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Abstract—Attackers evolve their malware over time in order
to evade detection, and the rate of change varies from family
to family depending on the amount of resources these groups
devote to their “product”. This rapid change forces anti-malware
companies to also direct much human and automated effort
towards combatting these threats. These companies track thou-
sands of distinct malware families and their variants, but the most
prevalent families are often particularly problematic. While some
companies employ many analysts to investigate and create new
signatures for these highly prevalent families, we take a different
approach and propose a new deep learning system to learn a
semantic feature embedding which better discriminates the files
within each of these families. Identifying files which are close in
a metric space is the key aspect of malware clustering systems.
The DeepSim system employs a Siamese Neural Network (SNN),
which has previously shown promising results in other domains,
to learn this embedding for the cosine distance in the feature
space. The error rate for K-Nearest Neighbor classification using
DeepSim’s SNN with two hidden layers is 0.011% compared to
0.42% for a Jaccard Index-based baseline which has been used by
several previously proposed systems to identify similar malware
files.

Index Terms—Malware Detection, Siamese Neural Network

I. INTRODUCTION

Detecting unknown, new variants of malware remains a
significant problem facing anti-malware companies today.
While these companies routinely track thousands of individual
malware families and their variants, the most prevalent families
are particular challenging. In this paper, we present a system
called DeepSim to automatically identify similar, malware files
and demonstrate that it can significantly improve the detection
results compared to a baseline system utilizing the Jaccard
Index which has been used in similar, previously proposed
systems [1]–[3]. While being applicable to any polymorphic
malware family, we show that DeepSim is particularly effective
in combatting highly prevalent malware families.

A key component of some malware detection systems is
determining similar files in a high-dimensional input space.
For example, instance-based malware classifiers such as the
K-Nearest Neighbor (KNN) classifier [4], [5] rely on the
similarity score or distance between two files. The K-Nearest
Neighbor classifier is the optimal classifier given an infinite
amount of training data [6]. Malware clustering [1]–[3], [7]
which identifies groups of malware files also relies on com-
puting a similarity score between files. A number of malware

detection systems use the Jaccard Index as the similarity
score [1]–[3]. The problem with the Jaccard Index is that all
features extracted from a file have equal weight. However,
certain key features such as a particular URL or registry key
pattern may be key to detecting individual files from highly
prevalent families. What is needed to better detect similar
malware is a method for learning these key features and giving
them higher weight.

DeepSim employs a novel method of learning an embedding
vector, based on deep learning, which detects similar malware
files in the feature space using the cosine distance. Several
researchers have explored using deep learning for malware
classification [8]–[10]. Neural network architectures trained
with millions of files are producing some of the best results for
malware classification published in the literature [8]. Inspired
by these results, we seek to find a neural network-based
architecture to detect similar malware files. Bromley et al. [11]
proposed a deep learning algorithm called the Siamese Neural
Network (SNN) for learning similar pairs in the context of
signature verification. We use a Siamese Neural Network to
learn the feature embeddings in DeepSim. The SNN addresses
the high-level goal of training a model which learns to give
different weights to features based on their importance.

We have implemented DeepSim and tested it on a large
collection of highly prevalent malware families. Implementing
a K-Nearest Neighbor classifier using the SNN with two
hidden layers yields an error rate of 0.011% compared to
0.42% for a KNN classifier which uses the Jaccard index to
identify similar files. A summary of the main contributions of
our work includes:

• We propose DeepSim, a deep learning architecture for
identifying similar malware files. DeepSim learns weights
corresponding to different features such that important
features found in similar files, from the same family,
contribute positively to the cosine similarity score and
features which distinguish malware files from benign files
contribute negatively to the cosine similarity score.

• We implement and evaluate DeepSim on a collection of
highly prevalent families and demonstrate that it sig-
nificantly outperforms a similar baseline system using
the Jaccard Index which has also been used in several
previously proposed malware detection and clustering
systems.



II. DEEPSIM SYSTEM OVERVIEW

We designed the DeepSim to detect highly prevalent mal-
ware families, and the overview for the system is shown
in Figure 1. The left-hand side describes the components
required for training DeepSim’s underlying model while the
right-hand side depicts the steps followed when evaluating a
set of unknown files in order to automatically predict if they
belong to one of the highly prevalent malware families. We
next provide details of some of the individual components in
our system.
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Fig. 1: DeepSim high-level system overview. The left-hand
side outlines the steps for training, and the right-hand side
illustrates the evaluation process.

