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Abstract. While fixing concurrency bugs, program repair algorithms
may introduce new concurrency bugs. We present an algorithm that
avoids such regressions. The solution space is given by a set of pro-
gram transformations we consider in the repair process. These include
reordering of instructions within a thread and inserting atomic sections.
The new algorithm learns a constraint on the space of candidate solu-
tions, from both positive examples (error-free traces) and counterexam-
ples (error traces). From each counterexample, the algorithm learns a
constraint necessary to remove the errors. From each positive examples,
it learns a constraint that is necessary in order to prevent the repair from
turning the trace into an error trace. We implemented the algorithm and
evaluated it on simplified Linux device drivers with known bugs.

1 Introduction

The goal of program synthesis is to simplify the programming task by letting
the programmer specify (parts of) her intent declaratively. Program repair is the
instance of synthesis where we are given both a program and a specification.
The specification classifies the execution of the program into good traces and bad
traces. The synthesis task is to automatically modify the program so that the
bad traces are removed, while (many of) the good traces are preserved.

In program repair for concurrency, we assume that all errors are caused by
concurrent execution. We formalize this assumption into a requirement that all
preemption-free traces are good. The program may contain concurrency errors
that are triggered by more aggressive, preemptive scheduling. Such errors are
notoriously difficult to detect and, in extreme cases, may only show up after
years of operation of the system. Program repair for concurrency allows the pro-
grammer to focus on the preemption-free correctness, while putting the intricate
task of proofing the code for concurrency to the synthesis tool.
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Program repair for concurrency. The specification is provided by assertions
placed by the programmer in the code. A trace, which runs without any assertion
failure, is called “good”, and conversely a trace with an assertion failure is “bad”.
We assume that the good traces specify the intent of the programmer. A trace
is complete if every thread finishes its execution. A trace of a multi-threaded
program is preemption-free if a thread is de-scheduled only at preemption-points,
i.e., when a thread tries to execute a blocking operation, such as obtaining a lock.

Given a multithreaded program in which all complete preemption-free traces
are good, the program repair for concurrency problem is to find a program for
which the following two conditions hold: (a) all bad traces of the original program
are removed; and (b) all the complete preemption-free traces are preserved. We
further extend this problem statement by saying that if not all preemption-free
traces are good, but all complete sequential traces are good, then we need to find
a program such that (a) holds, and all complete sequential traces are preserved.

Regression-free algorithms. Let us consider a trace-based algorithm for pro-
gram repair, that is, an iterative algorithm that in each iteration is given a trace
(good or bad) of the program-under-repair, and produces a new program based
on the traces seen. We say that such an algorithm is regression-free if after every
iteration, we have that: first, all bad traces examined so far are removed, and
second, all good traces examined so far are not turned into bad traces of the
new program. (Of course, to make this definition precise, we will need to define
a correspondence between traces of the original program and the new program.)

Program transformations. In order to remove bad traces, we apply the fol-
lowing program transformations: (1) reordering of adjacent instructions i1; i2
within a thread if the instructions are sequentially independent (i.e., if i1; i2 is
sequentially equivalent to i2; i1), and (2) inserting atomic sections. The reorder-
ing of instructions is given priority as it may result in a better performance than
the insertion of atomic sections. Furthermore, the reordering of instructions re-
moves a surprisingly large number of concurrency bugs that occur in practice;
according to a study of how programmers fix concurrency bugs in Linux device
drivers [4], reordering of instructions is the most commonly used.

Our algorithm. Our algorithm learns constraints on the space of candidate so-
lutions from both good traces and bad traces. We explain the constraint learning
using as an example the program transformation (1), which reorders instructions
within threads. From a bad trace, we learn reordering constraints that eliminate
the counterexample using the algorithm of [4]. While eliminating the counterex-
ample, such reorderings may transform a (not necessarily preemption-free) good
trace into a bad trace — this would constitute a regression. In order to avoid
regressions, our algorithm learns also from good traces. Intuitively, from a good
trace π, we want to learn all the ways in which π can be transformed by re-
ordering without turning it into an error trace— this is expressed as a program
constraint. The program constraint is (a) sound, if all programs satisfying the
constraint are regression-free; and (b) complete, if all programs violating the con-
straint have regressions. However, as learning a sound and complete constraint
is computationally expensive, given a good trace π we learn a sound constraint



that only guarantees that π is not transformed into a bad trace. We generate the
constraint using data-flow analysis on the instructions in π. The main idea of the
analysis is that in good traces, the data-flow into passing assertions is protected
by synchronization mechanisms (such as locks) and data-flow into conditionals
along the trace. This protection may fail if we reorder instructions. We thus find
a constraint that prevents such bad reorderings.

Summarizing, as the algorithm progresses and sees a set of bad traces and
a set of good traces, it learns constraints that encode the ways in which the
program can be transformed in order to eliminate the bad traces without turning
the good traces into bad traces of the resulting program.

CEGIS vs PACES. A popular recent approach to synthesis is counterexample-
guided inductive synthesis (CEGIS) [17]. Our algorithm can be viewed as an
instance of CEGIS with the important feature that we learn from positive ex-
amples. We dub this approach PACES, for Positive- and Counter-Examples in
Synthesis. The input to the CEGIS algorithm is a specification ϕ (possibly in
multiple pieces – say, as a temporal formula and a language of possible so-
lutions [3]). In the basic CEGIS loop, the synthesizer proposes a candidate
solution S, which is then checked against ϕ. If it is correct, the CEGIS loop
terminates; if not, a counterexample is provided and the synthesizer uses it to
improve S. In practice, the CEGIS loop often faces performance issues, in partic-
ular, it can suffer from regressions: new candidate solutions may introduce errors
that were not present in previous candidate solutions. We address this issue by
making use of positive examples (good traces) in addition to counterexamples
(bad traces). The good traces are used to learn constraints that ensure that these
good traces are preserved in the candidate solution programs proposed by the
CEGIS loop. The PACES approach applies in many program synthesis contexts,
but in this paper, we focus on program repair for concurrency.

