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Abstract Combinatorial optimization in the face of uncer-
tainty is a challenge in both operational research and machine
learning. In this paper, we consider a special and important
class called the adversarial online combinatorial optimization
with semi-bandit feedback, in which a player makes com-
binatorial decisions and gets the corresponding feedback re-
peatedly. While existing algorithms focus on the regret guar-
antee or assume there exists an efficient offline oracle, it is
still a challenge to solve this problem efficiently if the offline
counterpart is NP-hard. In this paper, we propose a variant
of the Follow-the-Perturbed-Leader (FPL) algorithm to solve
this problem. Unlike the existing FPL approach, our method
employs an approximation algorithm as an offline oracle and
perturbs the collected data by adding nonnegative random
variables. Our approach is simple and computationally effi-
cient. Moreover, it can guarantee a sublinear (1+ε)-scaled re-
gret of order O(T

2
3 ) for any small ε > 0 for an important class

of combinatorial optimization problems that admit an FPTAS
(fully polynomial time approximation scheme), in which T is
the number of rounds of the learning process. In addition to
the theoretical analysis, we also conduct a series of experi-
ments to demonstrate the performance of our algorithm.
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1 Introduction

1.1 Background

Combinatorial optimization in the face of uncertainty is chal-
lenging in both operational research and machine learning.
Conventional combinatorial optimization assumes that the in-
formation of a problem instance is completely known and the
goal is to optimize some objective. However, this assumption
does not always hold in many applications. In such cases,
some information on a problem instance is only available af-
ter an action is taken. For example, in the path planning prob-
lem of minimizing the travel time, the actual passing time of
a path is uncertain, depending on various factors such as the
traffic condition, the driving skill, and even the weather. It is
only available after the actual pass. Therefore, it is interesting
and valuable to study the problem of combinatorial optimiza-
tion in environments with uncertainty.

Online combinatorial optimization is an important prob-
lem in such a topic. It models the problem of sequential de-
cision making with combinatorial constraints without knowl-
edge of the future. More specifically, in online combinatorial
optimization, a player repeatedly takes actions and observes
the corresponding feedback information at the end of each
round. This model is especially useful in real-world applica-
tions, such as planning and online recommendation.

There are different variants of the online combinatorial
optimization problem. In the stochastic setting, problem in-
stances are i.i.d. samples from a stationary distribution, while
they might be designated by an adversary in an arbitrary way
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in the adversarial setting. In terms of the feedback informa-
tion, in the full information setting the player can observe the
whole information about the problem instance at the end of
each round, while only the total loss is available in the (full)
bandit setting.

In this paper, we focus on a special case, the adversar-
ial combinatorial semi-bandit problem. In this setting, the
player can observe more detailed partial feedback informa-
tion based on its own decision. Specifically, in addition to
the total loss as in the bandit setting, the player can observe
the individual cost of each element he selected. Besides, we
make no assumption on the problem instance generation and
they can be designated by an adversary in an arbitrary way.
In other words, we assume the adversary can get access to the
player’s strategy, except the random numbers it uses (if there
is any). Particularly, we consider the adaptive adversarial set-
ting that a problem instance is allowed to depend on the pre-
vious actions by the player. The adversarial semi-bandit set-
ting is closer to the scenarios than the other settings in many
applications in which the availability of full information or
full-bandit information is too extreme and the stochastic as-
sumption does not always hold.

Various algorithms have been proposed for the adversarial
combinatorial semi-bandit problem. However, most of them,
such as the classical Exponential Weighted Average (EWA)
method [1] and the emerging Online Stochastic Mirror De-
scent (OSMD) approach [2], focus on the regret guarantee
and neglect the computational complexity. Recently, Neu and
Bartók [3, 4] consider the computational efficiency issue and
introduce the Follow-the-Perturbed-Leader (FPL) method [5]
to solve the adversarial combinatorial semi-bandit problem.
However, Neu and Bartók’s method only works well as long
as the offline counterpart of the online problem has an exact
polynomial-time algorithm. It is still a challenge to solve the
adversarial semi-bandit problem efficiently if the underlying
combinatorial optimization problem is NP-hard.

1.2 Our Contribution

The basic idea of the FPL method is to reduce an online prob-
lem to its offline version such that the well-studied offline
combinatorial optimization algorithms could be utilized. In
addition, for standing against the adversary, the FPL method
perturbs the collected data with random noise, particularly,
by subtracting exponentially distributed random variables.

However, the FPL method actually cannot guarantee the
computational efficiency if the offline problem is NP-hard
since it calls an inefficient offline oracle in each round. Given

that efficient approximation algorithms have been developed
for many NP-hard problems, in this paper we propose an idea
of employing an approximation algorithm as an offline oracle
to replace the exact optimization oracle to solve the adver-
sarial combinatorial semi-bandit problem. Our approach is
simple, efficient, and it can provide a good performance guar-
antee for some important cases. Specifically, we summarize
our work as follows.

• We design an algorithm that utilizes an offline approx-
imation oracle to solve the adversarial combinatorial
semi-bandit problem, which leads to a computationally
efficient approach.
• Unlike the original FPL method, our approach perturbs

the collected data by adding nonnegative uniformly dis-
tributed random variables. The major reason is for
adapting to the approximation oracle since many ap-
proximation algorithms only accept nonnegative inputs
and the original method may fail in this case.
• Our algorithm is computationally efficient. The ex-

pected number of calls to the oracle in each round is not
greater than the offline problem size and the expected
total running time is polynomial to the entire problem
size.
• We show that for an important class of combinatorial

optimization problems that admit an FPTAS, our ap-
proach can guarantee a sublinear (1 + ε)-scaled regret
of order O(T

2
3 ) for any ε ∈ (0, 2], where T is the num-

ber of rounds of the bandit game. This result is signif-
icant since some important combinatorial optimization
problems, such as the knapsack problem and some spe-
cial scheduling problems, admit an FPTAS, and many
real-world applications could be reduced to these typ-
ical problems. The analysis is challenging since some
techniques suitable for exact optimization oracles do not
work for approximation oracles. Therefore, we made
some key and necessary modification to some existing
work to adapt to approximation oracles.
• We conduct a series of experiments to demonstrate the

performance of our algorithm. Seeing from the exper-
imental results, our method runs much faster than that
with an exact oracle. In terms of regret, our algorithm
performs closely to the FPL method with an exact ora-
cle if the problem admits an FPTAS, and it outperforms
the CUCB-like algorithms in non-stochastic adversarial
settings even in general cases.
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1.3 Related Work

The simplest case of the combinatorial bandit problem is the
standard multi-armed bandit model where a single arm is to
be selected and only the corresponding information is pro-
vided in each round. It is an important topic in machine learn-
ing and has many applications [6]. Its stochastic setting can
date back to Thompson [7] and Robbins [8]. One of the well-
studied and widely-used algorithms is the Upper Confidence
Bound (UCB) approach proposed by Auer et al. [9]. The
adversarial multi-armed bandit and the corresponding Exp3
algorithm were introduced in the seminal work due to Auer
et al. [10].

