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Abstract

Transformers have increasingly outperformed
gated RNNs in obtaining new state-of-the-art re-
sults on supervised tasks involving text sequences.
Inspired by this trend, we study the question
of how Transformer-based models can improve
the performance of sequential decision-making
agents. We present the Working Memory Graph
(WMG), an agent that employs multi-head self-
attention to reason over a dynamic set of vectors
representing observed and recurrent state. We
evaluate WMG in three environments featuring
factored observation spaces: a Pathfinding en-
vironment that requires complex reasoning over
past observations, BabyAI gridworld levels that
involve variable goals, and Sokoban which em-
phasizes future planning. We find that the com-
bination of WMG’s Transformer-based architec-
ture with factored observation spaces leads to
significant gains in learning efficiency compared
to baseline architectures across all tasks. WMG
demonstrates how Transformer-based models can
dramatically boost sample efficiency in RL envi-
ronments for which observations can be factored.

1. Introduction
Because of their ability to process sequences of data, gated
Recurrent Neural Networks (RNNs) have been widely ap-
plied to natural language processing (NLP) tasks such as ma-
chine translation. In the RNN-based approach of Sutskever
et al. (2014), an encoder RNN maps an input sentence in the
source language to a series of internal hidden state vectors.
The encoder’s final hidden state is copied into a decoder
RNN, which then generates another sequence of hidden
states that determine the selection of output tokens in the
target language. This model can be trained to translate sen-
tences, but translation quality deteriorates on long sentences
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where long-term dependencies become critical. A plausible
conjecture attributes this drop in performance to the limited
representational capacity of RNN hidden state vectors. In
Bahdanau et al. (2015), translation quality is boosted by
applying an attention mechanism to create paths serving as
shortcuts from the input to the output sequences, routing
information outside the linear chain of the RNN’s hidden
states. Similar attention mechanisms have since gained wide
usage, culminating in the Transformer model (Vaswani et al.,
2017) which replaces the RNN with many short paths of
self-attention. Since then, Transformers have outperformed
RNNs on many NLP tasks (Devlin et al., 2019; Dong et al.,
2019; Liu et al., 2019), and have been successfully applied
to set-structured data (Lee et al., 2019; Yang et al., 2019).

We seek to leverage these intuitions to improve the ability
of Reinforcement Learning (RL) agents to reason over long
time horizons in Partially Observable Markov Decision Pro-
cesses (POMDPs) (Kaelbling et al., 1998). In a POMDP,
a single observation Obst is not sufficient to identify the
latent environment state st. Thus the agent must reason over
the history of past observations in order to select the best
action for the current timestep. A simple strategy employed
by DQN (Mnih et al., 2015) is to condition the policy on the
N most recent observations π(at|Obst−N+1 . . . Obst). But
in complex environments, the sufficient number N may be
large, highly variable, and unknown. To address this issue,
gated RNNs such as LSTMs (Hochreiter & Schmidhuber,
1997) and GRUs (Cho et al., 2014; Chung et al., 2015) use
internal, recurrent state vectors which can in theory maintain
information from past observations (Hausknecht & Stone,
2015; Oh et al., 2016). In practice however, these methods
are limited by the single path of information flow defined
by the linear chain of RNN hidden states. As in NLP, we
hypothesize that providing alternative paths for information
to follow will be advantageous to RL agents. Building on
this intuition, we introduce the Working Memory Graph
(WMG), a Transformer-based agent that uses self-attention
to provide a multitude of shortcut paths for information to
flow from past observations to the current action through a
dynamic set of hidden state vectors called Memos, illustrated
in Figure 1 (right).

Motivated by prior work on factored representations (Rus-
sell & Norvig, 2009) and factored MDPs (Boutilier et al.,
2000; 2001), we argue that factored observations are ide-
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ally suited for processing by Transformer-based agents like
WMG. Although many environments use fixed-sized feature
spaces, many other domains have observations amenable to
factoring. As a motivating example, consider the BabyAI
environment (Chevalier-Boisvert et al., 2018) as depicted
in Figure 1 (left). The native observation space includes
the agent’s field of view, a 7x7 region in front of it. This
observation can be efficiently represented by a set of factors
describing the types, colors, and relative x and y coordinates
of all objects currently in the field of view: ([green, key,
3, 1], [grey, box, 1, 2], [green, ball, 2, 2], [red, key, 0, 3]).
This factored observation is more compact than the native
observation, but will vary in size depending on the number
of objects in view. Each observation factor (e.g. [grey, box,
1, 2]) is embedded into a Factor vector (Fig. 1 right) which
serves as input to WMG’s Transformer, along with other
Factors and the Memos.

Our contributions are twofold: First we introduce the
Working Memory Graph (WMG), a Transformer-based
agent implementing a novel form of shortcut recurrence
which we demonstrate to be effective at complex reason-
ing over long-term dependencies. Second, we identify the
synergy between Transformer-based RL architectures and
factored observations, demonstrating that by virtue of self-
attention, WMG is able to effectively leverage factored ob-
servations to learn high-performing policies using fewer
environment interactions than alternative architectures.

2. Related Approaches
Prior approaches for reasoning over long time horizons use
attention for memory access (Graves et al., 2016; Oh et al.,
2016) or self-attention to process individual observations
(Zambaldi et al., 2018; Vinyals et al., 2019; Zhong et al.,
2019). These approaches rely on LSTM-based recurrence
over sequences. In contrast, WMG obviates the need for
gated recurrence by applying self-attention to a network of
Memos persisted through time.

After attempting to apply Transformer-style attention to RL
tasks, Mishra et al. (2018) concluded that such architec-
tures could not easily process sequential information. Other
models handle partial observability using gated RNNs with
Transformer-style self-attention over state vectors analogous
to WMG’s Memos, but with different state-update sched-
ules: RMC (Santoro et al., 2018) updates all state vectors
on every timestep, while RIMs (Goyal et al., 2019) enforces
sparsity by updating exactly half of the state vectors on
each step. In contrast, WMG replaces only one Memo on
each timestep to maximize Memo persistence and facilitate
preservation of information through time.

Unlike the other models discussed here, the Gated
Transformer-XL (Parisotto et al., 2020) addresses partial ob-

servability by feeding hundreds of past observations into the
Transformer at once. In order to mitigate the Transformer’s
O(N2) computational cost in number of inputs, WMG in-
stead computes self-attention over a much smaller number
of recurrent Memos to capture and maintain relevant aspects
of past observations. Another significant difference is that
GTrXL relies on inserting gated RNNs into its Transformer,
while WMG applies the original unmodified Transformer
design to RL.

