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ABSTRACT

This paper presents a knowledge graph enhanced personalized
search model, KEPS. For each user and her queries, KEPS first con-
ducts personalized entity linking on the queries and forms better
intent representations; then it builds a knowledge enhanced profile
for the user, using memory networks to store the predicted search
intents and linked entities in her search history. The knowledge
enhanced user profile and intent representation are then utilized
by KEPS for better, knowledge enhanced, personalized search. Fur-
thermore, after providing personalized search for each query, KEPS
leverages user’s feedback (click on documents) to post-adjust the
entity linking on previous queries. This fixes previous linking errors
and improves ranking quality for future queries. Experiments on
the public AOL search log demonstrate the advantage of knowledge
in personalized search: personalized entity linking better reflects
user’s search intent, the memory networks better maintain user’s
subtle preferences, and the post linking adjustment fixes some link-
ing errors with the received feedback signals. The three components
together lead to a significantly better ranking accuracy of KEPS.
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1 INTRODUCTION

Personalized search customizes document rankings for each user
based on her individual interests in order to improve her search
experiences. Previous research often personalizes the search results
by matching documents with user profiles, which represent user’s
intents and are constructed using user’s search history [16, 18, 22,
30, 34, 35]. On the other hand, recent research in entity-oriented
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Figure 1: knowledge enhanced personalized search example

search utilizes the explicit semantics, e.g. entities and relations from
knowledge graphs, in search systems and effectively improves the
text representation and ranking accuracy [14, 19, 21, 28, 40, 42, 43].

Both personalized search and entity-oriented search leverage
information beyond the current query to better understand and
satisfy user’s information needs. Their advantages also naturally
reinforce each other. One key challenge of entity-oriented search
is the difficulty of query entity linking. Queries are often short and
ambiguous[42], making query entity linking a challenging task: A
recent study shows that state-of-the-art entity linking techniques
only have 50% accuracy on web queries [41]. Using such noisy query
entities in ranking often requires manual annotations [12] or soft
linking/diversification [42]. Personalization provides a natural way
to help resolve the ambiguity in query entity linking: For example,
in Fig. 1, the query “cherry reviews” alone is ambiguous, but her
search history shows she is referring to cherry the flower.

On the other hand, the explicit semantics from knowledge graphs
provide a natural way to represent user’s search intent and prefer-
ence profile. The entity-based representations are intuitive, explain-
able, and incorporate external knowledge that is hard to capture
by the word-based or embedding-based representations used in
personalized search [2]. In Fig. 1, entities such as Sakura, Tokyo,
Japan, and Travel may frequently appear in the user’s search his-
tory, and intuitively form the “points of interests” for her profile.
So it becomes obvious that the personalized information needs for
the current query would be “reviews of Sakura in Japan and trips
to see their blossom”, which is much different from “reviews for
cherry keyboards” or the novel.

This paper presents KEPS, “Knowledge Enhanced Personalized
Search”, a new model that brings together the advantages of entity-
oriented search and personalized search. Given user’s search history
and her current query, KEPS first conducts personalized entity link-
ing on the query, leveraging the rich information from her search
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history to better disambiguate the entity linking, and to better repre-
sent the current search intent using these entities. Then the person-
alized entity annotations enable KEPS to construct entity enhanced
user profiles, using a memory network that represents user’s search
preferences in the word-entity duet representation space [42]. KEPS
then conducts personalized ranking to adapt document ranking
to satisfy user’s information need, using the personalized search
intent and the knowledge enhanced user profiles.

KEPS also embraces the multi-round nature of personalized
search: the system can be viewed as a personal assistant tailored for
the individual user’s interests, while also learns from the interac-
tions with the user. During search, after the personalized ranking is
provided and the interactive feedback is received from the user (i.e.
click), KEPS leverages the feedback signals as extra information to
revise the system’s understanding of the user’s preference. Specif-
ically, this is achieved by post-ranking entity linking adjustment,
where KEPS fixes previous linking errors according to user’s click
preference on documents. This helps to improve the ranking quality
for future queries.

In our experiments on a recent contextualized search dataset [1],
KEPS provides significantly more accurate search results than: pre-
vious ad-hoc ranking models, entity-oriented models, session-based
models, and personalization models. Our analyses confirm that
KEPS effectively brings together personalized search and entity-
oriented search. Personalization effectively improves the entity
linking accuracy, yielding significantly better results in ambiguous
queries. Enhancing user’s profiles with entities helps to capture
more nuances in user preferences; the word-entity duet memory
network is effective in modeling long-term history. The post search
entity linking adjustment further improves the ranking accuracy on
ambiguous queries, learning from the user’s interactive feedback.

We also provide additional studies on the effectiveness of per-
sonalized search versus session-based search; the comparisons with
the state-of-the-art session-based ranker [1] and KEPS’s different
variants demonstrate the advantage of KEPS in modeling and bal-
ancing the personalized signals from both user’s session search and
long-standing preferences.

2 RELATED WORK

Personalized Web Search. In addition to search result diversifica-
tion [36, 37], personalized search is another way to address the prob-
lem of vauge queries to search engines. Personalized search has been
widely studied for its ability to model users’ preferences and adapt
document rankings to users’ query intent. Different from session-
based search which utilizes short term search context, personalized
search learns to model user’s interest using long-interval search
history. Early personalization methods [3,4,6,7,9,13,17,23,29,31-
35, 38, 39] manually extracted the rich click features and topic fea-
tures according to user’s historical searches and clicks, which are
effective in personalized search. Specifically, some works [13, 32]
studied personalized click features, and Dou et al. [13] proposed
P-Click using click features to improve personalized ranking effect.
Other works [3, 9, 17, 23, 29, 34, 35, 38] extracted the topics fea-
tures from user’s search history to predicted document relevance.
Click features and topic features are combined and studied in some
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researches [4, 6, 33, 38, 39]. Bennett et al. [4] proposed SLTB to
combine the two types of features using learning to rank.

