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Abstract. Realtime perceptual and interaction capabilities in mixed reality re-
quire a range of 3D tracking problems to be solved at low latency on resource-
constrained hardware such as head-mounted devices. Indeed, for devices such as
HoloLens 2 where the CPU and GPU are left available for applications, multiple
tracking subsystems are required to run on a continuous, real-time basis while
sharing a single Digital Signal Processor. To solve model-fitting problems for
HoloLens 2 hand tracking, where the computational budget is approximately 100
times smaller than an iPhone 7, we introduce a new surface model: the ‘Phong
surface’. Using ideas from computer graphics, the Phong surface describes the
same 3D shape as a triangulated mesh model, but with continuous surface nor-
mals which enable the use of lifting-based optimization, providing significant
efficiency gains over ICP-based methods. We show that Phong surfaces retain the
convergence benefits of smoother surface models, while triangle meshes do not.
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1 Introduction

As computer vision systems are increasingly deployed on wearable or mobile computing
platforms, they are required to operate with low power and limited computational
resources. In this context, the problem of pose estimation (as applied, for example, to
tracking hands [15, 28], human bodies [2, 17, 31], or faces [10]) is often tackled with a
hybrid architecture that combines discriminative machine-learnt models with generative
model fitting to explain the observed data [12, 15, 27–29]. For the purposes of this
paper, we define ‘model fitting’ as the registration of a 3D surface model to a point set
observation. Model fitters can benefit from powerful priors learned from data, and recent
work even shows the benefits of including model fitting in the training loop [9, 30]. An
optimizer with fast convergence is critical for building real-time systems that operate
with low compute. However, the correspondences between the observed data and the
model are often unknown, and need to be discovered in the course of the optimization.

Two main optimization alternatives have been proposed for solving this problem.
Iterative Closest Point (ICP) algorithms [1, 7, 20, 25] solve for model pose via ‘block
coordinate descent’: first finding closest points on the model surface, and then fixing
those correspondences while solving for model pose alone.
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(a) Subdiv. surface (b) Phong surface (c) Triangular mesh

Surface type eval. with ∂/∂u

Subdiv. surface 0.329s 1.241s
Phong surface 0.049s 0.279s
Triangular mesh 0.047s 0.196s

(d) Timings on 106 evaluations

Fig. 1: A hand model represented by a Loop subdivision surface [11] (a), a Phong
surface (b) and a triangle mesh (c), with surface normals visualized by mapping x, y, z
coordinates to red, green and blue components respectively. (d) shows timings in seconds
on PC: eval. refers to evaluation of 106 surface point positions and normals, and with
∂/∂u includes the cost of derivative calculations w.r.t. surface coordinate as well.

The alternative approach is ‘lifted’ optimization: to solve for correspondences and
model pose simultaneously, using a lifted objective function that explicitly parametrizes
the unknown correspondences. Taylor et al. [26, 27] demonstrate hand tracking systems
using this approach, and claim that the smoothness of the model surface is an important
prerequisite for a smooth energy landscape that allows lifted optimization to converge
efficiently. However, the complex surface representation they propose comes at a cost,
entailing as much as 58% of the per-iteration model-fitting time [27, supplementary
material].

In this paper, we show that much simpler surface representations are sufficient,
thus making it cheaper for vision systems to access the convergence benefits of lifted
optimization. In particular, since it is often beneficial to include surface orientation
properties in the objective function, one might assume that a normal field with continuous
first derivatives (second-order surface smoothness) is a necessary minimum for a gradient-
based optimizer. This implies that a simple triangle mesh cannot suffice and we show
this is true: a simple triangle mesh is insufficient, but it is sufficient to pair a triangle
mesh with a normal field that is simply linearly interpolated over each triangle. We call
the resulting representation a ‘Phong surface’, after the Phong shading [19] technique in
computer graphics, which evaluates the lighting equation using similarly interpolated
normals. Fig. 1 shows the normal field evaluated inside the optimizer for different surface
representations, illustrating that the Phong surface (b) leads to surface evaluations that are
a close approximation to evaluations on the smooth subdivision surface (a). Informally,
our contribution to 3D model fitting is a surface representation which is designed to be
“as simple as possible, but no simpler”.