3. Working Memory Graph
The term Working Memory Graph is motivated by the lim-
ited size of WMG’s self-attention computation graph, in
loose analogy with the cognitive science term working mem-
ory, referring to a cognitive system that holds a limited
amount of information for use in mental processing (Miller,
1956). As illustrated in Figure 1, WMG applies multi-head
self-attention to a dynamic set of hidden state vectors, called
Memos, which store information from previous timesteps.
Formally, each Memo vector defines one row in a Memo
matrix M ∈ RnM×dM , where nM is the number of Memos
maintained by WMG and dM is the size of each Memo
vector. Any Memos present at the start of an episode are
initialized to zero. As a rolling buffer, the matrix persists
each Memo unchanged through nM timesteps. For example,
in Figure 2 (b) the Memo b is created on the third step and
persists unchanged for 4 steps before being overwritten by
Memo f . Memos are the basis of WMG’s shortcut recur-
rence, replacing a gated RNN’s single path of information
flow with a network of shorter self-attention paths.

In addition to Memos, WMG also applies self-attention to
a variable number of Factor vectors derived from observa-
tions, depicted in green in Figures 1, 2. On each timestep,
WMG receives an observation consisting of a variable num-
ber of factors, which are copied into (nF ) Factor vectors
forming a Factor matrix F ∈ RnF×dF . Finally, a single
Core vector c ∈ Rdc encodes any non-factored portions of
the observation. The Core, Factors and Memos are embed-
ded and stacked to form the Transformer input matrix:

T in =

 cWcore + bcore
FWfac + bfac

M ′Wmem + bmem

 , M ′ = [M I]

where Wcore ∈ Rdc×dT , Wfac ∈ RdF×dT and Wmem ∈
R(dM+nM )×dT are embedding matrices with corresponding
bias vectors b ∈ RdT broadcast over rows. Each Memo
is concatenated with a one-hot vector (from the identity
matrix) indicating its age.

Closely following the encoder architecture of Vaswani et al.
(2017), WMG’s Transformer takes the input matrix T in ∈
RnT×dT and returns an output matrix T out ∈ RnT×dT ,
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Pick up the green key

Figure 1. Left: BabyAI rewards the agent (red triangle) for performing the task given by the instruction. Here, the agent looks to the left.
Its 7x7 field of view (shown in lighter grey) extends beyond the walls in this case. Right: Comparing a gated RNN agent to WMG: a
gated RNN constrains information to flow through a long, time-sequential path of hidden state vectors, whereas WMG allows information
to flow through shorter, parallel paths of self-attention among its set of Memo vectors. Factor vectors embed observation factors and are
used along with Memos and a Core vector as input to WMG’s multi-layer Transformer T, which effectively replaces the gating layers of a
gated RNN.

where nT = 1+nF +nM is the number of input (or output)
vectors, and dT is the size of each vector. On each timestep,
the oldest Memo (final row of the Memo matrix) is replaced
by a new Memo (as the incoming first row) generated by a
non-linear function of the Core’s output vector h = T out

0: :

M =

[
tanh(hWM + bM )

M0:−1

]
WM ∈ RdT×dM , bM ∈ RdM

The actor-critic network applies a shared linear layer to h,
followed by ReLU activation to obtain sac. This is followed
by two separate linear layers to produce the agent’s policy
and value outputs π and V :

sac = ReLU (hWac + bac), Wac ∈ RdT×dac , bac ∈ Rdac

π = softmax (sacWπ + bπ), Wπ ∈ Rdac×dπ , bπ ∈ Rdπ

V = sacWV + bV , WV ∈ Rdac

RL Training. To summarize, the trainable parameters θ
of WMG include all Transformer parameters, plus (for em-
beddings) Wcore, bcore,Wfac, bfac,Wmem, bmem, (for Memo
creation) WM, bM, (actor-critic shared) Wac, bac, (actor)
Wπ, bπ , and (critic) WV, bV . Parameters θ are trained end-
to-end through backpropagation of the standard actor-critic,
policy-gradient loss functions, maximizing an entropy-
regularized expected return of the actor, and minimizing
a k-step TD error of the critic. The entropy-regularized

policy gradient is:

∇θJ (θ) = Eπ[
∞∑
t=0

∇θ log π(at|ht; θ)Aπ(Obst, at)

+β∇θH(π(ht; θ))]

where π(a|ht; θ) denotes WMG’s policy head operating on
hidden state ht (see Fig. 1 right), H is the entropy of the
policy’s action distribution, and β controls the strength of
the entropy regularization term. When performing back-
propagation through time, the maximum number of steps of
gradient flow is denoted by tmax. To reduce the variance of
gradient estimates, we use the A3C algorithm described by
Mnih et al. (2016), which estimates the advantageAπ(st, at)
using a γ-discounted k-step return as follows:

Aπ(Obst, at) = (

k−1∑
i=0

γirt+i) + γkV (ht+k)− V (ht; θ)

where V (ht; θ) denotes WMG’s state-value head (see Fig. 1
right), which is trained to minimize the squared difference
between the k-step return and the current value estimate
||(
∑k−1
i=0 γ

irt+i + γkV (ht+k))− V (ht)||2, and k is upper-
bounded by the number of timesteps (tmax) in the actor’s
current update window.

To encourage further work and comparative studies, we
provide WMG’s source code and pre-trained models at
https://github.com/microsoft/wmg_agent.

https://github.com/microsoft/wmg_agent
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Figure 2. Unrolled Over Time: In a Gated RNN (a), in order for the first observation Obs1 to affect the agent’s output h8, information
must pass through 8 gating operations and 7 intervening hidden states a-g. In a WMG (b), many possible paths lead from Obs1 to h8.
The highlighted path requires only three passes through T, as the information is first stored for several timesteps in Memo a and later in
Memo d. Information flows forward, and gradients flow backward, over many such shortcut paths.

