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Abstract
Deriving Optimal bounds on Sample Complexity
of Latent Variable models is an active area of re-
search. Recently such bounds were obtained for
Mixture of Gaussians (Ashtiani et al., 2018), no
such results are known for Ad-mixtures, a gener-
alization of Mixture distributions. In this paper
we show that O∗(dk/m) samples are sufficient
to learn each of k− topic vectors of LDA, a pop-
ular Ad-mixture model, with vocabulary size d
and m ∈ Ω(1) words per document, to any con-
stant error in L1 norm. The result is a corollary
of the major contribution of this paper: the first
sample complexity upper bound for the problem
(introduced in (Bhattacharyya & Kannan, 2020))
of learning the vertices of a Latent k− Polytope
in Rd, given perturbed points from it. The bound,
O∗(dk/β), is optimal and linear in number of pa-
rameters. It applies to many stochastic models
including a broad class Ad-mixtures. To demon-
strate the generality of the approach we special-
ize the setting to Mixed Membership Stochas-
tic Block Models(MMSB) and show for the first
time that if an MMSB has k blocks, the sample
complexity is O∗(k2) under usual assumptions.

1. Introduction
Recently, in a seminal paper, building on long line of
research, (Ashtiani et al., 2018) showed that a mix-
ture of k gaussians in Rd can be recovered using
O(number of parameters) iid samples drawn from the mix-
ture.

Our aim in this paper is to prove similar results for Ad-
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mixtrues, a problem not tackled before. Ad-mixtures
are generalizations of mixture distributions and have been
studied extensively in various applications including Text
Modelling, Population genetics, Community detection and
many other fields (for a survey see (Airoldi et al., 2014)).
Whereas in a mixture distribution, there is a fixed con-
vex combination of component distributions from which
all samples are generated, in Ad-mixtures, each sample is
drawn from a different randomly picked convex combina-
tion of component distributions. This results in substantial
overlap of distributions from which samples are picked and
makes the learning problem harder.

Ad-mixtures themselves are special cases of a Geometric
model called the Latent k-polytope (LKP) recently intro-
duced in (Bhattacharyya & Kannan, 2020). In LKP, there
is a latent k− polytope K ⊂ Rd from which n iid obser-
vations in Rd are drawn, each obtained by stochastically
perturbing an unobserved(or latent ) point in K. The la-
tent points are chosen from a known prior distribution and
each data point is chosen according to some known distri-
bution. The LKP problem consists of approximating the
vertices from iid observations, and (Bhattacharyya & Kan-
nan, 2020) developed a polynomial time approximation al-
gorithm for the LKP problem under certain assumptions.

The sample complexity question for even special cases, let
alone the general LKP, has not been addressed. The central
problem addressed here is to find the sample complexity of
LKP problem where, we wish to learn each vertex within
L1 error εDiameterL1

(K) and establish a near-optimal
bound; we will show that O∗(number of parameters) suf-
fice under realistic assumptions.

Contributions Our results are summarized as follows.
Near-Optimal Sample Complexity for LKP: We prove
an upper bound of O∗(dk/β) on the sample complexity of
LKP for ε ∈ Ω(1) where, β ∈ Ω(1) is a model-specific
constant (Corollary (4.2)). The bound is proved by show-
ing that the vertices of LKP can be well approximated by
k points residing in a polytope completely characterized
by observed data, more specifically it is described by the
convex hull of sample averages of certain sized subsets of
observations.
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Vertex Set Certificate from a candidate set: Central to
our results is a novel method of independent interest which
provides a certificate of when a set of k points approxi-
mates the set of vertices of a latent polytope. See Theorem
4.6 for a precise statement.

Sufficient Conditions for learnability of certain mod-
els: As a consequence of the main result (Corollary (4.2)),
any latent variable model which which can be posed as
LKP and satifies general conditions on the prior and the
probability distribution of data generation in the main re-
sult is learnable. This opens the doors for deriving sample
complexity estimates for widely used models including ad-
mixtures.

Near-Optimal Upper bound on Sample Complexity for
LDA: A widely used instance of a k-admixture is the LDA
model(Blei et al., 2003). Sample complexity of LDA is
an open problem. We provide an upper-bound (Theo-
rem 5.1) of O∗(dk/m) on the number of samples for a
k topic LDA model, with vocabulary size d and with m
words per document, thus proving number of tokens in
Ω∗(Number of parameters) suffices. This is a consequence
of the upper bound on the sample complexity of LKP and
the fact that β is m (Lemma 5.4).

Near-Optimal Lower bounds on LDA: Using a combi-
natorial code-design, we show a matching lower bound
of Ω∗(dk/m) for the sample complexity of LDA (Lemma
6.1). Since LDA is special case of Ad-Mixtures and Ad-
mixtures are a special case of LKP, the lower bound ap-
plies to them too (Lemma 6.2). To the best of our knowl-
edge, this is the first near optimal sample complexity esti-
mate for LDA.

Near-Optimal Upper Bound for MMSB: For a k− block
mixed membership stochastic block model, another in-
stance of an Ad-mixture, we argue that n ∈ O∗(k2) entries
suffice to learn the k×k connection-probability matrix un-
der mild conditions.

