
106

Sequential Programming for Replicated Data Stores

NICHOLAS V. LEWCHENKO, University of Colorado Boulder, USA

ARJUN RADHAKRISHNA,Microsoft, USA

AKASH GAONKAR, University of Colorado Boulder, USA

PAVOL ČERNÝ, University of Colorado Boulder, USA

We introduce Carol, a refinement-typed programming language for replicated data stores. The salient
feature of Carol is that it allows programming and verifying replicated store operations modularly, without
consideration of other operations that might interleave, and sequentially, without requiring reference to or
knowledge of the concurrent execution model. This is in stark contrast with existing systems, which require
understanding the concurrent interactions of all pairs of operations when developing or verifying them.

The key enabling idea is the consistency guard, a two-state predicate relating the locally-viewed store and
the hypothetical remote store that an operation’s updates may eventually be applied to, which is used by the
Carol programmer to declare their precise consistency requirements. Guards appear to the programmer and
refinement typechecker as simple data pre-conditions, enabling sequential reasoning, while appearing to the
distributed runtime as consistency control instructions.

We implement and evaluate the Carol system in two parts: (1) the algorithm used to statically translate
guards into the runtime coordination actions required to enforce them, and (2) the networked-replica runtime
which executes arbitrary operations, written in a Haskell DSL, according to the Carol language semantics.

CCS Concepts: · Computer systems organization → Peer-to-peer architectures; · Software and its

engineering→ Functional languages; Formal software verification.

Additional Key Words and Phrases: concurrency, replicated data types, dependent types, refinement types

ACM Reference Format:

Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý. 2019. Sequential Programming
for Replicated Data Stores. Proc. ACM Program. Lang. 3, ICFP, Article 106 (August 2019), 28 pages. https:
//doi.org/10.1145/3341710

1 INTRODUCTION

When software services outgrow their computing and network resourcesÐeither because they must
function on unreliable networks or because they have attracted a massively global userbaseÐtheir
developers must turn to a distributed design. Distributed applications use available infrastructure
more efficiently than their centralized counterparts, but do so at the price of a more difficult design
process. In particular, their developers face a notoriously arduous task: the careful balancing of
consistency, the degree to which one node can trust the state it sees when making decisions, and
availability, the ability of nodes to continue their work during network outages. As stated by the
famous CAP Theorem [Brewer 2000; Gilbert and Lynch 2002], consistency and availability are in
fundamental conflict, and distributed applications are forever doomed to compromise between

Authors’ addresses: Nicholas V. Lewchenko, University of Colorado Boulder, USA, nicholas.lewchenko@colorado.edu;
Arjun Radhakrishna, Microsoft, USA, arradha@microsoft.com; Akash Gaonkar, University of Colorado Boulder, USA,
akash.gaonkar@colorado.edu; Pavol Černý, University of Colorado Boulder, USA, pavol.cerny@colorado.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/8-ART106
https://doi.org/10.1145/3341710

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3341710
https://doi.org/10.1145/3341710
https://doi.org/10.1145/3341710

106:2 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

them. Given this inescapable complication, what is the highest-level programming environment
that can be offered to the distributed application developer?

Replicated Data Types. One popular class of distributed system design is the replicated store, in
which a network of application replicas store and edit copies of the application state, periodically
exchanging their updates to stay in sync. The application programmer in this model is presented
with a familiar, sequential-style interface: a set of objects with operations for inspecting and
updating their state. The mechanisms for synchronizing these operations’ effects between replicas
are encapsulated in a replicated data type (RDT) [Burckhardt et al. 2014; Shapiro et al. 2011], isolating
the programmer from the details of replication.

Unfortunately, this isolation is not perfect. The programmer must still understand the consistency
model that their replicated store implements, and whether it is strong enough to preserve the
application logic they require. The models relevant to this discussion exist on a spectrum. On
one end are eventual and causal consistency, which together ensure simply that all replicas of the
system will eventually converge to the same state and that no update is delivered ahead of the
updates that influenced its creation. Conflict-free replicated data types (CRDTs) [Shapiro et al. 2011]
maintain this combination without any cost to availability, and are a popular basis for applications
such as event-log monitoring, chat messaging, and collaborative editing. On the other end of the
spectrum is strong consistency, which allows replicas to work with perfect knowledge of the state by
taking turns or negotiating mutex locks through a central master node. This allows operations (and
sequences of operations) to execute atomically, which may be necessary to avoid double-booking a
flight reservation or overdrafting a bank account, missteps that cannot be automatically fixed by a
CRDT. While this model will safely support any application logic, it eliminates most benefits of
replication by disallowing parallel work and halting upon network or replica failure.

Mixed Consistency. In practice, application logic that requires strong consistency is usually mixed
with logic that does not. For example, a bank application may require that two withdrawals do
not run concurrently on different nodes in order to avoid overdrafts, but no such danger exists
for deposits. The most efficient consistency model, then, is often a mixture of strong and eventual.
Or more precisely, a division of the application into strong and eventual components. Mixed

consistency programming systems designed to streamline this division task include RedBlue [Li
et al. 2012], in which programmers specify łwithdraw→Redž or łdeposit→Bluež to set strong or
eventual behavior for individual operations, and Quelea [Sivaramakrishnan et al. 2015], in which
programmers write explicit łwithdraw × withdrawž mutex annotations that the runtime system
will respect.

These systems ease consistency configuration, but they do not help a programmer find the correct
consistency settings to choose for their application-specific safety concerns. For this purpose, several
mixed-consistency verification frameworks have been proposed [Balegas et al. 2015; Gotsman
et al. 2016; Li et al. 2014]. In the recent proof framework of Gotsman et al. [Gotsman et al. 2016], a
programmer proves that their consistency model supports an application invariant, such as the
typical łbank account never goes below zerož condition, by writing axiomatic specifications of their
application’s operations and declaring their consistency model’s inter-operation mutex guarantees
(similar to Quelea’s annotations).