We evaluate Phong surfaces in comparison to two other model representations; the
smooth subdivision surfaces used by prior work [4, 26, 27] and simple triangle meshes
with a piecewise-constant normal field. Our experiments in rigid pose alignment and in
the example application of hand tracking compare these alternative models in the context
of different optimizers, and confirm earlier results that lifted optimization converges
faster and with a wider basin of convergence than ICP [27].

We have successfully applied lifted optimization with Phong surfaces to implement
a fully articulated hand tracker on HoloLens 2 [14], a self-contained head-mounted
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holographic computer. The tracker needs to run on an embedded Digital Signal Processor
(DSP) with a compute budget of 4 GFLOPS, which is 100 times smaller than an iPhone
7, or 1000 times smaller than a high-end laptop. This application requires real-time
continuous tracking under tight thermal and power constraints, motivating us to find the
simplest possible computation that would allow the optimizer to converge to an accurate
hand pose estimate. The Phong surface representation is one of the key innovations that
make this hand tracker run in realtime on the HoloLens 2.

In summary, our contributions are that we

– introduce Phong surfaces by transferring the concept of Phong shading from com-
puter graphics to model fitting in computer vision;

– show that Phong surfaces combine the convergence benefits of lifted methods with
the computational cost of planar mesh models;

– demonstrate that fitting Phong surface models allows us to implement realtime hand
tracking under a computational budget of 4 GFLOPS.

1.1 Related work

ICP has a long history in surface reconstruction and point set registration, starting
from its first descriptions by Besl and McKay [1] and Chen and Medioni [5]. The
simplicity of ICP means that it is easy to implement and was broadly adopted, spawning
a host of variations on the two fundamental steps of closest point finding and error
minimization, as described by Rusinkiewicz and Levoy [22]. Neugebauer [16] and
Fitzgibbon [6] formulate ICP as an instance of a non-linear least squares problem, solved
by general optimizers such as the Levenberg-Marquardt algorithm [13]. This opens
up new possibilities for the objective function, such as allowing a robust kernel to be
included directly in the objective as a way to smoothly handle outliers [6].

Meanwhile, ICP was generalized to articulated models by Pellegrini et al. [18], and
demonstrated in this form for fitting models of human bodies [3, 32] and hands [25].
Another key advantage of ICP is the broad range of geometric representations that can
be fitted: any point set or surface that could support the chosen ‘closest point’ query
is included in a straightforward manner. However, a disadvantage of the alternating
coordinate descent is that ICP algorithms converge slowly, reducing the objective only
linearly as optimization proceeds [28]. This is particularly apparent when a model
needs to slide relative to a data set, as this requires that the model’s pose is updated in
harmony with data correspondences. Point-to-plane ICP [5] attempts to address this for
common cases, but thereby limits the set of objectives which can be minimized, losing the
freedom introduced by Neugebauer and Fitzgibbon. Recently Rusinkiewicz [21] presents
a symmetric objective function for ICP which is particularly suited to the original task
of point set to point set alignment, but not of point set to parametric surface alignment,
which is the focus of this paper. Note that we are explicitly in a non-symmetric scenario.
An extension of [21] could be considered by sampling the model, but this would lose the
structure that the model provides, and which is available in many real scenarios.

Several authors have attempted to address the shortcomings of ICP by estimating un-
known correspondences simultaneously with model parameters. Sullivan and Ponce [24]
present one of the first systems to do so in a model-fitting context, and Cashman and
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Fitzgibbon [4] elaborate on this idea to also fit smooth surface models to silhouette
constraints. Subsequently, Taylor et al. [26, 27] and Khamis et al. [8] demonstrate the
benefits of lifted optimization in the area of articulated hand tracking. However, all of
these methods required complicated smooth surface constructions, in stark contrast to the
freedom available when using ICP. This paper addresses this disadvantage, by showing
that lifted optimization is equally applicable to models with extremely simple geometry.

Another line of work performs model fitting without estimating any data corre-
spondences at all. Taylor et al. [28] follow the same approach originally proposed by
Fitzgibbon [6] by using articulated distance fields to find correspondences; this is con-
ceptually similar to an ICP closest-point search, but can be implemented extremely
efficiently using graphics hardware. Mueller et al. [15] use a discriminative network
to perform dense correspondence regression, thus allowing the model-fitting stage to
proceed under the assumption that the correspondences are fixed. Neither of these
approaches are currently suitable for deployment on low-power devices.