Recently, deep learning has been applied in personalized search
[16, 18, 22, 25, 30]. It significantly improved personalization by
learning the effective representations of user profiles and other
personalized features from user’s history. Ge et al. HRNN [16] pro-
posed to use a hierarchical RNN to model user’s profile. PSGAN [22]
proposed a generative adversarial network framework to promote
the training of deep personalized models which further enhances
the personalized effect.

Another challenge in personalized search is that many search
logs are not publicly available [4, 16, 22, 25, 34]. In the released
dataset from Yandex!, the text contents of queries and documents
have been encrypted, making it impossible to link them to entities.
The Sogou dataset [20] contains only one month of user search log,
limiting the effectiveness of personalized search which often uses a
longer period to construct user profiles. Recently, the context search
dataset constructed by Wasi et al. [1], which is based on the public
AOL search log [26], makes it possible to study personalized search
in the public domain. We conduct experiments on this dataset [1].

Entity-Oriented Search. There have been many attempts to inte-
grate entity knowledge into ad-hoc web search. Some take entities
contained in the query or document as a kind of relevance ranking
features, such as term weight in queries according to entity de-
scriptions [8, 12]. There are also some researches using entities as
connections between the documents and queries for better match-
ing. Liu et al. [19] and Xiong et al. [40] takes the entity as a latent
space and learn query-document matching relevance through the
latent space. Ensan et al. [14] used a probability model to model the
semantic entity linking of documents and queries. Raviv et al. [28]
used a language model to balance the entity-based and term-based
information. Some researches also utilize entity representations.
Xiong et al. [41] consider the bags of entity representations in search
model, and the interaction between bags of word representations
and bags of entity representations is also studied in [42]. Neural-
based search model EDRM [21] study the interaction between word
vectors and entity vectors. Our model KEPS is also a neural-based
model using entity representations, but focuses on entity enhanced
personalized search.

3 OUR APPROACH

The architecture of KEPS includes four components, as shown in
Fig. 2: personalized entity linking for better query intent modeling;
user profile constructing for user preference modeling according
to the query intents; personalized ranking for document relevance
modeling according to the query intents and profiles; post-ranking
entity linking adjustment for adjusting entity linking probabilities of
previous queries using user’s feedback for personalized ranking of
subsequent queries. These components are trained together using
the user’s click information.

3.1 Problem Definition

This section describes the notation and the specific task in this paper.
We denote the search history of a user u by H =[Sy, ..., S ], which

Uhttps://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
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Figure 2: The KEPS framework.

consists of a series of sessions S. Each session contains pairs of a
query and a list of candidate documents, i.e., for the h-th sesssion
Sp = [(q?, D{’), . (qgh, Z)J}C’h)], where xp, is the number of queries
in the session. To simplify notation, we suppose the current session
is the m-th session in which user has issued ¢t — 1 queries, i.e.,
Sm = [(q1, D1), ...(q¢-1, Dr—1)]. Then when the user issues the ¢-th
query gy, our task is to rank the corresponding candidate document
set Dy = [d1, ... d|p,|] to satisfy user’s search intent on query g
according to the search history 9. This process is repeated until
the current session ends.

We define the historical search sequence in the current session
as short-term history Qg, while that in previous sessions before the
current session as long-term history Q; following HRNN [16]:

Qs = a1, - gjo, ] = [a7" g2,

Q1= [qﬁ,..., ql|Ql|] = [ q)lcl)--w q{"’l,m, q;n,,:,lll
Modeling short-term and long-term history separately is effective
because history in the current session tends to reflect user’s session
search intent, while the previous history may reflect user’s global
interests [16, 22].

Suppose a query q has x entity mentions (text string in query
that may refer to certain entity), we denote the candidate entity
list for the query by & = [[e1,1,.... e1,n, ], --» [€x,15 -, €x,n, ]] Where
ny indicates the number of candidate entities for the x-th mention.
Using Emb, to represent the entity embedding layer, we then define
the entity embedding for queries and documents, Emb? and Emb‘el,
which incorporated with semantic information from knowledge
graph. For query ¢q and document d, we have:

X n;
Emb](q) = Z ZPi,jei,j Embd(d) = Z ci * ej,
i=1 j=1 e;ind

where p; ; is the link probability of the entity e;; (see Sec. 3.2
for details), e; is the embedding of entity e;, and ¢; denotes the
frequency of entity. Let w; be the embedding of word w;, we define
the text embedding for queries and documents, Emb?, and Embflv:

Emb,(q) = Z ci *w; ,Emb% (d) = Z ci Wi,

w; in q w;ind

3.2 Personalized Entity Linking

To leverage knowledge in modeling user’s search intent, we conduct
personalized entity linking for queries as shown in Fig. 3. This is
because: with search history, we can improve the linking accuracy;
with explicitly linked entities, we can better represent user’s intent
for subsequent user profile constructing and personalized ranking.
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We use soft-alignment and predict the link probability for all
the candidate entities. The link probability of the j-th candidate
entity of the i-th mention in the current query gq is calculated by
the relevance with query text and personalized history:

exp(MLP(f (ei,j» q) @ f(eij. H)))
ST exp(MLP(f (e q) @ f(ei 0 H)))
where MLP(-) denotes a multi-layer perceptron model, and & is the

operation of vector concatenation. The relevance between entity
e j and query q includes vector similarity and statistical features:

pij = F (eijlg H) =

f(eij,q) = tanh(e] ; x MLP(q)) & MLP(l; ),

where q is the text embedding of query ¢, and [; ; is the statistical
features including the popularity of the candidate entity and the
linking scores given by TAGME [15].