4. Experiments
Our experiments aim to (1) evaluate WMG’s ability to rea-
son over long time spans in a setting of high partial observ-
ability, and (2) understand how factored representations may
be effectively utilized by WMG. To address these questions
we present results on three diverse environments: a novel
Pathfinding task which requires complex reasoning over past
observations, the BabyAI domain (Chevalier-Boisvert et al.,
2018) which involves changing goals, partial observability,
and textual instructions, and Sokoban (Guez et al., 2019), a
challenging puzzle environment that benefits from forward
planning ability. To foreshadow our results, the Pathfind-
ing task establishes the effectiveness of WMG’s shortcut
recurrence, BabyAI demonstrates that WMG leverages fac-
tored observations to deliver substantial gains in sample
efficiency, while Sokoban shows that WMG can learn to
solve very difficult tasks. These experimental results illus-
trate WMG’s ability to handle highly diverse and demanding
environments for which observations can be factored.

In all experiments, we conduct extensive hyperparameter
tuning of each agent (including the baselines) using a guided
form of random search that we call Distributed Grid Descent
(DGD). It is designed to address the challenges posed by
large numbers of hyperparameters (10-20), and the high
variance among independent training runs given the same
hyperparameter configuration that is often observed in Deep
RL experiments. (See Appendix B for a detailed description

of DGD.) After hyperparameter tuning, in order to remove
selection bias, we perform many independent training runs
using the tuned values, then report the means and standard
deviations over those final training runs.

4.1. Pathfinding Task

Pathfinding is designed to evaluate an agent’s ability to
perform complex reasoning over past observations. Fig-
ure 3 (left) depicts the incremental construction of a di-
rected acyclic graph over nodes identified by unique pattern
vectors which are randomly regenerated on every episode.
(See Appendix A for the graph-construction algorithm and
other details.) On odd timesteps the agent observes the pat-
tern vectors of two nodes to be linked, and on even steps
the agent must determine whether or not a directed path
exists from one given pattern to the other. As this cycle
repeats, the graph grows larger and the agent must perform
an increasing number of reasoning steps to confirm or deny
the existence of a path between arbitrary nodes. Because
each observation reveals only part of the graph, the agent
must utilize information from previous observations to infer
graph connectivity.

For example, consider step 4 of Figure 3 (left): To determine
whether a path exists from green to yellow, the agent must
recall and combine information from steps 1 and 3. Simi-
larly, on step 12, if the agent were asked about the existence
of a path from cyan to yellow, answering correctly without
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Figure 3. Left: Pathfinding task, consists of 12 timesteps with a maximum graph size N = 7 pattern nodes. The boxes with rounded
corners illustrate the observations for the given timesteps, where a question mark identifies the step as a quiz step rather than a construction
step. The box colors represent distinct pattern vectors which never repeat between episodes. Middle: Results on Pathfinding. Each
plotted point is the percentage of reward on quiz steps received by the agent over the previous 10k timesteps, averaged over 100
independent training runs. Bands display one standard deviation. (See Table 12 for more details.) Right: Probing shortcut recurrence.
WMG restricted to only 6 Memos outperformed both nr-WMG (given access to the last 6 observations) and GRU.

guessing would require piecing together information from
three non-contiguous timesteps. Since the actual quiz on
step 12 asks whether a path exists from green to blue, the
agent must reason over many past observations to determine
that no such path exists.

Each pattern is a vector of D real numbers drawn randomly
from the interval -1 to 1 on each episode. A binary value
is added to the observation vector to indicate whether the
current step is a quiz or construction step, bringing the size
of the observation space to 2D + 1, where D = 7 for
our experiments. The action space consists of two actions,
signifying yes and no. The agent receives a reward of 1
for answering correctly on a quiz step. The quiz questions
are constructed to guarantee that each answer (yes or no) is
correct half the time on average, so agents that act randomly
or have no memory of past observations will obtain 50% of
possible reward in expectation.

For this task, WMG is configured with Memos but no Fac-
tors. The number of Memos is a tuned hyperparameter,
equal to 16 in this experiment. (See Appendix C for all
settings.) On each timestep, the observation is passed to
WMG’s Core, and WMG generates a new Memo and action
distribution. We compare WMG’s performance to several
baselines. Each Depth-n baseline is a hand-coded algorithm
demonstrating the performance obtained using perfect mem-
ory of past observations and perfect reasoning over paths up
to n steps long. For example, Depth-2 remembers all previ-
ous construction steps, and reasons over all paths of depth 2.
Finally, in order to understand the effectiveness of Memos
at capturing past information, we evaluate a full-history,
non-recurrent version of WMG (nr-WMG) by removing
the Memos and giving it all past observations as separate
Factors on each timestep.

As shown in Figure 3 (middle), the GRU-based agent ex-
ceeded Depth-1 performance, but remained well short of
Depth-2 performance after 20 million steps of training (en-
vironment interactions). In contrast, both versions of the
WMG agent nearly reached Depth-3 performance, demon-
strating a greater ability to perform complex reasoning over
past observations. The best performance was achieved by
nr-WMG, for which the environment is fully observed. But
WMG with Memos was nearly as sample efficient as this
perfect-memory baseline. These results indicate that short-
cut recurrence enables WMG to learn to store and utilize
essential information from past Pathfinding observations in
a more effective manner than a GRU’s gated recurrence.

To assess zero-shot generalization beyond the horizon of the
original Pathfinding task, we evaluated these 300 models
(100 per agent architecture, trained on 12-step episodes)
on 1000 fixed episodes of 24 steps each. With no further
training, nr-WMG and WMG respectively obtained 95.3%
and 93.9% of possible score versus 84.4% for GRU, showing
significantly better generalization to larger graphs than those
seen during training.

To further investigate WMG’s shortcut recurrence, we re-
peated the Pathfinding experiment while restricting the total
number of WMG Memos to 6, enough to store only half
of an episode’s observations. As shown in Figure 3 (right),
while WMG’s performance degraded slightly, it significantly
outperformed nr-WMG (given the last 6 observations) as
well as GRU. nr-WMG with 6 Factors captures the heuristic
employed by DQN (Mnih et al., 2015) of stacking several
previous observations to combat partial observability. This
result suggests that WMG leverages shortcut recurrence to
transfer information from older Memos to newer Memos in
order to reason beyond the last 6 observations more effec-
tively than a GRU with its linear chain of gated recurrence.
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Go to the yellow box behind you

Part of observation Variable assignments Vector
Factored image color=green, type=key, X=3, Y=1 Factor
Factored image color=grey, type=box, X=1, Y=2 Factor
Factored image color=green, type=ball, X=2, Y=2 Factor
Factored image color=red, type=key, X=0, Y=3 Factor
Factored image vertical wall X=-2 Core
Factored image horizontal wall Y=4 Core
Factored instruction command=go to, article=the, Core

color=yellow, type=box, loc=behind you
Additional info orientation=west, Core

last action=move forward

Figure 4. One completely factored observation, where each variable assignment corresponds to a one-hot vector. Since the number of
objects in an observation can vary, each object’s vectors are concatenated then passed to a single Factor. All non-factored parts of the
observation are concatenated then passed to the Core. X & Y coordinates refer to a frame of reference with the agent at the origin, pointed
in the positive Y direction. The agent always observes one vertical wall and one horizontal wall.