2 Method

We describe model-fitting problems in a common framework with the following notation:

– A 3D surface model S(θ) ⊂ R3 parameterized by a vector θ, which might for
example specify rigid pose, shape variations or joint angles,

– A list of sampled data points {xi}Di=1 with estimated data normals {x⊥i }Di=1,
– An objective function E(θ) that penalizes differences between the parameterized

model and the observed data,
– An optimizer that iteratively updates the current hypothesis for θ to locally minimize

the objective function.

We follow the model fitting work of Taylor et al. [27] which optimizes a differentiable
lifted objective function with a Levenberg optimizer. The smoothness of the subdivision
surface model used in [27] encourages good convergence properties, but at the cost of
expensive function evaluations for the surface positions, normals and their derivatives. We
focus on efficiency and investigate the requirements for surface and normal smoothness
in a lifted optimizer.

2.1 Phong surface model

The key idea is to generate surface normal vectors by linearly interpolating vertex
normals over each planar triangle. This is the same approximation of a smooth surface
used in the Phong shading method for computer graphics rendering [19], motivating our
use of the ‘Phong surface’ moniker.

The surface model is defined by a triangle control mesh containing N control
vertices each with a position and normal vector, V (θ) ∈ R6×N . The model also has
a fixed triangulation of the vertices, where each triangle in the mesh corresponds to a
parameterized triangular patch of the surface.

As illustrated in Fig. 3a, let u = {p, v, w} be a surface coordinate where p ∈ N is the
index of a triangular patch, and v ∈ [0, 1], w ∈ [0, 1− v] parameterize the unit triangle.
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(a) Smooth surface (b) Phong surface (c) Triangular mesh

Fig. 2: Illustration of the cross section of a surface model (black) with normals (dashed
black) close to some target data (green). With a continuous normal field, either from a
smooth model (a) or from a Phong surface (b), the normal term forces shown in blue
drive the red correspondences towards their correct location, improving convergence.
These forces do not exist for a triangular mesh (c) where the normals are constant on the
facet and so the derivatives are all zero.

S(u, θ) ∈ R3 denotes the surface position and S⊥(u, θ) ∈ R3 the unit-length normal
to the surface, both evaluated at the given coordinate u. Let v1(θ),v2(θ),v3(θ) be the
control vertex positions and v⊥1 (θ),v

⊥
2 (θ),v

⊥
3 (θ) the control vertex normals of the pth

triangular patch as specified by u, where vi(θ) and v⊥i (θ) are determined by the pose
and/or shape parameter vector θ. Then the Phong surface evaluation is defined simply as
a linear interpolation of the control vertices:

S(u, θ) = (1− v − w)v1(θ) + vv2(θ) + wv3(θ), (1)

c(u, θ) = (1− v − w)v⊥1 (θ) + vv⊥2 (θ) + wv⊥3 (θ), (2)

S⊥(u, θ) =
c(u, θ)

‖c(u, θ)‖
, (3)

where c(u, θ) is the interpolated normal direction vector.
We give the partial derivatives with respect to v, w and θ compactly in terms of the

total differentials:

dS(u, θ) = dv(v2 − v1) + dw(v3 − v1) + (1− v − w)dv1 + vdv2 + wdv3,

dc(u, θ) = dv(v⊥2 − v⊥1 ) + dw(v⊥3 − v⊥1 ) + (1− v − w)dv⊥1 + vdv⊥2 + wdv⊥3 ,

dS⊥(u, θ) =
1

‖c‖

(
I3 −

ccT

‖c‖2

)
dc.

The partials can be read off from this notation as the coefficient of the relevant differential,
e.g. ∂S∂v = v2 − v1 by setting dv = 1, dw = 0, dvi = 0, dv⊥i = 0 in dS.

2.2 Lifted optimization with the Phong surface

The objective function of the optimization in model fitting typically includes data terms
and problem-dependent prior terms or regularization terms. Here we briefly describe the
data terms.
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We penalize the distance from each data point xi to its corresponding surface point
defined by the surface coordinate ui, and the difference in surface orientation to the
associated data normal x⊥i , using

E(θ, U) =
1

D

D∑
i=1

(
‖S(ui, θ)− xi‖2 + λn‖S⊥(ui, θ)− x⊥i ‖2

)
(4)

where D is the number of data points, λn is the contribution weight for normals, and
U = {ui}Di=1 are the surface coordinates corresponding to each data point.