These tools for mixed consistency programming and verification suffer two limitations to their
usability. First, they are not modular between operations. The consistency control annotations in
RedBlue and Quelea must be chosen based on a birds-eye view of all operations that exist, and how
any pair may interact to break an invariant. This carries into the proof frameworks that support
them, which require similar global reasoning at the highest level of interface. Second, they do not
model sequential programming. The programming systems offer consistency control in terms of the

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:3

execution model, such that a programmer must visualize the concurrent executions they wish to
avoid in order to describe them in the annotations.

Refinement Types. For an example of the kind of modular, sequential verification system that
distributed programming environments are missing, we look to the world of typed functional
programming. Dependent refinement types [Rushby et al. 1998; Xi and Pfenning 1998] (hereafter
simply łrefinement typesž) are a merging of Hindley-Milner types and predicate refinements that
brings the expressivity of Floyd-Hoare logic to the functional language setting. This model of
verification has been extensively studied and implemented by a number of projects, including
DML [Xi and Pfenning 1998], Liquid Types [Rondon et al. 2008], and Liquid Haskell [Vazou et al.
2014]. These systems reduce the refinement components of the types to an SMT constraint problem,
efficiently automating the checking process to approach the convenience of standard type systems.
Also like standard type systems, refinement types can be checked modularly, in isolation of other
unreferenced functions and values, and they easily composeÐchecking the type of a large term can
make use of the checked types of its component subterms. Because they are designed to specify
sequentially executed programs, however, refinement types have not (until now) been used in the
verification of replicated store operations.

Our Contributions. We propose Carol, a programming language for operations over mixed-
consistency replicated stores that addresses the previously discussed limitations of existing tools.
First, Carol offers per-operation consistency control that is modularÐnot requiring reference to
other operationsÐand sequentialÐdefined in terms of data refinements rather than concurrent
executions. Second, it provides a rich verification system, in the form of a familiar refinement type
system, which is also modular and sequential in nature.

A Carol programmer controls consistency by declaring the particular aspects of the store that
the network must agree upon for the duration of an operation. These aspects are described using
consistency guards, two-state predicates that compare a running operation’s view of the store to
the views of remote replicas. Intuitively, programmers use consistency guards in the same way
as the pre-condition assertions typical of sequential code. Having protected their operations with
the appropriate guards, application programmers are excused from specifying or understanding a
consistency model; the Carol runtime will infer the inter-replica coordination actions necessary
to deliver the guards’ guarantees.
We implement Carol to show that the higher level of abstraction we provide to programmers

does not come at an unacceptable performance cost. The implementation has two parts. First,
using a standard SMT solver, we implement our algorithm for statically identifying accordsÐnon-
interference assertions packaged with a replicated data type which the runtime references to
translate arbitrary guards into coordination actions. This algorithm is based on consistency invari-

ants, a new invariant notion we introduce for replicated effect executions. Second, we implement
an efficient replica-network runtime for Carol operations, which adjusts its consistency model
dynamically to respect their guards. We evaluate this runtime to show that the guard-driven
consistency engine does not introduce unreasonable computation or communication overhead.
Summarizing, the contributions of this paper are:
• Carol, a language for operations on replicated data stores. Its key feature is the consistency
guard, enabling modular and sequential programming (Section 3).

• A rich refinement type system for Carol that enables verification of pre- and post-conditions
for operations on the replicated store (Section 4).

• An algorithm for inferring accords using consistency invariants (Section 5).
• An implementation of the Carol runtime system, with an evaluation showing that its unique
consistency control model does not incur an unreasonable performance cost (Section 7).

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:4 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

2 WRITING AND VERIFYING REPLICATED OPERATIONS

We now explain the design of the Carol language by first applying it to a standard replicated
programming problem and then extending the problem to highlight Carol’s unique capabilities.

2.1 The Replicated Bank Application

Supposewe are creating a replicated bank application, which represents an account as an integer, and
for which we require safety invariant I : that the account balance is never negative. An application
in the Carol sense is defined by a set of operations, subroutines that execute on a single replica.
Operations can query the replicated store, and can modify it by issuing effects which are sent to be
applied at all replicas. Our bank application must support deposit, withdrawal, and check-balance
operations, and these should be available (i.e. they should still function when the network is down)
where possible with respect to I .

Writing Operations. We begin by defining the bank’s simpler operations, demonstrating Carol’s
store reading and writing mechanisms:

checkBalance := query x in x deposit := λn. issue (Add n) in n

Carol is an extension of the λ-calculus; query x in t behaves similarly to λx .t , but binds the
current store value to x instead of taking an argument. The checkBalance operation uses this
to simply return the value to the caller as its result. The issue e in t term applies e , an effect
defined by the underlying store data type, to the store and then continues with t . Effects denote
store-transforming functions which propagate to all replicas upon completion of an operation. For
example, Add n denotes λs . s + n. The deposit operation takes an amount argument n, adds it to
the store, and returns it as confirmation to the caller. Neither checkBalance nor deposit have
blocking behavior, so they are both available under all network conditions.
The more interesting part of the bank application is the remaining operation: withdraw. An

operation which reduces the account value has the potential to break our invariant I , and so we
must employ Carol’s novel consistency control mechanism to ensure safety.

withdraw := λn. query x : LEQ in

if n ≤ x then (issue (Sub n) in n) else 0

Here we refine the behavior of query using LEQ, a consistency guard which states that the store
value bound to x must be less than or equal to any other store value that the operation’s effects
may eventually be applied against. We call these other store values effect pre-stores of the operation.
Consistency guards in general denote two-state predicates relating the query variables they refine
to effect pre-stores (the latter referred to by the special variable σ). The use of x : LEQ in withdraw

denotes x ≤ σ , a property the programmer can rely on for the remainder of the operation. When
x is bound to a concrete query result (e.g. 5), this becomes a single-state constraint on permitted
effect pre-stores (e.g. σ is permitted only if 5 ≤ σ).