Related work. The closest related work is by von Essen and Jobstmann [7],
which continues the work on program repair [11, 9, 12]. In [7], the goal is to repair
reactive systems (given as automata) according to an LTL specification, with a
guarantee that good traces do not disappear as a result of the repair. Their
algorithm is based on the classic synthesis algorithm which translates the LTL
specification to an automaton. In contrast, we focus on the repair of concurrent
programs, and our algorithm uses positive examples and counterexamples.

There are several recent algorithms for inserting synchronization by locks,
fences, atomic sections, and other synchronization primitives ([18, 5, 6, 16]).
Deshmukh et al. [6] is the only one of these which uses information about the cor-
rect parts of the program in bug fixing – a proof of sequential correctness is used
to identify positions for locks in a concurrent library that is sequentially correct.
CFix (Jin et al. [10]) can detect and fix concurrency bugs using specific bug
detection patterns and a fixing strategy for each pattern of bug. Our approach
relies on a general-purpose model checker and does not use any patterns.

Our algorithm for fixing bad traces starts by generalizing counterexample
traces. In verification (as opposed to synthesis), concurrent trace generalization
was used by Sinha et al. [14, 15]; and by Alglave et al. [2] for detecting errors due



to weak memory models. Generalizations of good traces was previously used by
Farzan et al. [8], who create an inductive data-flow graph (iDFG) to represent
a proof of program correctness. They do not attempt to use iDFGs in synthesis.

We use the model checker CBMC [1] to generate both good and bad traces.
Sen introduced concurrent directed random testing [13], which can be used to
obtain good or bad traces much faster than a model checker. For a 30k LOC
program their tool needs only about 2 seconds. We could use this tool to initially
obtain good and bad traces faster, thus increasing the scalability of our tool.
Illustrative example. We motivate our approach on the program P in Fig-
ure 1a. There is a bug witnessed by the following trace: π1 = A → B → 1 →
2→ 3 (the assertion at line 3 fails). Let us attempt to fix the bug using the al-
gorithm from [4]. The algorithm discovers possible fixes by first generalizing the
trace into a partial order (Figure 1b, without the dotted edges) representing the
happens-before relations necessary for the bug to occur, and second, trying to
create a cycle in the partial order to eliminate the generalized counterexample.
It finds three possible ways to do this: swapping B and C, or moving C before
A, or moving A after C, indicated by the dotted edges in Figure 1b. Assume
that we continue with swapping B and C to obtain program P1 where the first
thread is A;C;B. Program P1 contains an error trace π2 = A → C → n → p
(the assertion at line p fails). This bug was not in the original program, but was
introduced by our fix. We refer to this type of bug as a regression.

In order to prevent regressions, the algorithm learns from good traces. Con-
sider the following good trace π3 = A → B → C → 1 → 2 → n → 3 → p. The
algorithm analyses the trace, and produces the graph in Figure 1c. Here, the
thick red edges indicate the reads-from relation for assert commands, and the
dashed blue edges indicate the reads-from relation for await commands. Intu-
itively, the algorithm now analyses why the assertion at line p holds in the given
trace. This assertion reads the value written in line B (indicated by the thick
red edge). The algorithm finds a path from B to p composed entirely from intra-
thread sequential edges (B → C and n → p) and dashed blue edges (C → n).
This path guarantees that this trace cannot be changed by different scheduler
choices into a path where p reads from elsewhere and fails. From the good trace
π2 we thus find that there could be a regression unless B precedes C and n pre-
cedes p. Having learned this constraint, the synthesizer can find a better way to
fix π1. Of the three options described above, it chooses the only way which does
not reorder B and C, i.e., it moves A after C. This fixes the program without
regressions.

2 Programming Model and the Problem Statement

Our programs are composed of a fixed number (say n) threads written in the
Cwhile language (Figure 2). Each statement has a unique program location
and each thread has unique initial and final program locations. Further, we as-
sume that execution does not stop on assertion failure, but instead, a variable
err is set to 1. The await construct is a blocking assume, i.e., execution of



init: x = 0; y = 0; z = 0

thread1 thread2 thread3

1: await(x==1) A: x:=1 n: await(z==1)

2: await(y==1) B: y:=1 p: assert(y==1)

3: assert(z==1) C: z:=1

(a) Program P
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(c) Learning from a
good trace

Fig. 1: Program analysis with good and bad traces

await(cond) stops till cond holds. For example, a lock construct can be mod-
elled as atomic { await(lock var == 0); lock var := 1 }. Note that await
is the only blocking operation in Cwhile – hence, we call the await operations
preemption-points.

iexp ::= iexp + iexp | iexp / iexp | iexp * iexp | var | constant

bexp ::= iexp >= iexp | iexp == iexp | bexp && bexp | !bexp

stmt ::= variable := iexp | variable := bexp | stmt; stmt | assume(bexp)

| if (*) stmt else stmt | while (*) stmt | atomic { stmt }
| assert(bexp) | await(bexp)

thrd ::= stmt prog ::= thrd | prog‖thrd
Fig. 2: Syntax of programming language

Semantics. The program-state S of a program P is given by (D, (l1, . . . , ln))
where D is a valuation of variables, and each lt is a thread t program location.
Execution of the thread t statement at location lt is represented as SltS′ where
S = (D, (. . . , lt, . . .)) and S′ = (D′, (. . . , lt′ , . . .)), and lt

′
and D′ are the program

location and variable valuation after executing the statement from D. A trace π
of P is a sequence S0l0 . . . Sm where (a) S0 = (D, (l1ι , . . . , lnι )) where each ltι is
the initial location of thread t; and (b) each SiliSi+1 is a thread t transition for
some t. Trace π is complete if Sm = (Dm, (l1f , . . . , lkf )), where each ltf is the final
location of thread t. We say Sili . . . Sn is equal modulo error-flag to S′ili . . . S

′
n if

each Sk and S′k differ only in the valuation of the variable err .
Trace π is preemption-free if every context-switch occurs either at a

preemption-point (await statement) or at the end of a thread’s execution, i.e., if
where SiliSi+1 and Si+1li+1Si+2 are transitions of different threads (say threads
t and t′), either the next thread t instruction after li is an await, or the thread t
is in the final location in Si+1. Similarly, we call a trace sequential if every
context-switch happens at the end of a thread’s execution.