2. Related work
The problem of learning a distribution from iid samples
have a rich history, for general background we refer the
reader to (Devroye & Lugosi, 2001; Silverman, 1986).
Sample Complexity was first studied in computational
learning theory community in (Kearns et al., 1994). Since
then there has been significant interest in the community
to derive sample complexity estimates for different dis-
tributions. In particular there has been significant efforts
in learning mixture of Gaussian distributions, see (Kalai
et al., 2012) for a survey. The optimal sample complex-
ity, optimal in the sense of Information theoretic limit of
Gaussian distribution was only derived recently in (Ash-
tiani et al., 2018). They showed that a mixture of k gaus-

sians in d dimesnions can be approximated to an additive ε
from O

(
kd2

poly(ε)

)
i.i.d samples. It is optimal in the sense

that kd2 is also the number of parameters.

In this paper we wish to derive optimal sample complex-
ity estimates for Ad-mixture models. Topic models, in
particular LDA(Blei et al., 2003), is an instance of Ad-
mixture which has proven to very useful in practice(Blei,
2012). Many widely used algorithms for parameter esti-
mation (e.g. (Griffiths & Steyvers, 2004)) do not provide
sample complexity estimates. Recently there has been sig-
nificant efforts in developing algorithms which have finite
sample complexity((Arora et al., 2013; 2012; Anandku-
mar et al., 2012; Bansal et al., 2014). However the sam-
ple complexity estimates involve high polynomials in the
parameters. Mixed membership models, including Topic
models, are broad class of Ad-mixtures which have seen
wide-spread applicability(see (Airoldi et al., 2014) for a
survey). These models have been also extended to model
overlapping communities (see e.g. (Airoldi et al., 2008)).
The main technical challenge in Ad-mixtures which dis-
tinguishes it from Mixtures is the samples are drawn from
distributions with high overlap. This renders known tech-
niques not applicable in this context.

As argued before, studying the sample complexity estimate
of LKP problem(Bhattacharyya & Kannan, 2020) would
have immediate applications to Ad-mixtures. The geomet-
ric nature of the problem suggests connections to Convex
set estimation problems where the aim is to discover the
convex set from uniformly drawn, possibly noisy,l sam-
ples, from it (see (Brunel, 2018) for a survey). In these
problems the aim is to construct an approximation to the
desired convex set in terms of the volume or distance of the
convex set. In the LKP problem the requirement is more
stringent; the extreme points of a polytope needs to be dis-
covered. Direct application of the results (Brunel, 2018) to
LKP does not yield anything interesting as in applications
such as Topic models, it is neither realistic nor sufficeint to
have uniformly drawn samples.

3. Preliminaries
3.1. Latent k-polytope (LKP) problem

We begin by recalling the definition of LKP and the data
generation process.

Defintion 3.1 (Latent k-polytope) LKP is a poly-
tope K with k extreme points described by the
columns of a d × k matrix M. Let Dk be a prob-
ability density over the k − 1 dimensional simplex,
∆k−1 = {w ∈ Rk : w` ≥ 0,

∑k
`=1 w` = 1}. The

observed data drawn from LKP is described by a d × n
matrix A where each column A·,j is independently drawn
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as follows.

W·,j ∼ Dk, P·,j = MWj , A·,j |P·,j ∼ Pd, (LKP)

where Pd is a probability density or probability mass func-
tion with the property that E

Pd

∣∣Pj
(A·,j) = P·,j .

The definition implies in matrix notation,

P = MW, E
Pd

∣∣P(A) = P.

Defintion 3.2 (The LKP problem) The LKP problem is
to estimate M from A.

Ad-Mixtures Ad-Mixtures are special cases of LKP,
where, the probability distribution (density or pmf)
F (A·,j | P·,j) is given by

F (A·,j | P·,j) =

k∑
`=1

W`,jF (A·,j |M·,`). (1)

In LDA (Blei et al., 2003), a popular instance of Ad-
mixture, the columns of W are picked according to Dirich-
let distribution. LDA is one of our main examples; in ana-
lyzing LDA, we will use the symmetric Dirichlet probabil-
ity distribution Dk = Dir(k, α) whose density on the unit
simplex, ∆k−1 with concentration parameter α ∈ (0, 1)

has p.d.f.: 1
g(α)

∏k
`=1 x

α−1
` , where, g(α) is the normaliz-

ing constant. The distribution of A·,j |P·,j is a multinomial.

3.2. Sample Complexity

We will use ‖ · ‖ to denote the `1 norm. ε will determine
the error we allow in parameter estimation. The problem is
to find approximations to the columns of M to within || · ||
distance εν, where

ν = DiameterL1
(K).

M(d, k) will denote a subset of d×k matrices; in LDA, it is
a subset of matrices with non-negative entries with column
sums equal to 1 and in MMBM, it is a subset of matrices
with each entry in [0, 1].

We define a learner and its sample complexity now. A
learner is an Algorithm which is given data A generated
from an LKP model parametrized by an unknown M and
returns k vectors which are approximations to the columns
of M, (which are also the extreme points of the polytope
K.) Note that the learner can only learn the columns upto
a permutation. To allow this, we use the Hausdorf distance
defined below.

Defintion 3.3 (Learner) A learner for M(d, k) is a finite
time deterministic algorithm which given data A drawn
from LKP parametrized by an unknown M ∈ M(d, k),
outputs k vectors v1, . . . , vk ∈ Rd.