Note that the surface coordinates U are optimized jointly with θ by the lifted op-
timizer, whereas the ICP optimizer alternates between updating θ and U . This means
that the lifted optimizer can choose to slide these coordinates on the surface to better
match the data points and data normals, while simultaneously updating the shape or pose
hypothesis. On the other hand, the ICP optimizer operates on only one set of variables
each iteration, without access to gradient information in the other variables. U can be
viewed as latent variables as we eventually retain only the final θ estimate. As in [27],
the lifted optimizer uses Levenberg steps with damping.

Figure 2 illustrates how the continuous surface normals for the subdivision surface
and Phong surface cause the data normal term to ‘pull’ the coordinates in the directions
of the blue arrows, leading to faster convergence than for the triangular mesh.

Note that lifted optimization has a close relation to point-to-plane ICP but is math-
ematically richer while being more efficient. Both optimizers allow a model to slide
against the data in each iteration, improving convergence. However, point-to-plane ICP
addresses this for only one energy formulation (point-to-model distances) whereas a
lifted optimizer generalizes to arbitrary differentiable objectives. For example, we have
a normal disparity term in our energy (Eq. 4), which is critical for faster convergence as
shown in Fig. 7 and Table 1; point-to-plane ICP cannot minimize this objective. See our
supplementary material for more illustrations.

2.3 Correspondence update on triangles
The surface types Subdiv., Phong and Tri. mesh are all defined by a triangular control
mesh. As mentioned in Sec 2.1, we write correspondences as surface coordinates u =
{p, v, w}. The entire surface can be viewed as a collection of triangular patches indexed
by p, with each patch parameterized by the unit triangle.

After a Levenberg step in lifted optimization, we apply an update u := u+δu, which
may involve walking across adjacent triangles. We follow the same triangle-walking
scheme as in [4, 26], as illustrated in Fig. 3b.

Fig. 3b (right) shows a single transition of a correspondence from one triangle to its
neighbor; u and δu are denoted as a 2D point and a 2D vector respectively, in the domain
space of the current patch p (colored in light blue). When u+ δu leaves the domain of
triangle p, we calculate the partial update such that u+ rδu lies on the boundary of that
triangle, and then map the remaining update (1− r)δu to the adjacent patch q (colored
in light green). For Subdiv., this results in a path that is tangent-continuous on the surface
because this surface has C1 continuity across patches. Note that this C1 assumption
does not hold for Phong and Tri. mesh; however, we implement the walking in exactly
the same way for all surface types and find that it works well in practice.
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(a) Surface parameterization
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(b) Correspondence update across triangles.

Fig. 3: (a) A surface correspondence u that lies on the p-th triangle patch, and its
coordinate (v, w) in the unit-triangle domain Ω of this patch. (b) Walking on a triangle
mesh to apply an update δu and walking in the domain space (figure from [26]).

3 Experiments

We compare the three surface types mentioned above: Loop subdivision surface (Subdiv),
Phong surface (Phong) and triangular mesh surface (Tri. mesh), in both Lifted and ICP
optimization frameworks. First we analyze their efficiency and convergence properties
on rigid pose estimation of an ellipsoid. We further extend them to a more challenging
scenario: fully articulated hand tracking. Specifically, we implement and evaluate these
methods in the hand tracker by Taylor et al. [27] and in the hand tracker on HoloLens
2 [14].

In each experiment, we define the control parameters of each surface as follows: for
each control vertex of Subdiv, we compute its position and normal on the limit Loop
subdivision surface; we use these limit positions as the vertices of Tri. mesh, and use both
limit positions and normals to define control vertices and normals of Phong. Note that
this definition is purely to give surface models that are comparable for Phong, Subdiv
and Tri. mesh, and we are free to define the Phong Surface model (i.e. control vertex
positions and normals) in the way that best represents the target geometry.

We run most experiments on a desktop machine equipped with an Intel R© Xeon R©

W-2155 CPU and 32GB RAM, except for Fig. 12b, which is on a Microsoft HoloLens 2.