Since user’s historical search behavior reflects user’s implicit
preference, it is helpful for query disambiguation and entity linking.
Specifically, we model user’s search history to calculate the histori-
cal linking features f(e; j, H) from two perspectives: mining the
sequential information in user’s search history to provide the basis
for entity linking; detect similar historical queries and use associate
entities in these queries to predict entity linking.

Sequential History Modeling. We adopt an LSTM layer and
an attention mechanism based on the current query to mine user’s
interests according to her sequential search history. We concatenate
the query vectors with its corresponding document vectors as input
to feed the LSTM layer. When using the short-term history, we
obtain a vector ts representing user’s short-term interests by:

hg, ’hTQsl = LSTM([(qi’ di)’ e (qTQsl’ dTQS |)])’

1Qs

Z aihf and a; = softmax(vI * MLP(hg ®q)),

i=1

where g is the text embedding of query ¢;, the corresponding

document vector dj is the average of text embedding of clicked

documents corresponding to query g3, and v; is a parameter vector.
We obtain the long-term interests #; by replacing ¢} and d; in

(1)

ts =

Eqn. (1) with the query text embedding qf. in long-term history Q;
and its corresponding clicked document embedding.

Related Historical Entity Extracting. We apply another LSTM
layer and an attention mechanism based on the current query to
highlighting related historical queries and take the entities in these
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queries as related historical entities. Taking the historical query
as input, when using short-term history we obtain the vector e
representing related historical entity information by:

kS, ""hTQSI =LSTM([qS, ... qusl]),

1Os
es = Z aje; and a; = softmax (o] * MLP([h{ & q])),
i=1

@)

where q; and e} are the text and entity embedding of query g;.
We obtain a long-term historical entity representation e; by
replacing g} and €] in Eqn. (2) with qf. and eﬁ in long-term history.
So the personalized historical linking feature of the j-th entity
e j of i-th mention is defined by the following four parts, where
g(x,y) = tanh(xT * MLP(y)) denotes vector similarity:

fleij,H) = gleij. ts) ® gleij. ty) ® gleij. es) ® gleij, e).

3.3 User Profile Constructing

Using the search intent reflecting by personalized entity linking
probabilities, we can retrieve related search history and obtain
user’s preference from the corresponding clicked documents. Here
we use key-value memory networks [24] to store user’s history.
Further, as stated in Sec 1, entities in user’s search history can
be utilized to model the subtle preferences, so we proposed both
entity memory networks and text memory networks for preference
profiles constructing. The structure is shown in Fig 4.

Entity Memory Network treats the historical query entity vec-
tors as key, while the clicked document entity vectors as value. Thus
we record user’s subtle preferences reflecting by her clicks under
certain query intent in her history. For short-term history, we have:

K = [k7, ... kISQsl] =[ef, ... eTQ5|]’

3
Vs = [v{,...,vlstl], ®)

where e] is the entity embedding of ¢} and o} is the average of
clicked document entity embedding associated with query g} in
short-term history.

Then we construct user profiles using the memory network.
First, according to the entity embedding of the current query eq =
Emb{ (g), which reflects user’s search intent by the entity linking
probabilities, we assign different attention weights to user’s histor-
ical clicked entities. When using short-term history, we obtain a
short-term entity preference profile p¢ by:

1Qs |

ps= Z piv; and f; = softm:;lx(kfT * Pe % eq).
i=1

©

However using the entity vector we may only find the history slots
related to entities in the current query. We further integrate p¢
into eg and read related history from the memory network again.
Thus we can find history slots related both to the query and to eq
which represent some interest points of the user, and construct a
comprehensive preference profile incorporating the user’s wider
interest. So we have:

eq=We x ps +eg
|QS

! ()
pi=) Bivi. B =
i=1

softmax(kfT * Pe xeg),
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Figure 4: Structure of preference profile constructing.

where We and P, are parameter matrices.

For long-term history, we obtain a long-term entity preference
profile p7 by replacing k{ and v; in Eqn. (3) with eg and correspond-
ing document entity vectors in long-term history. Then read related
history as in Eqn. (4) and (5).

Text Memory Network treats the historical query vectors as
key, while the average of corresponding clicked document vectors
as value. So when in short-term history, we have:

K = [kia ~~~ak|sQS|] = [qi, s (ITQS|]

(6)
VS = [Zli, ceey vlsasl]’

where g is the text embedding of query ¢; and o} is the average
of clicked document embedding associated with query g;. Since
the original query string may not completely reflect user’s search
intent, we splice the query vector ¢ = Emb?,(q) and t; which
reflects search intent and is learned in Sec. 3.2 as an intent vector.
Then we read out related history according to the intent vector.
Since the associations between text vectors (may be verbose) are
not as strong as that between entities, we only read once here. So
we obtain a short-term text preference profile p}” by:

q =t;dq
1Qs| (7)
pY = Z Bivs, Bi = softmax(kfT * Py xq’).
i=1

For long-term history, we read out a long-term personalized text
preference profile p;” by replacing k; and v} in Eqn. (6) with qé and
the corresponding clicked document vectors in long-term history.
Then read out related history as in Eqn. (7).

3.4 Personalized Ranking

With the predicted user’s search intents in Sec 3.2 and the user’s
preference profiles constructed in Sec 3.3, we then calculate the
relevance of candidate documents to conduct personalized ranking.
So given the search history H, we compute the relevance of a
candidate document d for the query q by:

F(dlg.H) =MLP(f(d® I) & f(d.P) & f(d.q)),
where 7 and P are the predicted intents and preference profiles.