As defined, the learner can output any set of k vectors. The
learner is successful if the set {v1, v2, . . . , vk} is close to
the set of columns of M. Closeness will be measured by
Hausdorf distance: The Hausdorff distance D(A,B) be-
tween two sets A,B of points in Rd is defined by:

D(A,B) = Max (Dist(A,B),Dist(B,A)) , where,
for sets X,Y, Dist(X,Y ) = Maxx∈X Miny∈Y ||x− y||

Next we define the notion of Sample complexity.

Defintion 3.4 (Sample Complexity) The ε-Sample Com-
plexity of a learner for M(d, k) is the minimum number
f(ε, d, k), such that for every M ∈ M(d, k) and n ≥
f(ε, d, k) the {v1, v2, . . . , vk} returned by the learner
when presented with ε and n iid draws from a LKP
parametrized by M satisfies (2) with probability more than
0.99. 1

D({v1, v2, . . . , vk}, {M·,1,M·,2, . . . ,M·,k}) ≤ εν. (2)

The optimal ε−sample complexity ofM(d, k) is the mini-
mum sample complexity of a learner forM(d, k).

For ease of exposition we have fixed the probability to be
0.99. It is easy to adapt it to a general setting where the
statement holds with probability 1−δ, where δ is the failure
probability.

In the following our first major result will be a finite time
algorithm whose sample complexity is O∗(number of pa-
rameters), giving an upper bound on the Optimal Sample
Complexity. Optimality is shown by exhibiting a carefully
chosen LKP for which any successful learner will require
at-least samples linear in the parameters.

4. Sample complexity of LKP using Subset
Averages

Notations: For any B ⊂ Rd, CH(B) will denote the con-
vex hull of B. For any subsest R of data points, described
by the columns of A, we let A·,R denote the average of the
data points in R.

In this section we derive an upper-bound on the Sample
Complexity of LKP.

4.1. An intuitive description of the learner

In this subsection we give an intuitive description of the
learner. The learner is based on several assumptions to be
described later. Under the assumptions, for a γ ∈ (0, 1),
we show that

1A learner is successful if (2) is satisfied. The probability is
on the iid draws; the learner itself is deterministic.
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1. For every R ⊆ [n], |R| = γn, A·,R is close to K.
A precise statement in presented in Lemma (4.4, (ii)).
This observation leads us to define a Subset Smoothed
Data Polytope(SSDP) as:

SSDPγ(A) = CH(A·,R, |R| = γn) (3)

2. There are k subsets S1, S2, . . . , Sk of data, each of
cardinality γn such that for each M·,`, there is some
S`′ with A·,S`′ close to M·,`(see Lemma (4.4, (i))).
In other words it says that there exists k points in
SSDPγ(A), each of which is close to one vertex of
K.

3. From the above two statements, it can be de-
duced that the convex sets K, SSDPγ(A)
and CH(A·,S1

, A·,S2
, . . . , A·,Sk

) are close to each
other. Note that while K is unknown, SSDPγ(A), is
complelety determined by data, albeit, in exponential
time.

4. Further, for any k subsets of data T1, T2, . . . , Tk, each
of cardinality γn, if every A·,R, |R| = γn is approx-
imately contained in CH(A·,T1 , A·,T2 , . . . , A·,Tk

),
then, for each M·,`, there is some `′ with A·,T`′ close
to M·,` and so {A·,`, ` = 1, 2, . . . , k} is a solution to
LKP.[See the Vertex Certificate Theorem (4.6).].

Of these facts, the last one is by far the hardest to prove.
Now, the procedure is clear: Enumerate all the(( n

γn

)
k

)
collections of k subsets T1, T2, . . . , Tk of cardinality γn
of data and for each collection, solve a convex program to
check if each A·,R, |R| = γn is close to the convex hull of
CH(A·,T1

, A·,T2
, . . . , A·,Tk

). The first time we get a Yes
answer (and we are guaranteed to get Yes at some point),
we have a solution to LKP.

4.2. Assumptions on LKP

We formulate three model assumptions, one each on
M,Dk,Pd.

The first assumption requires the vertices of K are sepa-
rated.

Defintion 4.1 (Well Separated Assumption on M)
M(d, k) satisfies the Well Separated Assumption with
parameter ε if for all M ∈M(d, k),

∀` ∈ [k],Dist(M·,`, CH(M·,`′ , `
′ 6= `)) > 2εν. (4)

This assumption is akin to, but, stronger than, assuming
that means of mixture components in Mixture of Gaussians

are well separated, a common assumption often made in
the literature(see (Kalai et al., 2012)).

The next assumption requires that Dk puts sufficient mass
close to the vertices of K.

Defintion 4.2 (Vertex Proximate Assumption on Dk)
Dk satisfies the Vertex Proximate Assumption with pa-
rameters γ ∈ [0, 1/2k], ε ∈ (0, 1) if:

∀` ∈ [k],Prob
(
W`,j > 1− ε2/12

)
≥ 2γ. (5)

It stipulates that there is sufficient probability of picking
W`,j close to 1, which leads to P·,j being near vertex M·,`
of K. In Lemma 4.4 we will show that w.h.p it implies
that a γ fraction of n draws, for n large enough, have latent
points close to each vertex. This is in a sense necessary:
If the P·,j are all concentrated in a proper subset of K,
it is information theoretically impossible to find K. Later
in Lemma 5.3 we will demonstrate that the assumption is
obeyed in LDA with the prior Dir(k, 1k ).