A trace π = S0l0 . . . Sm is bad if the error variable err has values 0 and 1 in
S0 and Sm, respectively; otherwise, π is good trace. We assume that the bugs
present in the input programs are data-independent – if π = S0l0S1 . . . Sn is bad,
so is every trace π′ = S′0l

′
0S
′
1 . . . S

′
n where li = l′i for all 0 ≤ i < n.

Program transformations and Program constraints. We consider two
kinds of transformations for fixing bugs:
– A reordering transformation θ = l1 ! l2 transforms P to P ′ if location l1

immediately precedes l2 in P and l2 immediately precedes l1 in P ′. We only
consider cases where the sequential semantics are preserved, i.e., if (a) l1
and l2 are from the same basic block; and (b) l1; l2 is equivalent to l2; l1.



– An atomic section transformation θ = [l1; l2] transforms P to P ′ if neigh-
bouring locations l1 and l2 are in an atomic section in P ′, but not in P .

We write P
θ1...θk−−−−→ P ′ if applying each of θi in order transforms P to P ′. We say

transformation θ acts across preemption-points if either θ = l1 ! l2 and one of
l1 or l2 is a preemption-point; or if θ = [l1; l2] and l2 is a preemption-point.

Given a program P , we define program constraints to represent sets of pro-
grams that can be obtained through applying program transformations on P .
– Atomicity constraint: Program P ′ |= [li; lj ] if li and lj are in an atomic block.
– Ordering constraint: Program P ′ |= li ≤ lj if li and lj are from the same

basic block and either li occurs before lj , or P ′ satisfies [li; lj ].
If P ′ |= Φ, we say that P ′ satisfies Φ. Further, we define conjunction of Φ1 and
Φ2 by letting P ′ |= Φ1 ∧ Φ2 ⇔ (P ′ |= Φ1 ∧ P ′ |= Φ2).
Trace Transformations and Regressions. A trace π = S0l0 . . . Sm trans-
forms into a trace π′ = S′0l

′
0 . . . S

′
m by switching if: (a) S0l0 . . . Sn = S′0l

′
0 . . . S

′
n

and the suffixes Sn+2ln+2 . . . Sm and S′n+2l
′
n+2 . . . S

′
m are equal modulo error-

flag; and (b) ln = l′n+1 ∧ ln+1 = l′n. We label switching transformations as a:
– Free transformation if ln and ln+1 are from different threads. We write π′ ∈
f(π) if a sequence of free transformations takes π to π′.

– Reordering transformation θ = l] ! l[ acting on π if ln = l] and ln+1 =
l[. We have π′ ∈ θ(π) if repeated applications of θ transformations acting
on π give π′. Similarly, π′ ∈ θf (π) if repeated applications of θ and free
transformations acting on π give π′.

Similarly, π′ is obtained by atomicity transformation θ = [l1, l2] acting on a trace
π if π′ ∈ f(π), and there are no context-switches between l1 and l2 in π′.

Trace analysis graphs. We use trace analysis graphs to characterize data-flow and
scheduling in a trace. First, given a trace π = S0l0 . . ., we define the function
depends to recursively find the data-flow edges into the li. Formally, depends(i) =
∪v{(last(i, v), i)} ∪ depends(last(i, v)) where v ranges over variables read by li,
and last(i, v) returns j if li reads the value of v written by lj and last(i, v) = ⊥
if no such j exists. As the base case, we define depends(⊥) = ∅.

Now, a trace analysis graph for trace π = S0l0 . . . Sn is a multi-graph G(π) =
〈V,→〉, where V = {⊥}∪ {i|0 ≤ i ≤ n} are the positions in the trace along with
⊥ (representing the initial state) and → contains the following types of edges.
1. Intra-thread order (IntraThreadOrder): We have x→ y if either x < y, and
lx and ly are from the same thread, or if x = ⊥.

2. Data-flow into conditionals (DFConds): We have
⋃
a∈conds depends(a) ⊆→

where x ∈ conds iff lx is an assume or an await statement.
3. Data-flow into assertions (DFAsserts): We have

⋃
a∈asserts depends(a) ⊆→

where x ∈ asserts iff lx is an assert statement.
4. Non-free order (NonFreeOrder): We have x → y if lx and ly write two dif-

ferent values to the same variable. Intuitively, the non-free orders prevent
switching transformations that switch lx and ly.

Regressions. Suppose P
θ1,...,θk−−−−−→ P ′. We say θ1, . . . , θk introduces a regression

with respect to a good trace π = S0l0 . . . Sm of P if there exists a trace π′ =



S′0l
′
0 . . . S

′
m ∈ θ

f
k ◦ . . . ◦ θ

f
1 (π) such that: (a) π′ is a bad trace of P ′; (b) π does

not freely transform into any bad trace of P ; and (c) for every data-flow into
conditionals edge x→ y (say ly reads the variables V from lx) in G(π), the edge
p(x)→ p(y) is a data-flow into conditionals edge in G(π′) (where l′p(y) reads the

same variables V from l′p(x)). Here, p(i) is the position in π′ of instruction at

position i in π after the sequence of switching transformations that take π to π′.
We say θ1 . . . θk introduces a regression with respect to a set TG of good traces
if it introduces a regression with respect to at least one trace π ∈ TG.