Intention Relevance computes the similarity between the can-
didate document vectors and the vectors #;, ts.eq reflecting user’s
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intent in Sec. 3.2 by g(x,y) = tanh(xT * MLP(y)):
f(d.I)=g(d.ts) ® g(d.t)) ® g(d°,eq) ® g(d. eq)],

where d, d° is the text and entity embedding of document d respec-

tively, and eg is the entity embedding of the current query.
Preference Relevance is the relevance between the document

vectors and profile vectors reflecting user’s preference in Sec. 3.3:

fd.P) =g(d ps") ® g(d. p”) & g(d*, p§) ® g(d*, p[)].

Query relevance is the relevance between documents and the
original query, including vector similarity, click features f; as in
[13], and interactive word-entity duet matching features fy,:

f(d,q) = g(d,q) ® MLP(f3) & fm,

where d, q is the text embedding of the query and document. We
propose an entity-based matching component incorporating per-
sonalized information PEDRM to calculate the interactive features
fm- We use e, w9 represent the embedding of entities and words in
queries, and e? and w? represent that in documents. For the current
query g with x mentions, we collect all the candidate entities and
the corresponding link probabilities into a list:

&= [e?, e e?‘gl] = [el,l’ v €115 e Ex, 15 00 ex,nx],

pP= [pl, ’P|8|] = [Pl,l: -~-’P1,n1’ - Px,15 -~-’Px,nx]-

PEDRM is based on EDRM (EDRM-CKNRM in [21]), the state-of-
art ad-hoc model using interactive entity-based featuress. EDRM
first constructs the interaction matrices between words and entities
in queries and documents, and then uses kernel-pooling to extract
the matching features:

ij _
#(M) = {K1(M), ... Kx (M)} , Kt (M) = Z eXP(‘%)’
j k

Jm =MLP(¢(Me,e) © $(Mev) ® $(Mune) ® (M),

where @ is concatenation operation, Me e, Me v, Myye, My oy de-

note the interaction of eq—ed, eq—wd, wl-ed ,wq—wd respectively.
PEDRM further incorporates personalized entity linking prob-

ability into the interaction matrix of query entities as the weight

reflecting user’s intent. Furthermore, we also add an interaction

matrix R between entity relation vector and the query vector:

* Ml

ijo_ ijo_ . ij
Me,e =pi Me,w =pi* Me,w»

Rij=pi*(r]; «Wg *q),
? - e;? indicates the entity relation vector since we
use TransE [5] to pre-train entity embedding. Adding the matrix
R is because the relationship between entities may also reflect the
relevance to the query. For example, when querying “Obama’s wife”,
both “Michelle” and “U.S.A” are related to entity “Obama”. But the
relationship “isWife” between “Michelle” and “Obama” reflects that
“Michelle” is more relevant to the query. So fi, is defined by:

Jm = MLP(¢(Mee) ® ¢(Me,v) © $ (M) ® $(May,n) © (R)).

wherer;j =e
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3.5 Post-ranking Entity Linking Adjustment

After the ranking, we adjust the entity linking probabilities of
historical queries within the current session using the current query
and user’s feedback. In the same session user’s search intents are
often consistent, so user’s current querying and the click feedback
are helpful to understand the previous ambiguous queries. For
example, using the entity “software” in current query or user’s click
feedback, we have higher confidence that the previous ambiguous
query “Java” refers to “java language”. The adjusted results further
contribute to constructing user’s preference profile when the user
search for “Books for programming” later.

When conduct post-ranking adjustment, our main idea is: firstly
select the entity with the highest linking probability which reflects
the user’s intention; then use this entity to adjust the linking prob-
abilities of entities associated with other mentions in the session.

Specifically, after personalized ranking, we first adjust the linking
probabilities for the current query using the entities in the clicked
document according to user’s click feedback:

to_ it t T t
pij=pijte; *Wrd,

exp(pL)
R ®)
S exp(p! )
where d?, is the average of entity embedding of the current clicked
documents. Here we use the superscript to identify the location of
the query in the session, and the current is the ¢-th query. Then we
find the entity in the candidate entity set &; of the current query
with the highest link probability p = max(pf,j), for each el{j in &;.
If p <=6 (we set § = 0.5), we end the adjustment and are to rank
the t + 1-th query. § here denotes a confidence score, which is to
filter the linking results with low linking credibility.
If p > &, and assume the index of the mention associated with
the selected entity is a, we then use the predicted entities of a-th

t
Pij

t
mention e}, = 2;121 pfl, i* e; jto adjust the link probabilities in
other candidate entity set E,1 <= k <=t — 1. According to the
entity similarity and text similarity, we adjust the probabilities:

T T
K =pf, + MLP(el" < Wy xef; @q'" « Wa % qb),

then normalize the link probabilities as Eqn. (8). Next we find the
entity in &, 1 <= k <=t with the highest link probability p =
maxpi.fj, for each egf. in &, 1 <=k <=t.If p > § and the mention
has not been selected before, then we repeat the above steps using
the entities of the selected mention to adjust other link probabilities;
else we end the adjustment and are to rank the ¢ + 1-th query. The
adjustment will be stopped if there is no link probability larger than
8, or all the mentions have had been selected. So the maximum
number of cycles in the adjustment is the number of mentions in
the current session. We take a session as a training unit, and the
matrix parameters W, Wi, W, will be optimized when we reduce
the training loss of the session.