3.1 Rigid pose alignment of an ellipsoid

Problem. We parametrize the ellipsoid pose as a 6D vector θ, storing translation and
(axis-angle) rotation [tx, ty, tz, rx, ry, rz]. It defines a translation vector t(θ) ∈ R3 and
a rotation matrix R(θ) ∈ R3×3. Given a template mesh, each control vertex position vi
is posed according to θ:

vi(θ) = R(θ)vi + t(θ). (5)

For Phong surfaces, we express also control vertex normals as a function of θ (this is
more efficient than re-computing the normals from the posed vertices):

v⊥i (θ) = R(θ)v⊥i . (6)
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Fig. 4: Lifted optimization using a Phong surface ellipsoid model. Green points are the
target data, with black lines joining them to their corresponding surface points in red.

This defines the vi(θ), v⊥i (θ) introduced in Sec. 2.1. Derivatives ∂vi(θ)
∂θ ,

∂v⊥
i (θ)
∂θ can be

trivially computed.
The objective function includes only the data term stated in Eq. 4. The surface

evaluations are computed as in Sec. 2.1. In our experiments, we set D = 200. For
fair comparisons among various surfaces and especially Tri. mesh, we did parameter
sweeping on λn in the range [0.0, 1.0] for fitting 400 random rotations. Based on the
average fitting error, we find optimal λn = 1.0 for Subdiv and Phong, and λn = 0.05
for Tri. mesh. For the following experiments, for each surface type, we use its optimal
λn. Note that we have included 0.0 in our λn sweeping.

Fig. 4 shows an example fitting result. See supplementary material for more qualita-
tive comparisons.
Input data. Starting with the axis-aligned ellipsoid (with radii 1, 2, 3) centered at
the origin (referred to as neutral pose), we apply a target rigid transform to obtain a
ground-truth (target) pose. We then sample randomly 200 data points and normals on the
subdivision surface defined by this mesh. For quantitative convergence analysis, we only
sample from the triangle patches facing the positive z-axis: this gives us an incomplete
set of data points. We add random noise to the data points and normals by sampling
uniform random distributions with range [0.0, 0.1] in each dimension. The initial starting
pose for model fitting is always the neutral pose.
Metrics. For the quantitative analysis, we focus on rotations. We compute a pose es-
timation error by applying the fitted and ground-truth rigid transformations to a fixed
vector (e.g., [1, 0, 0]), and measuring the angle (in degrees) between the two transformed
vectors. To allow for the 180◦ symmetry of an ellipsoid, we define the fitting error as the
minimum of two angles, one computed using [1, 0, 0] as the fixed vector and the other
computed using [−1, 0, 0] as the fixed vector.
Quantitative analysis. We run 400 trials targeting ground-truth poses [0, 0, 0, y, y, y],
where y is uniformly sampled from (−π, π). Fig. 5 and 6 show the performance obtained
for the rigid alignment of an ellipsoid model with 320 facets. Fig. 5 shows that Phong
performs as well as Subdiv. in accuracy, and much better than Tri. mesh, with either ICP
or lifted optimization. In Fig. 6 (left), we see that lifted optimization converges much
faster than ICP for both Phong and Subdiv.

Fig. 6 (right) further plots accuracy (on the x-axis) against speed (on the y-axis,
measured in milliseconds). It shows that Phong achieves the same level of accuracy as
Subdiv. and runs as fast as Tri. mesh for both lifted (solid lines) and ICP (dashed lines).
It also shows that lifted optimization converges much faster than ICP, e.g. Lifted Phong
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Fig. 5: Accuracy results for the rigid pose alignment of an ellipsoid with 320 facets.
Optimizer ran for max. 50 iterations.

Surface type Avg. rot. err. at 10 iters Avg. rot. err. at 50 iters
Subdiv. 9.89◦ 1.21◦

Subdiv. w/o normal 14.81◦ 2.57◦

Phong 8.13◦ 0.99◦

Phong w/o normal 23.24◦ 3.54◦

Tri. mesh 17.47◦ 11.07◦

Tri. mesh w/o normal 23.24◦ 3.54◦

Table 1: Average rotation error after 10 and 50 lifted optimization iterations, with and
without data normal term.

can achieve an average rotation error < 10◦ within 8 iters, while ICP Phong needs 30
iterations.

