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Abstract. Concurrent data structures with fine-grained synchroniza-
tion are notoriously difficult to implement correctly. The difficulty of
reasoning about these implementations does not stem from the number
of variables or the program size, but rather from the large number of pos-
sible interleavings. These implementations are therefore prime candidates
for model checking. We introduce an algorithm for verifying linearizabil-
ity of singly-linked heap-based concurrent data structures. We consider
a model consisting of an unbounded heap where each vertex stores an
element from an unbounded data domain, with a restricted set of oper-
ations for testing and updating pointers and data elements. Our main
result is that linearizability is decidable for programs that invoke a fixed
number of methods, possibly in parallel. This decidable fragment covers
many of the common implementation techniques — fine-grained locking,
lazy synchronization, and lock-free synchronization. We also show how
the technique can be used to verify optimistic implementations with the
help of programmer annotations. We developed a verification tool CoLT
and evaluated it on a representative sample of Java implementations of
the concurrent set data structure. The tool verified linearizability of a
number of implementations, found a known error in a lock-free imple-
mentation and proved that the corrected version is linearizable.

1 Introduction

Concurrency libraries such as the java.util.concurrent package JSR-166 [13] or
the Intel Threading Building Blocks support the development of efficient multi-
threaded programs by providing concurrent data structures, that is, concurrent
implementations of familiar data abstractions such as queues, sets, and stacks.
Many sophisticated algorithms that use lock-free synchronization have been pro-
posed for this purpose (see [10] for an introduction). Such implementations are
not race-free in the classic sense because they allow concurrent access to shared
memory locations without using locks for mutual exclusion. This also makes them
notoriously hard to implement correctly, as witnessed by several bugs found in
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published algorithms [5, 16]. The complexity of such algorithms is not due to the
number of lines of code, but due to the multitude of interleavings that must be
examined. This suggests that such applications are prime candidates for formal
verification, and in particular, that model checking can be a potentially effective
technique for analysis.

A typical implementation of data structures such as queues and sets consists
of a linked list of vertices, with each vertex containing a data value and a next
pointer. Such a structure has two distinct sources of infinity: the data values in
individual vertices range over an unbounded domain, and the number of vertices
is unbounded. A key observation is that methods manipulating data structures
typically access data values in a restricted form using only the operations of
equality and order. This suggests that the contents of a list can be modeled as
a data word: given an unbounded domain D with equality and ordering, and a
finite enumerated setΣ of symbols, a data word is a finite sequence overD×Σ. In
our context, the set D can model keys used to search through a list, the ordering
can be used to keep the list sorted, and Σ can be used to capture features
such as marking bits or vertex-local locks used by many algorithms. However,
when concurrent methods are operating on a list without acquiring global locks,
vertices may become inaccessible from the head of the list. Indeed, many bugs
in concurrent implementations are due to the fact that “being a list” is not an
invariant, and thus, we need to explicitly model the next pointers and the shapes
they induce (see Figure 1). In this paper, we propose a formal model for a class
of such algorithms, identify restrictions needed for decidability of linearizability,
and show that many published algorithms do satisfy these restrictions.

We introduce the model of singly-linked data heaps for representing singly-
linked concurrent data structures. A singly-linked data heap consists of a set
of vertices, along with a designated start vertex, where each vertex stores an
element of D × Σ and a next field that is either null or a pointer to another
vertex. Methods operating on such structures are modeled by method automata.
A method automaton has a finite internal state and a finite number of pointer
variables ranging over vertices in the heap. The automaton can test equality of
pointers and equality as well as ordering of data values stored in vertices refer-
enced by its pointer variables. It can update fields of such vertices, and update its
pointer variables, for instance, by following the next fields. The model restricts
the updates to pointers to ensure that the list is traversed in a monotonic manner
from left to right. We show that this model is adequate to capture operations
such as search, insert, and delete, implemented using a variety of synchronization
mechanisms, such as fine grained vertex-local locking, lazy synchronization, and
primitives such as compare-and-set.