3.6 Training

We take a session as a training unit, and use the pairwise loss:

=SS S max(0,1- flg.dH) + f(g.d7 H)),

u S qeSd-,d*eD



Session 4C: Neural Networks and Embedding

Table 1: Specific statistics of experimental data

Type Train ‘ Valid ‘ Test
User Num 100,110 4,774 5,555
Query Num 598,812 66,879 70,763
Session Num 224,891 27,272 27,767
Avg Session Len 2.66 2.45 2.55
Avg History Len 50.56 64.67 68.18
Avg Click Num 1.11 1.09 1.12

where u denotes user, S denotes session, H is user’s search history,
q denotes query, and d* represents the positive documents while
d~ represents others in the document list O associated with g.

4 EXPERIMENT SETUP

In this section, we describe the detailed experimental setups.

Dataset. The dataset we use is constructed by Wasi et al. [1]
using the AOL search log, in which the candidate documents for
each query are collected according to BM25 ranking from a docu-
ment list. To our best knowledge and as discussed in Sec. 2, AOL
search log is the only public dataset that can be used for knowledge
enhanced personalized search. We split the search log following
[1] to get background set, training set, test and valid set. Note the
setting different from [1] is that we keep the background set to
provide user’s basic historical search sequences for user profile
constructing and interest modeling. We divide user’s queries into
different sessions and the session boundaries are decided based on
the differences between query vectors as the task boundaries in [1].

We use the entity titles in Wikipedia. The candidate entities for
queries are collected using DEXTER [10] (note that entity linking
for queries are done in Sec. 3.2). Since there is no entity annotation
in documents in our data, we use TAGME [15] to link entities in
Wikipedia to the document titles. And the specific statistics of our
experimental data are shown in Tab. 1.

Baselines. Our Baselines include state-of-the-art personalized
search methods and entity-based ad-hoc ranking models. Since the
candidate documents are retrieved by BM25 score, we take BM25
ranking as original ranking.

Ad-hoc baselines include Conv-KNRM [11], a neural model us-
ing interactive features and EDRM (EDRM-CKNRM [21]), the state-
of-art ad-hoc model using interactive entity-based features. We
use these baselines to reflect the personalized improvement of our
model. We also evaluate the effect of PEDRM we proposed in Sec 3.4,
using TAGME [15] to conduct entity linking for queries and remov-
ing the presonalized linking probabilities for comparision.

Personalization baselines include the model using tradi-
tional features: P-Click [13] using click features and SLTB [4]
using click features and topic features, which is the state-of-art
personalization model using traditional features; and the model
based on deep learning: HRNN (HRNN+QA [16]) using hierarchical
RNN and PSGAN (we choose the document-selection based model
[22]) using adversarial training. To make a fair comparison, we
also add entity information to the baseline HRNN to construct an
entity-based personalization baseline HRNN-Entity. We splice the
entity representations and original text representations of docu-
ments and queries as new representations, and train HRNN taking
them as input. The entity representations of queries and documents
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are calculated by the average sum of embedding of associated en-
tity linked by TAGME [15]. Since context-aware search also uses
part of user’s history, we take the state-of-art context search model
CARS [1] as a baseline to show the effect of personalization.

Implementation Details. The dimension of pre-trained word
embedding and entity embedding are 50. The vocabulary size of
entities and words is 723,073 and 124,056. We train the word embed-
ding using GloVe [27], taking the query texts and document titles
in the search log as training corpus. We train the entity embedding
using TransE [5], taking the entities and relations extracted from
our data as input. Both the word embedding and entity embedding
are fixed in conv-KNRM, EDRM and PEDRM we proposed, but
will be mapped into a new vector space by training a projection
matrix.The new word vector dimension is 50 and the entity vector
dimension is set to 128. All MLPs used in the experiments have
one hidden layer. The hidden state of LSTM layers is all set to 100
dimensions. The inner vector in attention layers is all set to 100
dimensions. The setting of CNN layers and kernel functions in
PEDRM are consistent with EDRM [21].

Evaluation Metrics. Following the previous work [16, 22], we
use MAP, MRR, P@K (precision in the top k positions) and AR
(average ranking position of relevant documents) to evaluate our
model. We follow official TREC_Eval and break the order of docu-
ments with the same ranking scores randomly. We take the right
clicked documents as relevant following [1].

5 EVALUATION RESULTS

5.1 Overall Performance

First, we compare KEPS with various comparison models. The
overall results are shown in Tab. 2. We have the following findings:

(1) KEPS outperforms all other baselines with significant
improvement, showing the effectiveness of our knowledge
enhanced personalization model on user’s interests model-
ing and document ranking. KEPS outperforms PSGAN by over
20% improvement. Compared with the personalization model added
additional entity information HRNN-Entity, KEPS also has signifi-
cant improvement. This shows that our model has a better effect
not only because we introduce rich external knowledge, but also
the model structure is very effective.

(2) Another finding is that all the personalization models perform
better than the ad-hoc search models on MAP, MRR, P@1 and P@3,
showing the effect of personalization. However, on the metric of
AR and P@5, personalization baseline models underperform the
ad-hoc search models. One possible reason is that personalization
models may better capture the relevance features for the documents
with many related click histories. But for the documents lacking
history, they may not learn the matching features between queries
and documents as well as the ad-hoc search models, thus lowers
AR and P@5. But KEPS performs well on all the metrics including
AR and P@5, showing the effectiveness of our model.

(3) PEDRM has further improvement based on EDRM, showing
that the interactive matching between entity relations and queries
we proposed is helpful to rank the documents.

(4) The results of CARS are lower than that reported in[1] is
because we follow official TREC_ Eval and rank documents with
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Table 2: Overall ranking effect of KEPS and other baselines. The relative percentages are calculated based on PSGAN. Best
results are in bold. | indicates significant improvement over the ad-hoc baseline models Ori.Ranking, Conv-KNRM, EDRM,
PEDRM. i indicates significant improvement over the session-based model CARS. * indicates significant improvement over
the personalization models P-Click, SLTB, HRNN, HRNN-Entity and PSGAN. (p < 0.05 in two-tailed paired t-test).