File Emulation. DeepSim’s first component for both model
training and unknown file evaluation is lightweight file em-
ulation which is performed using a modified version of a
production anti-malware engine. This anti-malware engine
extracts raw, high-level data during emulation and generates
the logs which are consumed by the downstream processing.
DeepSim utilizes dynamic analysis to extract the raw data from
the labeled files for training the model and from the unknown
files for predicting the family.
High-Level Feature Description. DeepSim employs two
types of data extracted from the files including unpacked
file strings and API calls with their associated parameters.
It is important to note that the dataset that was provided
to the researchers only included these two sets of data for
analysis; it was not possible to include additional features for
these files. Malware is often packed or encrypted. As it is

emulated by the anti-malware engine, the malware unpacks or
decrypts itself and often writes null-terminated objects to the
emulator’s memory. Typically, these null-terminated objects
are the strings which have been recovered during unpacking
or decryption, and these strings sometimes provide a good
indication of whether or not the file is malicious.

In addition to the unpacked file strings, a second set of
high-level features are constructed from a sequence of API
calls and their parameter values. The API stream is com-
posed of function calls from different sources including the
user mode operating system and the kernel mode operating
system. For example, there are a number of Windows APIs
which can be used to read a registry key’s value including
the user mode functions RegQueryValue() and RegQueryVal-
ueEx() and the RtlQueryRegistryValues() function from kernel
mode. Functions which perform the same logical operation
are mapped to a single API event. In this example, calls to
RegQueryValue(), RegQueryValueEx() and RtlQueryRegistry-
Values() are all mapped to the same API event ID (EventID).
In addition, important API parameter values, such as the key
name or the key value in our example, are also captured by the
emulator. Using this data, the second feature set is constructed
from a sequence of API call events and their parameter values.
To handle the case where several API calls are mapped to
the same event but have different parameters, only the two
most important parameters shared by the different API calls
are considered.
Low-Level Feature Encoding. Each malware sample may
generate thousands of raw unpacked file strings or API call
events and their parameters. Since we have designed DeepSim
to detect polymorphic malware in addition to non-polymorphic
malware, we cannot encode the potential features directly as
sparse binary features. In other words, if each variant in a
family drops a second, temporary file with a partially random
name or contacts a command and control (C&C) server with
a partially random URL, we do not want to represent the file
name or the URL explicitly. To handle this case, we instead
encode the raw unpacked file strings and the API calls and
their parameters as a collection of N-Grams of characters. In
particular, we use trigrams (i.e. N-Grams where N = 3) of
characters for all values.

One limitation of a Jaccard Index-based similarity system
is that it cannot distinguish between multiple types of features
in the same set (e.g. EventID, Parameter Value1, Parameter
Value 2). Also, short values such at the EventID (e.g. 98)
have less influence on the Jaccard Index than longer features
including the parameter values (e.g. registry key name). To
improve the performance of the Jaccard Index baseline system,
we overcome these limitations by expanding the EventID to
the full API name and encoding the entire API name as a string
using character level trigrams. Thus, representing the API
name using their trigrams allows the API names to contribute
more significantly to the file pair’s Jaccard Index. We use this
trigram representation of the API name for all models to fairly
compare the results of the SNN model with the Jaccard Index-
based model.



The SNN model, on the other hand, does not suffer from
these limitations. Therefore in practice for DeepSim, we would
encode the EventID or the API name as a single categorical
feature because the two deep neural networks can learn to
assign larger weights to the most important API calls for
pairs of similar files. Thus, we could encode the entire call
separately as (EventID, Parameter 1 N-Grams, Parameter 2 N-
Grams), and we believe this would improve the SNN model’s
performance since it learns a specific representation for each
combination of EventID and the N-Grams of the parameter
values.
Feature Selection. There are hundreds of thousands of poten-
tial N-Gram features in the raw data generated during dynamic
analysis, and it is computationally prohibitive to train the SNN
model using all of them. Thus, we next perform per class,
feature selection which yields the most discriminative features
for our system using the mutual information criteria [12].
In order to process a production-level input data stream, we
implemented all of the DeepSim’s functions which are required
to preprocess the data in Microsoft’s Cosmos MapReduce
system.
Training and Test Set Construction. Before training Deep-
Sim’s model, we must first construct a training set consisting
of the selected N-Gram features from pairs of malware files
which are known to be similar as well as those from benign
files which are dissimilar. We determine the similar malware
file pairs for this training set based on several criteria. First, in
order to correctly train the DeepSim model, we must carefully
choose the similar file pairs. Randomly selecting two files
whose families match does not work well in practice [13].
The problem is that there are many different variants of
some of these families. To solve this problem, we utilize the
malware file’s detection signature. An anti-malware engine
utilizes specific signatures to determine if an unknown file is
malicious or benign. Each signature is often very specific and
has a unique identifier (SignatureID). Therefore the first step
in determining similar pairs for training is to group pairs of
malware files detected with identical SignatureIDs. While most
malicious files that are detected with the same SignatureID
belong to the same malware family, this is not always the
case. Thus, we also require that candidate file pairs must be
labeled as belonging to the same malware family.