4.2. BabyAI Environment

In order to understand how factored representations may be
effectively utilized by WMG, we study BabyAI, a domain
whose observation space is amenable to factoring. BabyAI
(Chevalier-Boisvert et al., 2018) is a partially observable,
2D grid-world containing objects that can be viewed and
moved by the agent. Unlike most RL environments, BabyAI
features text instructions that specify the goal, such as “pick
up the green box”.

We focus on five BabyAI levels, for which the environ-
ment consists of a single 6x6 room, as shown in Figure 4
(left). Despite the apparent simplicity of a single-room
domain, learning to solve it can often take model-free RL
agents hundreds of thousands of environment interaction
steps (Chevalier-Boisvert et al., 2018). The agent’s action
space consists of 7 discrete actions: Move forward, Turn left,
Turn right, Pick up, Drop, Toggle, and Done. An episode
ends after 64 timesteps, or when the agent achieves the goal,
for which it receives a reward of 1. In Level 1 (GoToObj),
the room contains only one object. The agent completes
the mission by moving to an adjacent square and pointing
toward the object. In Level 2, the target object is always a
red ball, and seven grey boxes are present as distractors. In
Level 3, the distractors may be any of the 3 object types and
6 colors. If one of the distractors happens to be a red ball,
the agent is rewarded for reaching it. In Level 4, the instruc-
tion specifies the color and type of the target object. This is
the first level in which the text instruction contains valuable
information. (See Table 15 for instruction templates.) Level
5 increases the difficulty of Level 4 in two ways: First, the
agent must reach and pick up the target object. Second, if
multiple qualifying target objects are present, the agent is
given the initial relative location of the true target, such as
“behind you”.

Throughout this work we follow the strategy of routing
multi-instance aspects of observations to WMG Factors,

and single-instance aspects to the Core. Figure 4 gives the
factoring details for BabyAI, where each agent observation
consists of a text instruction, an image, and the agent’s
orientation. The image’s native format is a 7x7 array of
cell descriptors (not pixels) identifying three attributes of
each cell: type, color, and open/closed/locked (referring
to doors, which are not found in these 5 levels). In our
experiments the text instruction is always factored in a fixed
style, while the image is formatted in various ways to study
agent capabilities: (1) 7x7x3, the native BabyAI image
array; (2) flat, the native 7x7x3 array flattened to one vector;
(3) factored image, as described in Figure 4. (Note that
when a factored image is passed to a GRU, it is first flattened
and padded to form a fixed-length vector.)

To determine whether WMG can leverage factored obser-
vations more effectively than gated RNNs in BabyAI, we
evaluate the following agents: (1) WMG is the full, re-
current WMG model, with Factors from observations, (2)
nr-WMG is an ablated, non-recurrent version of WMG
with no Memos, and no access to prior observations, (3)
GRU, and (4) CNN+GRU uses a CNN to process the na-
tive 7x7x3 image, followed by a GRU. This CNN is one of
the two CNN models provided in the BabyAI open source
code (Chevalier-Boisvert et al., 2018).

4.2.1. BABYAI RESULTS

Factored Observations: The largest performance differ-
ences in Table 1 stem from the choice of factored versus flat
or native image formats. Notably, WMG with factored im-
ages achieved sample efficiencies 10x greater (on Level 3)
than CNN+GRU using the native 7x7 image format. How-
ever, factored observations alone are not sufficient for sam-
ple efficiency: WMG utilized factored images much more
effectively than a GRU on Levels 2-5. These large gains in
sample efficiency support our hypothesis that Transformer-
based models are particularly well suited for operating on
set-based inputs like factored observations.
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Table 1. BabyAI sample efficiency: the amount of training (shown here in thousands of environment interactions) required for a model
to solve 99% of 10,000 new, random episodes. Hyperparameters were first tuned on each model/format/level combination separately, then
each reported result was computed as the median sample efficiency over 100 additional training runs. Dashes indicate that no model
reliably reached a solution rate of 99% within 6 million training steps (environment interactions). Note that Chevalier-Boisvert et al.
(2018) report sample efficiencies in terms of episodes rather than environment interactions. (See Table 15.)

Model WMG nr-WMG GRU WMG GRU CNN+GRU
Image format factored factored factored flat flat native 7x7x3
Level 1 - GoToObj 1.6 1.4 1.7 15.0 19.0 10.6
Level 2 - GoToRedBallGrey 6.7 5.2 24.6 29.0 31.0 22.3
Level 3 - GoToRedBall 16.0 23.6 174.4 92.0 124.6 204.9
Level 4 - GoToLocal 59.7 71.3 2,241.6 1,379.9 1,799.4 —–
Level 5 - PickupLoc 222.3 253.0 —– —– —– —–

Model WMG nr-WMG GRU WMG GRU
Image factored factored factored flat flat
Level 1 5.0 3.2 8.0 40.6 36.9
Level 2 13.5 9.9 42.6 74.9 55.3
Level 3 34.7 39.3 313.9 231.4 188.9

Figure 5. Hyperparameter Sensitivity: (Left) Sample efficiency (in thousands of environment interactions to reach 99% success rate) of
various model-format combinations on Levels 1-3, using hyperparameters optimized for Level 4 (GoToLocal). (Right) Performance on
Level 5 (PickupLoc) using hyperparameters optimized for Level 4. Although none of the models reach 99% success rate on Level 5,
WMG with factors reaches a high level of performance before the others.

Memos: Without factored observations, WMG-flat out-
performed GRU-flat, suggesting that shortcut recurrence
based on WMG’s Memos compares favorably to the GRU’s
gated recurrence. With the benefit of factored observations,
the non-recurrent ablation of WMG (nr-WMG) performed
slightly better than the full WMG on the simplest two levels.
But for the more challenging levels 3-5, Memos proved to
be important for the best sample efficiency.