Our main result is the decidability of linearizability of method expressions. A
method expression allows to combine a fixed number of method automata using
sequential and parallel composition. Linearizability [11] is a central correctness
requirement for concurrent data structure implementations. Our algorithm takes
as input a precondition I in addition to a method expression E and checks that
all executions of E starting from a heap that satisfies I are linearizable. For



example, given two methods to insert and delete elements of a list, our decision
procedure can check whether every execution of the parallel composition of the
two methods that starts from a sorted list is linearizable. Our decidability proof
is developed in two steps.

First, we show how linearizability of a method expression E can be reduced to
a reachability condition on a method automaton A. The automaton A simulates
E and all of its possible linearizations. For instance, if E is the A1 ‖ A2 then
the possible linearizations are A1;A2 and A2;A1. The principal insight in the
construction of A is that the automata in E can proceed through the list almost
in a lock-step manner. This result assumes that the methods we analyze are
deterministic when run sequentially. Note that the assumption is satisfied by all
the implementations we analyzed.

Second, we show that reachability for a single method automaton is decidable:
given a method automaton, we want to check if there is a way to invoke the
automaton so that it can reach a specified state. We show that the problem can
be reduced to finite state reachability problem. The main idea is that one need
not to remember values in D, but only the equality and order information on
such values.

We implemented a tool CoLT (short for Concurrency using Lockstep Tool)
based on the decidability results. The tool implements only the case of the par-
allel composition of two method automata. We evaluated the tool on a number
of implementations, including one that uses hand-over-hand vertex local lock-
ing, one that uses an optimistic approach called lazy synchronization, and one
that uses lock-free synchronization via compare-and-set. All of these algorithms
are described in [10] and the Java source code was taken from the book’s web-
site. The tool verified that the fine-grained and lazy algorithms are linearizable,
and found a known bug in the remove method of the lock-free algorithm. The
tool allows the user to provide linearization points, which reduces search space
significantly. The experiments show that our techniques scale to real implemen-
tations of concurrent sets. The running times were under a minute for all cases
of fine-grained and lazy methods (even without linearization points), and around
ten minutes for lock-free methods (when the programmer specified linearization
points).
Related Work Verifying correctness of concurrent data structures has re-
ceived a lot of attention recently. A number of machine-checked manual proofs
of correctness exists in the literature [7, 19]. We know of two model checking
approaches ([14, 20]). Both these works consider only a bounded heap, whereas
our approach does not impose any bound on the size of the heap. Static anal-
ysis methods based on shape analysis [3, 18] require user-specified linearization
points. In contrast, our approach does not need linearization points. The user
has an option to provide linearization points to improve performance. The exper-
iments show that this is not necessary at all for e.g. the fine-grained locking, and
lazy list implementations. Furthermore, shape analysis approaches are sound,
but not complete techniques, whereas our algorithm is both sound and complete
for a bounded number of threads. As for the model of the heap, closest to ours



is the model of [1], but the work in [1] is on abstraction of sequential heap ac-
cessing programs. There is an emerging literature on automata and logics over
data words [17, 4] and algorithmic analysis of programs accessing data words [2].
While existing literature studies acceptors and languages of data words, we want
to handle destructive methods that insert and delete elements.

2 Singly-Linked Data Heaps and Method Automata

Singly-Linked Data Heaps Let D be an unbounded set of data values
equipped with equality and linear order (D,=, <) and let Σ be a finite set
of symbols. A singly-linked data heap is a tuple (V,next ,flag , data, h), where V
is a finite set of vertices, next is a partial function from V to V , flag is a function
from V to Σ, data is a function from V to D, and h ∈ V denotes the initial
vertex.

The structure L can be natu-
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Fig. 1. Singly-linked data heap and a
method automaton

rally viewed as a labeled graph with
edge relation next . L is well-formed
if this graph has no cycles reachable
from h. For each well-formed heap
L as above, we define a finite data
word (over Σ × D) represented by
the list starting at h. Figure 1 shows
a singly-linked data heap with six
vertices that contain values from Σ
and D which define the data word

(s1, d1)(s2, d2)(s3, d3)(s4, d4).

Method automata: Syntax A method automaton is a tuple (Q,P,DV , T, q0,
F, head , O), where Q is a finite set of states, P is a finite partially-ordered set
of pointer variables, DV is a finite set of data variables, T is a set of transitions
(as explained below), q0 ∈ Q is the initial state, F ⊆ Q is a set of final states,
head is a pointer constant, and O is a set of pointer constants.