Example 2.1 (Guards and effect pre-stores). Consider a network with two bank replicas {A,B},
both starting with store value 6 and executing according to Figure 1 (a).A runs withdraw 5, binding
6 to x in the query. Because the query used x : LEQ, this places the constraint дA = 6 ≤ σ on any
effect pre-store σ that the withdraw’s effect may be applied to. The n ≤ x check passes, and so
the resulting effect is ηA = Sub 5. This is immediately applied to its first effect pre-store, A’s store
value 6, which trivially satisfies дA (6 ≤ 6). Once the effect propagates to the other replica B, it will
be applied to a second effect pre-store there. Suppose that an operation on B produces the effect
ηB = Add 2 before ηA arrives. Then ηA’s effect pre-store upon delivery at B is 8, which satisfies дA.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:5

6
A

6

1

6
B

8

31

withdraw 5

safe operation

(a)

LEQ

OK, {}

Sub 5

Add 2

6
A

6

1

6
B

4

-11

withdraw 5

unsafe operation

(b)

LEQ

OK, {}

Sub 5

Sub 2

Fig. 1. A valid (a) and an invalid (b) execution under Carol. The constraint дA = 6 ≤ σ is active in the
filled sections of each replica. States are blue circles where the constraint is maintained, and red diamonds
where the constraint is violated. The starting and ending nodes of Sub 5 are its effect pre-stores on A and B,
respectively.

S(Ctr) := Int JAdd nK := λx . x + n

E(Ctr) := Add Nat | Sub Nat | Mul Nat JSub nK := λx . x − n

C(Ctr) := ⊤ | LEQ | GEQ | EQV JMul nK := λx . x ∗ n

Jx : ⊤K := ⊤ Jx : LEQK := x ≤ σ Jx : GEQK := x ≥ σ Jx : EQVK := x = σ

Fig. 2. Definition of the Ctr CARD, showing state type S , effect type E, and guard type C . In the definitions
of the consistency guards, σ refers to the effect pre-store. We use J·K generically to refer to the denotations of
effects and guards.

If instead, as in Figure 1 (b), it happened that ηB = Sub 2 , the effect pre-store at B for ηA would
have been 4. This context does not satisfy дA (6 ≰ 4), and thus the network execution leading to it
would be a violation of Carol’s semantics.

The Carol runtime maintains the constraints produced by queries, avoiding illegal executions,
by coordinating with other replicas to block concurrent operations which could invalidate it. In
the case of withdraw’s LEQ query, this means only blocking other withdraws, since deposit and
checkBalance cannot produce LEQ-breaking effects.
Compare the programming style of Carol to that of the existing mixed-consistency tools we

discussed in Section 1. Regardless of tool, the network executions that need to be avoided are
those in which the individually safe withdraw n and withdrawm together break the account value
s < n+m by running concurrently on separate replicas. But to prevent this in Carol, a programmer
does not need to describe this multi-replica scenario or remind themselves what other withdraw-
like operations have been defined. Rather, they consider the minimum information they need about
the replicated store’s value, and query using a consistency guard that gives them precisely that.
This makes Carol’s consistency control interface sequential (requiring no consideration of the
concurrent execution model) and modular (requiring no knowledge of the other operations that
may interleave).

Defining CARDs. To be clear, the concurrent reasoning that other tools require from programmers
is not (and cannot be) simply absent from our system. Rather, we have stuffed it in a box that most
programmers do not need to open. The novel, concurrency-free programming environment we
have described is made possible by carefully isolating the necessary concurrent reasoning in a
lower, more reusable layer of the application design that the operation programmer does not need
to touchÐthe definition of the underlying store data type.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:6 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

Operations are written over a conflict-aware replicated data type (CARD) that defines an interface
for the store. As an example, the replicated counter CARDwe have been using for the bank account’s
operations is given in Figure 2. A CARD’s interface includes the consistency guards that operations
can use in queries (such as LEQ) and the effects that operations can issue (such as Add ∗). CARDs
also contain (invisible to the operation programmer) a set of accords, pre-computed proofs that
particular effects will not invalidate particular guards. These accords are referenced at runtime to
determine which effects can be safely issued by remote replicas while a guard is active. Accords
depend only on guards and effects, and not on operations. Thus, they are computed (or manually
identified) as part of the CARD definition, freeing the CARD’s clientsÐthe application/operation
programmersÐfrom any form of concurrency reasoning. We give an algorithm for computing sets
of accords in Section 5 and evaluate our automated, SMT-based implementation in Section 7.

As an example, in the case of our withdraw operation’s query, Add ∗ is in accord with LEQ, and
Sub ∗ is not, and so a correct runtime will allow deposits to run concurrently and not withdraws.
The declarative correctness conditions for a Carol runtime, given in Section 3, allow a variety of
implementation strategies. We concretely define an efficient representative runtime in Section 6
and experimentally evaluate its real Haskell implementation in Section 7.

CARDs differ from the usual notion of a replicated data type by including the set of consistency
guards in addition to the usual set of supported effects and leaving out replica-local logic (known
variably as łprepare-updatesž or łgenerator operationsž in other systems [Li et al. 2012; Shapiro
et al. 2011]). In our system, replica-local logic only appears in Carol operations (as part of an
application rather than a datatype), making CARDs more generic. Notice that our counter CARD in
Figure 2 includes guards and effects that may be useful to other applications, but which we did not
need to reference or even know about to safely define our bank operations.

Operation Refinement Types. Because the Carol language is sequential in nature, we are able to
adapt standard sequential reasoning tools to verifying operation behavior. Guards behave as simple
pre-conditions at the operation level, and thus can be used for verification without any special
concurrent logic or algorithms. This allows us to adapt a practical refinement type system, Liquid
Types, to the task of verifying Carol operation properties.