Combinatorial multi-armed bandit is a generalization of
the standard multi-armed bandit model in which a subset of
the base arms is selected rather than a single arm, where a
feasible subset is called a super arm and it has to be subject
to some combinatorial constraints.

There is a series of work on the stochastic combinato-
rial multi-armed bandit. By generalizing the idea of UCB
method, Gai et al. [11] devised the Combinatorial UCB al-
gorithm, denoted as CUCB for short here. Chen et al. [12]
showed that the CUCB algorithm has an O( 1

∆
m2d log T ) in-

stance dependent regret bound, where d is the number of base
arms, m is the maximal size of the super arms, and ∆ is the
expected loss/reward gap between the optimal and the best
suboptimal solutions. Kveton et al. [13] further improved
this regret bound to O( 1

∆
md log T ), which matched the lower

bound, and provided an instance independent regret bound as
O(

√
mdT log T ). Some especially interesting cases were also

studied, for example, the combinatorial bandit with knapsack
constraint [14] or with matroid constraint [15]. Of which, the
case with matroid constraint was further improved to achieve
an O( 1

∆
d log T ) regret bound [15].

Adversarial combinatorial bandit is often discussed with
the case of the routing problem, including the work due to
Takimoto and Warmuth [16] for the full information setting,
Awerbuch and Kleinberg [17] and McMahan and Blum [18]
for the full bandit setting. There is a series of work discussing
the general full bandit cases [2,19–23]. Although in principle
the full bandit algorithm can solve the semi-bandit problems
and still achieve an O(T

1
2 ) regret bound, their regret is worse

in terms of other factors of the problem and further their com-
putation is inefficient for NP-hard problems.

The first work contributing to the semi-bandit setting gives
credit to György et al. [1], in which the typical EWA algo-
rithm [24–26] was adopted and it achieved an O(md

√
dT )

high probability regret bound. However, the EWA method

is proved to be suboptimal and the promising approach that
provides the best regret guarantee of O(

√
mdT ) is the OSMD

algorithm [2], which also matches the lower bound.
The FPL method discussed in this paper was first pro-

posed by Hannan [27] in the context of game theory and rein-
vented by Kalai and Vempala [5] for the full information set-
ting. Kalai and Vempala [5] also discussed the possibility
of utilizing an approximation oracle to solve the full infor-
mation problem but there are no specific results and analy-
sis provided. The simplified version of our work could be
seen as the complementation to their idea. As previously in-
troduced, the FPL method was adopted by Neu and Bartók
[3, 4] to the adversarial combinatorial semi-bandit problem
and their method gave an Õ(m

√
dT ) regret bound. Although

this bound does not match the result of the OSMD approach,
the FPL method has its practical value since it is quite simple
and computationally efficient by leveraging the existing work
on combinatorial optimization as oracles.

2 Problem Statement and Preliminaries

In this paper, we denote a super arm (i.e. a subset of base
arms) or an action with a d-dimensional binary vector, 1 for
chosen base arms and 0 for non-chosen base arms. The set
of all feasible super arms (feasible actions/decisions), which
is a subset of the power set of base arms, is mathematically
a subset of all d-dimensional binary vectors, denoted as S ⊆
{0, 1}d. In addition, we assume ∥v∥1 ⩽ m for all v ∈ S, that is,
a feasible super arm consists of at most m base arms.

An adversarial combinatorial semi-bandit problem could
be viewed as a repeated game in T rounds played between
a player and an adversary as follows. In each round t =
1, 2, . . . , T , the player chooses an action Vt ∈ S. Simulta-
neously, the adversary chooses a d-dimensional loss vector
ℓt ∈ [0, 1]d, which may depend on V1, . . . ,Vt−1. Then the
player incurs a loss VT

t ℓt. In addition to the loss, the player
also observes the value of loss ℓt,i if and only if Vt,i = 1. More
succinctly, the player observes a vector Vt ◦ℓt as the feedback
information, where ◦ is the element-wise multiplication. The
player’s goal is to minimize its total loss over T rounds.

Following the standard practice in online learning, the per-
formance of the player’s algorithm is measured in terms of
the regret, defined as

RT = E

 T∑
t=1

VT
t ℓt

 −min
v∈S
E

 T∑
t=1

vTℓt

 ,
where the expectation is with respect to the randomness of the
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algorithm since it is well known that a randomized algorithm
is necessary and a deterministic algorithm cannot guarantee
a sublinear regret in the adversarial settings. Intuitively, the
regret is the gap in the expected total loss between the learn-
ing algorithm and the best fixed action in hindsight. A good
algorithm is required to have a sublinear regret, that is, the
average regret per round tends to zero as the round number T
tends to infinity.

When the offline minimization problem with a known loss
vector is NP-hard and only an approximation algorithm is
available, we do not expect a sublinear regret for the online
problem since the approximation algorithm does not guaran-
tee the optimal offline solution in each round. In this case, we
could relax the regret definition by only comparing against a
factor γ (γ ⩾ 1) times the best solution in hindsight, leading
to the following definition of the γ-scaled regret:

RγT = E

 T∑
t=1

VT
t ℓt

 − γmin
v∈S
E

 T∑
t=1

vTℓt

 . (1)

While the above statement is abstract, we would like to
provide a more intuitive understanding with an example of
the vertex cover problem, which will be discussed in detail in
Section 5 on experiments.

In a traffic network, every day the department monitors
the traffic condition of each road by allocating monitors in
some nodes. A road is monitored if at least one of its nodes
is allocated with a monitor. The feasible action set S is the
class of subsets of nodes satisfying that all roads could be
monitored if monitors are allocated in such a subset of nodes.
An action v ∈ S is one of such feasible subsets, with binary
representation. There is some cost by allocating a monitor in
a node and the cost may change over time. If we present the
cost in each node on day t as a vector ℓt, this is the loss vector
we discuss above. Obviously, if an action Vt is taken on day
t, the loss the department suffers on this day is VT

t ℓt.
The stochastic model assumes that the loss vector ℓt is an

i.i.d. sample from a stationary distribution. However, this
assumption does not always hold in practice. In this case,
we simply make no assumption on the generation of the loss
vector, leading to the adversarial setting we discuss here.