For our data, we are only able to construct pairs of malware
files based on the SignatureID and the malware family. Benign
files all belong to one class and are not assigned a SignatureID
since they are not malicious. As a result, we cannot construct
similar pairs for benign files. To overcome this limitation in
our data, we also construct a dissimilar pair constructed by
randomly selecting a unique malware file and benign file to
form the pair.

The format of this training set is shown in Table I. The
Training Set ID is constructed from the concatenation of the
SHA1 file hashes for Malware 1 (M1), and either Malware 2
(M2) or a Benign File (B) (i.e. SHA1M1_SHA1M2,B). This
ID allows us to identify which files were used to construct the
training instance. The next field in the training set provides the

label where 1 indicates that the two files are similar (M1,M2)
and -1 indicates that they are dissimilar (M1,B). The third
field provides the selected N-Gram features from the primary
malware file M1. The N-Grams from the matching malware
file M2 or the randomly selected benign file (B) are provided
in the final field.

Field
Training Set ID

Label (similar | dissimilar)
Malware 1 N-Gram Features

Similar Malware 2 or Benign File N-Gram Features

TABLE I: Training and test set instance format.

For the hold out test set used for evaluating all models later
in Section III, we need to ensure that the file pairs in the
training and test sets are unique. To do so, we first randomly
select a pair of malware files for the training and test sets
followed by a malware file and benign file pair. We next select
a second similar malware file pair. If either of the files in the
second pair match one of the files in the first pair, we add
this malware pair to the training set. If it is not in the training
set, we add it to the test set. Similarly, we do this for the a
second dissimilar malware and benign pair. We continue to
do this procedure of randomly selecting malware pairs and
alternatively adding them to training or test sets until each is
complete.
Model Training and Evaluation. After the training set
has been constructed, the Siamese Neural Network model is
trained. Figure 2 depicts the SNN model we propose for Deep-
Sim which is based on the architecture described in Huang et
al. [14]. The weights are adapted during training based on the
cosine distance between the embedding of the known malware
files, M1 on the left-hand side and the malicious or benign files
on the right-hand. The combined set of similar and dissimilar
files is denoted as F ∈ {M2, B}. We use backpropagation with
stochastic gradient descent (SGD) and the Adam optimizer to
train the model parameters.

When testing files, known malware files are input to the
left-hand side, and known malware or benign files are then
evaluated using the right-hand side. Thus during testing, the
model’s output represents the cosine distance between the
embedding of the known malware files for the left-hand side
and the embedding of the malicious or benign file on the right-
hand side.
Unknown Pair Construction and File Evaluation. The
format for the evaluation set is provided in Table II. Similar
to the Training Set ID, the Evaluation Set ID includes the
SHA1 file hash of the known malware file and an unknown
file (i.e. SHA1M1_SHA1U ) which allows us to determine
which malware file is similar to the unknown file. The other
two fields include the N-Grams from the known malware file
and the unknown file.

To evaluate unknown files, we first include the selected N-
Gram features from all of the known variants of our highly
prevalent families in the training set. These features correspond
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Fig. 2: Proposed DeepSim model. Two deep neural networks
are trained where the cosine similarity score is used to learn the
parameters for both DNNs. During traing, the left and right-
hand branches are trained with known similar and dissimilar
pairs. During evaluation, unknown file are input to the right-
hand DNN and compared to the known malware in the
left-hand DNN. The output is then computed as the cosine
similarity between the output of the two DNNs.

to the left-hand side of the DeepSim model in Figure 2. We
then include the selected N-Gram features from all of the
unknown files that arrive for processing within a particular
time period (e.g. day).