Note that our runtime for ICP is slightly slower than lifted here. While a faster ICP
might be achievable by further code optimization, we emphasize that the per-iteration cost
of lifted is actually comparable to ICP when counting the theoretical FLOP computations.
See our supplementary material (part 3) for details.
Data normal term. Here we assess the importance of the data normal term in Eq. 4. In
particular, we demonstrate that this term is critical for fast convergence in both lifted
and ICP optimizations, and that a continuous normal field improves both the basin of
convergence and the accuracy of pose estimation.

As shown in Fig. 7, Phong and Subdiv., which have a continuous normal field,
converge much faster when the normal term is included, and achieve better accuracy
after convergence (see also Table 1). Note that Phong w/o normal (solid bright red)
coincides with Tri. mesh w/o normal (dashed black) for both lifted and ICP optimization.

For Tri. mesh (dashed lines in Fig. 7 (left)), we observe faster convergence with
the data normal term within 10 iterations, but the accuracy reached after convergence
is worse. We believe this is because the piecewise-constant surface normals introduce
local minima for the correspondences, where reassignment to a different triangle causes
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Fig. 6: Left: Convergence results for the rigid pose alignment of an ellipsoid with
320 facets. Right: Speed (model-fitting time in milliseconds) vs. accuracy (avg. error)
comparisons on lifted and ICP optimizations, for max.10, 20, and 30 iters. Closer to the
origin is better.

discrete jumps in the energy, and it is difficult for the optimizer to find a global minimum
for these correspondences as the partial derivatives ∂S⊥

∂u are zero. Note that the accuracy
of Tri. mesh w/o normal is still 3 times worse than the Phong and Subdiv. models when
including the normal term (see Table 1, third column).

3.2 Performance on hand tracking

The lifted optimizer used in the hand tracker by Taylor et al. [27] uses Loop subdivision
surfaces. In this experiment, we simply replace their subdivision surface with our Phong
surface. We leave everything else unchanged. Fig. 8 shows an example result obtained
fitting our Phong surface with lifted optimization. Fig. 9 compares qualitatively the hand
model fitting results at the 2nd and 4th iterations of lifted optimization using various
surface types, given the same starting point.
Problem. We optimize a set of hand pose parameters θ ∈ R28; θ stores hand orientation
and translation, plus the 22 joint angles of the hand skeleton. From θ, the hand surface
vertices are computed by Linear Blend Skinning [8].

For Phong surface, the 3D mesh vertex normals are deformed in the same way
as vertex positions according to their LBS weights. This computation for the control
normals gives a close approximation of the normals that we would obtain by rederiving
normals from the posed positions of local vertices, with far greater efficiency.

We refer the reader to [27] for details on the objective function, data and experimental
setup and evaluation metrics.
Performance on Dexter. In Fig. 10, 11 and 12a, we compare the accuracy and the com-
putational efficiency of the tracker with different surface types on the Dexter dataset [23].
We adopt the same experimental setup as in [27].

The tracking settings for Fig. 10 are 192 data points, 10 starting points and 10
iterations. Fig. 10a shows the max and average error of per-frame fitting, i.e. fitting each
frame independently with 10 new starting points. Fig. 10b shows the max and average
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Fig. 7: Impact of the data normal term on optimization convergence, for the rigid pose
alignment of an ellipsoid (320 facets). Left: Lifted optimization. Right: ICP optimization.

Fig. 8: A starting point and 4 iterations of lifted optimization using a Phong surface
hand model. Green points are the target data, with black lines joining them to their
corresponding surface points in red.

error of tracking, i.e. using the tracked pose in the previous frame (if available) as one of
the 10 starting points for current frame. Both show that on this dataset, Phong performs
as well as Subdiv and achieves higher accuracy than Tri. mesh. Lifted optimization is
slightly better than ICP.
Robustness to initialization. Model-fitting methods are often sensitive to initialization,
due to the non-convex objectives. This is why the tracking accuracy (Fig. 10b) is better
than the per-frame fitting (Fig. 10a), where the optimization starts from scratch each time.
The gap between Phong and Tri. mesh is larger in the per-frame fitting (Fig. 10a), which
means that the smooth normal field is the key for faster convergence when the starting
point is poorer. We emphasize the importance of fast convergence in live experience, as
tracking failures often occur when hands are out of the field of view, or in the presence
of self- and object-occlusions.