Intuitively, a program-transformation induces a regression if it allows a good
trace π to become a bad trace π′ due to the program transformations. Further,
we require that π and π′ have the conditionals enabled in the same way, i.e., the
assume and await statements read from the same locations.

Remark 1. The above definition of regression attempts to capture the intuition
that a good trace transforms into a “similar” bad trace. The notion of similar
asks that the traces have the same data-flow into conditionals – this condition
can be relaxed to obtain more general notions of regression. However, this makes
trace analysis and finding regression-free fixes much harder (See Example 3).

Example 1. In Figure 1, the trace π = A;B;C;n; p transforms under B ! C to
π′ = A;C;B;n; p, which freely transforms to π′′ = A;C;n; p;B. Hence, B ! C
introduces a regression with respect to π as π does not freely transform into a
bad trace, and π′ is bad while the await in n still reads from C.

The Regression-free Program-Repair Problem. Intuitively, the program-
repair problem asks for a correct program P ′ that is a transformation of P .
Further, P ′ should preserve all sequential behaviour of P ; and if all preemption-
free behaviour of P is good, we require that P ′ preserves it.

Program repair problem. The input is a program P where all complete sequential
traces are good. The result is a sequence of program transformations θ1 . . . θn and

P ′, such that (a) P
θ1...θn−−−−→ P ′; (b) P ′ has no bad traces; (c) for each complete

sequential trace π of P , there exists a complete sequential trace π′ of P ′ such
that π′ ∈ θ1 ◦ θ2 . . . ◦ θn(π); and (d) if all complete preemption-free traces of
P are good, then for each such trace π, there exists a complete preemption-free
trace π′ of P ′ such that π′ ∈ θ1 ◦ θ2 . . . ◦ θn(π). We call the conditions (c) and
(d) the preservation of sequential and correct preemption-free behaviour.

Regression-free error fix. Our approach to the above problem is through repeated
regression-free error fixing. Formally, the regression-free error fix problem takes
a set of good traces TG, a program P and a bad trace π as input, and produces

transformations θ1, . . . , θk and P ′ such that P
θ1...θk−−−−→ P ′, π′ ∈ θfk ◦ . . . ◦ θ

f
1 (π) is

a trace in P ′, and θ1, . . . , θk does not introduce a regression with respect to TG.



3 Good and Bad Traces

Our approach to program-repair is through learning regression preventing con-
straints from good traces and error eliminating constraints from bad traces.

3.1 Learning from Good Traces

Given a trace π of P , a program constraint Φ is a sound regression preventing
constraint for π if every sequence of program transformations θ1, . . . , θk, such

that P
θ1...θk−−−−→ P ′ and P ′ |= Φ, does not introduce a regression with respect to π.

Further, if every θ1 . . . θk, such that P
θ1...θk−−−−→ P ′ and P ′ 6|= Φ, introduces a re-

gression with respect to π, then Φ is a complete regression preventing constraint.

Example 2. Let the program P be {1 : x := 1; 2 : y := 1}||{A : await(y = 1);
B : assert(x = 1)}. In Figure 3a, the constraint Φ∗ = (1 < 2∧A < B) is a sound
and complete regression-preventing constraint for the trace 1→ 2→ A→ B.

Lemma 1. For a program P and a good trace π, the sound and complete
regression-preventing constraint Φ∗ is computable in exponential time in |π|.

Intuitively, the proof relies on an algorithm that iteratively applies all possible
free and program transformations in different combinations (there are a finite,
though exponential, number of these) to π. It then records the constraints satis-
fied by programs obtained by transformations that do not introduce regressions.

The sound and complete constraints are usually large and impractical to com-
pute. Instead, we present an algorithm to compute sound regression-preventing
constraints. The main issue here is non-locality, i.e., statements that are not
close to the assertion may influence the regression-preventing constraint.

Example 3. The trace in Figures 3b is a simple extension of Figure 3a. However,
the constraint (1 ≤ 2 ∧ A ≤ B) (from Example 2) does not prevent regressions
for Figure 3b. An additional constraint B ≤ C ∧ 3 ≤ 4 is needed as reordering
these statements can lead to the assertion failing by reading the value of x “too
late”, i.e., from the statement 4 (trace: 1→ 2→ A→ C → 3→ 4→ B).

Figure 3c clarifies our definition of regression, which requires that the data-
flow edges into assumptions and awaits need to be preserved. The await can

1: x:=1

2: y:=1

A: await(y==1)

B: assert(x==1)

(a)

1: x:=1

2: y:=1A: await(y==1)

B: assert(x==1)

C: a:=1
3: assume(a==1)

4: x:=0

(b)

1: x:=1

2’: y:=2

2: y:=1

A: await(y>=1)

B: assert(x==1)

(c)

Fig. 3: Sample Good Traces for Regression-preventing constraints



be activated by both 2 and 2’; in the trace we analyse it is activated by 2.
Moving 2’ before 1 could activate the await “too early” and the assertion would
fail (trace: 2′ → A → B). However, it is not possible to learn this purely with
data-flow analysis – for example, if statement 2’ was y := -1, then this would
not lead to a bad trace. Hence, we exclude such cases from our definition of
regressions by requiring that the await reads A reads from the same location.

Learning Sound Regression-Preventing Constraints. The sound regression-
preventing constraint learned by our algorithm for a trace ensures that the data-
flow into an assertion is preserved. This is achieved through two steps: suppose
an assertion at location la reads from a write at location lw. First, the constraint
ensures that lw always happens before la. Second, the constraint ensures that
no other writes interfere with the above read-write relationship.