Depending on the number of known variants of the highly
prevalent families and the incoming rate of unknown files, it
may be necessary to further prefilter the number of file pairs
to be considered. One method to do this is to employ the
MinHash algorithm [15] to reduce the number of pairs of files
used during training or the number of file pairs included during
evaluation. A locality sensitive hash algorithm is used for a
similar task in [1]. The MinHash algorithm is approximately
O(n) and identifies only a small number of samples which
need to be compared to each unknown file being evaluated.

Field
Evaluation Set ID

Known Malware N-Gram Features
Unknown File N-Gram Features

TABLE II: Evaluation set instance format.

Once the set of unknown file pairs has been constructed,

they can be evaluated with the trained with the Siamese Neural
Network. If the similarity score exceeds a prescribed threshold,
the file is automatically determined to belong to the same
family as the known malware file in the evaluation pair.

Another method to detect if an unknown file is malicious is
to replace the cosine() distance with an optional K-Nearest
Neighbor (KNN) classifier and assign the unknown file to
the voted majority malware family or benign class of the K
known files with the highest similarity scores. We evaluate the
performance of including an additional KNN classifier later in
Section III and find that assigning the label of the single closest
file (K = 1) performs very well. Therefore we only need to
find the single most similar file for our system.
Implementation. In order to process a production-level input
data stream, we implemented all of the DeepSim functional
blocks which are required to preprocess the data for training
and testing in Microsoft’s Cosmos MapReduce system. These
functional blocks include the feature selection and training set
construction for training as well as the evaluation functions
which select the features to create the unknown pair dataset.
Once the datasets are constructed, the DeepSim model is
trained and results for the evaluation or test set are evaluated
on a single computer. In practice, evaluating the prediction
scores from the trained DeepSim model for the set of unknown
files and the K-Nearest Neighbor classifier would also be
performed in the MapReduce platform.

III. EVALUATION

In this section, we conduct several experiments to evaluate
the performance of the DeepSim system. We first describe the
setup and hyperparameters used in the experiments. Next, we
compare the performance of DeepSim with that of a baseline
Jaccard Index-based system for the task of file similarity — the
Jaccard Index has been used in several previously proposed
malware detection systems [1]–[3]. Finally, we investigate
the performance of a K-Nearest Neighbor classifier based on
features from the SNN and the Jaccard Index computed from
the set of highly prevalent malware files.
DataSet. Analysts from Microsoft corporation provided re-
searchers with the raw data logs extracted during dynamic
analysis of 190,546 Windows portable execution (PE) files
from eight highly prevalent malware families and 208,061 logs
from benign files. These files were scanned in April 2019 by
the company’s production file scanning infrastructure over a
period of several weeks using their production anti-malware
engine.

Following the procedure described in Section II, we first
create a training set with 596,478 pairs of either two similar
malware files (296,871 pairs) or a malware file and a benign
file (299,607 pairs). Each row in the training set is unique. A
similar malware pair is chosen to be distinct and a dissimilar
pair is formed from the combination of a randomly selected
malware file and benign file. For testing, we construct a
separate holdout dataset consisting of 311,787 distinct pairs
which include 119,562 unique similar pairs and 192,225



Training Set Test Set
Family File Count Dissimilar Pair Count Similar Pair Count File Count Dissimilar Pair Count Similar Pair Count
Ardunk 15793 36592 37194 8272 14828 25545
Clean 130787 na na 77274 na na
Dinwod 15472 35014 37127 7281 12979 25809
Nabucur 12097 26895 37987 6475 11364 29524
Picsys 16578 40267 37350 9072 16547 22610
Sfone 18299 47796 37167 10296 19255 16002
Sivis 15907 36704 37330 7959 14221 25572
Soltern 12164 26389 38031 6403 11311 30435
Tescrypt 18220 47214 37421 10258 19057 16728
Total 255317 296871 299607 143290 119562 192225

TABLE III: DataSet counts.