Model | MAP | MRR AR | Precision@1 | Precision@3 | Precision@5
Ad-hoc Search models
Ori. R (BM25) .2501 -54.36% | .2583 -53.86% | 17.1516 -67.06% | .1483 -69.69% | .2742 -52.06% | .3452 -42.31%
Conv-KNRM 3810 -30.47% | .3910 -30.18% | 9.4712 +7.75% .2298 -53.03% | .4612 -19.37% | .5761 -6.17%
EDRM 4116 -24.89% | .4219 -24.66% | 8.8755 +13.55% | .2602 -46.81% | .4998 -12.62% | .6117 -0.37%
PEDRM 4313 -21.30% | .4436 -20.79% | 8.4612 +17.59% | .3019 -38.29% | .5327 -6.87% .6290 +2.44%
Session Based model
CARS 46167 -15.77% | 47347 -1546% | 7.9567  +22.51% | 32197  -34.20% | 55387 -3.18% | .65687  +6.97%
Personalization models
P-Click 4224 -22.92% | .4298 -23.25% | 16.5264 -60.97% | .3788 -22.57% | .4150 -27.45% | .4445 -27.61%
SLTB 50721 -7.45% | 5194TF  -725% | 13.9264 -35.64% | .4657'F -4.80% | 5203  -9.04% | 5451  -11.22%
HRNN 54237 -1.04% | 5545TF -0.98% | 105523 -2.78% | .4854TF -0.78% | 5652  -1.19% | .6046  -1.53%
PSGAN 54807% - 56007F - 10.2670 - 48927% - 5720T% - 6140 -
Knowledge Enhanced Personalization models
HRNN-Entity | .54447F -0.66% | .5565'F -0.63% | 10.4791 -2.07% | .47837% -2.23% | .5676'% -0.77% | .6073  -1.09%
KEPS 690375 425979 | 70447 12579% | 5.064575450.67% | 61247 +25.18% | .75787F +32.48% | 81181 +32.21%
ad-hoc search model is similar on both types of queries. This is
PEDRM @ HRNN PSGAN PEDRM @ HRNN PSGAN o .
SLTB % HRNN-Entity B2 KEPS SLTB i HRNN-Entity &2 KEPS because repeated queries indeed have more personalized features
. 88 0.4 for personalization models. KEPS performs little better than per-
£94 38-3 sonalization baselines on repeated queries, but much better on
<02 Y1) non-repeated queries. It also has a further improvement over the
Ofepeated queries  Non-repeated queries 0 0-1 >=1 ad-hoc search model on non-repeated queries. This shows that
query category click entropy KEPS can not only learn user’s historical preference for repeated
@ (b) queries, but also infer user’s preference for non-repeated queries.

Figure 5: Comparison of model effects on different queries:
(a) repeated and non-repeated queries; (b) queries with dif-
ferent click entropy.

the same ranking scores randomly. If we use the evaluation script as

in [1], the gain of KEPS is consistent, which reaches 0.78 on MAP.
These results show the effectiveness of KEPS. In the following

experiments, we further study the detailed personalized effect.

5.2 Effectiveness on Different Scenarios

we further analyze the detailed personalization effect on two differ-
ent scenarios: refinding gain and gain on queries with different click
entropy. We compare KEPS with personalization baselines SLTB,
HRNN, HRNN-Entity and PSGAN, and the ad-hoc search model
with the best effect PEDRM (note that we remove the personalized
probabilities from PEDRM) to show the difference.

Refinding Experiments. We count the improvement on MAP
of models’ ranking results over original ranking on repeated queries
and non-repeated queries. The repeated queries are the queries that
have been issued before by the user, while the non-repeated queries
are issued for the first time. By exploring the model effect on these
queries, we can know the model’s perception of user’s history and
the ability to infer user’s intent for the queries never seen before.
The results are shown in Fig. 5a.

In Fig. 5a, all the personalization models perform better on re-
peated queries than non-repeated queries, while the effect of the
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And it does not depend heavily on refinding information.

Click Entropy Experiments. Larger click entropy [13] indi-
cates that the query tends to be informational and ambiguous query
while less click entropy indicates the query is likely to be a naviga-
tional query. So more attention should be paid on the queries with
larger click entropy to explore the personalized effect. We study
the ranking effects of models on queries with click entropy < 1 and
queries with click entropy >= 1. The results are shown in Fig. 5b.

From Fig. 5b, we still have that the effect of PEDRM is similar
on both types of queries. However we find that different from
stated in [16, 22], the personalization models perform better on
queries with entropy less than 1. This may be because we count the
improvement on MAP over the original ranking based on BM25,
which is less efficient than the ranking from search engine used in
[16, 22]. Compared with SLTB, we can still see HRNN, HRNN-Entity
and PSGAN have more improvement on queries with click entropy
no less than 1, which is consistent with the previous works [16, 22].
KEPS has significant improvement over the baselines on both two
types of queries, and the gain on queries with less click entropy
may partly come from the interactive matching component. But
the proportion of KEPS’s improvement over the personalization
baselines is bigger on queries with larger click entropy. So focus on
the significant improvement in queries with larger click entropy,
we can see KEPS can better conduct personalization on the queries
tend to be ambiguous. This meets our experimental expectations.
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5.3 Ablation Studies

To analyze the contribution of the main components in KEPS, we
experiment with the variations of KEPS. First, to analyze the effect
of knowledge enhancement, we set the entity lists associated with
queries and documents to empty; this leads KEPS-noEntity, which
removes all the knowledge enhancement information from KEPS.
To study the effect of personalized entity linking in Sec 3.2, mem-
ory networks modeling user profile in Sec 3.3, and post ranking
entity linking adjustment in Sec 3.5, we remove these parts indi-
vidually and construct the corresponding model KEPS-noPSLink,
KEPS-noMN and KEPS-noAdjust. KEPS-noPSLink, directly using
TAGME [15] to link entities on the queries.