The computational cost of model fitting is dominated by 3 variables: (i) the number
of data points in the data term; (ii) the number of starting points used to initialize the
optimizer; and (iii) the number of iterations for each starting point. Fig. 11 shows the
impact of these variables on accuracy and convergence. Again, Phong behaves similarly
to Subdiv., and much better than Tri. mesh. Fig. 11b shows how Lifted exhibits better
convergence than ICP, confirming the conclusion in [27].
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Fig. 9: Fitted hand model result at the 2nd and 4th iterations of lifted optimization using
various surface types.
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(a) Max (left) and Avg. (right) joint error on per-frame fitting.
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(b) Max (left) and Avg. (right) joint error on tracking.

Fig. 10: Accuracy comparison of surface types with lifted optimizer and ICP on Dexter.

These tests show that the smooth normal field of the model is important for faster
convergence in lifted optimization; it is not actually relevant whether the mesh geometry
is smooth or not.

Fig. 12a shows the speed vs. accuracy plot in the per-frame fitting case (192 data
points, 10 starting points). For each surface type, the number of iterations varies from
2 to 10. The x-axis reports the accuracy, measured as the percentage of dataset frames
that have average joint error < 20mm. The y-axis reports the speed in FPS (per starting
point) of the model-fitting stage, i.e. not including the preprocessing time. For example,
in the lifted case (solid lines), if we require to run the fitting at 50fps, we can perform 6
iterations for Phong and Tri. mesh, but only 4 iterations for Subdiv., and Phong provides
the highest accuracy at this speed. Alternatively, if we require the fitter to reach near
80% accuracy, we can run 4 iterations with Phong and Subdiv., but Phong is 20% faster.
So Phong achieves almost the same level of accuracy as Subdiv, while being as cheap as
Tri. mesh in terms of efficiency.

Similar conclusions can be drawn for ICP optimizations (dashed lines in Fig. 12a).
As pointed out earlier at the end of Sec. 3.1, our runtime for ICP is slightly slower than
lifted, but we show that per-iteration cost of lifted is actually comparable with ICP in our
supplementary material, part 3.

Note that the accuracy achieved by Lifted Subdiv. after 8 iterations coincides with
that achieved by Lifted Phong after 10 iterations. This is because Lifted Phong already
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(b) Effect of the number of iterations
on energy and accuracy.
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(c) Effect of the number of starting
points on energy and accuracy.

Fig. 11: Effect of alternative optimization configurations when fitting to Dexter. The
results shown are for per-frame model fitting.

converged after 8 iterations, and further iterations do not improve accuracy further (see
also Fig. 11b).
Performance on HoloLens 2. Starting from the work of [27], we made many improve-
ments to enable us to run a hand tracker in real time on the HoloLens 2 [14], a mobile
device with very limited computational and power resources. The Phong surface model
presented here was one of the key efficiency improvements that was required. Fig. 12b
shows the speed vs. accuracy of various surface types with lifted optimization in this
hand tracker on HoloLens 2, evaluated on a captured depth dataset. The Phong surface
(red dot) can be evaluated twice as fast as the subdivision surface (green dot), and gives
the same level of accuracy.

4 Conclusions

In this paper we demonstrated that the convergence benefits of lifted optimization are
available to a wider range of surface models than was previously thought. We introduced
Phong surfaces, and showed that they provide sufficient information about the local
model geometry to allow a model-fitting optimizer to converge fast, whilst requiring a
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Fig. 12: (a) The speed (model-fitting speed in fps for one starting point) vs. accuracy
(percentage of frames with avg. joint error less than 20 mm) for per-frame fitting using
the hand tracker by Taylor et al. [27] on Dexter. Upwards and to the right is better. The
dots from top to bottom on each line denote the number of iterations being 2, 4, 6, 8, 10.
(b) The speed vs. accuracy for our hand tracker on HoloLens 2.

fraction of the compute of expensive smooth surface models. Beside rigid pose alignment
and hand tracking, the proposed method can be applied to various 3D surface model-
fitting applications, for example, 3D pose and shape estimation of SMPL body [2],
face [10] and animals [33, 34], and is particularly valuable when computational budget
is limited.

Given the generalization we show in this paper, a natural question is ‘what are the
set of requirements in order for lifted optimization to work effectively?’ We hypothesize
that the only requirement is for a model to provide sufficient approximations to the
energy tangent space ∂E/∂θ for a gradient-based optimizer to take efficient steps in
each iteration, with an implied freedom on global topology and connectivity, as well as
the form taken by those approximations. We intend to explore this hypothesis more fully
in future work.