A method automaton operates on a singly-linked data heap L =
(V,next ,flag , data, h). The pointer variables range over V ∪ {nil}, where nil
is a special value, and are denoted by e.g. p, p0, p1. Let ≤P be the partial or-
der on P . The partial order is required to have a minimum element, denoted
by p0. The variable p0 is called the current pointer, and the other variables in
P are called lagging pointers. The constant head points to the vertex h and is
shared across method automata. The pointer constants in the set O (denoted by
e.g.o, o0, o1) give method automata input/output capabilities and are referred
to as IO pointers. The set R of pointers (i.e. pointer variables and pointer con-
stants) of a method automaton is defined by R = P ∪ {head} ∪ O. The data
variables in DV range over the unbounded domain D.

The set of transitions T is a set of tuples of the form (q,G,A, q′), where
q, q′ ∈ Q are states, G is a guard, and A is an action. There are no outgoing
transitions from the final states.



Let succP be the successor relation defined by the partial order ≤P . The
syntax of guards G and actions A are now defined as:

DE ::= v | data(p)
G ::= flag(p) = s (where s ∈ Σ) | DE = DE | DE < DE | p = p′

| p = nil | p = next(p′) | next(p) = nil | G and G | ¬G | true
Act ::= flag(p) := s (where s ∈ Σ) | data(p) := DE

| next(p) := nil | next(p) := p′ (where succP (p′, p))
| values(p) := (s,DE , p′) (where succP (p′, p))
| v := DE | p := p′ (where succP (p′, p))
| p := nil | p0 := next(p0).

where p, p′ are pointer variables, p0 is the current pointer (minimum pointer
variable), and v is a data variable.

The guards include symbol, data and pointer comparison and their boolean
combinations. The restriction succP (p′, p) placed on some actions enforce that
the heap is traversed in a monotonic manner. This necessitates that pointer
variables are statically ordered, and the furthest pointer can be assigned to the
next of its vertex, but lagging pointers can be assigned only to a pointer further
up in this ordering. Fields of vertices, including the next field, corresponding to
lagging pointers can be updated. Also, the three fields of vertices (Σ value, data
value, and the next pointer) can be updated together atomically (this is needed
for encoding some of the Java concurrency primitives).

We require the actions of a method automaton to satisfy a restriction OW,
abbreviation for “One write before move.” This restriction states that there is
at most one action modifying flag(p), at most one action modifying data(p),
and at most one action modifying next(p) performed between two successive
changes of the value of the pointer variable p. The restriction can be enforced
syntactically — we omit the details. We note that the restriction OW holds for
every implementation we have encountered and that we show that without this
restriction, the linearizability problem becomes undecidable.

A method automaton is deterministic iff given a state and a valuation of
variables, at most one guarded action is enabled.

Figure 1 shows a method automaton in state q. Its head pointer points to the
vertex h of the heap. A client of the automaton can store values in the vertex
v6 pointed to by the IO pointer o. The variables p0 and p1 are pointer variables
of the method automaton.
Examples We illustrate the model by showing how the model captures syn-
chronization primitives and other core features of concurrent data structure al-
gorithms.
– Traversing a list. Let us suppose we want the current pointer p0 to traverse

a list (assumed to be sorted) until it finds a data value equal or larger to the
one stored at a vertex pointed to by an IO pointer o. A method automaton
can achieve this by having a transition such as: (q, data(p0) < data(o), p0 :=
next(p0), q).

– Inserting a vertex. Assume that the position to insert the vertex has been
found - the new vertex o is to be inserted between p1 and p0. The transition



relation can then include (q, true,next(o) := p0, q1) and (q1, true,next(p1) :=
o, q2).

– Locking individual vertices. We can model locking of vertices using the Σ
value. Let us suppose that Σ = {u, l1, l2, . . .}, for unlocked, locked by
thread 1, locked by thread 2, etc. Locking is captured by the transition:
(q0,flag(p) = u,flag(p) := l1, q1) for thread number 1. Unlocking can be
modeled as follows: (q1,flag(p) = l1,flag(p) := u, q2).