Operation types in our system take the form { Op D A | φ }, in which D is the CARD the
operation runs over, A is the operation’s return type, and φ is a logical specification relating the
possible values of the operation’s effect pre-stores (σ), its effect (η), and its return value (ρ). As an
example, the type we check for the withdraw operation formally states the safety condition we
described earlier as φ1:

φ1 := σ ≥ 0 ⇒ JηK(σ) ≥ 0 φ2 := ρ = σ − JηK(σ)

⊢ withdraw : (n : Nat) → { Op Ctr Int | φ1 ∧ φ2 }

Additionally, φ2 states that the return value of withdraw is guaranteed to represent its effect’s
change to the storeÐit will not return n and then later revert its decision to subtract it.
We give the complete rules for operation type-checking in Section 4. At a high level, checking

works by adding the guard of each query term to its context as a constraint on σ . Thus when the
checking is complete, σ is sufficiently constrained to prove the effect and return value conditions
that depend on it.

2.2 Extending the Example

We have shown how Carol can be used to solve a standard replicated programming problem at
a higher level than that of existing tools. We now show how the flexibility of our programming
system permits useful, non-standard operation behavior beyond the scope of these tools.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:7

Dynamic Consistency. Carol allows query terms (and whole operations) to be arbitrarily nested.
This allows the result of one query to determine the strength of a sub-query’s guard, changing the
operation’s consistency model mid-execution. This property, which we call dynamic consistency, is
not provided by other existing replicated store programming tools.

As a motivating example, we extend our bank account with an łaggressive withdrawž operation
that tries harder to complete its task:

aggWithdraw := λn. if withdraw n = n

then n

else (query x : EQV in

if x ≥ n then (issue Sub n in n) else 0)

This operation tries a standard withdraw, which only asks for a lower bound on the store when
making its go/no-go decision. If that withdraw does not go through, aggWithdraw makes sure
it hasn’t missed any enabling deposits by querying (without releasing its hold on LEQ) for the
exact value of the store using EQV. This will in some cases make a harder impact on availability
by blocking concurrent deposits, but adds a useful refinement property to aggWithdraw’s type:
φ3 := (σ ≥ n) ⇒ (ρ = n). This is a guarantee that the withdrawal will go through under a particular
condition, which the standard withdraw can not provide. Such a guarantee may be necessary for
an application in which a failed withdraw triggers an expensive investigation or reporting action.
You may note that, because nested queries allow requested consistency to be value-dependent,

the efficiency of their use compared to static consistency (i.e. a single EQV query) is also value-
dependent. A programmer writing an operation like aggWithdrawwould need to know, for example,
how frequently overdrafts or near-overdrafts occur in their bank’s day-to-day operations in order
to understand how often their operation will trigger the higher level of consistency. But if their
system needs aggWithdraw’s extra refinement property (perhaps for incident reporting on overdraft
attempts), then the nested query solution delivers it, at worst, using the same consistency burden
on the network as the static EQV alternative.

Non-Commutable Effects. Replicated stores can provide for concurrent, non-commutable updates
by sorting and re-evaluating received updates according to agreed-upon rules (thus creating an
arbitration total-order on updates), but this produces data anomalies that breaks most notions of
consistency stronger than eventual. As a result, non-commutable concurrency has little support
in replicated programming and verification tools. Carol’s guard-based consistency model allows
concurrency in general between non-commutable effects, automatically restricting this only when
it specifically endangers a guard.

For example, let us extend our bank application with an accrueInterest operation that is run
every once in a while, producing a Mul 2 effect that (quite generously) doubles the account value.
Because Mul ∗ does not commute with either Add ∗ or Sub ∗, the order of executions that include it
will affect the final value, and so a runtime delivering it will need to arbitrate its place in history.
However, no matter where it is inserted, it can only cause the account’s value to increase, and
thus it is in accord with the LEQ guard and accrueInterest can run concurrently with withdraw.
Compare this with the recent proof framework [Gotsman et al. 2016] we discussed in Section 1,
which supports an identical łaccrue interest for bank accountž operation only when the operation
is made non-concurrent with all others. Our Carol runtime implementation (Sections 6, 7) takes
advantage of this feature, supporting non-commutable effects using coordination-free arbitration,
and we demonstrate in our experimental results that this does not incur a significant overhead.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:8 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

e ::= • | e | e2 ◦ e1 effects

c ::= ⊤ | EQV | c | c1 ∧ c2 con. guards

t ::= x | k | λx .t | t1 t2 terms (operations)

| if t1 then t2 else t3

| query x : c in t | issue e in t

v ::= k | λx .t values

Fig. 3. Syntax of Carol, in which k stands in for constants, and e and c stand in for store-defined base effects
and consistency guards, respectively.

Reusable, Composable Data Types. We have explained how concurrent reasoning, though it
must always exist at some level, is isolated from the Carol language inside CARDs. This is
especially useful because CARDs are generic and composable enough to be adapted to many
different applications, passing through the hands of many programmers who can avoid revisiting
the concurrent logic sealed inside.

As an example of this reuse, we employ our familiar Ctr in a new application: aircraft coordination.
Suppose a replicated system for coordinating the flight-paths of aircraftÐand, critically, preventing
their collisionsÐrepresents aircraft positions as a map of {x : Ctr,y : Ctr, z : Ctr} structures.
Aircraft connected to this system emit Add ∗ and Sub ∗ effects for the relevant axes to track their
movement.
Now suppose a plane enters a new region of airspace and must quickly evaluate collision risks.

evalRisk := λi . query s : ([i].z.EQV) in (if s[i].z , myZ then 0 else . . .)

The evalRisk operation takes an aircraft ID and first checks the z-axis position of the aircraft by
querying the store using the guard [i].z.EQV, which ensures precisely that the bound value and all
remote stores agree on the exact value of i’s z-position. An aircraft’s altitude is generally constant
for long periods of time and can be reliably held, so this query is not very demanding. If the z is
found to be sufficiently distant from the newly arrived plane’s z position, the operation can quickly
terminate without any further coordination or measurement.
This represents an entirely new application domain, with different safety requirements and

different data structures than the bank application. And yet, because it bases upon the same
łprimitive-typež Ctr as the bank, which already has the necessary guard-effect accords compiled
into it, the operation development process can proceed in an entirely concurrency-free environment.