For ensuring happens-before relationships, we use the notion of a cover. In-
tuitively, given a trace π of P where location lx happens before location ly, we
learn a Φ that ensures that if P ′ |= Φ, then each trace π′ of P ′ obtained as
free and program transformations acting on π satisfies the happens-before rela-
tionship between lx and ly. Formally, given a trace π of program P , we call a
path x1 → x2 → . . . → xn in the trace analysis graph a cover of edge x → y if
x = x1 ∧ y = xn and each of xi → xi+1 is either a intra-thread order edge, or a
data-flow into conditionals edge, or a non-free order edge.

Given a trace π = S0l0S1l1 . . . Sn, where statement at position r (i.e., lr)
reads a set of variables (say V) written by a statement at position w (i.e., lw),
the the non-interference edges define a sufficient set of happens-before relations
to ensure that no other statements can interfere with the read-write pair, i.e.,
that every other write to V either happens before w or after r. Formally, we have
that interfere(w → r) = {r → w′ | w′ > r ∧ write(lw′) ∩ write(lw) ∩ Read(lr) 6=
∅} ∪ {w′ → w | w′ < w ∧ write(lw′) ∩ write(lw) ∩ Read(lr) 6= ∅} where Read(l)
and write(l) are the variables read and written at location l. If w = ⊥, we have
interfere(w → r) = {r → w′ | w′ > r ∧ write(lw′) ∩ Read(lr) 6= ∅}.
Algorithm 1 Algorithm LearnGoodUnder

Require: A good trace π
Ensure: Regression-preventing constraint Φ
1: Φ← true;G← G(π)

2: for all e ∈
(
DFAsserts(G) ∪

⋃
f∈DFAsserts(G) interfere(f)

)
do

3: if e is not covered then return
∧
{lx ≤ ly | x→ y is a intra-thread order edge}

4: Φ′ ← false

5: for all x1 → x2 → . . .→ xn cover of e do
6: Φ′ ← Φ′ ∨

∧
{lxi ≤ lxi+1 | xi → xi+1 is a intra-thread order edge and xi 6= ⊥

lxi and lxi+1 are from the same execution of a basic block in π }
7: Φ← Φ ∧ Φ′
8: return Φ

Algorithm 1 works by ensuring that for each data-flow into assertions edge
e, the edge itself is covered and that the interference edges are covered. For
each such cover, the set of intra-thread order edges needed for the covering are



conjuncted to obtain a constraint. We take the disjunction Φ′ of the constraints
produced by all covers of one edge and add it to a constraint Φ to be returned.
If an edge cannot be covered, the algorithm falls back by returning a constraint
that fixes all current intra-thread orders. The algorithm can be made to run in
polynomial time in |π| using standard dynamic programming techniques.

Theorem 1. Given a trace π, Algorithm 1 returns a constraint Φ that is a sound
regression-preventing constraint for π and runs in polynomial time in |π|.

Proof (Outline). The fallback case (line 3) is trivially sound. Let us assume
towards contradiction that there is a bad trace π′ = S′0l

′
0S
′
1l
′
1 . . . S

′
n of P ′ |= Φ,

that is obtained by transformation of π = S0l0S1l1 . . . Sn. For each 0 ≤ i < n,
let p(i) be such that the instruction at position i in π is at position p(i) in π′

after the sequence of switching transformations taking π to π′.
If for every data-flow into assertion edge in x → y in G(π), we have that

p(x) → p(y) is a corresponding data-flow into assertion edge in G(π′), then it
can be easily shown that π′ is also good (each corresponding edge in π′ reads the
same values as in π). Now, suppose x→ y is the first (with minimal x) such edge
in π that does not hold in π′. We will show in two steps that p(x) happens before
p(y) in π′, and that p(y) reads from p(x) which will lead to a contradiction.

For the first step, we know that there exists a cover of x→ y in π. For now,
assume there is exactly one cover – the other case is similar. For each edge a→ b
in this cover, no switching transformation can switch the order of la and lb:
– If a → b is a data-flow into conditionals edge, as π′ has to preserve all

DFConds edges (definition of regression), p(a) happens before p(b) in π′.
– If a→ b is a non-free order edge, no switching transformation can reorder a

and b as that would change variables values (by definition of non-free edges).
– If a→ b is a intra-thread order edge, we have that P ′ |= Φ and Φ =⇒ a ≤ b,

and hence, no switching transformation would change the order of a and b.
Hence, we have that all the happens before relations given by the cover are all
preserved by π′ and hence, p(a) happens before p(a) in π′. The fact that p(y)
reads from p(x) follows from a similar argument with the interfere(x→ y) edges
showing that every interfering write either happens before p(x) or after p(y). ut

3.2 Eliminating Bad Traces

Given a bad trace π of P , a program constraint Φ is a error eliminating constraint

if for all transformations θ1, . . . , θk and P ′ such that P
θ1...θk−−−−→ P ′ and P ′ |= Φ,

each bad trace π′ in θfk ◦ . . . ◦ θ
f
1 (π) is not a trace of P ′. In [4], we presented an

algorithm to fix bad traces using reordering and atomic sections. The main idea
behind the algorithm is as follows. Given a bad trace π, we (a) first, generalize
the trace into a partial order trace; and (b) then, compute a program constraint
that violates some essential part of the ordering necessary for the bug.