We also conduct ablation studies on the three relevance mod-
elings in Sec 3.4. First, removing the preference relevance from
KEPS leads KEPS-noMN. Then since preference modeling is based
on intention modeling, we remove both intention and preference
relevance, and keep the query relevance to construct KEPS-QR. It
can also be taken as a basic model to reflect the effect of user pro-
file modeling since it only contains some traditional personalized
features and a query-document matching component.

The results are shown in Tab. 3. The improvement from KEPS-
noEntity compared with PSGAN is greater than that of KEPS com-
pared with KEPS-noEntity. One possible reason is that both KEPS-
noEntity and KEPS contain the component PEDRM which is ef-
fective in words matching and may partly make up for the role of
entities. But the improvement of KEPS over KEPS-noEntity reflects
that the model can further be improved by using entities.

Compared with KEPS, KESP-noLink, KEPS-noMN, and KEPS-
noAdjust perform significantly worse in all metrics. This confirms
the effectiveness of the three components. Compared with PSGAN,
KESP-noLink improves by 22% on MAP and KEPS-noMN improves
by 19%, while KEPS-noAdjust improves by 24% near to KEPS. This
shows that personalized entity linking and the preference mem-
ory networks contribute more to the effect of KEPS. Post linking
(KEPS-noAdjust vs. KEPS) does not contribute as much as other
components; its effectiveness is restricted by the number of queries
whose linking needs post adjustments. KEPS-noMN underperforms
KEPS-noEntity shows that memory network effectively stores and
models user preference in the entity and text profiles. Since the post-
ranking adjustment mechanism mainly works on historical entities,
the gap between KEPS-noAdjust and KEPS confirms the effect of
personalized entity linking and entity enhanced user profiles.

When only use query relevance modeling (KEPS-QR), the model
effect declines the most. Adding intention relevance modeling
(KEPS-noMN) leads to better ranking accuracy. KEPS performs the
best with three relevance modeling components added. The three
components all contribute significantly to KEPS’s effectiveness.

5.4 Effect of Personalized Entity Linking

To analyze the personalized linking effect, we compare the average
MAP improvement over original ranking of the personalization
baselines and our models, KEPS-noPSLink and KEPS on ambiguous
queries. Here we define the queries containing mentions with more
than one candidate entities as ambiguous queries that need to be
conducted entity linking. The results are shown in Tab. 4. The
specific number of ambiguous queries in our data is in Tab. 5 to
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Figure 6: Effect of MN on queries with different length of
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show the room for improvement. We can see that KEPS has better
effect on both two types of queries than other baseline models
but has more improvement on the ambiguous queries. Especially
compared with KEPS-noPSLink, the improvement of KEPS on the
ambiguous queries is 5.65% while on others is 3.61%, which confirms
the effectiveness of personalized entity linking. Compared with
other baselines, KEPS-noPSLink is also more effective on ambiguous
queries, and this may be because TAGME also has a good effect on
entity linking. This shows using entities to represent user’s intent
is effective especially on ambiguous queries in personalized search.

Further we compare the linking effect of personalized entity
linking (PSLink) and TAGME. We randomly select 100 ambiguous
queries in test data and get the ground-truth label of entity an-
notation by manual labeling by two people with the consistency
coeflicient Kappa =0.69. The numbers of correct linked entities of
TAGME and our model KEPS (we select the entity with the highest
probability as linked entity) in Tab. 5 show that with personalized
information, we can improve the linking quality for queries.

These results show that personalized entity linking helps to
better infer and represent user’s intent, thus helps personalized
document ranking.

5.5 Effect of Memory Network

Since memory networks are used to preserve user’s preference
in search history, we analyze the model performance on queries
with different history length. We compare the effects of the length
of all history and the length of long-term history on the model
performance. To avoid the influence of short-term history, when
studying the long-term history we focus on the first query in each
session which has no short-term history. To balance the number of
queries in each interval, we divide the queries with different history
lengths into different groups at 20 intervals. We calculate the MAP
improvement of KEPS and KEPS-noMN in Fig. 6a and 6b.

In both figures, the consistent trend is that the improvement
of KEPS over KEPS-noMN decreases with the increase of history
length when the length comes up to 120. This shows memory
networks become inefficient when history is too long. A possible
reason is that attention mechanism may become insensitive when
there are too many irrelevant memory slots. Another finding is that,
KEPS has a greater improvement over KEPS-noMN in Fig 6b than
in Fig. 6a especially on the queries with history length larger than
120. This indicates that the memory network is more important
when dealing with history spanning a long period time. This may
be because the length of short-term history is generally short, the
role of short-term memory network can be partly made up by the
LSTM layer in KEPS. We also evaluate the model on queries with
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Table 3: Performance of variants of KEPS. The relative percentages are calculated based on PSGAN. * indicates significant
improvement over PSGAN. ¢ indicates significant improvement over KEPS-noEntity, KEPS-noPSLink, KEPS-noMN and KEPS-

noAdjust. (p < 0.05 in two-tailed paired t-test)