The third assumption is on Pd which governs the dis-
tribution of A·,j |P·,j . To accommodate a wide variety
of situations it is important that individual perturbations,
uj = A·,j −P·,j , be allowed as much freedom as possible
yet allowing for tractable discovery of the vertices w.h.p.
We pursue this objective by imposing a sub-gaussian as-
sumptin with parameter β on the sum of the perturbation
vectors over each subset R of γn data points, i.e. on
XR = 1

|R|
∑
j∈R uj , Though we do not use this fact here,

the maximum value of β, turns out to be the reciprocal of
the maximum over all R, |R| = γn of the sub-Gaussian
norm (with || · || as the underlying norm instead of the usual
euclidean norm) of the vector-random variable XR (see for
example ((Vershynin, 2010), Definition 5.22))

For R ⊂ [n], |R| = γn,, let A·,R =∑
j∈RA·,j/|R| ; P·,R =

∑
j∈RP·,j/|R|.

Defintion 4.3 (Aggregate Sub-gaussian Perturbation on
Pd) Pd satisfies the Aggregate Sub-gaussian Assump-
tionwith parameters β > 0, γ ∈ (0, 1] if (ν = Dia(K)):

∀R ⊆ {1, 2, . . . , n}, |R| = γn,∀λ ≥ 0,∀v ∈ {−1,+1}d,
Prob (v · (A·,R − P·,R) ≥ λν) ≤ 6 exp

(
−βλ2|R|

)
. (6)

In the two applications- LDA, MMBM, we will show (6)
holds with β ∈ Ω∗(1).

Theorem 4.1 Suppose γ, β, ε are such that

(i) Dk satisfies Vertex Proximate Assumption with pa-
rameters γ, ε,

(ii) Pd satisfies Aggregate Sub-gaussian Assump-
tion with parameters β, γ
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and (iii) M(d, k) satisfies Well Separated Assump-
tion with parameter ε.

If n ≥ Max ( c ln(ck)/γ ,
cd

βγε4
) (7)

β ≥ c ln(1/γ)/ε4 (8)

then there is a learner for M(d, k) which given n iid
samples drawn according to M ∈ M(d, k), solves(
n
γn

)k
convex programs each of poly(n, d) size and returns

v1, v2, . . . , vk which with probability greater than 0.99 sat-
isfy

D({v1, v2, . . . , vk}, {M·,1,M·,2, . . . ,M·,k}) ≤ εDiaL1
(K).

The theorem applies to all parameter regimes, but we would
investigate it in the interesting regime of γ =poly(ε)/k,
which applies to many widely-studied models. For such a
choice of γ we obtain the following corollary.

Corollary 4.2 (LKP Upper Bound) If γ = poly(ε)/k,
d > β ln(10k) and β > c ln(k/ε)/ε4 and (i), (ii) and
(iii) of Theorem (4.1) hold, then the ε-sample complexity
of LKP is

O∗
(

dk

βpoly(ε)

)
.

The Aggregate Sub-gaussian Assumption, is weaker than
assuming a sub-gaussian bound on each individual pertur-
bation. Hence, we can prove the following corollary.

Corollary 4.3 Suppose γ, β, ε are such that hypotheses (i)
and (iii) of Theorem (4.1) hold and in addition, we have:
For every P·,j , every λ > 0, and every v ∈ {−1,+1}d,
Pr(v · (A·,j − P·,j) > λν) ≤ c exp(−βλ2),

If n ≥ Max ( c ln(ck)/γ ,
cd

βγε4
) (9)

β ≥ c ln(1/γ)/ε4 (10)

then we can find a ε−learner forM(d, k) by solving
(
n
γn

)k
convex programs each of poly(n, d).

The proof is in the Supplementary material. Though sub-
gaussian assumption on individual perturbations does not
hold for LDA or MMSB, it does apply to specific instances
of (Yurochkin et al., 2019)- a detailed investigation will be
presented elsewhere.

Some Lemmas are needed for Theorem 4.1.

Defintion 4.4 Candidate set Let ε > 0 and Q be a
k−polytope in Rd with each of its vertices at L1 distance
at least εν (where, ν =DiameterL1(Q)) from the convex

hull of other vertices. A set U of points in Rd is said to be
a ε−candidate set for Q if

Dist(U,Q) < ε2ν/12 (11)

Dist(set of vertices of Q,U) < ε2ν/6 (12)

Lemma 4.4 (i) Suppose the Vertex Proximate Assumption
(5) holds and n > c ln(ck)/γ. Then with probability at
least .999, the following event holds.
Proximate latent points Event

∀` ∈ [k],∃S` ⊆ {1, 2, . . . , n} : |S`| = γn : ∀j ∈ S` :

||P·,j −M·,`|| < ε2ν/12 ; ||P·,S`
−M·,`|| < ε2ν/12.