Family SNN JI
Ardunk 0.0000% 0.0000%
Clean 0.0060% 0.3200%
Dinwod 0.0000% 0.0000%
Nabucur 0.0310% 3.3300%
Picsys 0.0000% 0.0000%
Sfone 0.0000% 0.0000%
Sivis 0.0500% 0.0000%
Soltern 0.0000% 0.0000%
Tescrypt 0.0100% 0.1400%
All (avg) 0.0110% 0.4200%

TABLE IV: Performance measurements for KNN (K=1) for
different highly prevalent malware families.

unique dissimilar pairs. The detailed breakdown per family
is shown in Table III.
Experimental Setup. The SNN was implemented and trained
using the PyTorch deep learning framework. The deep learning
results were computed on an NVidia P100 GPU (graphics
processing unit). The Jaccard Index computations were also
implemented in Python. For learning, the minibatch size is
set to 256, and the learning rate is set to 0.01. The network
architecture parameters are shown in Figure 2.
File Similarity. We compare DeepSim, which employs an
SNN to learn a file embedding in the feature space to a Jaccard
Index-based baseline system [1], [2]. The Jaccard Index (JI)
for sets A and B is:

JI(A,B) =
|A ∩B|
|A ∪B|

. (1)

The elements of the sets correspond to the N-Gram encoding
described in Section II for the corresponding feature type (i.e.
strings, API events and their parameters).

We begin by comparing the Jaccard Index for both similar
and dissimilar files as our baseline in Figure 3. In general, the
Jaccard Index is high for similar files and small for dissimilar
ones as we expect. However, the figure indicates that the
Jaccard Index for a reasonably large number of similar files is
less than 0.9. The Jaccard Index for dissimilar files also has a
small peak near the value 0.65.

In Figure 4, we next compare DeepSim’s SNN similarity
score for both similar and dissimilar files. Since the range of
the SNN scores is [−1, 1] while the Jaccard Index varies from
[0, 1], we transform the SNN score to a new value from [0, 1]

so that all plots can be compared fairly. In contrast to the
Jaccard Index similarity scores, the SNN similarity behaves
as expected where the model learns to emphasize the weights
from similar files to produce a cosine similarity score very
close to 1.0 and the weights from dissimilar files to produce a
cosine similarity value which is well separated from the similar
files. This behavior makes it much easier to set a value for the
SNN threshold which automatically predicts that two files are
indeed similar.

During these tests, we found that computing the Jaccard
Index is extremely slow. To deal with this limitation and
have an Jaccard Index experiment finish within 2-3 days,
we had to implement the MinHash algorithm described in
Section II where we varied the MinHash filtering threshold.
We conducted three different tests including i) training set
pairs = 50,000 and test set pairs = 10,000 with a threshold
value of 0.5, ii) training set pairs = 10,000 and test set pairs =
10,000 with a threshold value of 0.8, and iii) training set pairs
= 100,000 and test set pairs = 10,000 with a threshold value
of 0.8. The results reported in Figure 3 and Table V are from
test i) with an error rate of 0.42%. The corresponding error
rates for tests ii) and iii) are significantly worse at 3.12% and
8.47%, respectively. Using the GPU, we were easily able to
evaluate the results for the SNN for all 143,278 items in the
test set within 2 days. Thus, the SNN is not only much more
accurate, but it is also much faster to evaluate compared to
the Jaccard Index.
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Fig. 3: Jaccard Index similarity score distribution for the
similar and dissimilar files.

Family Classification While Figures 3 through 4 demonstrate
that SNN produces a much improved similarity score com-
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pared to the Jaccard Index, it is important to understand if
this leads to improved detection rates. To investigate, we next
compare the K-Nearest Neighbor classification results, with
K = 1, for these two similarity models. We utilized the
Facebook AI Similarity Search library [16].

Evaluating a KNN classifier requires us to revisit our test
set. As described previously, we form similar pairs of malware
files whose SignatureID and family match and dissimilar pairs
where the second file is known to be benign. The DeepSim
model is then used to compare an unknown file to the set of
known malware files (i.e. the left-hand side of Figure 2) to
determine if it is similar to any of these previously detected
malware files. However to evaluate the output of the DeepSim
model for a KNN classifier, we must instead compare an
unknown file to a set of known malware and benign files.
For our test set, this is the set of files denoted as F on the
right-hand side of Figure 2. In essence, we have swapped the
set of known test files from the left-hand side of Figure 2 to
the right-hand side. When evaluating an unknown file using
the KNN classifier, the distances from the unknown file to the
known set of malware and benign files are computed, and the
label is determined from the majority vote of the K closest
files. It should be noted that in the following test, the test files
are all malicious and we are trying to determine the malware
file’s family .