Regarding the feedback information, it may be not avail-
able to collect the cost information if a node is not selected,
leading to the bandit or semi-bandit feedback settings. Ob-
viously the semi-bandit model is more practical in this case
than the full bandit model since the cost of each node should
be available every day rather than just a single value as the
total loss.

At last in this section, we turn to briefly introduce the the-
ory of approximation algorithms [28,29], which plays an im-
portant role in our work.

Many combinatorial optimization problems are NP-hard
and they are not expected to have a polynomial-time algo-
rithm under the widely believed conjecture that P , NP. It
is sensible to sacrifice the performance for the computational
efficiency and look for a near-optimal solution with polyno-
mial time. In the language of minimization problems, if an
algorithm running in polynomial time can guarantee a solu-
tion that is not greater than a factor α times the optimal solu-
tion in the objective, it is called an approximation algorithm
with the approximation ratio α.

Some NP-hard problems allow being approximated to any
required degree. For such problems, if an algorithm can guar-
antee an approximation ratio of 1 + ε for any fixed ε > 0
and its running time is polynomial to the problem size and
1/ε, it is said to be a fully polynomial time approximation
scheme (FPTAS). Some important problems such as the knap-
sack problem admit an FPTAS.

Notation remark In this paper, a vector is represented
with boldface, e.g. Vt, and its i-th component is denoted
with a subscript i in normal mathematical font, e.g. Vt,i. An-
other thing should pay attention to is to distinguish T and T.
The italic T denotes the total number of rounds and T always
appears in superscripts, denoting the matrix or vector trans-
pose.

3 Our Algorithm

The key idea of our approach is to utilize an approximation
algorithm rather than an inefficient exact optimization ora-
cle in the FPL method. More specifically, suppose ℓ̂t is an
estimation of ℓt (t = 1, . . . , T ) that will be introduced later,
and OαA(·) is an α-approximation oracle that takes a loss vec-
tor L ∈ Rd as input and outputs an approximation solution
OαA(L) ∈ S satisfying

OαA(L)TL ⩽ αmin
v∈S

vTL.

Our algorithm chooses the action in round t by

Vt = OαA
(
L̂t−1 + Zt

)
, (2)

in which L̂t−1 =
∑t−1

s=1 ℓ̂s, and Zt ∈ Rd is a perturbation vector
whose components are i.i.d. random variables following a
uniform distribution over [0, u] and u is a parameter to be
determined.
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Our algorithm is quite different from the previous work.
First, we utilize an approximation algorithm as the offline or-
acle rather than an exact optimization algorithm, which is ef-
ficient for NP-hard problems. Second, we perturb the cumu-
lative loss by adding a nonnegative uniformly random vector
and it can ensure that our method always works well even
though the oracle only allows a nonnegative loss vector, while
Neu and Bartók’s work of subtracting an exponential random
vector cannot make such a guarantee.

Loss estimation is another key step in the algorithm.
One challenge of solving the adversarial combinatorial semi-
bandit problem is that ℓt is not completely available. The
common practice in bandit algorithms is to estimate ℓt and
a widely-used method is of the form ℓ̂t,i = Vt,iℓt,i/qt,i, for
i = 1, 2, . . . , d. Here qt,i ≜ Pr[Vt,i = 1|Ft−1] and Ft−1 is the
sigma-algebra induced by the history of interaction between
the player and the adversary up to the end of round t − 1. It is
straightforward to verify that ℓ̂t,i is an unbiased estimation of
ℓt,i.

However, a consequent obstacle is that qt,i is unavailable
explicitly in the FPL method since Vt is produced by an or-
acle call. To tackle this problem, Neu and Bartók proposed
an approach called the Geometric Resampling (GR) to esti-
mate the reciprocal of the probability, namely 1/qt,i, which is
recapped as follows.

Notice that ℓ̂t,i = 0 if Vt,i = 0 no matter what value qt,i

is, so we focus on the case that Vt,i = 1. Since qt,i is the
probability that Vt,i = 1 occurs, the term 1/qt,i could be in-
terpreted as the expectation of a geometric distribution. A
random variable Kt,i following this geometric distribution is
the number of samples (coin flips) drawn according to (2)
with i.i.d. copies of Zt until the event Vt,i = 1 occurs again.
Since E[Kt,i] = 1/qt,i, Kt,i could be adopted as an estimation
of 1/qt,i and the estimated loss is computed as

ℓ̂t,i = Kt,iVt,iℓt,i. (3)

While we will show that the expected number of samples
for evaluating Kt is bounded fairly well, the actual number
of samples might be large and the worst-case running time is
unbounded. To ensure that the sampling procedure will ter-
minate within finite steps, the GR method introduces a rem-
edy that cuts off the number of samples by an upper bound
M. Although this treatment will introduce some bias to the
estimation, it can be shown that by appropriately chosen M,
it does not hurt too much.

Based on the above ideas, the complete algorithm combin-
ing the FPL method, the offline approximation oracle, and the
GR technique is depicted in Algorithm 1.

Algorithm 1 FPL + GR + offline approximation oracle

Input: parameters u and M, approximation oracle OαA(·);
Initialization: L̂0 = 0 ∈ Rd;
for t = 1, . . . , T do

Draw Zt ∈ Rd with i.i.d. components Zt,i ∼ U(0, u);
Choose the action by calling the approximation oracle

Vt = OαA
(
L̂t−1 + Zt

)
;

Play Vt and observe the semi-bandit feedback Vt ◦ ℓt;
Kt = 0 ∈ Rd, h = Vt;
while ∥h∥∞ > 0 and ∥Kt∥∞ < M do

Kt = Kt + h;
Draw Z′ ∈ Rd with i.i.d. components Z′i ∼ U(0, u);
choose an auxiliary action V′ = OαA

(
L̂t−1 + Z′

)
;

h = h − h ◦ V′;
end while
ℓ̂t = Kt ◦ Vt ◦ ℓt;
L̂t = L̂t−1 + ℓ̂t;

end for

4 Theoretical Analysis

The following theorem states the performance guarantee of
Algorithm 1. Since the optimal offline solution cannot be as-
sured, we do not expect a sublinear regret but a reasonable
γ-scaled regret where γ is related to the approximation ratio
α of the offline oracle. Although the regret guarantee is un-
clear for general cases, we show that our approach at least
works well for an important class of combinatorial optimiza-
tion problems that admit an FPTAS.

Theorem 1. Suppose an offline combinatorial optimization
problem admits an FPTAS. For any specific 0 < ε ⩽ 2, u > 0,
and M > 0, Algorithm 1 for solving the corresponding ad-
versarial combinatorial semi-bandit problem by calling the
approximation oracle with α = 1 + ε

2T can guarantee the
(1 + ε)-scaled regret by

R1+ε
T ⩽

1
2

(1 + ε)mu +
dmMT

u
+

dT
eM
.