More precisely, the procedure builds a trace elimination graph which contain
edges corresponding to the orderings necessary for the bug to occur, as well as
the edges corresponding program constraints. Fixes are found by finding cycles



A: x:=1

B: z:=1

C: y:=1

1: await(x=1)

2: assert(y=1)

1 ≤ 2C ≤ A

A: x:=0

B: x:=1

1: assert(x=1)

[A,B]
A: x:=1

B: y:=1

1: assert(y=1)

B � 1

Fig. 4: Eliminating bad traces

in this graph – the conjunction of the program constraints in a cycle form an
error elimination constraint. Intuitively, the program constraints in the cycle will
enforce a happens-before conflicting with the orderings necessary for the bug.

Example 4. Consider the program in Figure 4(left) and the trace elimination
graph for the trace A;B; 1; 2;C. The orderings A happens-before 1 and 2
happens-before C are necessary for the error to happen. The cycle C → A →
1 → 2 → C is the elimination cycle. The corresponding error eliminating con-
straint is C ≤ A ∧ 1 ≤ 2, and one possible fix is to move C ahead of A. For the
bad trace A; 1;B in Figure 4(center), the elimination cycle is A→ 1→ B → A
giving us the constraint [A;B] and an atomic section around A;B as the fix.

The FixBad algorithm. The FixBad algorithm takes as input a program P , a
constraint Φ and a bad trace π. It outputs a program constraint Φ′, sequence of

program transformations θ1, . . . , θk, and a new program P ′, such that P
θ1...θk−−−−→

P ′. The algorithm guarantees that (a) Φ′ is an error eliminating constraint;
(b) P ′ |= Φ ∧ P ′ |= Φ′; and (c) if there is no preemption-free trace π′ of P such
that π freely transforms to π′ (i.e., π′ ∈ f(π)), then none of the transformations
θ ∈ {θ1, . . . , θk} acts across preemption-points. The fact that θ1 . . . θk and P ′

can be chosen to satisfy (c) is a consequence of the algorithm described in [4].
Fixes using wait/notify statements. Some programs cannot be fixed by
statement reordering or atomic section insertion. These programs are in general
outside our definition of the program repair problem as they have bad sequential
traces. However, they can be fixed by the insertion of wait/notify statements.
One such example is depicted in Figure 4(right) where the trace 1;A;B causes
an assertion failure. A possible fix is to add a wait statement before 1 and a
corresponding notify statement after B. The algorithm FixBad can be modified
to insert such wait-notify statements by also considering constraints of the form
X � Y to represent that X is scheduled before Y – the corresponding program
transfomation is to add a wait statement before Y and a notify statement after
X. In Figure 4(right), the edge B → 1 represents such a constraint B � 1 – the
elimination cycle 1→ B → 1 corresponds to the above described fix.

4 The Program-Repair Algorithm

Algorithm 2 is a program-repair procedure to fix concurrency bugs while
avoiding regressions. The algorithm maintains the current program P , and a
constraint Φ that restricts possible reorderings. In each iteration, the algorithm
tests if P is correct and if so returns P . If not it picks a trace π in P (line 4).



Algorithm 2 Program-Repair Algorithm for Concurrency

Require: A concurrent program P , all sequential traces are good
Ensure: Program P∗ such that P∗ has no bad traces
1: Φ← true;TG ← ∅
2: while true do
3: if Verify(P) = true then return P
4: Choose π from P (non-deterministic)
5: if π is non-erroneous then
6: Φ← Φ ∧ LearnGood(π);TG ← TG ∪ {π}
7: else
8: ([θ1, . . . , θk],P , Φ′)← FixBad(P ,P, Φ, π); Φ← Φ ∧ Φ′
9: TG ←

⋃
πg∈TG

{π′g|π′g ∈ θk ◦ . . . ◦ θ1(πg) ∧ π′g ∈ P}

If the trace is good it learns the regression-preventing constraint Φ for π and
the trace π is added to the set of good traces TG (TG is required only for the
correctness proof). If π is bad it calls FixBad to generate a new program that
excludes π while respecting Φ, and Φ is strengthened by conjunction with the
error elimination constraint Φ′ produced by FixBad . The algorithm terminates
with a valid solution for all choices of P ′ in line 8 as the constraint Φ is strength-
ened in each FixBad iteration. Eventually, the strongest program-constraint will
restrict the possible program P ′ to one with large enough atomic sections such
that it will have only preemption-free or sequential traces.

Theorem 2 (Soundness). Given a program P, Algorithm 2 returns a program
P ′ with no bad traces that preserves the sequential and correct preemption-free
behaviour of P. Further, each iteration of the while loop where a bad trace π is
chosen performs a regression-free error fix with respect to the good traces TG.

The extension of the FixBad algorithm to wait/notify fixes in Algorithm 2 may
lead to P ′ not preserving the good preemption-free and sequential behaviours of
P . However, in this case, the input P violates the pre-conditions of the algorithm.

Theorem 3 (Fair Termination). Assuming that a bad trace will eventually be
chosen in line 4 if one exists in P, Algorithm 2 terminates for any instantiation
of FixBad.

A Generic Program-Repair Algorithm. We now explain how our program-
repair algorithm relates to generic synthesis procedures based on counter-
example guided inductive synthesis (CEGIS) [17]. In the CEGIS approach, the
input is a partial-program P, i.e., a non-deterministic program and the goal is to
specialize P to a program P so that all behaviours of P satisfy a specification. In
our case, the partial-program would non-deterministically choose between vari-
ous reorderings and atomics sections. Let C be the set of choices (e.g., statement
orderings) available in P. For a given c ∈ C, let P(P, c, i) be the predicate that
program obtained by specializing P with c behaves correctly on the input i.

The CEGIS algorithm maintains a set E of inputs called experiments. In each
iteration, it finds c∗ ∈ C such that the ∀i ∈ E : P(P, c∗, i). Then, it attempts to
find an input i∗ such that P(c∗, i∗) does not hold. If there is no such input, then



c∗ is the correct specialization. Otherwise, i∗ is added to E . This procedure is
illustrated in Figure 5(left). Alternatively, CEGIS can be rewritten in terms of
constraints on C. For each input i, we associate the constraint φi where φi(c)⇔
P(P, c, i). Now, instead of E , the algorithm maintains the constraint Φ =

∧
i∈E φi.