Since our data set does not allow us to form pairs of similar
benign files, we cannot measure the false positive and true
negative rates. If a file is benign, we cannot compute the
score for similar benign files from the data. For example,
Chrome.exe is not similar to AcroRd32.exe even though both
files are benign. If a file is a non-matching file, we cannot
compute this because we have generated the KNN results from
a combination of the matching and non-matching pairs.

Table V summarizes several performance metrics for mal-
ware family classification. The table indicates that the SNN
outperforms or is equivalent to the JI for most of the families.
Overall, the SNN has an error rate of 0.011% compared to
0.420% for the JI.

The previous results suggest that the individual malware
families are well separated in the latent vector space where the
latent vector is the final embedding which is output by each
branch of the SNN in Figure 2. In Figure 5, we use the t-sne

Family SNN JI
Ardunk 0.0000% 0.0000%
Clean 0.0060% 0.3200%
Dinwod 0.0000% 0.0000%
Nabucur 0.0310% 3.3300%
Picsys 0.0000% 0.0000%
Sfone 0.0000% 0.0000%
Sivis 0.0500% 0.0000%
Soltern 0.0000% 0.0000%
Tescrypt 0.0100% 0.1400%
All (avg) 0.0110% 0.4200%

TABLE V: Performance measurements for KNN (K=1) for
different highly prevalent malware families.

method [17] to project these vectors into a two-dimensional
space. This figure confirms that these classes are indeed well
separated.
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Fig. 5: Visualization of the separability of the latent vectors
of the malware classes using the t-sne method.

IV. EVASION

Since DeepSim utilizes dynamic analysis for extracting its
underlying features, it is susceptible to previously proposed
methods that attackers use to detect and thwart these types
of analysis systems. A nice summary of the different types
of attacks employed against dynamic malware classification
systems can be found in [18] and [3].

To avoid detection, malware sometimes employs cloak-
ing [19], [20] which occurs when it does not perform any
malicious action if it detects that it may be executing in an
emulated or virtualized environment typically used by dynamic
analysis systems. To overcome these attacks, researchers often
propose systems which execute an unknown file in multiple
analysis systems and search for differences among the outputs



which might indicate that malware is using cloaking [3], [21],
[22].

Malware may also try to delay the execution of its malicious
code hoping that the emulation engine eventually halts after
some amount of time [20], [21]. To prevent this evasion
technique, dynamic analysis systems may alter the system
time. This in turns leads to malware checking the time from
the internet [3]. If malware is not able to connect to the internet
to check the time, it may choose to halt all malicious activity.

Recently, other researchers in adversarial learning have be-
gun to explore attacking deep learning system by crafting ex-
amples which are misclassified by a deep neural network [23].
For malware analysis [24], a white-box attack requires access
to the DNN’s model parameters which means successfully
breaching an anti-malware company’s corporate network if
the DNN analyzes unknown files in a backend service. Thus,
successfully employing this attack on a backend service would
be very challenging. If a DNN were to be run locally on the
client computer, attackers may be able to reverse engineer
the model and successfully run a variant of this attack on
DeepSim’s SNN architecture. To combat this attack, it might
be possible to run the SNN in an SGX enclave.

V. RELATED WORK

Similarity and Clustering. DeepSim is most closely related
to systems which consider the discovery of similar files. A
few of these systems include the following research efforts.

Lee and Mody [7] proposed a system to cluster files based
on their behavior using k-means clustering. The distance
metric used in their system is the Euclidean distance based
on features derived from dynamic analysis of a file.

A scalable malware clustering system is presented by Bayer
et al. in [1]. In this work, the authors extend Anubis for
dynamic analysis of malware and create behavior profiles from
these execution traces. A locality sensitive hashing scheme
is used to significantly reduce the number of pairs which
must be considered. Malware files are grouped by hierarchical
clustering where the Jaccard Index is used as the similarity
metric. In [13], Li et al. further investigate the challenges of
evaluating different malware clustering algorithms by trying
to cluster malware using algorithms proposed for detecting
plagiarism.

Perdisci et al. [25] cluster HTTP traffic to discover mal-
ware. The system merges coarse-grained clusters of statistical
features with fine-grained clusters of structural features to
automatically generate signatures. The fine-grained features
are computed in part using the Jaccard Index.