Phong surface model 15

References

1. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992) 1, 3

2. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it smpl: Auto-
matic estimation of 3d human pose and shape from a single image. In: European Conference
on Computer Vision. pp. 561–578 (2016) 1, 14

3. Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: Dataset and evaluation for 3d mesh
registration. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 3794–
3801 (2014) 3

4. Cashman, T.J., Fitzgibbon, A.W.: What shape are dolphins? Building 3D morphable models
from 2D images. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1),
232–244 (2013) 2, 4, 6

5. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: IEEE
International Conference on Robotics and Automation. pp. 2724–2729 (1991) 3

6. Fitzgibbon, A.: Robust registration of 2D and 3D point sets. In: Proceedings of the British
Machine Vision Conference. pp. 411–420 (2001) 3, 4

7. Hirshberg, D., Loper, M., Rachlin, E., Black, M.: Coregistration: Simultaneous alignment
and modeling of articulated 3D shape. In: European Conference on Computer Vision. pp.
242–255 (2012) 1

8. Khamis, S., Taylor, J., Shotton, J., Keskin, C., Izadi, S., Fitzgibbon, A.: Learning an efficient
model of hand shape variation from depth images. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 2540–2548 (2015) 4, 10

9. Kolotouros, N., Pavlakos, G., Black, M., Daniilidis, K.: Learning to reconstruct 3D human
pose and shape via model-fitting in the loop. In: IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2252–2261 (2019) 1

10. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and
expression from 4D scans. ACM Transactions on Graphics 36(6), 194:1–194:17 (2017) 1, 14

11. Loop, C.T.: Smooth Subdivision Surfaces Based on Triangles. Master’s thesis, University of
Utah (1987) 2

12. Magic Leap Inc: Perception at Magic Leap (2019), https://sites.google.com/view/
perceptionatmagicleap/ 1

13. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. Journal
of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963) 3

14. Microsoft: HoloLens 2 (2019), https://blogs.microsoft.com/blog/2019/02/24/
microsoft-at-mwc-barcelona-introducing-microsoft-hololens-2 2, 7, 13

15. Mueller, F., Davis, M., Bernard, F., Sotnychenko, O., Verschoor, M., Otaduy, M.A., Casas, D.,
Theobalt, C.: Real-time pose and shape reconstruction of two interacting hands with a single
depth camera. ACM Transactions on Graphics 38(4), 49:1–49:13 (2019) 1, 4

16. Neugebauer, P.J.: Geometrical cloning of 3D objects via simultaneous registration of multiple
range images. In: International Conference on Shape Modeling and Applications. pp. 130–139
(1997) 3

17. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A.A., Tzionas, D., Black, M.J.:
Expressive body capture: 3D hands, face, and body from a single image. In: IEEE Conference
on Computer Vision and Pattern Recognition. pp. 10975–10985 (2019) 1

18. Pellegrini, S., Schindler, K., Nardi, D.: A generalisation of the ICP algorithm for articulated
bodies. In: Proceedings of the British Machine Vision Conference. pp. 87.1–87.10 (2008) 3

19. Phong, B.T.: Illumination for computer generated pictures. Communications of the ACM
18(6), 311–317 (1975) 2, 4

https://sites.google.com/view/perceptionatmagicleap/
https://sites.google.com/view/perceptionatmagicleap/
https://blogs.microsoft.com/blog/2019/02/24/microsoft-at-mwc-barcelona-introducing-microsoft-hololens-2
https://blogs.microsoft.com/blog/2019/02/24/microsoft-at-mwc-barcelona-introducing-microsoft-hololens-2


16 J. Shen et al.

20. Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth.
In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 1106–1113 (2014) 1

21. Rusinkiewicz, S.: A symmetric objective function for ICP. ACM Transactions on Graphics
38(4), 85:1–85:7 (2019) 3

22. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: International Confer-
ence on 3D Digital Imaging and Modeling. pp. 145–152 (2001) 3

23. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand motion
tracking using RGB and depth data. In: International Conference on Computer Vision. pp.
2456–2463 (2013) 10

24. Sullivan, S., Ponce, J.: Automatic model construction and pose estimation from photographs
using triangular splines. IEEE Transactions on Pattern Analysis and Machine Intelligence
20(10), 1091–1097 (1998) 3
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