– Modeling compare-and-set. The synchronization operation compare-and-set
is supported by several contemporary architectures as well as Java Concur-
rency library. The operation takes two arguments, an expected value (ev)
and an update value (uv). If the current value of the register (for hardware)
or a reference (in Java) is equal to the expected value, then it is replaced by
the update value. The operation returns a Boolean indicating whether the
value changed. The operation is modeled by the following transition tuples:
(q, data(p) = ev , data(p) := uv , q′) and (q, data(p) 6= ev ,−, q′′).

Semantics An automaton invocation A(L, io) consists of a method au-
tomaton A = (Q,P,DV , T, q0, F, head , O), a singly-linked data heap L =
(V,next ,flag , data, h), and a function io : O → V . The pair (L, io) is the method
input. A method input is well-formed if L is well-formed, and for all variables
o ∈ O, we have that the vertex io(o) is unreachable from h and next(io(o)) is
undefined. A method automaton is initialized by having its head pointer point-
ing to h and its input variables in O initialized by the function io. The output of
a method is also realized via the variables O, which are shared with the client.

The semantics is given by the transition system denoted by [[A(L, io)]] for
a well-formed input (L, io). The definition formalizes the following intuition:
a transition of the method automaton is chosen nondeterministically and ex-
ecuted atomically. Let us use a special value nil to model the null pointer,
and let qerr /∈ Q be a special state reached on null-pointer dereference. Let
L = (V,next ,flag , data, h) and A = (Q,P,DV , T, q0, F, head , O). A configura-
tion s = (L, q, U, dv) of [[A(L, io)]] has four components: a heap L, a state q in
Qerr = Q ∪ {qerr}, a valuation of pointers U : R → V ∪ {nil} and a valuation
of data variables dv : DV → D. A configuration is initial if it is of the form
(L, q0, U, dv), where U sets all pointer variables to h and dv sets all the data
variables to the value data(h). Note that there is a unique initial configuration
in [[A(L, io)]].

The transition relation of [[A(L, io)]] is defined as expected. For example,
if (q, true, p := next(p), q′) is a transition of the method automaton A, then
there is a transition from a configuration (L, q, U, dv) to (L, q′, U ′, dv), where
U ′(p′) = U(p′) for all p′ ∈ R such that p′ 6= p and U ′(p) = U(next(p)). The
relation (L, io) A−→ (L′, io′) is defined to hold if there exists a path from the
initial configuration of [[A(L, io)]] to a configuration (L′, q, U, dv), where q is a
final state and io′ is a restriction of U to IO pointers.
Composition of method automata Consider two method automata A1 and
A2. We define the parallel composition A1 ‖ A2 informally by describing the se-
mantics. The state space of the parallel composition of A1 and A2 with IO point-



ers io1 ∪ io2 is the product of the state space of [[A1(L, io1)]] and [[A2(L, io2)]],
with the singly-linked data heap L being shared between the two automata. The
transition function defines interleaving semantics. We omit further details in the
interest of space. We analogously define sequential composition A1 ; A2. Method
expressions compose a finite set of method automata sequentially and in paral-
lel, they are defined by the following grammar rules: E ::= ES | (ES ‖ E)
and ES ::= A | (A ; ES), where A is a method automaton. The semantics is
given by the transition system T (E,L, io) and the relation (L, io) E−→ (L′, io′)
is defined as in the case of single automata. Given a method expression E let
Aut(E) be the set of method automata that are components of E.

3 Verifying Linearizability

Linearizability [11] is the standard correctness condition for concurrent data
structure implementations. In this section, we study the linearizability problem
for method expressions. The proofs omitted here are available in [6].

A history is a sequence of method invocations and method returns (a pair
of method invocation and corresponding return is called a method call). We
say that a history h is a history of a method expression E, if h corresponds
to an execution of E. A sequential history is such that a method invocation is
immediately followed by the corresponding method return. A history is complete
if each method invocation is followed (not necessarily immediately) by a method
return. Intuitively, a sequential history hs is a linearization of a complete history
h, if for all threads, the projection of h to a thread is the same as the projection
hs to the same thread, and the following condition holds: if a method call m0

precedes method call m1 in h, then the same is true in hs. We omit further details
for lack of space, and we refer the reader to [11, 10] for a formal definition, as
well as for a definition of linearizations of histories that are not complete.