Particularly, by letting

u =
(

4d2

e(1 + ε)2m

) 1
3

T
2
3 and M =

(
2d

e2(1 + ε)m2

) 1
3

T
1
3 ,

the (1 + ε)-scaled regret of Algorithm 1 is bounded as

R1+ε
T ⩽ 3

(
(1 + ε)m2d2

2e

) 1
3

T
2
3 .
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This bound is based on the condition that the algorithm
needs to know the time horizon T upfront. For the any-time
setting, that is, T is not available to the algorithm before the
game playing, we can use the standard doubling trick, merely
leading to an additional constant factor to the bound.

As in usual bandit algorithms, our method can be seen as
an exploration-exploitation schema. Seeing from Theorem
1, the perturbation variables have the order of O(T

2
3 ). In-

tuitively, in the first O(T
2
3 ) rounds, the random perturbation

dominates and the algorithm takes more exploration. As the
number of rounds increases, the cumulative loss vector takes
over and the exploitation comes into play.

One may expect an O(T
1
2 ) regret bound as in the stochastic

setting. However, we failed to achieve this and the obstacle
is discussed in subsection 4.3.

Regarding the computational cost, Algorithm 1 is efficient
and its running time is characterized in Theorem 2, which
states that the expected number of calls to the oracle in each
round is not greater than the size of the problem instance.
Since the approximation oracle runs in polynomial time, the
expected total running time is still polynomial to the whole
problem size.

Theorem 2. In Algorithm 1, the expected number of calls
to the oracle in each round for the Geometric Resampling
process is not greater than d. Formally,

E
[
max
1⩽i⩽d

Kt,i

]
⩽ d.

Consequently, the expected total number of calls to the oracle
is upper bounded by (d + 1)T.

The running time will be much better in practice since the
upper bound of the number of resampling M is usually rela-
tively small than the problem size d. For example, for a mod-
erate combinatorial optimization problem with m = d = 100,
M is less than 15 even though the time horizon T is as large
as 106, let alone that M is around 3 if T = 104.

4.1 Technical Lemmas

In this and the next subsections, we provide analysis to the
above key results. We synthetically combine previous work
and adopt techniques from [5], [30], [26], [3], and [4]. Al-
though most of the tools are quite standard, there are indeed
some challenges in the analysis for the semi-bandit setting
with approximation oracles since some tricks suitable for ex-
act optimization oracles no longer work well for approxima-
tion oracles. We make some key and necessary modification
to the algorithm and analysis.

We organize the analysis as follows. For completeness and
making this paper self-contained, we first list the technical
lemmas and their proofs in this subsection. Some of them are
standard tools and can be founded in the literature. Lemma 1
and Lemma 2 are from [4] and we rephrase them in our con-
text. However, we make considerable modification to some
existing results as Lemma 3 and Lemma 4 for adapting to the
approximation oracles.

With these lemmas, we compose the main proof steps to
Theorem 1 and Theorem 2 in subsection 4.2.

Lemma 1 characterizes the estimation bias introduced by
the cutting upper bound M.

Lemma 1. For all t and i, the Geometric Resampling method
for loss estimation (3) satisfies

E
[
Kt,i|Ft−1

]
=

1 − (
1 − qt,i

)M

qt,i
,

and
E

[̂
ℓt,i|Ft−1

]
=

(
1 − (

1 − qt,i
)M

)
ℓt,i.

Consequently for any fixed v ∈ S,

E
[
vTℓ̂t |Ft−1

]
⩽ vTℓt.

From this lemma, we can see that Kt,i and ℓ̂t,i are under-
estimations of 1/qt,i and ℓt,i respectively. What interesting is
that the upper bound of ℓ̂t,i is as large as M while ℓt,i is up-
per bounded by 1. However, we can still use Kt,i to replace
1/qt,i and ℓ̂t,i to replace ℓt,i since the estimation gaps decrease
exponentially with respect to M and can be controlled.

Proof. The procedure of GR gives

E[Kt,i|Ft−1] =
M−1∑
k=1

k(1 − qt,i)k−1qt,i +

∞∑
k=M

M(1 − qt,i)k−1qt,i

=
1 − (1 − qt,i)M

qt,i
.

By the definition of ℓ̂t,i, we have

E
[̂
ℓt,i|Ft−1

]
= E

[
Kt,iVt,iℓt,i|Ft−1

]
= E

[
Kt,i|Ft−1

]
E

[
Vt,i|Ft−1

]
ℓt,i

=
1 − (1 − qt,i)M

qt,i
· qt,iℓt,i

=
(
1 − (1 − qt,i)M

)
ℓt,i.

By the previous result that E
[̂
ℓt,i|Ft−1

]
⩽ ℓt,i, we have

E
[
vTℓ̂t |Ft−1

]
=

d∑
i=1

viE
[̂
ℓt,i|Ft−1

]
⩽

d∑
i=1

viℓt,i = vTℓt.

□
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For adopting tools for analyzing full information settings
to semi-bandit settings, one trick is to replace the actual loss
ℓt with an estimation ℓ̂t as if it is the full information feed-
back. However, the term VT

t ℓ̂t for replacing VT
t ℓt is difficult

to handle since ℓ̂t depends on Vt. A further trick to overcome
this difficulty is to introduce an i.i.d. counterpart of Vt, de-
noted as Ṽt−1, which has the identical mechanism as Vt with
i.i.d. random perturbation and is independent to ℓ̂t. Readers
may see the main proof steps to Theorem 1 in subsection 4.2
for the detailed explanation to this trick and Ṽt−1. It is suffi-
cient to understand the following lemma, which provides an
upper bound of VT

t ℓt in terms of ṼT
t−1ℓ̂t, with the assumption

that Ṽt−1 is i.i.d. with Vt and independent to ℓt.

Lemma 2. For all t,

E
[
VT

t ℓt |Ft−1

]
⩽ E

[
ṼT

t−1ℓ̂t |Ft−1

]
+

d
eM
.

Proof. Notice that Ṽt−1 is i.i.d. with Vt and independent with
ℓ̂t in the condition of Ft−1, we have

E
[
ṼT

t−1ℓ̂t |Ft−1

]
=

d∑
i=1

E
[
Ṽt−1,iℓ̂t,i|Ft−1

]
=

d∑
i=1

E
[
Ṽt−1,i|Ft−1

]
E

[̂
ℓt,i|Ft−1

]
=

d∑
i=1

qt,i

(
1 − (

1 − qt,i
)M

)
ℓt,i

⩾
d∑

i=1

qt,iℓt,i −
d∑

t=1

qt,i(1 − qt,i)M

⩾ E
[
VT

t ℓt |Ft−1

]
− d

eM
.