(13)

(ii) Suppose Aggregate Sub-gaussian Assumption(6)
holds, and (8) and (7) are satisfied. Then, with probabil-
ity at least .999, the following event holds.
Subset-perturbation Event

∀R ⊆ {1, 2, . . . n}, |R| = γn , ||A·,R − P·,R|| ≤ ε2ν/12
(14)

Proof: (i) uses a quantitative version of the coupon-
collector problem. Consider the k events, one for each `,
namely

E` : ∃S` ⊆ [n] : |S`| = γn,

||P·,j −M·,`|| < ε2ν/12∀j ∈ S`

The event ¬E` is |{j : ||M·,j − P·,`|| < ε2ν/12}| < γn.
But, we have

||M·,j − P·,j || = ||(1−W`,j)M·,` −
∑
`′ 6=`

W`′,jM·,`′ ||

≤ (1−W`,j)ν,

since ||M·,`′ || ≤ ν for all `′ and
∑
`′ W`′,j = 1. This im-

plies: |{j : ||P·,j −M·,`|| < ε2ν/12}| ≥ |{j : W`,j ≥
1 − ε2/12}|. Now, |{j : W`,j ≥ 1 − ε2/12}| is the
sum of Bernoulli random variables and we have by (5),
E|{j : W`,j ≥ 1 − ε2/12}| ≥ 2γn. So by Höffding-
Chernoff inequality, Pr(¬E`) ≤ 4 exp(−γn/4) ≤ 1/k6 by
n > c ln(ck)/γ. Taking the union bound over the ` ∈ [k],
(i) follows.

(ii) From (6) with union bound over all R and all v ∈
{−1, 1}d, we get that (14) happens with probability at least
1− c

(
n
γn

)
exp(−cβε4γn+ d). Now, by Stirling,(
n

γn

)
≤ exp(3γn ln(3/γ)) ≤ exp(βε4γn),

the last by (8). Also, βε4γn > d by (7). Thus (14) holds
whp.
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Lemma 4.5 If events (14) and (13) happen and (4) holds,
then, the set U = {A·,R, |R| = γn} forms a candidate set
(defined in Definition 4.4) for K.

Proof: Since P·,R ∈ K for all R, (14) directly im-
plies Dist(U,K) < ε2ν/12. Now, from (13), the
S` there have ||P·,S`

− M·,`|| < ε2ν/12 by convex-
ity of || · ||. Also ||P·,S`

− A·,S`
|| < ε2ν/12 by

(14). Adding and using the triangle inequality, we get
Dist({M·,1,M·,2, . . . ,M·,k}, U) ≤ ε2ν/6 as required.

Theorem 4.6 (Vertex Set Certificate Theorem) Let U be
a candidate set for Q as in Definition (4.4). Then, for any
w1, w2, . . . , wk ∈ U satisfying

Dist(U,CH(w1, w2, . . . , wk)) < ε2ν/4, (15)

the following is true

Dist( Vertex set of Q , {w1, w2, . . . , wk}) < εν. (16)

Proof Sketch: The proof can be found in the Supplemen-
tary material. Here we only give a brief outline. We prove it
for any polytope Q satisfying the geometric characteristics
of K, facilitating its subsequent applicability to the prob-
lem at hand. A piece of terminology will be useful: for a
vector v ∈ Rd and two points x, y ∈ Rd, the v−distance
between x, y is |v · (x− y)|.

First, using (4), for each `, we apply the Separating Hy-
perplane Theorem from Convex Geometry to produce a
unit vector v(`) such that the v(`) distance of M·,` from
any other M·,`′ is at least 2εν. Then, we define a re-
gion Q` as the set of points within v(`) distance ε2ν/12
of M·,` and close to K. The proof shows that if a set
{w1, w2, . . . , wk} ∈ U satisfies the hypotheis of Theo-
rem (4.6), then we must have that each Q` contains one of
w1, w2, . . . , wk. Renumber the w` so that w` ∈ Q`∀`. w`
is close to some point, say, w′` ∈ K. w′` is a convex com-
bination of M·,1,M·,2, . . . ,M·,k, and if the convex combi-
nation did not attach weight almost 1 to M·,`, then, since
the M·,`′ , `′ 6= ` are at v(`) distance at least 2εν from M·,`,
we are able to show that w` would end up being too far
away from M·,` in the v(`) direction to be in Q` producing
a contradiction. So, the weight w′` attaches to M·,` must
be nearly 1 and this will imply that w′` and therefore w` is
close to M·,` to finish the proof.

Proof Sketch (Of Theorem 4.1): The proof has the follow-
ing three steps:

Step 1: From Stochastic Assumptions to Events From
Lemma (4.4) it follows if the stochastic assumptions (5)
and (6), and the lower bounds on β(see (8)) and n ( see
(7)) hold, then Subset-perturbation Event (14) and Prox-
imate latent points Event (13) happen with high probabil-
ity.

Step2: From Events to Candidate set

If events (14) and (13) happen and (4) holds, Lemma (4.5)
shows that the set U of

(
n
γn

)
A·,R, |R| = γn form a candi-

date set (see Definition (4.4) below) for K.

The Vertex Certificate theorem (Theorem (4.6) ) shows
that U being a candidate set for K implies that
if we find any k points w1, w2, . . . , wk ∈ U
with Dist(U,CH(w1, w2, . . . , wk)) < ε2ν/4, then,
w1, w2, . . . , wk is a solution to LKP, namely,

Dist({M·,1,M·,2, . . . ,M·,k}, {w1, w2, . . . , wk}) < εν.

Further, the existence ofw1, w2, . . . , wk is also guaranteed,
as shown in the proof.