A method expression is sequential, if it does not contain any parallel com-
position. Note that given a sequential method expression Es, there is a unique
complete history of Es, denoted by hist(Es), which calls all the automata in
Aut(ES). Given a method expression E and a history h of E, let Seq(E, h) be
the set of sequential method expressions Es such that hist(Es) is a lineariza-
tion of h. For example consider the method expression E = E1 ‖ E2 ‖ E3

and an execution h of E where E3 starts only after E2 has finished and
the execution of E1 overlaps with both E2 and E3. The set Seq(E, h) is
{(E1 ; E2 ; E3), (E2 ; E1 ; E3), (E2 ; E3 ; E1)}. Let Seq(E) denote the set
of sequential method expressions Es such that Aut(E) = Aut(ES). Note that
we always have Seq(E, h) ⊆ Seq(E).

For a method expression E, a history h of E, a well-formed input (L, io), a

heap L′ and a function io′, we write (L, io)
E,h−−→ (L′, io′) if a node corresponding

to (L′, io′) is reached in T (E,L, io) using an execution whose history is h.
We have now defined the notions we need to state the definition of lineariz-

ability. However, it is often useful to specify a condition under which we are
interested in checking linearizability. Such preconditions can be defined using



acceptors — method automata that do not modify the heap. An example pre-
condition is that the data values in the list starting in the initial node are sorted.

A method automaton I is called an acceptor if it does not use the commands
that modify the heap (the first five actions defined by the grammar in Section 2):
Given an acceptor I, and a well-formed input (L, io), I accepts (L, io) (denoted
by I |= (L, io)) if there exists (L′, io′) such that (L, io) I−→ (L′, io′).

We now define an equivalence relation on singly-linked data heaps. Two
singly-linked data heaps are equivalent when they represent the same value of
an abstract data type. As an example, we consider sets of elements of the data
domain D as the abstract data type. A list can represent a set containing data
values from unmarked nodes (marking is represented by Σ-values). Two heaps
are then equivalent if the unmarked elements they contain are the same.

A method automaton is an adt-checker if it is a deterministic method au-
tomaton with no IO pointers. Given an adt-checker C, two heaps L1 and L2 are
equivalent (L1 ≡C L2), if there exists a heap L′ such that L1

C−→ L′ and L2
C−→ L′.

The relation ≡C is extended to pairs (L, io) as follows: (L1, io1) ≡C,b (L2, io2)
iff L1 ≡C L2, b is a bijection between the domains of io1 and io2 and we have
io1(o) = io2(b(o)). We omit b if it is clear from the context, for instance when
comparing different compositions of the same automata.

We are now ready to state the central definition of this paper:

Given an acceptor I and an adt-checker C, a method expression E is
(I, C)-linearizable if and only if the following condition holds: for all
L, io, LP , ioP , h such that (L, io) is a well-formed input, I |= (L, io), we

have that if (L, io)
E,h−−→ (LP , ioP ), then there exists a sequential method

expression Es in Seq(E, h) and LS , ioS such that (L, io) Es−−→ (LS , ioS)
and (LP , ioP ) ≡C (LS , ioS).

The definition of method expression linearizability captures the standard def-
inition of linearizability [11] for the case of composition of a bounded number of
methods. In the standard definition, we have the requirement that all histories
(possibly of unbounded length) are linearizable. Method expression linearizabil-
ity not only checks that all bounded histories of E are linearizable, it also checks
that starting on the same list, every interleaved execution should finish with the
same list as at least one sequential execution whose history is a linearization of
the history of the interleaved execution. Put yet another way, method expres-
sion linearizability checks not only that all histories of E are linearizable, but
also checks that all histories of P1 ; E ; P2 are linearizable, for all sequential
programs P1 and P2. As an example, consider a set data structure with methods
insert and contains. With these two methods, the requirement is captured by
the history that (starting with the empty list) calls insert at the beginning and
contains at the end of the execution. A formal comparison of the definitions is
deferred to the full version.
Decision problem We now formulate the decision problem considered in this
paper:



Given a method expression E, an acceptor I and an adt-checker C the
method expression linearizability problem is to decide whether E is (I, C)-
linearizable.

In the remainder of this paper, we assume that the method expressions E are
composed of deterministic method automata. This assumption means that given
an expression E, all sequential method expressions in Seq(E) are deterministic.