Early vs Late instruction fusion: Interestingly, within
our training limit of 6 million environment interactions,
CNN+GRU was unable to learn to solve the levels (4 & 5)
where instructions carry important information. We suspect
this is because the CNN processes just the image while the
factored instruction is passed directly to the GRU, skipping
the CNN. By contrast, the baseline BabyAI agent uses FiLM
layers (Perez et al., 2018) to integrate the processing of the
image with the text instruction. Both WMG and GRU mod-
els can process the image and instruction together in all
levels of processing. This early fusion appears to allow all
WMG and GRU models to solve Level 4.

In summary, the two WMG models with factored images
were the only agents able to solve Level 5, and they learned
to do so in approximately the same number of interactions

that CNN+GRU required to solve Level 3. These drastic dif-
ferences in sample efficiency serve to highlight the potential
gains that can be achieved by RL agents equipped to utilize
factored observations.

While WMG’s sample efficiencies dramatically improve
upon the RL benchmarks published with the BabyAI do-
main (Chevalier-Boisvert et al., 2018), often by two orders
of magnitude (Table 15), it’s important to note that these
sets of results are not directly comparable. Our experiments
all used factored text instructions, and each model’s hyper-
parameters were tuned for each level separately, while the
BabyAI benchmark agent was trained on all levels using the
single hyperparameter configuration provided in the BabyAI
release.

4.2.2. HYPERPARAMETER SENSITIVITY

To evaluate WMG’s sensitivity to hyperparameter selection,
we applied the tuned hyperparameter settings from Level
4 to new training runs on all other levels. Figure 5 shows
moderate degradation in performance for all models. In
particular, when the hyperparameter values tuned on Level
4 are used in Level 5 training runs, none of the models
reach a 99% solution rate within 1 million training steps,
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Figure 6. Sokoban puzzles (left) and WMG results (right) for 20 agents trained on the 900k-puzzle training set and evaluated on the
1000-puzzle test set from Guez et al. (2019), which reported the results for DRC and the other six agents shown here. Shading represents
one standard deviation over the 20 independently trained WMG models.

but WMG with factored observations reaches higher levels
of performance than the other models. Broadly, these results
indicate that WMG is no more sensitive to hyperparameter
settings than the baseline agents.

4.3. Sokoban Environment

As an independent test of WMG’s ability to perform com-
plex reasoning over factored observations, we apply it to the
Sokoban domain (Botea et al., 2003), a challenging puzzle
that humans solve by forward planning. To successfully
complete an episode, the agent (green circle in Figure 6,
left) must push four yellow boxes onto the red targets within
120 timesteps. Boxes may not be pushed into walls or other
boxes, and cannot be pulled, so many moves render the
puzzle unsolvable.

We employ the training set, test set, and action space defined
in Guez et al. (2019). Training episodes are sampled from
900k pre-generated puzzles. The agent can move in each
of the four directions (if not blocked) or stay in place. The
agent receives a reward of +1 for pushing a box onto a target,
and -1 for pushing a box off of a target. Once all boxes are
on targets, the agent receives a bonus reward of +2, and the
episode ends.

The observation space is factored as follows: Each non-wall
cell is represented by a factor containing 6 binary flags sig-
nifying whether the cell is a target, contains a box, and is
bounded by a wall in each direction. The previous action
and reward, plus information about the agent’s currently

occupied cell, are passed to the Core. All other cells are
mapped to separate Factors. Each Factor also receives two
one-hot vectors specifying that cell’s X and Y locations rela-
tive to the agent. Compared to image-based observations,
our factored observations add egocentric information by
encoding the relative positions of objects. The two spaces
are otherwise isomorphic.

We tuned hyperparameters on the training set (Appendix B),
then evaluated saved models from the corresponding twenty
independent training runs on the 1000-puzzle test set. As
shown in Fig 6 (right), WMG quickly learned to solve
most puzzles, and consistently outperformed DRC (Deep
Repeated ConvLSTM) by Guez et al. (2019). WMG and
DRC far exceeded the performance of the other six baseline
agents, as reported in Table 2 of that work. These results
demonstrate that WMG can effectively use factored obser-
vations to solve difficult tasks that seem to rely on planning.

Videos of WMG tackling Sokoban puzzles are available at
https://tinyurl.com/vdz6gdd. To aid visualiza-
tion of WMG’s inner operations, many of the videos display
white squares with areas proportional to the per-step atten-
tion probabilities applied by WMG’s Core to all nodes in
the preceding layer. These probabilities are summed over
all attention heads, and over all layer pairs above the low-
est. Attention applied to the single (in this task) Memo is
represented by the white square in the upper-left cell. Our
implementation of the Sokoban environment is based in part
on that of Schrader (2018).

https://tinyurl.com/vdz6gdd
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5. Conclusion and future work
We designed the Working Memory Graph to investigate how
self-attention can improve the memory and reasoning ca-
pabilities of RL agents. In contrast to previous models,
WMG effectively leverages factored observations by en-
coding them into Factors and applying Transformer-style
self-attention. In order to reason over latent aspects of par-
tially observable environments, WMG incorporates a novel
form of recurrence using Memos to create multiple shortcut
paths of self-attention.

We compare WMG to gated RNN-based architectures (in-
cluding state-of-the-art models like DRC) in three diverse
environments featuring factored observations and complex
reasoning over long-term dependencies. In these experi-
ments, WMG outperforms competing models and demon-
strates its ability to learn challenging tasks in a sample-
efficient manner.

We stop short of claiming state-of-the-art performance on
these domains, since factoring an observation space can
alter the inherent difficulty of the task. Instead, our results
demonstrate how a Transformer-based agent (WMG) can
take advantage of factored observations to yield superior
learning performance.

No model is without limitations. We conclude by outlining
limitations of WMG as avenues for future work:

Flexible Memo lifetimes: In the current version of WMG,
each new Memo automatically replaces the oldest. A more
flexible and adaptive Memo-deletion scheme may improve
WMG’s ability to model latent aspects of the environment.
For instance, Memos that receive more attention than others
may be the ones most worth keeping around for longer.
Deleting a Memo only when its recently-received attention
falls below a certain threshold would allow the number of
Memos to fluctuate somewhat over time.