Step 3: From Candidate Set to Learner

Based on the above disucssion, to complete the proof
we now need to prove that one can finds w1, w2, . . . , wk
in finite time. More precisely, one needs to find
R1, R2, . . . , Rk ⊂ U, |Ri| = γn, i ∈ [k] such that

h(R1, R2, . . . , Rk) ≤ 1

4
ε2ν

where h(R1, R2, . . . , Rk) is defined as

MaxR⊂U :|R|=γnDist (A·,R, CH(A·,R1 , A·,R2 , . . . , A·,Rk
))

This problem is solved through enumerating all possible
k + 1 subsets of size γn, and each enumeration requires
solving a convex program. Since there are at most

(
n
γn

)k+1

convex programs to solve, the running time is finite.

Remark 4.1 Intuitively, the proof builds on the fact that (i)
eachA·,R is close toK and further, (ii) there is a collection
of k subsets R1, R2, . . . , Rk such that

D ({A·,R1 , A·,R2 , . . . , A·,Rk
} , {M·,1,M·,2, . . . ,M·,k})

(17)
is small. [Definition (4.4) and (4.6) will state these prec-
siely.] It seems like at this point, we are done - just enumer-
ate all collections of k susbets R1, R2, . . . , Rk and check
the condition (17) for all. But we do not know K and so
cannot check (17). This brings us to the technically crucial
piece of the paper which is a data-based finitely checkable
suuficent conditon for when we have found approximations
to the vertices of K, i.e., when a proposed collection of k
subsets R1, R2, . . . , Rk in fact solves LKP. This piece is
answered by the Vertex Certificate theorem (Theorem (4.6)
)

In a later section we will provide a matching lower bound
thus proving the optimality of the bound.

Sufficient conditions of Learnability: The upper bound
on Sample Complexity in Theorem 4.1 can be applied to
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any model which can be posed as a special case of LKP. To
apply the bound one needs to check if prior Dk on W sat-
isfies Vertex Proximate Assumption(5) and if Aggregate
Sub-gaussian Assumptionholds with high enough β (de-
fined in (6)). When expressed in words the sufficient con-
ditons for learnability translates to (i) that the prior put suf-
ficient weight near the corners of the standard simplex, (ii)
that probability of data given latent point be sub-Gaussian
with high enough β and (iii) and that the means are well-
separated.

5. Ad-Mixtures: Upper bound
Ad-mixture is a special case of LKP. In this section we will
discuss LDA, a special case of Ad-mixtures and applicabil-
ity of the Theorem 4.1 presented in the earlier section.

5.1. LDA: Upper bound

In this section, we prove an upper bound on the sample
complexity of Latent Dirichlet Allocation (LDA), the most
widely used model for topic modeling. We let n, d,m be
the number of documents, number of words in the dictio-
nary and the number of words in each document respec-
tively. The main theorem (Theorem 5.1) of this section
proves that under mild assumptions (explained shortly), as
long as the total number of words nm in all documents is
at least Ω∗(dk) (where * hides logarithmic factors and fac-
tors in ε), there is a succesful learner and so O∗(dk) tokens
(words) suffice. Since there are dk parameters and the in-
put has nm free variables, this is near-otpmial. Now we
describe the mild assumptions.

The first assumption is on the number of documents,n ∈
Ω∗(k ln k) (see (20)). It is necessary from the Coupon
Collector problem, since, otherwise, with high probability,
there will be a topic for which, we do not see any document.
We also assume that each document has some minimum
number of words, more precisely m ≥ c ln(k/ε)/ε4(see
20).

We also assume (see (19)) each topic ` has an associated set
of words T` on which it puts more total weight than other
topics. This is similar in spirit to the assumptions made in
the literature, and has been refereed to as Catchwords in
(Bansal et al., 2014). But it is weaker in that the T` are
not required to be disjoint, neither do we require as big a
difference on the total weight on T` in topic ` as compared
to other topics, nor is there is a requirement that individual
words have high frequency as assumed in earlier models in
the literature.

Remark 5.1 The important paper of (Tang et al., 2014)
deals with posterior contraction rather than sample com-
plexity. But their main theorem essentially says in the limit,

the Hausdorff distance in Euclidean norm between the true
M and the approximation computed by Gibbs sampling
goes down asO(

√
lnm/m). So to makeLI error at most ε

by a direct application of their result will needm > ω∗(d).
This is strictly speaking incomparable to our result (indeed
they have no dependence on k, which as they say is surpris-
ing), but often m << n and so m > d is perhaps a strong
requirement. It is possible, however, that their technqiues
may be applied directly for L1 norm to get better results
than this implication of their current theorem.

We assume P·,j Dir(k, 1k ), an often used setting in Topic
Modelling. It is known that for Dir(k, α) as α becomes
<< 1, the Dirichlet distribution puts substantial mass near
the corners of the simplex (see (Telgarsky, 2013) for a
proof). This favors Vertex Proximate Assumptionand in-
deed we will show that with α = 1/k, ( see Lemma (5.3))
holds. This allows us to prove an upper bound stated below.