3.1 Reachability

In order to show that method expression linearizability is decidable, we will need
the following results. First, we show that the effect of the method expression can
be captured by a single method automaton, which is built using a lockstep con-
struction. Second, we show that reachability is decidable for method automata.

Theorem 1. Given a method expression E, there exists a method automaton
LS (E) such that for all LP , L

′
P , ioP , io′

P such that (LP , ioP ) is a well-formed

method input, we have (L, io) E−→ (L′, io′) iff (L, io)
LS(E)−−−−→ (L′, io′).

Proof. The idea behind constructing method automaton LS (E) is to update
the current pointers of all the method automata in Aut(E) in lockstep manner
— i.e. that the current pointers of the automata traverse the list at most one
step apart. For example, if the current pointer of A1 is one step ahead of the
current pointers of the other automata, then transitions of the other automata
are scheduled until the current pointers point to the same position. At that
point, a transition of any automaton can be chosen. The lockstep construction
is a partial-order reduction. The construction is complicated by the presence
of lagging pointers. The solution consists of nondeterministically guessing the
interaction of the automata via lagging pointers. In this step the restriction OW
is needed. ut

Let A = (Q,P,DV , T, q0, F, head , O) be a method automaton and q ∈ Q. The
method automaton reachability problem is to decide whether there exist a well-
formed method input (L, io), a heap L′, a valuation of pointer variables U , and
a valuation of data variables dv such that in the transition system [[A(L, io)]],
the configuration (L′, q, U, dv) is reachable from the initial configuration.

Theorem 2. The method automaton reachability problem is decidable. The
complexity is polynomial in the number of states of the automaton, and expo-
nential in the number of its pointer and data variables.

The main insight in the construction is that, as the automaton traverses the
heap monotonically from left to right, the information stored in vertices pointed
to by lagging pointers that is needed for evaluating guards of the transitions
can be encoded in a finite manner. More concretely, one need not to remember
values in D, but only the equality and order information on these values.



3.2 Deciding linearizability

The following theorem is the main result of the paper.

Theorem 3. The method expression linearizability problem is decidable.

Proof. The proof is by reduction to reachability in method automata, which in
turn reduces (by Theorem 2) to reachability in finite state systems. We show how
method expression linearizability can be reduced to reachability in a method au-
tomaton. Given an acceptor I, a method expression E and an adt-checker C,
the method automaton LinCheck(I, E,C) simulates I followed by E followed by
C, and compares the results to simulation of I followed by Es followed by C for
all Es ∈ Seq(E). LinCheck(I, E,C) reaches an error state if there is an unlin-
earizable execution of E starting from a heap accepted by I. Given a method
expression E, the number of automata LinCheck(I, E,C) simulates grows expo-
nentially with the number of methods in E.

First, we use Theorem 1 to show that instead of simulating (I ; E ; C)
(resp. (I ; Es ; C)), one can simulate the method automaton LS (I ; E ; C)
(resp. LS (I ; Es ; C)). Second, we show how LinCheck(I, E,C) can simulate the
automaton LS (I ; E ; C) and all the automata LS (I ; Es ; C) for ES ∈ Seq(E).
on the same input heap and reach an error state if there is an unlinearizable
execution of LS (E). The key idea is once again that the current pointers of all
the automata can advance in a lockstep manner. The reason is much simpler
in this setting than in the proof of Theorem 1 — here the automata do not
communicate at all (the only reason we are simulating the the automata together
is that they run on the same input heap). LinCheck(I, E,C) reaches an error
state if none of the expressions in Seq(E) can simulate LS (E). This is the case
when for example a particular position in the output list for LS (I ; E ; C) is
different from that position in output lists of LS (I ; ES ; C) for all ES ∈ Seq(E).
Such condition is checkable by a method automaton, so LinCheck(I, E,C) can
take a transition to a particular state u if it occurs. The state u is then reachable
iff E is not (I, C)-linearizable. We have reduced linearizability to reachability in
method automata. We can thus conclude by using Theorem 2. ut

Undecidable extensions The following theorem shows that the restriction
OW is necessary for decidability.

Theorem 4. For method automata without the OW restriction, the method ex-
pression linearizability problem is undecidable.