Jang et al. propose a large-scale malware clustering system
called BitShred [2]. BitShred employs feature hashing, bit
vectors, and a MapReduce implementation on Hadoop to
significantly speed up the computation and reduce the memory
consumption compared to previously proposed systems on
a single CPU. BitShred also uses the Jaccard Index as the
similarity measure for its co-clustering algorithm.

In [26], Gregoire et al. propose a new method for detecting
similar malware files based on static analysis. This system can

be used as a prefilter to reduce the number of files submitted
for more in-depth analysis by a factor ranging from three to
five. Pearson’s chi squared test is used as the similarity metric
in Gregoire’s system.

In DISARM [3], Lindorfer et al. compare the Jaccard Index
between the behavior profiles generated by multiple instances
of dynamic analysis of a single unknown file in multiple
Anubis sandboxes to detect similar malware. Their results
reveal previously unknown evasion behavior in the malware
samples they analyzed.

Rafique and Caballero built a system called FIRMA to
cluster malware [27] and generate signatures based on network
traffic. FIRMA’s clustering is based on both the application
protocol and the transport protocol. The application protocol
clustering is based in part on the Jaccard Index of the URL
parameters.

Kong and Yan [28] extract the functional call graph by static
analysis of malware files. They next learn a similarity distance
metric based on the functional call graph and use this to learn
an ensemble of classifiers to detect unknown malware.

To overcome the evasion techniques malware uses to detect
if it is being emulated, Kirat et al. [22] proposed BareCloud
which compares the execution of an unknown file on four
different analysis systems including Bare-Metal which exe-
cutes the malware on the native operating system and analyses
the network traffic and changes on the disk drive, Ether
which supports hypervisor-based malware detection, Anubis
which uses emulation to detect malware, and the Cuckoo
Sandbox which uses Virtualbox to provide virtualization-based
detection. BareCloud then discovers differences in the outputs
of these systems to detect evasion behavior by the file. To
compare the outputs of the different analysis systems, the
authors propose a new hierarchical similarity measure.

Stock et al. propose Kizzle [29] which uses the DBSCAN
algorithm to cluster JavaScript malware. In particular, the
authors use the system to identify several exploit kits.
Deep Learning. Although malware classification has been an
active area of research starting in 1994 [30], we primarily
focus on the earlier work employing neural network architec-
tures [6]. Interestingly, Kephart et al. [31] were the first to
discuss malware classification in general, and they proposed a
neural network-based system.

Dahl et al. [8] were the first authors to investigate the use
of deep learning in malware classification. In this paper, the
authors proposed a deep, feed forward neural network with
sigmoid activation functions and the softmax output function.
Although their experiments did not indicate that adding more
than one hidden layer improved the classification results,
their analysis showed a reduction of 43.0% for a shallow
neural network with a single hidden layer compared to logistic
regression.

A one-sided perceptron was combined with a Restricted
Boltzmann Machine (RBM) for malware classification by
Benchea and Gavrilut [32].

Saxe and Berlin [10] trained a two-layer deep neural net-
work based on features extracted during static analysis of a



file. Overall, this model shows very good promise for static
malware classification. However, they did not provide results
for a shallow network or architectures for more than two
hidden layers, so it remains unclear whether or not deep
learning helps with static malware classification.

Pascanu et al. [9] recently proposed using several different
models based on both recurrent neural networks (RNNs)
and echo state networks (ESNs). The basic architecture of
echo state networks is similar to recurrent neural networks,
except that the ESN model parameters are randomly initialized
whereas they are typically learned using backpropagation in
an RNN.

VI. CONCLUSIONS

When not successfully subverted by emulation and virtual-
ization detection techniques, dynamic analysis has been shown
to yield excellent results in detecting unknown malicious
files. In this paper, we have proposed DeepSim — a dynamic
analysis system for learning malware file similarity based on
a Siamese Neural Network. We demonstrate the performance
of DeepSim on highly prevalent families which require a large
amount of support by analysts and automated analysis. We
have shown that DeepSim offers significant improvement in the
K-Nearest Neighbor classifier error rate compared to a similar
system based on the Jaccard Index which has been previously
proposed for several other systems. The results show that
DeepSim reduces the KNN classification error rate on these
highly prevalent families from 0.420% for the Jaccard Index to
0.011% for a SNN with two hidden layers. As such, we believe
that DeepSim can be an effective tool for reducing the amount
of analysts’ time and automation costs spent combatting these
highly prevalent malware families.
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