Graph edge content: As in the original Transformer,
WMG applies input vectors to the nodes in its computa-
tion graph, but not to the edges between them. To better
represent graph-structured data, Veličković et al. (2018) con-
templated incorporating edge-specific data into Transformer-
based models. By harnessing the richer representational
abilities of graphs over sets, a similar extension of WMG
may allow it to better model complex relations among ob-
served and latent factors in the environment.

Memory vectors: Various forms of external memory
have been proposed for RL agents (Graves et al., 2016;
Munkhdalai et al., 2019). Memory vectors retrieved from
such stores could be passed to dedicated WMG memory vec-
tors, in addition to the Memos and Factors, to further extend
the range and flexibility of the agent’s reasoning horizon.
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Appendices
A. Pathfinding Task Details
The Pathfinding graph is constrained to be a polytree (singly
connected, directed acyclic graph) at each step of an episode,
as outlined in Algorithm 1.

Algorithm 1 Pathfinding Episode Dynamics

Input: pattern size D, max graph size N .
Initialize Graph = empty.
Add a node with random pattern ∈ (−1,+1)D.
AddPattern = true.
repeat

Input: agent Action.
Reward = 0.
Done = false.
if AddPattern is true then

// Construction step.
if size(Graph) > 1 and Action == Target then
Reward = 1.

end if
if size(Graph) == N then
Done = true.

else
Choose random node A from the Graph.
Add node B with random pattern ∈ (−1,+1)D.
Link A and B in a random direction.
Observation = A,B, 0.
AddPattern = false.

end if
else

// Quiz step.
Choose random Target ∈ (true, false).
repeat

Choose random nodes X and Y .
PathExists = path exists from X to Y .

until PathExists == Target
Observation = X,Y, 1.
AddPattern = true.

end if
Output: Reward,Observation,Done

until Done is true

The hand-coded baseline agent is configured with a depth
parameter n. As new pattern pairs are revealed on graph-
construction timesteps, this agent maintains a growing vec-
tor of all patterns seen, along with a growing matrix of
directed path lengths from every observed pattern to every
other. A path length of zero in this matrix indicates that
no path exists from the first pattern to the second. On each
quiz step, the agent looks up from the matrix the path length
len for the ordered pair of patterns in the observation. If

0 < len ≤ n, the agent chooses the yes action. Otherwise,
the agent chooses the no action.

B. Hyperparameter Tuning Procedures
B.1. DGD

In this work, all hyperparameters were tuned by a guided
form of random search that we have named Distributed Grid
Descent (DGD). It is designed to address the challenges
posed by large numbers of hyperparameters (10-20), and
the high variance among independent training runs for the
same hyperparameter configuration that is often observed
in Deep RL experiments. DGD tackles these challenges
by steering the random selection of configurations to be
tested towards a robust basin, a fixed point in configuration
space for which modification of any individual (discrete)
hyperparameter setting by one step higher or lower results
in worse performance in expectation over repeated runs. In
addition, DGD is designed to run on multiple processes on
potentially many machines with no central point of control.

We define the following terms:

Tuning metric: A user-defined value calculated per training
run for which higher is better, such as reward or success
rate, or negative loss, etc.

Run result: A completed run’s hyperparameter configuration
and final tuning metric.

Run set: A single hyperparameter configuration, along with
any available run results for that configuration.

Count(run set): The number of runs in a run set.

Metric(run set): The mean (or median) of the run metrics in
a run set.

Neighborhood: A collection of run sets with configurations
that differ by no more than one step in one setting from the
configuration of a central run set in the neighborhood.

Count(neighborhood): The maximum Count of all run sets
in the neighborhood.

The operation of each DGD worker process is described by
Algorithm 2.

Throughout the DGD search, the best current run set is
determined through Bayesian inference based on each run
set’s Metric and Count, to filter out high-variance run sets
having high average scores but relatively few runs. After the
best posterior performance remains stable for some number
of runs, the DGD search is terminated, and the best run set’s
hyperparameter configuration is taken as the output of the
search. To minimize the effects of local optima, the best
run set can be chosen from a number of independent DGD
searches.
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Algorithm 2 Distributed Grid Descent

Input: Set of hyperparameters H , each having a discrete,
ordered set of possible values.
Input: Maximum number of training steps N per run.
repeat

Download any new run results.
if no results so far then

Choose a random configuration C from the grid
defined by H .

else
Identify the run set S with the highest Metric.
Initialize neighborhood B to contain only S.
Expand B by adding all possible run sets whose
configurations differ from that of S by one step in
exactly one hyperparameter setting.
Calculate a ceiling M = Count(B) + 1.
Weight each run set x in B by M − Count(x).
Sample a random run set S′ from B according to
run set weights.
Choose the configuration C from S′.

end if
Perform one training run of N steps using C.
Calculate the run’s Metric.
Log the run result to shared storage.

until terminated by user.

B.2. Application of DGD

For the Pathfinding and BabyAI experiments, we ran five
parallel DGD hyperparameter searches to convergence for
each model, using the full number of training steps per
run for the given experiment, and chose the best run set’s
hyperparameter configuration after convergence.

For WMG on Sokoban, we performed 60 DGD searches
using training runs of 1.5M steps, with puzzle completion
rate as the tuning metric. After those searches converged,
we selected the best 25 configurations based on the training
set results, and initiated 20 new training runs for each con-
figuration. After training each agent for 10M environment
interactions, we selected the single best hyperparameter con-
figuration based on its performance on the training set. We
then branched this configuration into 10 sets of runs with
learning rate annealed every 100k steps using one of 10
separate values of gamma ranging from 0.6 to 0.98. After
each agent was trained for a total of 20 million environment
interactions, the annealing rate of 0.98 was found to per-
form the best on the training set. Finally, for this selected
configuration’s 20 independent agents, the models cached
at 5M-step intervals were evaluated on the held-out test set
of 1000 puzzles, producing the results shown in Figure 6
(right).