Theorem 5.1 (LDA Upper bound) Let M(d, k) be the
collection of d × k matrices with non-negative entries
and column sums equal to 1. Let ε ∈ (0, 1). Suppose
W·,j , j = 1, 2, . . . , n are iid, each distributed according
to Dir(k, 1/k). Let

γ =
cε4

k
. (18)

Assume there are subsets T1, T2, . . . , Tk of [d] with

∀` 6= `′ ,
∑
i∈T`

Mi,` >
∑
i∈T`

Mi,`′ + 2ε. (19)

Assume d, n,m satisfy the conditions

n ≥ ck ln(1000k)

ε4
, m ≥ c ln(k/ε)

ε4
, nm ≥ cdk

ε8
(20)

and d > 5. Then, there is a learner which given n
iid samples drawn according to M ∈ M(d, k), solves(
n
γn

)k
convex programs each of poly(n, d) size and returns

v1, v2, . . . , vk which with probability greater than 0.99 sat-
isfy

D({v1, v2, . . . , vk}, {M·,1,M·,2, . . . ,M·,k}) ≤ ε.

So, the ε-sample complexity of M(d, k) is O(dk/mε8)
provided d ∈ Ω∗(m) and m ∈ Ω∗(1).

Proof: We will appeal to Theorem (4.1) to prove Theorem
(5.1). To this end, we state three Lemmas after this theo-
rem, proving each of the three hypothesis of Theorem (4.1)
hold. Then the current theorem follows directly from The-
orem (4.1)

Lemma 5.2 (Well Separated Assumption) If there are
subsets T1, T2, . . . , Tk of [d] with

∀` 6= `′ ,
∑
i∈T`

Mi,` >
∑
i∈T`

Mi,`′ + 2ε,



Near-optimal sample complexity via Latent k−Polytopes

then (4) holds, namely,

Dist(M·,`, CH(M·,`′ , `
′ 6= `)) ≥ 2ε.

The existence of the sets Ti, i ∈ [k] have been already noted
in Topic Modelling literature and is known as Catchwords
(Bansal et al., 2014).

Lemma 5.3 (Vertex Proximate Assumption) Suppose
W·,j , j = 1, 2, . . . , n are i.i.d., each distributed according
to Dir(k, 1/k). Let γ = cε4

k . Then, (6) holds.

Lemma 5.4 (Aggregate Sub-gaussian Assumption) Let
γ = cε4

k and d > 5. (6) holds with β = m.

6. Lower bounds
We derive a lower bound matching the upper bound (within
O∗(1)) using a code-design similar to the one used in
(Suresh et al., 2014). For the lower bound, we assume
γ = 1/k and most importantly we also assume that each
document is on a single topic. Thus Vertex Proximate As-
sumption(5) is automatically satisfied. Since we are prov-
ing lower bounds, these restrictions only make the bound
stronger.

We generate documents as in LDA - each word is inde-
pendently generated according to the multinomial with the
probabilities given by the corresponding topic vector. We
do assume that Separation assumption (4) is satisfied. The
theorem proves that no learner is possible if nm, the total
number of tokens is o(dk), the total number of parameters.
The proof is by a counting argument; we show by a simple
code-design that there is a large a collection of M which
are

(i) pairwise far enough apart that a learner must output dif-
ferent answers on any two different M to be successful and

(ii) each M in the collection satisfies the Separation As-
sumption (4).

(iii) After constructing this collection of M, we show that
the number of possible sets of n documents with m words
each is much smaller than the number of M in the collec-
tion, and since the identifier is deterministic, and we arrive
at a contradiction. The proof applies even if one assumes
no stochastic model of data generation.

Of these it turns out that (ii) is harder to ensure.

Theorem 6.1 (LDA Lower Bound) Suppose γ = 1/k and
each document is purely on a single topic (hence Proximate
Data Assumption (13) is satisfied) and suppose Separation
Assumption (4) is satisfied. Let ε = .001. If

nm <
(0.09d− ln k)k

ln d
,

then, no learner acheiving error less than ε on all M exists.

The proof is in the Supplemenatry. The lower bound on the
number of tokens required for LDA also implies a lower
bound on the number of samples. Since LDA is a special
case of LKP, it also implies a lower bound on the sample
complexity. More precisely, the following corollary of the
LDA lower bound theorem establishes the lower bound on
the sample complexity of LKP.

Corollary 6.2 (LKP Lower bound) In the LKP problem,
if n ∈ o(dk/β ln d), there is no .001-learner.

Proof: The proof follows directly from Theorem (6.1)usng
the fact that β was shown to be equal to m, the number of
words per document in Lemma (5.4).

The matching upper bounds and lower bounds suggests that
the assumptions of the Main theorem are indeed sufficient
conditions for learning and furthermore the generality of
the result suggests immediate applicability to many other
models.

7. Mixed Membership Stochastic
Blocks(MMSB)

MMSB models are generative models of overlapping com-
munities widely used in Social Network Analysis(Airoldi
et al., 2008) . In this section, we prove the first upper bound
on the sample compelcity of O∗(k2) for MMBM, which is
also near-optimal.

The Model:There are n people and k communities. As
in LKP, there is a prior Dk on the simplex ∆k−1. For j =
1, 2, . . . , n, person j chooses (V1j , V2j , . . . , Vkj) according
to Dk independently of j′ 6= j; V`,j is the membership-
weight of person j in community `. There is a k × k
“meeting-probability” matrix B. The probability Pj,j′ that
person j meets person j′ is defined as follows

Pj,j′ =
∑
`1,`2

V`1,jB`1,`2V`2,j′ , P = VTBV.