The last inequality holds because qt,i(1 − qt,i)M ⩽ qt,ie−qt,i M ⩽
maxq∈R qe−qM = 1

eM and the maximum is taken at q = 1
M . □

The intuition of the following lemma is that the expecta-
tion of ṼT

t−1ℓ̂t is “close” to the expectation of ṼT
t ℓ̂t and their

difference can be upper bounded by a controlled term. The
statement and proof of Lemma 3 are quite different from the
counterparts, Lemma 6 and Lemma 8 in [4] in which the per-
turbation follows the exponential distribution and the proper-
ties of the exact optimization oracle are highly utilized. Here
we borrow some idea from [5] for the uniform distribution
and adapt our analysis to the approximation oracle.

Lemma 3. For all t,

E
[
ṼT

t−1ℓ̂t |Ft−1

]
⩽ E

[
ṼT

t ℓ̂t |Ft−1

]
+

dmM
u
.

Proof.

E
[
ṼT

t−1ℓ̂t |Ft

]
=

∫
z∈[0,u]d

OαA
(
L̂t−1 + z

)T
ℓ̂t ·

1
ud dz

⩽
∫

z∈ℓ̂t+[0,u]d

OαA
(
L̂t−1 + z

)T
ℓ̂t ·

1
ud dz

+

∫
z∈[0,u]d\

(̂
ℓt+[0,u]d

) O
α
A

(
L̂t−1 + z

)T
ℓ̂t ·

1
ud dz. (4)

The first term in the right-hand side is actually E
[
ṼT

t ℓ̂t |Ft

]
since ∫

z∈ℓ̂t+[0,u]d

OαA
(
L̂t−1 + z

)T
ℓ̂t ·

1
ud dz

=

∫
z∈ℓ̂t+[0,u]d

OαA
(
L̂t + z − ℓ̂t

)T
ℓ̂t ·

1
ud dz

=

∫
y∈[0,u]d

OαA
(
L̂t + y

)T
ℓ̂t ·

1
ud dy

=E
[
ṼT

t ℓ̂t |Ft

]
.

We turn to bound the second term of (4).∫
z∈[0,u]d\

(̂
ℓt+[0,u]d

) O
α
A

(
L̂t−1 + z

)T
ℓ̂t ·

1
ud dz (5)

⩽mM
∫

z∈[0,u]d\
(̂
ℓt+[0,u]d

)
1
ud dz (6)

⩽mM
d∑

i=1

∫
zi∈

[
0,̂ℓt,i

]
,z j∈[0,u], j,i

1
ud dz (7)

=
mM

u

d∑
i=1

ℓ̂t,i,

where (6) holds since ∥v∥1 ⩽ m for all v ∈ S and ∥̂ℓt∥∞ ⩽ M,
and (7) is actually the union bound.

Combining the results above, we have

E
[
ṼT

t−1ℓ̂t |Ft

]
⩽ E

[
ṼT

t ℓ̂t |Ft

]
+

mM
u

d∑
i=1

ℓ̂t,i.

Taking expectation to be conditioned on Ft−1 and by Lemma
1, we finally have

E
[
ṼT

t−1ℓ̂t |Ft−1

]
⩽ E

[
ṼT

t ℓ̂t |Ft−1

]
+

dmM
u
.

□
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Lemma 4 is a generalization of the standard tool “be-the-
leader” lemma (Lemma 3.1 in [26]) with a linear loss to the
cases that utilize an approximation oracle. A similar result
is also mentioned in [5] but there is no analysis provided.
Please note that a negative loss will fail the induction in the
proof. This is another reason that we have to perturb the loss
by adding nonnegative noise.

Lemma 4. Assume S′ ⊆ [0,∞)d, ℓ′1, . . . , ℓ
′
T is an arbitrary

vector sequence in [0,∞)d, and V′t for t = 1, . . . , T satisfies

V
′T
t

t∑
s=1

ℓ′s ⩽ αmin
u∈S′

uT
t∑

s=1

ℓ′s,

for a constant α ⩾ 1 and all t = 1, . . . , T, then

T∑
t=1

V
′T
t ℓ
′
t ⩽ α

T min
u∈S′

uT
T∑

t=1

ℓ′t .

Proof. First we would like to prove

T∑
t=1

V
′T
t ℓ
′
t ⩽ α

T−1V
′T
T

T∑
t=1

ℓ′t (8)

with induction.
The case of T = 1 is trivial since V′T

1 ℓ
′
t ⩽ α

0V′T
1 ℓ
′
t . Assume

the conclusion holds for T − 1, that is,
T−1∑
t=1

V
′T
t ℓ
′
t ⩽ α

T−2V
′T
T−1

T−1∑
t=1

ℓ′t .

Because

V
′T
T−1

T−1∑
t=1

ℓ′t ⩽ αmin
u∈S′

uT
T−1∑
t=1

ℓ′t ⩽ αV
′T
T

T−1∑
t=1

ℓ′t ,

we have
T−1∑
t=1

V
′T
t ℓ
′
t ⩽ α

T−2 · αV
′T
T

T−1∑
t=1

ℓ′t ⩽ α
T−1V

′T
T

T−1∑
t=1

ℓ′t .

Adding V′T
T ℓ
′
T into both sides and with condition that α ⩾ 1,

we obtain
T∑

t=1

V
′T
t ℓ
′
t ⩽ α

T−1V
′T
T

T−1∑
t=1

ℓ′t + V
′T
T ℓ
′
T ⩽ α

T−1V
′T
T

T∑
t=1

ℓ′t ,

as stated in inequality (8).
Finally, because

V
′T
T

T∑
t=1

ℓ′t ⩽ αmin
u∈S′

uT
T∑

t=1

ℓ′t ,

we get the conclusion that

T∑
t=1

V
′T
t ℓ
′
t ⩽ α

T min
u∈S′

uT
T∑

t=1

ℓ′t .

□

4.2 Proofs of the Main Results

We first analyze the performance guarantee by proving The-
orem 1.