3 THE CAROL LANGUAGE

We now define Carol in detail. The language syntax is given in Section 3.1. The presentation of
the semantics is divided into two parts: replica-local operation evaluation rules in Section 3.2 and
distributed composition rules for operation results in Section 3.3. We combine these to state the
precise requirements for a semantics-respecting Carol runtime system in Section 3.4.

3.1 Syntax and Intuition

The syntax of Carol terms, or operations, is shown in Figure 3. While most constructs are familiar,
the syntax includes two special terms that interact with a replicated store.

Store Updates with Effects. The store can be updated in an operation by using the issue e in t

term, which stages a change to the store and continues with t . The e used in this term is an effect Ð

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:9

a deterministic update on the store that will be applied at every replica. An effect e has a denotation
JeK ∈ S → S , for a set of store values S , providing a function that will be applied to the store.

When issuing e using the issue e in t term, e will always be applied before any effects issued by
the t subterm. The łno-opž effect • is available in any Carol operation, while non-trivial effects
(represented by e productions in Figure 3) are specific to the store the operation is written for. As
an example, the distributed counter store we have used for our running bank account example
supports JAdd nK := λs . s + n and JSub nK := λs . s − n for adding and subtracting from the store
value (for store value set S = Int), respectively.

Store Queries with Consistency Guards. A Carol operation can make decisions based on the state
of the store by using the query x : c in t term to bind a store value to x in the subterm t . The c used
in this term is a consistency guard Ð a measure of accuracy (or completeness) for the information
bound to x . A consistency guard c on a query variable x has a denotation Jx : cK ∈ S → Bool giving
a predicate that relates the łlocalž value x to the łremotež store values (σ) that t ’s effects may be run
against. The trivial consistency guard Jx : ⊤K := ⊤ and total guard Jx : EQVK := x = σ are available
in any Carol operation, while the łinterestingž ones (represented by c in the Figure 3 grammar) are
specific to the store the operation is written for. All consistency guards must be reflexive, meaning
that for any guard c , Jx : EQVK ⇒ Jx : cK. As an example, the distributed counter store we have
used for our running bank account example supports Jx : LEQK := x ≤ σ and Jx : GEQK := x ≥ σ

for querying reliable lower and upper bounds on the store, respectively. Both are reflexive, because
x = σ ⇒ x ≤ σ and x = σ ⇒ x ≥ σ .

Consistency guards are the semantic equivalent of traditional consistency levels in mixed-
consistency systems. Instead of reading the store value łatomicallyž, łwith sequential consistencyž or
łwith acquire orderž as certain systems allow, aCarol operation reads the store up to the consistency
guard c . Operationally, consistency guards can be understood to restrict certain interfering activity
in the replica network. From the programming point of view, guards place a clear data refinement
on the value of x .

CARDs. We formalize the interface of guards and effects provided by a particular replicated store
as a conflict-aware replicated datatype, or CARD, defined as a three-tuple D = (S, E,C) in which S is
the underlying set of store values, E is the set of base effects supported by the store, and C , is the
set of base consistency guards supported by the store. We call elements of S D-states, effects using
base effects only from E D-effects, guards based on C D-guards, and Carol terms containing only
D-effects and D-guards D-operations.

CARDs can be thought of as traditional RDTs extended with declarative measures of consistency,
given by the guards. This makes CARDs more general and reusable by lifting two application-
specific aspects of standard RDTs from the datatype core into the Carol language: blocking safety
semantics and replica-local computation.

3.2 Replica-Local Evaluation Semantics

In order to modularly formalize the operational semantics of Carol, we first give the declarative
rules in Figure 4 by which Carol terms are evaluated to guarded events, abstract values which
encode the result and distributed store interactions produced by the term. We then explain the
network executions these guarded events correspond to in Section 3.3.

Carol programs are small in scope; they define a single transaction (with atomic update) on the
distributed store. A guarded eventd = (д, e,v) describes this transaction and the concurrent network
context in which it is allowed to succeed. The e value is the composition of effects issued by the
operation, which will be applied atomically to the store value. The v value is the value returned to
the caller of the operation, usually to report some details of the issued effects which the caller cannot

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:10 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

t ⇓ д, e,v

e-val

v ⇓ ∅, •,v

e-app

t1 ⇓ д1, e1,v1 t2 ⇓ д2, e2, λx .t3 [v1/x]t3 ⇓ д3, e3,v3

t2 t1 ⇓ (д3 ∪ д2 ∪ д1), (e3 ◦ e2 ◦ e1),v3

e-ite-true

t1 ⇓ д1, e1, true t2 ⇓ д2, e2,v2

if t1 then t2 else t3 ⇓ (д2 ∪ д1), (e2 ◦ e1),v2

e-ite-false

t1 ⇓ д1, e1, false t3 ⇓ д3, e3,v3

if t1 then t2 else t3 ⇓ (д3 ∪ д1), (e3 ◦ e1),v3

e-qery

[v1/x]t ⇓ д, e,v2

query x : c in t ⇓ ({(c,v1)} ∪ д), e,v2

e-issue

t ⇓ д, e2,v

issue e1 in t ⇓ д, (e2 ◦ e1),v

Fig. 4. Big-step, replica-local evaluation rules for Carol terms. The e-query rule does not constrain the value
bound by a query (v1), and is thus non-deterministic. Section 3.3 gives event composition rules which restrict
which evaluations may coexist in a multi-replica execution, and Section 6 describes a replica implementation
that binds query results deterministically based on the state of the network while following these restrictions.

directly observe. The д value is the event’s guard and takes the form {(c0,v0), (c1,v1), . . . , (cn,vn)},
in which the i-th element corresponds to a query on ci which bound store value vi . This set of
query results forms a constraint on the concurrent network activity that the event d tolerates,
restricting the contexts under which the event can be delivered and applied to a replica (the effect
pre-stores discussed in Section 2).