The proof of this theorem also implies that if we lift the restrictions on how
the pointer variables are updated, the method expression linearizability problem
becomes undecidable as well.

4 Experimental Evaluation

4.1 Examples

This section presents a range of concurrent set algorithms where the set is im-
plemented as a linked list whose vertices are sorted by their keys. Each key
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occurs at most once in the set. The concurrent set provides an interface consist-
ing of three methods: contains, add, and remove. The main difference in the
algorithms comes from the synchronization style they use. The synchronization
techniques we consider in our experiments are fine-grained locking, optimistic
synchronization, lazy synchronization, and lock-free synchronization:
– In the fine-grained locking approach each vertex is locked separately. During

the traversal we use “hand-over-hand” locking, where a vertex is unlocked
only after its successor is locked. When an insertion or a deletion is per-
formed, two successive vertices are kept locked.

– A problem with fine-grained locking is that modifications in disjoint parts
of the list can still block each other. In Optimistic synchronization [10] a
thread does not acquire locks as it traverses the list, but only when it finds
the part it is interested in. Then the thread needs to re-traverse the list to
make sure the locked vertices are still reachable (validation phase).

– The lazy synchronization algorithm [9] improves the optimistic one in two
main aspects. First, the methods do not need re-traversal. Second, contains
(commonly thought to be the most used method), do not use locks anymore.
The most significant change is that the deleted vertices are marked.

– A method is called lock-free if delay in one thread executing the method can-
not delay other threads executing the method. The lock-free algorithms [8,
15] we analyze use the Java compareAndSet operation to overwrite values.

4.2 Implementation

The CoLT tool chain can be seen in Figure 2. The input to the tool is a Java file
and two method names. The Java methods are parsed into method automata.
Then the lockstep scheduler selects the method automata corresponding to the
given method names, and produces a finite-state model using the (simplified)
construction from the proof of Theorem 3. The finite state model is then checked
by the SPIN [12] model checker. If SPIN cannot validate the model, it returns
a counterexample trace that describes an unlinearizable execution. CoLT then
gives the programmer a visual representation of the trace.

In the rest of this subsection, we summarize the main issues in translating the
Java implementations of concurrent data set algorithms to method automata.
We refer the reader to [6] for further details on implementation.
Acceptors and adt-checkers We use an acceptor to assert that the input list
is sorted. In the case of the optimistic algorithm we also need an adt-checker



to handle the marked vertices, i.e. vertices removed logically but not physically.
For the other algorithms the adt-checker is the identity function.
Phases approach We implemented a simplified version of the construction
from the proof of Theorem 3. It relies on the fact that all the examples we
considered work in two phases: in the first phase, a list is traversed without
modification (or with limited modification in the case of the lock-free algorithm)
and in the second phase, the list is modified “arbitrarily”. This simplifies the
implementation by reducing the amount of nondeterministic guessing that is
necessary, but relies on annotations to identify the phases.
Validate The optimistic algorithm violates the monotonic traversal restriction
as it traverses the list twice, once to find the required vertex and lock it and
again to validate that the locked vertex is still accessible from the head of the
list. We implemented a heuristic to extend the scope of our tool to cover the
optimistic algorithm. For this heuristic, we require annotations in the code that
mark the first and the second traversal. Given these annotations, the tool can
decompose each method into two method automata, one that finds and locks the
vertex and one for validation. A construction similar to sequential composition
of these two automata is then used to model an optimistic method.
Retry The core traversal of fine-grained, lazy and lock-free algorithms is mono-
tonic. The only caveat is that when an operation such as insertion or deletion fails
the method might abort and “retry” by setting all pointers to the head, which
our restrictions disallows. We emphasize that retry behavior is very different
from the validate behavior of the optimistic algorithm. The aborted executions
in the fine-grained, optimistic, and lazy methods have no effect on the heap. In
the lock-free method, the effect is limited and simply defined. We implemented
a simple heuristic to deal with retry behavior. The heuristic produces a method
automaton that stops simulating an execution if a retry occurs. One can easily
prove for all algorithms we have considered that if the parallel composition of
method automata constructed in this way is linearizable iff the original parallel
composition is linearizable.
Linearization points Our tool enables programmers to specify linearization
points. Specifying them is not needed, but leads to reduction of the search space,
and thus to improving memory consumption and running time of experiments.