Proof of Theorem 1. Rather than directly analyzing the re-
gret defined in equation (1), we study the bound of the ex-
pected loss gap between the algorithm and an arbitrary fixed
action v ∈ S, denoted as

R1+ε
T (v) = E

 T∑
t=1

VT
t ℓt

 − (1 + ε)E

 T∑
t=1

vTℓt

 .
It is obvious to see that a bound of R1+ε

T (v) is also a bound of
R1+ε

T since v is chosen arbitrarily.
Since ℓt is unknown to the algorithm, we would like to

replace it with ℓ̂t as if it is the full information feedback to
the player so that some tools of analyzing the full information
setting could be utilized. Before that, it is helpful to decouple
Vt and ℓ̂t as they are dependent. To this end, we introduce
an on-looking virtual player that can peek one more step than
the actual player and plays with an i.i.d. perturbation. More
specifically, in round t, the virtual player chooses its action
by

Ṽt = OαA
(
L̂t + Z̃

)
,

where Z̃ is an i.i.d. perturbation as Z1. It is easy to see
that Ṽt−1 is i.i.d. with Vt, thus q̃t−1,i ≜ E

[
Ṽt−1,i|Ft−1

]
=

E
[
Vt,i|Ft−1

]
= qt,i. Note that the virtual player is only in-

troduced for the sake of analysis. The virtual actions Ṽt will
not be played and do not affect the actual process.

According to Lemma 1 and Lemma 2, R1+ε
T (v) is upper

bounded in terms of ℓ̂t as

R1+ε
T (v) ⩽

T∑
t=1

E
[
ṼT

t−1ℓ̂t
]
− (1 + ε)

T∑
t=1

E
[
vTℓ̂t

]
+

dT
eM
.

By Lemma 3, we further have

R1+ε
T (v) ⩽

T∑
t=1

E
[
ṼT

t ℓ̂t
]
− (1 + ε)

T∑
t=1

E
[
vTℓ̂t

]
+

dmMT
u
+

dT
eM
.

We would like to use Lemma 4 to bound the first two
terms. Let ℓ′1 = ℓ̂1 + Z̃, ℓ′2 = ℓ̂2, . . . , ℓ′T = ℓ̂T , and V′t = Ṽt.
It is straightforward to verify that the conditions of Lemma 4
are satisfied and we get

T∑
t=1

ṼT
t ℓ̂t + ṼT

1 Z̃ ⩽ αT
T∑

t=1

vTℓ̂t + α
T vT Z̃.
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Reordering and taking expectation gives

T∑
t=1

E
[
ṼT

t ℓ̂t
]
− (1 + ε)

T∑
t=1

E
[
vTℓ̂t

]
⩽ E

 T∑
t=1

ṼT
t ℓ̂t − αT

T∑
t=1

vTℓ̂t


(9)

⩽ αTE
[
vT Z̃

]
⩽

1
2

(1 + ε)mu. (10)

In which (9) and (10) hold since αT = (1 + ε
2T )T ⩽ e

ε
2T ·T =

e
ε
2 ⩽ 1 + 2 · ε2 = 1 + ε and this is further due to the facts that

ex ⩾ 1 + x for all x ∈ R and ex ⩽ 1 + 2x for x ∈ [0, 1]. This
is why we require ε ⩽ 2 in the theorem statement. Inequality
(10) additionally holds by ∥v∥1 ⩽ m for all v ∈ S and E

[
Z̃i

]
=

u/2 for all i = 1, . . . , d.
Combining the results above and considering that v is cho-

sen arbitrarily, we have the (1 + ε)-scaled regret bound as

R1+ε
T ⩽

1
2

(1 + ε)mu +
dmMT

u
+

dT
eM
. (11)

By inequality of arithmetic and geometric means, we have

1
2

(1 + ε)mu +
dmMT

u
+

dT
eM

⩾3
(

1
2

(1 + ε)mu · dmMT
u

· dT
eM

) 1
3

=3
(

(1 + ε)m2d2

2e

) 1
3

T
2
3 ,

where the equality holds when

1
2

(1 + ε)mu =
dmMT

u
=

dT
eM
,

which implies,

u =
(

4d2

e(1 + ε)2m

) 1
3

T
2
3 and M =

(
2d

e2(1 + ε)m2

) 1
3

T
1
3 .

In conclusion, by choosing appropriate parameters u and
M as above, we have a sublinear (1+ε)-scaled regret of order
O(T

2
3 ) for any specific ε ∈ (0, 2] as

R1+ε
T ⩽ 3

(
(1 + ε)m2d2

2e

) 1
3

T
2
3 .

□

And then we turn to the running time analysis by proving
Theorem 2.

Proof of Theorem 2. Notice that max1⩽i⩽d Kt,i is the number
of samples for the GR process in round t and its conditional

expectation with respect to a fixed Vt = v is

E
[
max
1⩽i⩽d

Kt,i|Ft−1,Vt = v
]
= E

[
max
1⩽i⩽d

Kt,ivi|Ft−1,Vt = v
]

⩽ E

 d∑
i=1

Kt,ivi|Ft−1,Vt = v


=

d∑
i=1

viE
[
Kt,i|Ft−1

]
⩽

d∑
i=1

vi

qt,i
.

Therefore,

E
[
max
1⩽i⩽d

Kt,i|Ft−1

]
=

∑
v∈S

Pr [Vt = v|Ft−1]E
[
max
1⩽i⩽d

Kt,i|Ft−1,Vt = v
]

⩽
∑
v∈S

Pr [Vt = v|Ft−1]
d∑

i=1

vi

qt,i

=

d∑
i=1

1
qt,i

∑
v∈S

Pr [Vt = v|Ft−1] vi

=

d∑
i=1

1
qt,i
· qt,i

= d.

Since there is one additional oracle calling for choosing
the actual action in each round and there are totally T rounds,
we simply get the upper bound of the expected total number
of calls to the oracle as (d + 1)T . □

4.3 Discussions

In stochastic combinatorial semi-bandit, replacing the exact
oracle in the CUCB algorithm with an approximation oracle
keeps the order of regret as long as the regret is defined by a
baseline scaled with the corresponding approximation ratio,
i.e., the scaled regret [12, 14, 15].

However, we failed to achieve a similar result in the ad-
versarial setting since there is some obstacle to this goal in
our analysis. The cause of the O(T

2
3 ) scaled regret bound in

our result is that we have to tune three terms with two hyper-
parameters u and M, see the statement in Theorem 1 and the
inequality (11) in its proof. One key solution is to remove
the term M in Lemma 3. Neu and Bartók’s work employs
some sophisticated tricks that highly depend on the proper-
ties of the exact oracle to achieve a better result similar to our
Lemma 3, see Lemma 8 in [4]. However, we cannot adapt
these tricks to the case with an approximation oracle. On the
other hand, if we do not upper bound ℓ̂t,i with M and leave
it in equation (6), we have to upper bound E[̂ℓ2t,i]. However,
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while E[̂ℓt,i] can be easily bounded, E[̂ℓ2t,i] is hard to bound
since E[̂ℓ2t,i] = E[K2

t,iV
2
t,iℓ

2
t,i] = E[K2

t,iVt,iℓ
2
t,i]. The term Vt,i can

only help eliminate one Kt,i and the remaining Kt,i can be up-
per bounded by 1

qt,i
, which is unbounded actually, or simply

M again. Therefore, so far we have to upper bound one ℓ̂t,i
with M simply, leading to an O(T

2
3 ) regret bound. In this

sense, a bounded M is necessary in our analysis while it is
optional in Neu and Bartók’s work.