Definition 3.1 (Guard-permitted pre-stores). A store value s is a д-permitted pre-store, written as
s |= д, iff ∀(ci ,vi) ∈ д. [s/σ]Jvi : ciK.

Notice that some rules in Figure 4 are just more complicated versions of those standard to the
CBV λ-calculus. Despite the complication of producing events, they do have the standard λ-calculus
behaviorÐa Carol term containing no query or issue will evaluate to a łtrivialž guarded event
(∅, •,v), where v is the exact result of CBV λ-calculus evaluation. Yet all values are technically
operations, and so the typical rules must be extended with the plumbing to collect effects and guard
constraints from every sub-term. This pattern will continue in the typing rules of Section 4.

3.3 Distributed Execution Semantics

We now fill in the distributed semantics of Carol programs by relating guarded events to abstract

executions, a standard model [Burckhardt 2014; Burckhardt et al. 2012, 2014; Gotsman et al. 2016]
for describing and reasoning about executions of distributed systems.

Abstract Executions. Formally, an abstract execution is a tuple L = (W , s0, eff, rval, vis, ar) where:

• s0 is the initial store value.
• W is a finite set of abstract events representing atomic store interactions.
• eff : W → (S → S) gives the update an event makes to the store, for some set S of store
values

• rval :W → R gives the return value associated with an event, for some set R of return values
• vis ⊆ (W ×W) is the visibility relation, where vis(w1,w2) indicates that an eventw1 was part
of the context ofw2. We denote by vis−1 :W → P(W) the set of all events witnessed by an
event.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:11

• ar ⊆ (W ×W) is an arbitrary total order on events, respecting vis such that vis ⊆ ar.

Definition 3.2 (Sub-executions). A sub-execution L′ = (W ′
, s0, eff, rval, vis′, ar′) of

L = (W , s0, eff, rval, vis, ar), written as L′ ⊆ L, is the execution L restricted to an vis−1-closed subset
W ′ ⊆W of events. Each of vis′ and ar′ are equal to vis and ar, restricted to the domainW ′.

We define two special sub-executions for abstract events. Given an abstract execution L =

(W , s0, eff, rval, vis, ar) and event w ∈ W , we call the sub-execution L′ = (W ′
, . . .) for which

w ′ ∈W ′ iff ar(w ′
,w) the pre-execution ofw (written as L

pre
w). The vis-execution (Lvisw) is similar for

vis(w ′
,w).

Definition 3.3 (Evaluations of abstract executions). The store evaluation of an abstract execution
L, written as eval(L) is the store value arrived at by starting with s0 and applying eff(wi) for each
wi ∈ W in ar order. Formally, ifW = {w0,w1, . . .wn} with each i < j =⇒ ar(wi ,w j), then
eval(L) = (Jeff(wn)K ◦ Jeff(wn−1)K · · · Jeff(w0)K)(s0).

Execution Semantics for Guarded Events. In terms of the abstract execution model, a guarded
event corresponds to a single abstract event and a constraint on the surrounding executions it can
be contained in. We relate abstract events (the elements of abstract executions) and guarded events
(the products of ⇓-evaluated operations) precisely in the following definition.

Definition 3.4 (Event models). Given an abstract execution L = (s0,W , eff, rval, vis, ar) and a
guarded event d = (д, e,v), an abstract eventw ∈W is an event model of d , written (L,w) |= d , iff
eff(w) = e , rval(w) = v , and ∀Lr . Lvisw ⊆ Lr ⊆ L

pre
w ⇒ eval(Lr) |= д.

This definition of event model gives our notion of an operation’s effect pre-stores a precise
meaning with respect to an abstract execution L in whichw represents the operation’s resultÐthey
are the values ranged over by { eval(Lr) | Lvisw ⊆ Lr ⊆ L

pre
w }. The definition states that each Jx : cK

generated by the queries in the operation that produced d is satisfied by all of these values.

3.4 CARD Carriers

We now couple together the local and distributed components of Carol’s semantics to define the
complete requirements of a distributed store runtime for Carol operations.

Definition 3.5. Given a CARD D, a D-carrier is an abstract system which processes partially
ordered sets of D-operations into abstract executions. Given a partial order (O, <) of D-operations,
a D-carrier must produce an abstract execution L = (W , . . .) for which there exists an intermediate
set H of guarded events with one-to-one-correspondences j : H → O and h : H →W , such that:

(1) ∀d ∈ H . j(d) ⇓ d

(2) ∀d ∈ H . (L,h(d)) |= d

(3) ∀d1,d2 ∈ H . j(d1) < j(d2) ⇒ vis(h(d1),h(d2))

Intuitively, a carrier for a CARD is a set of replicas, each holding a queue of operations to evaluate.
The replicas must then evaluate the operations according to the replica-local evaluation rules,
filling in the non-deterministic choices such that the produced events fit together into an execution.
In this model, operations t1 and t2 are ordered by < iff they are in the same replica’s queue.

4 REFINEMENT TYPES FOR CAROL

In this section we describe specifications for distributed store events, building up to a refinement
type system for Carol. We prove soundness for this type system and describe the correctness
properties of Carol carriers that the type semantics provide.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:12 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

4.1 Event Specifications and Invariants

An event specification is a predicate with three free variables: σ represents the event’s effect pre-
stores, η represents the effect the event will run on, and ρ represents the return value that has been
given to the caller that produced the event.

Definition 4.1 (Satisfying specs). A guarded event (д, e,v) satisfies a spec φ, written (д, e,v) |= φ

iff for any д-permitted pre-store s , the substitution [s/σ , e/η,v/ρ]φ is satisfied.