The data consists of 0-1 matrix A, where, Ajj′ are inde-
pendent Bernoulli random variables with Pr(Ajj′ = 1) =
Pjj′ .

MMSB as a special case of LKP: MMSB can be formu-
lated as an LKP by considering the following setup. Par-
tition the set of people into two sets S1, S2 where with
|S1| = d and |S2| = n ; the partition is chosen ran-
domly subject to their cardinalities. d will be specified
later. We then consider only the bipartite graph with edges
between S1 and S2. For ease of notation, we henceforth
write |S1| = d; |S2| = n by resetting the value of n.
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Let U be the k× d submatrix of V containing the columns
of V corresponding to S1 and W be the k × n subma-
trix containing columns in S2. U, respectively, W has
the community membership weights of members of S1,
respectively S2 and so U is statistically independent of
W. [The partitioning trick is used precsiely for this “de-
conditioning” of U and W.] Now the new P,A are d× n
matrices with entry (i, j) for i ∈ S1, j ∈ S2 and we have
with M = UTB:

P = UTB︸ ︷︷ ︸
M

W ; P = MW.

Now, we do have a LKP, where we are given A and need
to estimate M. This does not automatically give us B re-
quiring further assumption. Recall ν is the diameter of K
and is equal to ν = Max`

∑d
i=1Mi,`.

Core group Assumption Let d ∈ Ω(ck ln k/poly(ε)) and
S1 = {1, 2, . . . , d} denote a random subset of people. Let
U be the k × d submatrix of V containing the [d] columns
of V. Our assumption is that given an M̃ satisfying
D({M̃·,1, M̃·,2, . . . , M̃·,k} , {M·,1,M·,2, . . . ,M·,k}) ≤
εν/4 ln k, we can identify the columns of B to within L1

error εν′, where, ν′ is the maximum column sum of B.

Under the Core Group Assumption, we can now reformu-
late the problem as one of finding UTB which is a proxy
for B. The columns of M = UTB are now the vertices of
the latent polytope. To avoid any conditioning, we assume
the people in S1 have already chosen their V·,j’s.

Theorem 7.1 (MMSB Upper Bound) Let ε ∈ (0, 1).
Consider an MMSB model parametrized by a k×k meeting
probability matrix B with ν

′
= maxj∈[k]

∑k
l=1Bli. If the

model satisfies

a.) each V·,j are picked according to Dir(k, 1/k).

b.) there are subsets T1, T2, . . . , Tk of [d] with

∀` 6= `′ ,
∑
i∈T`

Mi,` >
∑
i∈T`

Mi,`′ + 2εν. (21)

c.) Core Group Assumption holds,

d.) nν > ck2(ln k)2

poly(ε) ; ν > c ln2(k/ε4)
ε4 .

then the following holds

i) The three assumptions, namely Well Separated As-
sumption(4), Vertex Proximate Assumption(5) and
Aggregate Sub-gaussian Assumption(6) are satis-
fied, with γ = cε4

k , β = ν.

ii) there is a finite time procdure which given n
iid samples, returns a k × k matrix B̃ such
that with probability at least 0.99, we have
D({B̃·,1, B̃·,2, . . . , B̃·,k} , {B·,1, B·,2, . . . , B·,k}) ≤
εν′.

Remark 7.1 The inequality (21) is akin to the Catchwords
assumption for LDA. In this setting, it is intuitively vali-
dated by the following reasoning: As we argued above,
whp, there are O∗(1) people in S1, each with weight al-
most 1 on community `. Let T` be the set of these people.
So, for i ∈ T`, Mi,` is the intra-community meeting proba-
bility, whereas, for any `′ 6= `, Mi,`′ is an inter-community
meeting probability. Under usual assumptions that intra-
community meeting probabilities are substantially greater
than inter-community probabilities, (21) holds.

The sample complexity being O∗(k2/ν) means it suffices
to have nν (which is the expected number of edges in the
graph) be at least Ω∗(k2) (which is the number of param-
eters of the model (namely, the number of entries of B we
are trying to learn). Hence the claim of near-optimality.

The full proof of the Theorem is given in the Supplemena-
try. We note that of the three conclusions, Aggregate Sub-
gaussian Assumption(6) and Well Separated Assump-
tion(4) are proved exactly as in LDA. The crucial disffer-
ence is in the proof of Vertex Proximate Assumption(5))
which uses now a different probability inequality, since, the
model is different. The (ii) follows by application of Theo-
rem 4.1 and Core group assumption.

Theorem 7.2 MMBM Lower Bound Suppose γ = 1/k
and each column of P is equal to some column of M (hence
Extreme Data Assumption (13) is satisfied) and suppose
Separation Assumption (4) is satisfied. Let ε = .001. If

nν <
(0.09d− ln k)k

ln(d/2ν)
,

then, no identifier exists.

8. Conclusion
The Optimal Sample complexity of LKP demonstrates the
linear dependence on the number of parameters. The gen-
erality of LKP along with the tools developed suggests a
straightforward procedure for deriving Sample complexity
estimates for Ad-mixture models. Similar results can be
derived for other models, such as Dirichlet Simplex Nest
(Yurochkin et al., 2019), as well. The techniques devel-
oped are also novel and should also be of interest, specially
for set-estimation problems(Brunel, 2018).
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