5 Experiments

In addition to the theoretical guarantee of our algorithm in
the specific case, we also conduct a series of experiments to
demonstrate the performance of our algorithm and to obtain
more insight into the adversarial combinatorial semi-bandit
problem. Subsection 5.1 introduces the experimental set-
tings. The experimental results and comparison are reported
in subsection 5.2.

5.1 Experimental Settings

5.1.1 Problems

We consider two NP-hard combinatorial optimization prob-
lems, one with FPTAS and the other having a constant 2 ap-
proximation algorithm. The first is for being consistent with
the theoretical setting and the later is for testing the perfor-
mance of our algorithm for more general cases.

Although the knapsack problem is a typical case that ad-
mits an FPTAS, for being consistent with the minimization
setting in the algorithm and theoretical parts, we consider the
complementary problem to the knapsack problem. We sim-
ply call it the shopping problem since it can be described as
the following scenario.

Shopping problem There are n items, each with a price
pi and a functional value vi. Both are positive real numbers.
For completing a task, one has to buy a subset of the items
(each one can be selected at most once), such that the total
functional value of the selected items is not less than a re-
quired lower bound V and their total price is as little as pos-
sible. Formally, it is the following optimization problem:

min
x1,...,xn

n∑
i=1

pixi,

s.t.
n∑

i=1

vixi ⩾ V,

xi ∈ {0, 1}, i = 1, . . . , n.

Like the knapsack problem, if pi’s or vi’s are integers, there
is a pseudo-polynomial dynamic programming (DP) algo-
rithm. Further, under a mild and reasonable assumption that
the price of the most expensive item will not be much greater
than that of the cheapest item, formally maxi pi

min j p j
= O(poly(n)),

the shopping problem admits an FPTAS. For simplicity in our
experiment, we assume that the price of the most expensive
item is not 10 times greater than that of the cheapest item.

Since the input data are real numbers and the DP algorithm
does not apply directly, the exact oracle takes a brute-force
search strategy.

The online learning variant to the shopping problem is that
the functional values vi’s and V are fixed, while the prices pi’s
are designated by an adversary in each round.

The other problem we consider is the vertex cover prob-
lem, which is a standard case in the literature on approxima-
tion algorithms and it is described as follows.

Vertex cover problem G = (V, E) is an undirected graph
with n vertices. Each vertex vi ∈ V has a positive price pi.
We would like to select a subset of the vertices such that each
edge is associated with at least one selected vertex and the
total price of the selected vertices is as little as possible. It is
formally the following combinatorial optimization problem:

min
x1,...,xn

n∑
i=1

pixi,

s.t. xi + x j ⩾ 1, (vi, v j) ∈ E,

xi ∈ {0, 1}, i = 1, . . . , n.

The pricing algorithm based on the primal-dual schema of
linear programming has an approximation ratio of 2, which
could be found in standard textbooks on approximation algo-
rithms [28, 29]. The running time of the pricing algorithm is
O(n2), much faster than the brute-force enumeration of O(2n)
time, which was implemented in our experiment as the exact
oracle.

The online learning variant to the vertex cover problem is
that the graph G is fixed, while the price pi of each vertex is
designated by an adversary in every round.

5.1.2 Competing Algorithms

We denote our algorithm as FPL+approx, short for “Follow-
the-Perturbed-Leader with an approximation oracle”. The
baseline we would like to compare with is certainly Neu
and Bartók’s work [3, 4], denoted as FPL+exact, short for
“Follow-the-Perturbed-Leader with an exact oracle”.

The combinatorial upper confidence bound algorithm [11,
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12], CUCB1) for short, is a well-studied method and has a
good performance guarantee in the stochastic setting. Con-
sidering that the stochastic setting is a special case of more
general adversarial settings, we also compare our work with
the CUCB-like algorithms, including CUCB+exact, short for
“CUCB with an exact oracle”, and CUCB+approx, short for
“CUCB with an approximation oracle”.

In short, we implemented four algorithms in the experi-
ment, including FPL+exact, FPL+approx, CUCB+exact, and
CUCB+approx.

5.1.3 Adversarial Data Policies

It is a big challenge to evaluate an online learning algorithm
without live data, particular for adversarial settings, since it is
quite hard to design the worst adversary to fool an algorithm.
In this work, we design three adversarial data policies to test
the algorithms.

The first approach, denoted as stochastic adversary, is the
usual stochastic setting in line with the assumption in the
stochastic bandit study, in which the price vector in each
round is an i.i.d. sample from a stationary distribution.

The second data policy, called adversary against history,
is an adversarial data generation method that fools an algo-
rithm according to its past behaviors. Specifically, let Xt−1,i =∑t−1

s=1 xs,i be the number of times the algorithm selected item
i in the past t − 1 rounds and Xmax = max1⩽i⩽n Xt−1,i. When
generating the data for round t, the adversary assign a high
price to item i with probability qi =

Xt−1,i

Xmax
, or a small price

with probability 1 − qi. Intuitively, under this data policy, if
some items are selected frequently in the past, the algorithm
will most likely suffer a high loss if it still prefers these items
in the future.

The third adversarial data policy, called adversary against
the future, fools an algorithm according to the prediction of
its next behavior. In this method, we assume that the adver-
sary knows the algorithm without the player’s random num-
bers (if there is any). When generating the data for round
t, the adversary will first simulate the player with its own
random numbers (if it is necessary and they are i.i.d. to the
player’s), producing a virtual solution x′. The adversary set a
high price to item i if x′i = 1, or a small price if x′i = 0. Obvi-
ously, this adversary is extremely unfriendly to deterministic
algorithms such as CUCB since they suffer a high loss every
round.

1) We keep the term “upper confidence bound” for being consistent with
previous work, although we actually compute lower confidence bounds for
minimization problems.

Please note that for a specific adversarial data policy (ex-
cept the stochastic one), the adversary takes the algorithm as
input as part of its data generation process. So the price data
to various algorithms may be quite different, leading to dif-
ferent behaviors of the algorithms.

5.1.4 Evaluation Criteria

We evaluate the algorithms in two aspects. The first is the
computational efficiency in terms of per round running time
and the second is to test their performance in terms of (exact)
regret.