All experiments were performed on Linux virtual machines

in the Microsoft Azure cloud. The virtual machines featured
Intel 2.6GHz Xeon E5 2667 v3 processors with 8 virtual
CPUs, and no GPUs.
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C. Supplemental Tables

Table 2. Fixed settings and options used for all experiments, apart from the replicated BabyAI baselines in Table 15.
Settings and options Values
Dropout None
Learning rate schedule Constant learning rate, except where noted
Non-linearities ReLU, tanh
Parallel training workers 1
Optimizer Adam (Kingma & Ba, 2014)
Parameter initialization, biases 0
Parameter initialization, non-bias weights Kaiming uniform (He et al., 2015)
Reward shaping None
Training algorithm A3C (Mnih et al., 2016)
Weight decay regularization None

Table 3. Hyperparameter values considered.
A3C tmax 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 96, 120
Actor-critic hidden layer size 64, 90, 128, 180, 256, 360, 512, 720, 1024, 1440, 2048, 2880, 4096, 5760
Adam eps 1e-2, 1e-4, 1e-6, 1e-8, 1e-10, 1e-12
CNN channel size 1 12, 16, 20
CNN channel size 2 24, 32, 40
CNN channel size 3 64, 128, 192
Discount factor γ 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99, 0.995, 0.998
Entropy term strength β 0.0, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2
Gradient clipping threshold 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
GRU observation embed size 128, 256, 512, 1024, 2048, 4096
GRU size 64, 96, 128, 192, 256, 384, 512, 768, 1024
Learning rate 4e-6, 6.3e-6, 1e-5, 1.6e-5, 2.5e-5, 4e-5, 6.3e-5, 1e-4, 1.6e-4, 2.5e-4, 4e-4
Learning rate annealing γ 0.60, 0.64, 0.68, 0.72, 0.76, 0.80, 0.84, 0.88, 0.93, 0.98
Reward on success (Sokoban) 2, 5, 10, 15, 20
Reward per step (Sokoban) 0, -0.01, -0.02
Reward scale factor 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128
WMG attention head size 8, 12, 16, 24, 32, 48, 64, 90, 128, 180, 256, 360, 512
WMG attention heads 1, 2, 3, 4, 6, 8, 10, 12, 16, 20
WMG Memo size 32, 45, 64, 90, 128, 180, 256, 360, 512, 720, 1024, 1440, 2048
WMG Memos 1, 2, 3, 4, 6, 8, 10, 12, 16, 20
WMG hidden layer size 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512
WMG layers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

For the Pathfinding domain, we verified in separate experiments that there is no difference in performance between setting
the number of WMG Memos to 12 (the maximum episode length) or 16 (chosen by tuning). Since we introduce no penalty
for model complexity, both DGD and random search would be expected to choose randomly between these possible values.
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Table 4. Tuned hyperparameter settings for Pathfinding experiments of 20M steps.
WMG nr-WMG GRU

Actor-critic hidden layer size 128 128 512
A3C tmax 16 16 16
Adam eps 1e-06 1e-08 1e-08
Discount factor γ 0.5 0.6 0.5
Entropy term strength β 0.01 0.005 0.02
Gradient clipping threshold 16.0 16.0 4.
GRU observation embedding size - - 256
GRU size - - 384
Learning rate 0.00016 0.00016 0.0001
Reward scale factor 2.0 1.0 0.5
WMG attention head size 12 16 -
WMG attention heads 6 6 -
WMG Memos 16 0 -
WMG Memo size 128 - -
WMG hidden layer size 12 32 -
WMG layers 4 4 -

Table 5. Tuned hyperparameter settings for Pathfinding experiments of 1M steps.
WMG nr-WMG GRU

Actor-critic hidden layer size 2880 256 5760
A3C tmax 16 16 16
Adam eps 1e-04 1e-12 1e-06
Discount factor γ 0.5 0.5 0.5
Entropy term strength β 0.005 0.05 0.1
Gradient clipping threshold 256.0 4.0 32.
GRU observation embedding size - - 1024
GRU size - - 256
Learning rate 0.00004 0.00016 0.0001
Reward scale factor 4.0 2.0 2.0
WMG attention head size 90 90 -
WMG attention heads 4 1 -
WMG Memos 6 0 -
WMG Memo size 256 - -
WMG hidden layer size 8 16 -
WMG layers 3 5 -

Table 6. Tuned hyperparameter settings for BabyAI Level 1 - GoToObj.
WMG nr-WMG GRU WMG GRU CNN+GRU

factored factored factored flat flat native 7x7x3
Actor-critic hidden layer size 2048 4096 4096 4096 2048 512
A3C tmax 1 1 6 16 4 6
Adam eps 0.0001 1e-08 1e-08 1e-10 0.0001 1e-10
CNN hidden channel size 1 - - - - - 16
CNN hidden channel size 2 - - - - - 40
CNN hidden channel size 3 - - - - - 192
Discount factor γ 0.98 0.9 0.7 0.6 0.9 0.8
Entropy term strength β 0.002 0.05 0.01 0.005 0.02 0.02
Gradient clipping threshold 256.0 1024.0 512.0 512.0 128.0 128.0
GRU observation embed size - - 1024 - 512 512
GRU size - - 96 - 512 96
Learning rate 0.0001 4e-05 0.0004 0.0001 0.0001 0.0004
Reward scale factor 4.0 32.0 32.0 8.0 32.0 8.0
WMG attention head size 24 16 - 16 - -
WMG attention heads 4 10 - 12 - -
WMG Memos 1 0 - 1 - -
WMG Memo size 64 - - 256 - -
WMG hidden layer size 64 64 - 32 - -
WMG layers 4 4 - 1 - -
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Table 7. Tuned hyperparameter settings for BabyAI Level 2 - GoToRedBallGrey.
WMG nr-WMG GRU WMG GRU CNN+GRU

factored factored factored flat flat native 7x7x3
Actor-critic hidden layer size 4096 2048 4096 4096 4096 64
A3C tmax 8 6 16 1 1 1
Adam eps 1e-06 1e-08 1e-10 1e-10 1e-06 0.0001
CNN hidden channel size 1 - - - - - 12
CNN hidden channel size 2 - - - - - 24
CNN hidden channel size 3 - - - - - 192
Discount factor γ 0.8 0.9 0.8 0.9 0.9 0.95
Entropy term strength β 0.01 0.02 0.01 0.005 0.005 0.02
Gradient clipping threshold 1024.0 512.0 1024.0 128.0 64.0 64.0
GRU observation embed size - - 4096 - 2048 256
GRU size - - 96 - 512 64
Learning rate 0.0001 0.00025 0.0001 2.5e-05 2.5e-05 0.0004
Reward scale factor 8.0 4.0 4.0 4.0 4.0 2.0
WMG attention head size 64 48 - 64 - -
WMG attention heads 4 1 - 3 - -
WMG Memos 1 0 - 8 - -
WMG Memo size 32 - - 64 - -
WMG hidden layer size 16 24 - 384 - -
WMG layers 3 3 - 1 - -