Every iteration, the algorithm picks a c such that c |= Φ; tries to find an input
i∗ such that ¬P(P, c, i) holds, and then strengthens Φ by φi∗ .

∃?c∗ :
∧

i∈E
P(P, c∗, i)

∃?i∗ s.t.
¬P(P, c∗, i∗)

E = E∪
{i∗}

∃?c∗ : c∗ |= Φ

∃?i∗ s.t.
¬P(P, c∗, i∗)

∃?i∗ s.t.
P(P, c∗, i∗)

Φ = Φ∧
FixBad(i∗)

Φ = Φ∧
LearnGood(i∗)

Fig. 5: The CEGIS and PACES spectrum

This procedure is exactly the else branch (i.e., FixBad procedure) of an itera-
tion in Algorithm 2 where i∗ and φi∗ correspond to π and FixBad(π). Intuitively,
the initial variable values in π and the scheduler choices are the inputs to our
concurrent programs. This suggests that the then branch in Algorithm 2 could
also be incorporated into the standard CEGIS approach. This extension (dubbed
PACES for Positive and Counter-Examples in Synthesis) to the CEGIS approach
is shown in Figure 5(right). Here, the algorithm in each iteration may choose to
find an input for which the program is correct and use the constraints arising
from it. We discuss the advantages and disadvantages of this approach below.

Constraints vs. Inputs. A major advantage of using constraints instead of sample
inputs is the possibility of using over- and under-approximations. As seen in
Section 3.1, it is sometimes easier to work with approximations of constraints due
to simplicity of representation at the cost of potentially missing good solutions.
Another advantage is that the sample inputs may have no simple representations
in some domains. The scheduler decisions are one such example – the scheduler
choices for one program are hard to translate into the scheduler choices for
another. For example, the original CEGIS for concurrency work [16] uses ad-hoc
trace projection to translate the scheduler choices between programs.

Positive-examples and Counter-examples vs. Counter-examples. In standard
program-repair tasks, although the faulty program and the search space C may
be large, the solution program is usually “near” the original program, i.e., the fix
is small. Further, we do not want to change the given program unnecessarily. In
this case, the use of positive examples and over-approximations of learned con-
straints can be used to narrow down the search space quickly. Another possible
advantage comes in the case where the search space for synthesis is structured
(for example, in modular synthesis). In this case, we can use the correct be-
haviour displayed by a candidate solution to fix parts of the search space.

5 Implementation and Experiments

We implemented Algorithm 2 in our tool ConRepair. The tool consists of 3300
lines of Scala code and is available at https://github.com/thorstent/ConRepair.



Model checker CBMC [1] is used for generating both good and bad traces, and
on an average more than 95% of the total execution time is spent in CBMC.
Model checking is far from optimal to obtain good traces, and we expect that
techniques from [13] can be used to generate good traces much faster. Our tool
can operate in two modes: In “mixed” mode it first analyses good traces and
then proceeds to fixing the program. The baseline “badOnly” mode skips the
analysis of good traces (corresponds to the algorithm in [4]).

In practice the analysis of bad traces usually generates a large number of
potential reorderings that could fix the bug. Our original algorithm from [4]
(badOnly ce1) prefers reorderings over atomic sections, but in examples where
an atomic section is the only fix, this algorithm has poor performance. To address
this we implemented a heuristic (ce2) that places atomic sections before having
tried all possible reorderings, but this can result in solutions having unnecessary
atomic sections.

The fall back case in Algorithm 1 severely limits further fixes – it forces
further fixes involving the same instructions to be atomic sections. Hence, in our
implementation, we omit this step and prefer an unsound algorithm (i.e., not
necessarily regression-free) that can fix more programs with reorderings. While
the implemented algorithm is unsound, our experiments show that even without
the fallback, in our examples, there is no regression except for one artificial
example (ex-regr.c) constructed precisely for that purpose.

Benchmarks. We evaluate our tool on a set of examples that model real bugs
found and fixed in Linux device drivers by their developers. To this end, we
explored a history of bug fixes in the drivers subtree of the Linux kernel and
identified concurrency bugs. We further focused our attention on a subset of
particularly subtle bugs involving more than two racing threads and/or a mix
of different synchronization mechanisms, e.g., lock-based and lock-free synchro-
nization. Approximately 20% of concurrency bugs that we considered satisfy this
criterion. Such bugs are particularly tricky to fix either manually or automati-
cally, as new races or deadlocks can be easily introduced while eliminating them.
Hence, these bugs are most likely to benefit from good trace analysis.

File LOC mixed badOnly ce1 badOnly ce2

ex1.c 60 1 2 2
ex2.c 37 2 5 6
ex3.c 35 1 2 2
ex4.c 60 1 2 2
ex5.c 43 1 8 3
ex-regr.c 30 2 2 2
paper1.c 28 1 3 3a

dv1394.c 81 1 (13+4s) 51 (60s) 5a (9s)
iwl3945.c 66 1(3+2s) 2(2s) 2(2s)
lc-rc.c 40 10 (2+7s) 179 (122s) 203 (134s)
rtl8169.c 405 7 (10+45m) >100 (>6h) 8 (54m)
usb-serial.c 410 4 (56+20m) 6 (38m) 6 (38m)

Table 1: Results in iterations and time needed.

ace2 heuristic placed unnecessary atomic section

Table 1 shows our ex-
perimental results: the it-
erations and the wall-
clock time needed to find
a valid fix for our mixed
algorithm and the two
heuristics of the badOnly
algorithm. For the mixed
algorithm the time is
split into the time needed
to generate and analyse
good traces (first num-
ber) and the time needed
for the fixing afterwards.