We do not compute the scaled regret by multiplying the
offline optimal solution with the approximation factor for the
following reasons. The first is for a fair comparison since
the regret and the scaled regret have different baselines and
it is not appropriate to compare them directly. Moreover, the
baseline of multiplying an approximation factor to the offline
optimal solution is quite weak and the algorithm with an ap-
proximation oracle usually outperforms it, leading to negative
regrets. Last but not least, we would like to see how much ad-
ditional price shall we pay for computational efficiency with
an approximation oracle rather than an exact oracle.

What should be mentioned is that we do not employ the to-
tal loss as a measurement, which is often used in the stochas-
tic setting. We argue that while the total loss is appropriate
for the stochastic setting, it is not a suitable evaluation in the
adversarial setting. In the stochastic case, the expected offline
optimal solution is identical and irrelevant to the algorithm so
that the total loss is consistent with the regret. However, in
the adversarial setting, there may be no consistent optimal
solution over different runs and algorithms, leading to incon-
sistency between the total loss and the regret.

5.1.5 Instance and Parameter Configuration

For the shopping problem, we ran an instance with 28 items
for testing the running time of each algorithm and we ran
a relatively small instance with 10 items for evaluating the
regret since we could not suffer the extremely long running
time from the brute-force exact oracle while we had to run
tens of thousands of trials for every setting. For generating a
problem instance, we assigned the functional value vi to item
i randomly from (0, 1), and then we set V as about 50% of the
total functional values of all items.

For the vertex cover problem, the instance for testing the
running time has 64 vertices and we evaluated the regret with
a graph of 20 vertices for a similar reason. For a given prob-
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lem size n, we generated a connected random graph accord-
ing to the Erdős-Rényi model with the probability ln n

n .
We simply employed an approximation oracle with an

approximation ratio of 101% for the FPL+approx and
CUCB+approx algorithms to the shopping problem.

Regarding the adversarial price assignment, the high
prices were all 1 in both problems. The low prices were set
to be 0.1 for the shopping problem and they were 0 for the
vertex cover problem.

In the experimental results, the data of regret are the av-
erage from 100 trials and the data of running time are the
average from 10 trials.

5.2 Experimental Results

The experimental results are illustrated in Figure 1 to Figure
3.

We first analyze the computational cost. Figure 1 shows
the average running time per round in log scale of different
algorithms to the two problems with respect to the time hori-
zon T . Obviously, the algorithms employing approximation
oracles run much faster than that calling exact oracles. The
difference in order of magnitudes is as large as 102 to 103

in the shopping problem and 105 to 106 in the vertex cover
problem.

Careful readers may note that the per round running time
of the FPL+exact method increases along the time horizon
T . The reason is that the upper bound of the number of
resampling M in the FPL algorithm increases with T . This
makes the FPL+exact approach further inefficient. The simi-
lar reason explains why our FPL+approx algorithm runs a lit-
tle slower than the CUCB+approx method, since the CUCB-
like approaches only call the oracle once every round.

And then we turn to the regret. Seeing from Figure 2, if
the problem admits an FPTAS, our FPL+approx method per-
forms closely to the FPL+exact algorithm and it outperforms
the CUCB-like algorithms in the non-stochastic settings.

Figure 3 shows that our FPL+approx algorithm still out-
performs the CUCB+ approx method even though the prob-
lem does not admit an FPTAS, except in the stochastic set-
ting. Our method even performs better than the CUCB+exact
algorithm in the adversary-against-future data policy.

Our experimental results provide comprehensive and rea-
sonable insight for algorithm selection for the combinatorial
semi-bandit problem: (1) If the computational cost is not a
bottleneck, the FPL+exact algorithm works best in the non-
stochastic adversarial setting while the CUCB+exact method
is an excellent choice in the stochastic setting; (2) If the com-

putational cost matters, our FPL+approx applies in the non-
stochastic adversarial setting and the CUCB+approx should
be selected in the stochastic setting.

6 Conclusion and Future Work

Combinatorial optimization in environments with uncertainty
is an interesting and important problem in theory and prac-
tice. In this paper we study a special case, the adversarial
combinatorial semi-bandit problem, which is useful for many
applications. Although various algorithms have been devel-
oped for this problem, solving this problem efficiently is still
a challenge.

Following the previous work, we propose a variant of the
FPL method that employs an approximation algorithm as an
offline oracle and perturbs the collected data by adding non-
negative noise.

Our approach is simple and efficient. The expected num-
ber of calls to the oracle in each round is not greater than the
offline problem size and the expected total running time is
polynomial to the entire problem size.

Our algorithm can provide sublinear (1 + ε)-scaled regret
guarantee of order O(T

2
3 ) for any ε ∈ (0, 2] for an impor-

tant class of combinatorial optimization problems that admit
an FPTAS. This result is significant since some important
problems, such as the knapsack problem and some special
scheduling problems, admit an FPTAS, and many applica-
tions can be reduced to such typical problems. The analysis
is challenging since some techniques highly depending on the
properties of exact oracles do not work for approximation or-
acles. We made some key and necessary modification to the
analysis to adapt to the approximation oracle.

Our algorithm works well when the oracle only accept
nonnegative inputs, while the original FPL method does not
work in this case.

We conducted a series of experiments to demonstrate the
performance of our algorithm. Seeing from the experimental
results, our method runs much faster than that with an exact
oracle. In terms of regret, our algorithm performs closely to
the FPL method with an exact oracle if the problem admits
an FPTAS, and it outperforms the CUCB-like algorithms in
non-stochastic adversarial settings even in general cases.

Regarding the future work, improving the scaled regret
bound to O(T

1
2 ) is considerable. In addition, analyzing our

algorithm for general cases is still unsolved. We also notice
that there are some recent tries to solve the online linear op-
timization problem with approximation oracles for the full
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(a) the shopping problem
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Fig. 1: the running time per round (in log scale) of different algorithms
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(a) stochastic adversary
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(b) adversary against history
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(c) adversary against future

Fig. 2: Regret to the shopping problem
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(a) stochastic adversary
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(b) adversary against history

2000 4000 6000 8000 10000

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

T

re
gr

et

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

FPL+exact
FPL+approx*
CUCB+exact
CUCB+approx

(c) adversary against history

Fig. 3: Regret to the vertex cover problem

information setting, e.g. Kakade, Kalai, and Ligett [31], Gar-
ber [32], Hazan et al. [33]. Although these approaches can
provide regret guarantee for general cases, but it seems that
such methods are complicated and not so efficient. For exam-
ple, the oracle complexity is related to the time horizon T . It
is also very interesting to adopt these approaches to solve the
adversarial combinatorial semi-bandit problem efficiently.
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