Precision
Model MAP MRR AR Po1 | P@3 | P@5
PSGAN 5480 - 5600 - 10.2670 - 4892 - 5720 - 6140 -
KEPS-noEntity | .6618%  +20.77% | .6771%  +20.91% | 5.6227* +45.24% | .5868*  +19.95% | .7239*  +26.56% | .7805"  +27.12%
KEPS-noPSLink | .6700*  +22.27% | .6842*  +22.18% | 5.4799* +46.63% | .5929*  21.20% | .7320*  +27.97% | .7889*  +28.48%
KEPS-noMN .6547%  +19.47% | .6691F  +19.48% | 5.7821% +43.68% | .5782"  +18.19% | .7129"  +24.63% | .7719"  +25.72%
KEPS-noAdjust | .6811%  +24.29% | .6942*  +23.96% | 5.2180* +49.18% | .6020*  +23.06% | .7456*  +30.35% | .8017*  +30.57%
KEPS-QR .6481%  +18.27% | .6609"  +18.02% | 5.6743" +44.73% | .5637*  +15.23% | .7089"  +23.93% | .7748"  +26.19%
KEPS 6903 +25.97% | .7044*° +25.79% | 5.0645*° +50.67% | .6124*° +25.18% | .7578*° +32.48% | .8118*° +32.21

Table 4: A MAP of different personalization models on am-
biguous queries and other queries

Table 8: Effect of different history. %, o, e indicates significant
improvement over CARS*, LKEPS® and SKEPS®. (p < 0.05 in
two-tailed paired t-test)

Type |  Amb AMAP Non-amb AMAP
HRNN 0.2696  -31.64% | 03334  -28.27% Model MAP  MRR AR P@l  p@3  p@>5
HRNN-Entity 0.2721 -31.01% | 0.3347  -27.99% CARS .4658  .4786  7.5876 .3239  .5538  .6568
PSGAN 0.2747 -30.35% | 0.3373 -27.43% SKEPS .5920* .6059*  6.3690* .4902*  .6689*  .7419*
KEPS-noPSLink | 0.3944 - 0.4648 - LKEPS .6077*® .6202** 6.6839*® .5117** .6760** .7439
KEPS 0.4167 +5.65% 0.4816 +3.61% KEPS .6903*°° .7044**° 5.0645*°°.6124**° .7578**° .8118**°
Table 5: Linking Effect of PSLink and TAGME on 100 ra-
nomly selected ambiguous queries SKEPS == LKEPS I KEPS SKEPS £ LKEPS 4 KEPS
y g q 08 o4 -
Type H Ambiguous queries ‘ test mentions ‘ TAGME ‘ KEPS %04 203
= 0.34 20.2
Num || 470,104 | 136 | 79 | 85 02 <01
0lgon-repeatederies Repeated queries 00 01 >=1

Table 6: Effect of memory network on short-term history
Model | KEPS
AMAP | 0.4016

| KEPS-noMN
| 0.3556

Table 7: AMAP of KEPS-noAdjust on ambiguous queries

Type | Amb AMAP | Non-amb AMAP
KEPS-noAdjust | 0.4086 - 04764 -
KEPS 0.4167 +1.98% 0.4816 +1.09%

only short-term history in Tab. 6 We can see memory networks
also have certain advantages in dealing with short-term history.

These results show memory networks are effective especially in
preserving user’s long-interval historical preference in long-term
history. But a suitable history length is important.

5.6 Effect of Post Ranking Entity Linking
Adjustment

Post linking adjustment mechanism adjusts the entity link prob-
abilities of historical queries to better model user’s history. Since
the ranking effect of KEPS-noAdjust has been studied in Sec. 5.3,
we further analyze the improvement on ambiguous queries using
the adjusted historical entity information in Tab. 7. We can see the
improvement of KEPS over KEPS-noAdjust is larger on ambiguous
queries. This shows that with the adjusted historical entities given
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query category click entropy
(a) (b)
Figure 7: Effect of model using different history on different
queries: (a) repeated and non-repeated queries; (b) queries
with different click entropy.

by post linking adjustment, KEPS can better model user’s historical
interest and promote the ranking effect for ambiguous queries. This
confirms the effectiveness of the post linking adjustment mecha-
nism on modeling user’s history.

5.7 Study of Long-term and Short-term History

Since KEPS takes sessions as training units and dynamically adjusts
the linking probabilities for queries in short-term history, it treats
the long-term and short-term history differently. So to further study
the different roles of long-term and short-term history, we compare
the effect of KEPS, SKEPS which is trained and tested only using
short-term history and LKEPS which is trained and tested only
using long-term history in Tab. 8. The model effect on different
queries is shown in Fig. 7b and 7a. When only using short-term
history, our task becomes similar to session-based search. So we also
compare SKEPS with the state-of-art session-based search model
CARS [1] to show our model effect in Tab. 8.

From Tab. 8 we can see, excluding either long-term history or
short-term history, the effect of our model is obviously reduced.
The decline of SKEPS is more obvious, showing that long-term
history contains more personalized information. Another finding
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from Fig. 7b and 7a is that the improvement of LKEPS over SKEPS
is mainly on repeated queries and the queries with click entropy
less than 1. LKEPS even underperforms SKEPS on non-repeated
queries. This shows that the contribution of long-term history
mainly comes from the refinding information in user’s long-interval
history. The contribution of the short-term history mainly comes
from the predicting of user’s current search intention through the
search context in the session. Further compared with CARS, SKEPS
also has significant improvement, which confirms the ability of our
model KEPS to model user’s session search intent.

6 CONCLUSION

In this paper, we propose knowledge enhanced personalized model
KEPS. KEPS first conducts personalized entity linking to model
user’s intent, then constructs user preference profiles using the
linked entity and memory networks. After ranking we propose to
use user’s feedback signal to adjust the entity linking probabilities
of historical queries, which helps to model user’s interest for future
queries. Experimental results confirmed the effectiveness of our
model. In the future we plan to use Graph Neural Network to model
the relation between entities to adjust linking probabilities.
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