1, 10], where polyhedra-based abstract interpretation is used to derive inte-
ger constraints on program executions. These constraints are solved as paramet-
ric integer linear programming problem, and a parametric WCET is obtained.



In [10], various heuristics are applied in order to approximate program paths
by small linear expressions over execution frequencies of program blocks. In [4],
the authors describe an efficient, but approximate method of solving paramet-
ric constraints—in contrast, our approach solves parametric constraints exactly.
Compared to [5, 10], our segment abstraction lets us to reason about the WCET
as a property of a sequence of instructions rather than a state property.
Refinement for WCET. We are aware of two recent works for refining WCET
estimates [14, 3]. WCET squeezing [14] is based on learning ILP constraints from
infeasible paths—the constraints learned are based purely on syntactic methods.
The recent work [3] also automatically discovers additional ILP constraints using
minimal unsatisfiable cores of infeasible paths. These approaches have the disad-
vantage of being susceptible to requiring many refinements to eliminate related
infeasible paths that can be eliminated with one segment predicate.
Symbolic Execution based WCET analysis. The most relevant work to our ap-
proach is [7]. In [7], the authors use symbolic execution to explore the program
as a tree, and find and merge segments that have similar timing properties (for
example, different loop iterations). More precisely, by merging segments gener-
ated by symbolic execution, one can obtain trees equivalent to ASTs (generated
in our approach by splitting nodes in the initial tree). However, the cost of gener-
ating these objects can be significantly different. The key difference is that parts
of the tree that do not occur in the worst-case path can be analyzed quickly
in our case (we do not need to split nodes when even the over-approximation
shows that it is not part of WCET path). On the other hand, in the symbolic
execution case, even the parts of the tree not occurring in the worst-case path
have to be explicitly explored and merged. However, if all paths have similar
execution times, symbolic execution has an advantage as in our case the tree
will eventually be split up completely. However, many of the advantages such as
having locality of constraints also apply in the case of [7].

11 Conclusion

Our approach to WCET analysis is based on the hypothesis that segment ab-
straction is the ideal framework for WCET estimation. This is intuitively clear,
as WCET is a property that accumulates over segments, i.e., sequences of in-
structions, and is not a state property, and therefor not being fully amenable
to standard state-based abstractions. Our approach based on abstract segment
trees provides two clear advantages. First, ASTs allow us to decompose the
problem into multiple smaller ones. In particular, it allows us to decompose the
integer linear program (ILP) for path analysis to multiple smaller integer linear
programs. Second, it allows us to compute more precise refinements compared
to existing techniques. This is because ASTs can encode more expressive con-
straints than ILPs.

A possible direction for future work is to explore is to extend our techniques to
additional cost models—including aspects such as cache-persistence [18] (where
only the first access to a location is a cache-miss). In fact, the segment abstraction



is rich enough to incorporate hard constraints such as scoped persistence [11].
Further, segment abstraction and refinement can be used to refine the low-level
timing analysis—segment abstractions can be used to drive CFG transformations
to enhance the precision of low-level timing analysis. Extending our method
with interpolation in first-order theories, e.g., the theory of arrays, could yield
transition predicates over data structures. Finally, estimating WCET could be
used in synthesis of optimal programs.
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