Detailed analysis. The ar-
tificial examples ex1.c to ex5.c are used for testing and take only a few seconds;
example paper1.c is the one in Figure 1a. Example ex-regr.c was constructed
to show unsoundness of the implementation. Example usb-serial.c models the
USB-to-serial adapter driver. Here, from the good traces the tool learns that two
statements should not be reordered as it will trigger another bug. This prompts
them to be reordered above a third statement together, while the badOnly anal-
ysis would first move one, find a new bug, and then fix that by moving the other
statement. Thus, the good trace analysis saves us two rounds of bug fixing and
reduces bug fixing time by 18 minutes.

The rtl8169.c example models the Realtek 8169 driver containing 5 concur-
rency bugs. One of the reorderings that the tool considers introduces a new bug;
further, after doing the reordering, the atomic section is the only valid fix. The
good trace analysis discover that the reordering would lead to a new bug, and
thus does the algorithm does not use it. But, without good traces, the tool uses
the faultly reordering and then ce1 takes a very long time to search through all
possible reorderings and then discover that an atomic section is required. The
situation is improved when using heuristic ce2 as it interrupts the search early.
However, the same heuristic has an adverse effect in the dv1394.c example: by
interrupting the search early, it prevents the algorithm from finding a correct re-
ordering and inserts an unnecessary atomic section. The dv1394.c example also
benefits from good traces in a different way than the other examples. Instead
of preventing regressions, they are used to obtain hints as to what reorderings
would provide coverage for a specific data-flow into assertion edge. Then, if a
bad trace is encountered and can be fixed by the hinted reordering, the hinted
reordering is preferred over all other possible ones. Without hints the dv1394.c

example would require 5 iterations. Though hints are not part of our theory they
are a simple and logical extension.

Example lc-rc.c models a bug in an ultra-wide band driver that requires
two reorderings to fix. Though there is initially no deadlock, one may easily be
introduced when reordering statements. Here, the good-trace analysis identifies
a dependency between two await statements and learns not to reorder state-
ments to prevent a deadlock. Without good traces, a large number of candidate
solutions that cause a regression are generated.

6 Conclusion

We have developed a regression-free algorithm for fixing errors that are due to
concurrent execution of the program. The contributions include the problem
setup (the definitions of program repair for concurrency, and the regression-free
algorithm), the PACES approach that extends the CEGIS loop with learning
from positive examples, and the analysis of positive examples using data flow to
assertions and to synchronization constructs.

There are several possible directions for future work. One interesting direc-
tion is to examine the possibility of extending the definition of regressions (see
Remark 1 and Example 3) – this requires going beyond data-flow analysis for



learning regression-preventing constraints. Another possible extension is to re-
move the assumption that the errors are data-independent. A more pragmatic
goal would be to develop a practical version of the tool for device-driver synthesis
starting from the current prototype.
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config thread () {
A: lock(rtnl lock);

B: lock(lock);

C: unlock(lock);

D: unlock(rtnl lock);

}

iwl3945 bg alive start thread()

{
1: lock(lock);

2: restart = 1;3: lock(rtnl lock);

4: notify = 1;

5: unlock(rtnl lock);


6: unlock(lock);

}

reassoc thread () {
n: await(notify==1);

p: assert(restart==1);

}

(a) Simplified threads of the iwl3945 driver
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Fig. 6: Model of deadlock bug in the iwl3945 driver

A The iwl3945 driver.

This example models a real concurrency bug found in the Linux driver for the
Intel wireless adapter 3945. The model involves three kernel threads calling driver
entry points shown in Figure 6a.

The driver suffers from a classical ABBA deadlock; if the config thread

locks rtnl lock then the iwl3945 bg alive start thread locks lock none of
the threads can proceed.

config thread is located outside the driver and cannot be changed in or-
der to fix the bug. Furthermore instructions 3 to 5 need to stay together
because they are located in a separate function in the original code. The
iwl3945 bg alive start thread is used to restart the device if it no longer
responds properly. After a restart (line 2) the reassoc thread is notified (line
4), which depends on the device having completed the restart.

In the actual model the deadlock is modelled with an assertion between lines
A and B that tests which thread owns which locks and which thread is waiting
for which locks. The assertion fails if there is a deadlock. This construction is
needed because CBMC does not support deadlock detection.

Our old algorithm ce1 without a learning from good traces phase now pro-
ceeds to finding a bad trace, such as 1 → A → 2 → B → 3 → 4 → 5 → C →



6→ D displayed in Fig. 6b. Note that after an assertion failure the trace is com-
pleted as if the assertion had succeeded in order to find all reordering options.
This leaves a number of bug-fixes to the algorithm: We denote only the two
important for the description of our algorithms. The first is to move the block
3-5 in front of 1 (denoted as α) and the second is to move 6 in front of 3-5
(denoted as β). Without further knowledge the algorithm will choose α for no
particular reason. This does not fix the deadlock, but it furthermore introduces
a regression because now assertion p may fail because the notify signal is sent
before the restart is completed.

The good trace analysis prevents a regression with respect to good traces
such as the trace where all threads are run sequentially. The relevant parts of
the result of our analysis are depicted in Fig. 6c. The red and blue edge indicate
the variable assignments the assertion and the await read from respectively. In
order to protect the red edge two black edges are needed, from 2 to the instruction
block 3-5 and from n to p. When the algorithm comes to the phase of fixing
bugs it will discover the same two possibilities, but α is blocked by the black
edge from 2 to 3-5. The algorithm will then choose the correct fix β.

This is also the fix the developers took in the actual driver. By taking the
notify with its needed rtnl lock out of the lock environment the deadlock is
avoided.