4.3 Experiments

We evaluated the tool on the fine-grained, optimistic, lazy, and lock-free imple-
mentations of the concurrent set data structure. The Java source code was taken
from the companion website to [10]. All the experiments were performed on a
server with an 1.86GHz Intel Xeon processor and 32GB of RAM.

The results of the experiments are presented in Table 1. the third (fourth)
column contains the number of lines of code and the number of pointer variables
of the first (second) method. The fifth column indicates whether linearization
points were used. The sixth column lists the maximum depth reached in the
exploration of the finite state graph. The last column indicates whether the
method expression was linearizable.



Algorithm Methods M1 M2 Lin. Depth Mem Time Res
loc/pts loc/pts points (MB) (s)

Fine-grained remove ‖ contains 29/2 23/2 No 157 10.2 0.85 Yes
Fine-grained remove ‖ remove 29/2 29/2 No 141 8.3 0.46 Yes
Fine-grained remove ‖ add 29/2 26/2 No 303 18.1 2.4 Yes

Optimistic add ‖ remove 40/3 38/3 No 110 37.6 5.86 Yes
Optimistic contains ‖ contains 30/3 30/3 No 150 37.6 6.9 Yes
Optimistic remove ‖ remove 38/3 38/3 No 130 36.2 6.35 Yes

Lazy remove ‖ remove 36/3 36/3 No 164 20.1 2.68 Yes
Lazy remove ‖ add 36/3 34/3 No 164 26.3 3.51 Yes
Lazy contains ‖ remove 36/3 6/1 No 136 13.2 1.28 Yes
Lazy remove1 ‖ add1 36/3 34/3 No 137 24.2 3.17 No
Lazy remove2 ‖ remove2 34/3 34/3 No 143 17.9 2.18 No

Lock-free contains ‖ contains 9/2 9/2 No 98 6.4 0.25 Yes
Lock-free remove ‖ remove 34/3 34/3 Yes 95 77.6 8.08 No
Lock-free remCorr ‖ remCorr 34/3 34/3 Yes 268 1908.3 605 Yes
Lock-free add ‖ remCorr 35/3 34/3 No ? out ? ?
Lock-free add ‖ remCorr 35/3 34/3 Yes 267 1550.3 577 Yes
Lock-free add ‖ contains 35/3 9/2 No 400 18984.1 5700 Yes

Table 1. Experimental results

First, to evaluate our analysis on implementations of fine-grained locking al-
gorithms, we ran the remove method in parallel with itself, the contains method,
and the add method. The memory consumption was under 20MB and the run-
ning time under 3s in all cases.

Second, we analyzed the optimistic implementations. The Java file was anno-
tated to use the heuristic described in the previous subsection. CoLT validates
the optimistic implementations in under 40MB of memory for every case. The
heuristic influence heavily some of the tool’s components; hence, the resources
consumption of these results are not directly comparable with the others.

Third, we analyzed lazy-synchronization implementations. The tool CoLT
verified linearizability in the same cases as the fine-grained locking algorithm.
We used the tool to analyze modifications of the add and remove methods sug-
gested as exercises in [10]. One exercise suggests simplification of the validation
check (methods remove1 and add1), the other asks using only one lock (method
remove2). We used the tool on remove1 ‖ add1, and on remove2 ‖ remove2. In
both cases, CoLT reported these compositions not to be linearizable.

Fourth, we considered lock-free implementations. CoLT found that the par-
allel composition of remove with itself is not linearizable. This is a known bug,
reflected in the online errata for [10]. When we corrected the bug according to
the errata (method removeCorr —short for removeCorrected), the tool showed
that the parallel composition of remove with itself is linearizable. We observe
that the memory usage is larger, for example for the parallel composition of the
corrected remove method with the add method, even when the linearization are
provided. The tool runs out of memory without the linearization points. The rea-
son is that, compared to the other algorithms, the input list can contain vertices
marked for deletion, thus increasing the number of inputs to consider.



5 Conclusion

Summarizing, the main contributions of the paper are two-fold: first, we prove
that linearizability is decidable for a model that captures many published concur-
rent list implementations, and second, we showed that the approach is practical
by applying the tool to a representative sample of Java methods implementing
concurrent data sets.
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