Table 8. Tuned hyperparameter settings for BabyAI Level 3 - GoToRedBall.
WMG nr-WMG GRU WMG GRU CNN+GRU

factored factored factored flat flat native 7x7x3
Actor-critic hidden layer size 4096 2048 4096 4096 4096 4096
A3C tmax 1 2 3 1 2 3
Adam eps 1e-12 0.0001 1e-06 0.0001 1e-06 0.01
CNN hidden channel size 1 - - - - - 12
CNN hidden channel size 2 - - - - - 40
CNN hidden channel size 3 - - - - - 192
Discount factor γ 0.95 0.9 0.9 0.9 0.9 0.9
Entropy term strength β 0.1 0.05 0.1 0.05 0.02 0.05
Gradient clipping threshold 128.0 128.0 128.0 128.0 32.0 32.0
GRU observation embed size - - 2048 - 4096 256
GRU size - - 192 - 512 64
Learning rate 2.5e-05 6.3e-05 6.3e-05 2.5e-05 2.5e-05 0.0004
Reward scale factor 8.0 4.0 8.0 8.0 4.0 4.0
WMG attention head size 128 32 - 24 - -
WMG attention heads 2 8 - 12 - -
WMG Memos 2 0 - 16 - -
WMG Memo size 128 - - 256 - -
WMG hidden layer size 64 32 - 128 - -
WMG layers 4 4 - 1 - -
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Table 9. Tuned hyperparameter settings for BabyAI Level 4 - GoToLocal.
WMG nr-WMG GRU WMG GRU

factored factored factored flat flat
Actor-critic hidden layer size 2048 2048 1024 512 4096
A3C tmax 6 3 3 6 4
Adam eps 1e-12 0.01 1e-06 1e-08 1e-12
Discount factor γ 0.5 0.6 0.95 0.5 0.9
Entropy term strength β 0.1 0.1 0.1 0.02 0.02
Gradient clipping threshold 512.0 512.0 256.0 256.0 512.0
GRU observation embed size - - 1024 - 512
GRU size - - 128 - 96
Learning rate 6.3e-05 0.0001 4e-05 2.5e-05 4e-05
Reward scale factor 32.0 16.0 8.0 16.0 2.0
WMG attention head size 128 64 - 24 -
WMG attention heads 2 4 - 16 -
WMG Memos 8 0 - 16 -
WMG Memo size 32 - - 64 -
WMG hidden layer size 32 48 - 16 -
WMG layers 4 3 - 2 -

Table 10. Tuned hyperparameter settings for BabyAI Level 5 - PickupLoc.
WMG nr-WMG

factored factored
Actor-critic hidden layer size 512 2048
A3C tmax 12 12
Adam eps 1e-10 1e-10
Discount factor γ 0.7 0.8
Entropy term strength β 0.02 0.05
Gradient clipping threshold 512.0 512.0
Learning rate 0.0001 6.3e-05
Reward scale factor 8.0 8.0
WMG attention head size 24 48
WMG attention heads 10 6
WMG Memos 8 0
WMG Memo size 32 -
WMG hidden layer size 128 96
WMG layers 2 2

Table 11. Tuned hyperparameter values on Sokoban. The resulting model contained 4,508,182 trainable parameters.
Reward per step 0
Reward on success 2
Actor-critic hidden layer size 2880
A3C tmax 4
Adam eps 1e-10
Discount factor γ 0.995
Entropy term strength β 0.02
Gradient clipping threshold 512.0
Learning rate 1.6e-5
Learning rate annealing γ 0.98
Reward scale factor 4
WMG attention head size 32
WMG attention heads 8
WMG Memos 1
WMG Memo size 2048
WMG hidden layer size 8
WMG layers 10
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Table 12. Additional details for Pathfinding experiments of 20M steps.
Models & algorithms Final performance Trainable parameters Training speed
Depth-(n-1) baseline 100.0% of reward
Depth-3 baseline 99.7% of reward
Depth-2 baseline 97.6% of reward
Depth-1 baseline 86.9% of reward
nr-WMG, full-history 99.6% of reward 204,963 96 steps/sec
WMG 99.6% of reward 132,507 91 steps/sec
GRU 94.7% of reward 1,139,459 291 steps/sec

Table 13. Number of trainable parameters, in thousands, for the BabyAI models in Table 1.
WMG nr-WMG GRU WMG GRU CNN+GRU

BabyAI level factored factored factored flat flat native 7x7x3
1 - GoToObj 636 1,864 1,572 2,053 4,170 393
2 - GoToRedBallGrey 2,997 258 3,723 2,116 10,075 140
3 - GoToRedBall 3,418 2,217 3,749 3,229 15,126 709
4 - GoToLocal 2,235 1,960 1,137 2,022 1,479 —–
5 - PickupLoc 879 2,007 —– —– —– —–

Table 14. Training steps per second on a fixed machine, for the BabyAI models in Table 1.
WMG nr-WMG GRU WMG GRU CNN+GRU

BabyAI level factored factored factored flat flat native 7x7x3
1 - GoToObj 38 28 146 111 86 149
2 - GoToRedBallGrey 58 113 147 35 18 88
3 - GoToRedBall 18 32 78 25 20 87
4 - GoToLocal 44 48 132 54 134 —–
5 - PickupLoc 81 84 —– —– —– —–

Table 15. BabyAI baseline agent sample efficiencies, defined as the amount of training (in either episodes or environment interaction
steps) required for the agent to solve 99% of random episodes within 64 steps. The published results are the means of the min & max RL
sample efficiencies reported in Table 3 of Chevalier-Boisvert et al. (2018). We obtained the replicated results, which are the medians over
10 training runs, using the code and default hyperparameter settings from the open source release of the BabyAI baseline agent. We report
these sample efficiencies in terms of both episodes and environment interactions. All numbers are in thousands.

Published Replicated Replicated
BabyAI level Instruction template (episodes) (episodes) (env interactions)
1 - GoToObj GO TO 〈color〉 〈object〉 —– 19 333
2 - GoToRedBallGrey GO TO RED BALL 17 16 282
3 - GoToRedBall GO TO RED BALL 297 283 3,674
4 - GoToLocal GO TO 〈color〉 〈object〉 1008 1,064 16,422
5 - PickupLoc PICK UP 〈color〉 〈object〉 〈location〉 1,545 1,557 25,574