Example 4.2. For the running bank account example, we may want the properties that (a) the
post-store value is non-negative, and (b) the change in the store value is equal to the return value
of each event. The event specification φ := (σ ≥ 0 =⇒ JηK(σ) ≥ 0) ∧ (ρ = σ − JηK(σ)) exactly
states these requirements. A guarded event from a withdraw, for example ({(LE, 10)}, Sub 5, 5),
satisfies this by placing the J10 : LEQK restriction on σ .

4.2 Operation Types

We detail our type system for Carol operations, using event specifications as operation refinements,
in Figure 5. This system follows the model of existing, sequential refinement type systemsÐin
particular that of Liquid Types [Rondon et al. 2008]Ðbut non-trivially extends this model to
consider the replicated store side-effects and constraints that Carol’s query and issue terms
produce. Operation refinement types in our system come in two forms. First is the base type, of the
form { Op D A | φ }, in which D is the CARD the operation runs over, A is the operation’s simple
return type, and φ is an event specification describing the possible resulting guarded events. For
example, the typing judgment

⊢ withdraw 5 : { Op Ctr Int | (σ ≥ 0 ⇒ JηK(σ) ≥ 0) ∧ (ρ = JηK(σ) − σ) }

states that evaluating withdraw 5 will not bring the store value below 0 and the result value will
represent precisely the amount withdrawn from the store.

The second is the dependent function type, of the form (x : T1) → T2, where T1 is a base type, T2
is a base or further dependent function type, and the event specification refinements inside T2 can
reference x . For example, the typing judgment

⊢ withdraw : (n : Nat) → { Op Ctr Int | ρ = n ∨ ρ = 0 }

states that when applying any natural number to withdraw will either return 0 or n, the argument
that was given to it. Note that, because all Carol terms are operations, the argument n is also an
operation, and Nat is also an operation type. We omit the details of a base type for such simple

operations, those with empty effects and no guard constraints. For example, n : Nat as we have just
used it (and as we used it in the Section 2 example) could be expanded to n : { Op D Int | ρ ≥

0 ∧ η = • }.

Definition 4.3 (Semantics for operation types). Given a CARD D = (S, E,C), an operation t has
base type { Op D A | φ } (written as t ∈ { Op D A | φ }) iff all guarded events that t can evaluate
to are well typed and satisfy φ, i.e.,

t ⇓ (д, e,v) =⇒ ∀(ci ,vi) ∈ д. (ci : C ∧vi : S ∧ e : E) ∧v : A ∧ (д, e,v) |= φ.

An operation t2 has dependent function type (x : T1) → { Op D A | φ } iff for any t1 ∈ T1 for
which t1 ⇓ д1, e1,v1, it is the case that [v1/x]t2 ∈ { Op D A | JдK ⇒ [η ◦ e1/η]φ }.

We now explain the rules of Figure 5. Intuitively, the t-qery rule is similar to a conditional
guard rule: if a term t is of type { Op D A | φ } given the additional premise Jx : cK, then term
query x : c in t is also of type { Op D A | φ }. The t-const rule derives the simple operation

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:13

Γ ⊢ t : T

t-const
ty(k) <: {ν : A | φ}

Γ ⊢ k : { Op D A | φ ∧ η = • }

t-lam

Γ, x : { Op D A | φ1 } ⊢ t : { Op D A | [η ◦ ηx/η]φ2 }

Γ ⊢ λx .t : (x : { Op D A | φ1 }) → { Op D B | φ2 }

t-var

Γ(x) = { Op D A | φ }

Γ ⊢ x : { Op D A | ρ = x ∧ η = • }

t-issue

Γ ⊢ e : Effect(D) Γ ⊢ t : { Op D A | [(η ◦ e)/η]φ }

Γ ⊢ issue e in t : { Op D A | φ }

t-qery

Γ ⊢ c : Guard(D) Γ, x : { Op D (Store D) | Jρ : cK } ⊢ t : { Op D A | φ }

Γ ⊢ query x : c in t : { Op D A | φ }

t-app
Γ ⊢ t1 : { Op D A | φ1 } Γ ⊢ t2 : (x : { Op D A | φ1 }) → { Op D B | φ2 }

Γ ⊢ t2 t1 : { Op D B | [x/ρ,ηx/η]φ1 ∧ φ2 }

t-ite
x < Γ Γ ⊢ t1 : { Op D Bool | φ1 } Γ, [ηx/η,⊤/ρ]φ1 ⊢ t2 : { Op D A | [η ◦ ηx/η]φ }

Γ, [ηx/η,⊥/ρ]φ1 ⊢ t3 : { Op D A | [η ◦ ηx/η]φ }

Γ ⊢ if t1 then t2 else t3 : { Op D A | φ }

D = (S, E,C) e ∈ E

Γ ⊢ e : Effect(D)

Γ ⊢ e1 : Effect(D) Γ ⊢ e2 : Effect(D)

Γ ⊢ e2 ◦ e1 : Effect(D) Γ ⊢ • : Effect(D)

D = (S, E,C) c ∈ C

Γ ⊢ c : Guard(D)

D = (S, E,C) Γ ⊢ c1 : Guard(D) Γ ⊢ c2 : Guard(D)

Γ ⊢ c1 ∧ c2 : Guard(D)

Γ ⊢ ⊤ : Guard(D) Γ ⊢ EQV : Guard(D)

D = (S, E,C) s ∈ S

Γ ⊢ s : Store(D)

t-sub

Γ ⊢ t : T1 Γ ⊢ T1 <: T2 Γ ⊢ T2

Γ ⊢ t : T2

t-sub-decide

JΓK ∧ φ1 ⇒ φ2

Γ ⊢ { Op D A | φ1 } <: { Op D A | φ2 }

Fig. 5. Typing and sub-typing rules for Carol.

type for a constant term from a standard refinement type judgment, stating that the value has any
refinement implied by its literal definition (such as ρ ≥ 0 when the value is 5) and no store effects
or store constraints. In these rules, <: is the subtype relation, which states that the left hand side
has the same core type as the right hand side, and that the left’s refinement implies the right’s
refinement. The denotational brackets on JΓK reduce the context to the set of logical statements
contained in its refinements:

J•K := ⊤ JΓ, x : { Op D A | φ }K := JΓK ∧ [x/ρ,ηx/η]φ JΓ,φK := JΓK ∧ φ

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:14 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

n : Nat, x : { Op Ctr (Store Ctr) | x ≤ σ }} ⊢ (ρ ≥ n ∧ η = •) : Bool

n : Nat, x : { Op Ctr (Store Ctr) | x ≤ σ }, ⊤ = x ≥ n ⊢ {. . . (then)} : { Op Ctr Int | φ }

n : Nat, x : { Op Ctr (Store Ctr) | x ≤ σ }, ⊥ = x ≥ n ⊢ {. . . (else)} : { Op Ctr Int | φ }

n : Nat, x : { Op Ctr (Store Ctr) | x ≤ σ } ⊢ {if . . . } : { Op Ctr Int | φ }
t-ite

n : Nat ⊢ LEQ : Guard(Ctr)

n : Nat ⊢ query x : LEQ in {if . . . } : { Op Ctr Int | φ }
t-qery

⊢ λn . query x : LEQ in {if . . . } : (n : Nat) → { Op Ctr Int | φ }
t-lam

Fig. 6. Derivation of withdraw type down to branches with base (non-query) terms, for Example 4.4. Certain
refinement elements, such as unreferenced ηx ’s, have been omitted.

Γ
+ ⊢ n : Nat

t-var

Γ
+ ⊢ Sub n : Effect(Ctr)

Γ
+ ⊢ n : { Op Ctr Int | [η ◦ Sub n/η]φ }

Γ
+ ⊢ issue Sub n in n : { Op Ctr Int | φ }

t-issue

Fig. 7. Derivation of issue term in withdraw’s success branch down to its final subterm n, for Example 4.4.
n’s type, Nat, has nothing useful to say about σ or η, so verifying φ will depend mostly on Γ

+.

JΓ+K ∧ (ρ = n ∧ η = •) ⇒

((σ ≥ 0 ⇒ Jη ◦ (Sub n)Kσ ≥ 0) ∧ (ρ = σ − Jη ◦ (Sub n)Kσ))

Γ
+ ⊢ T1 <: T2

t-sub-decide

Γ
+ ⊢ n : T1

T1 = { Op Ctr Int | ρ = n ∧ η = • } T2 = { Op Ctr Int | [η ◦ Sub n/η]φ }

Γ
+ ⊢ n : { Op Ctr Int | [η ◦ Sub n/η]φ }

t-sub

Fig. 8. End of derivation for then branch of withdraw, in which a verification condition (the logical formula
at the top) is produced to check that the context and n term’s type (T1), a simple reference to the context, is
strong enough to imply the goal type (T2). The rule that gives Γ+ ⊢ n : T1 is t-var.

Example 4.4. As an end-to-end demonstration, we now typecheck the withdraw operation
according to the specification we have been using, for which

φ := (σ ≥ 0 ⇒ JηK(σ) ≥ 0) ∧ (ρ = JηK(σ) − σ)

We first follow the derivation in Figure 6, storing in the context the constraint on σ (the effect
pre-store) that the query using LEQ gives us. This produces two unsolved branches, one for the
then branch of the if term on which we can assume x ≥ n, and one on the else branch where we
assume the opposite. Like the query constraints, these assumptions are added to the context, but as
simple statements rather than variable bindings.
We elide the trivial else branch and follow the then branch, referring to the context so far

(including ⊤ = x ≥ n) as Γ+, in Figure 7. This takes us to the requirement for the final subterm of
withdraw.

Γ
+ ⊢ n : { Op Ctr Int | [η ◦ Sub n/η]φ }

Looking up n in Γ
+ with the t-var rule, we get T1, which is strong enough to imply our goal but

isn’t quite it. To go from T1 (and Γ
+) to our final goal T2, we generate a verification condition for

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:15

their subtyping relationship with t-sub, leaving the following logical formula to be solved.

JΓ+K ∧ JT1K ⇒ JT2K = (n ≥ 0 ∧ x ≤ σ ∧ n ≤ x) ∧ (ρ = n ∧ η = •)

⇒ ((σ ≥ 0 ⇒ Jη ◦ (Sub n)Kσ ≥ 0) ∧ (ρ = σ − Jη ◦ (Sub n)Kσ))

Note how η in the original φ has been replaced by η ◦ Sub n, such that T1’s statement of η = •

makes the transformed φ consider only the final, concrete effect Sub n. Deciding this as valid, we
have thus verified that withdraw has our desired behavior in the replicated setting.

Theorem 4.5 (Soundness of typing rules). The type system presented in Figure 5 is sound, i.e.,

⊢ t : T =⇒ t ∈ T .

Proof. By case analysis on the rules for deriving types. Here are the interesting cases:
Case: t-issue Our premise is that ∀(д1, e1,v1). t ⇓ д1, e1,v1 ⇒ (д1, e1,v1 |= [(η ◦ e)/η]φ) for some
t and e . We must show that

∀(д2, e2,v2). issue e in t ⇓ д2, e2,v2. (д2, e2,v2 |= φ).

Looking at our evaluation rules, the only one that matches our term is e-issue, which means that
for any д2, e2,v2 we choose, д2 = д1, e2 = e1 ◦ e , and v2 = v1. Clearly, by substitution,

(д2, e1,v2 |= [(η ◦ e)/η]φ) ⇒ (д2, e1 ◦ e,v2 |= φ), □

Case: t-qery Our premise is that

∀(д1, e1,v1). [vx/x]t ⇓ д1, e1,v1 ∧ (σ ,vx |= c) ⇒ (д1, e1,v1 |= φ)

for some t and c . We must show that

∀(д2, e2,v2). query x : c in t ⇓ д2, e2,v2. (д2, e2,v2 |= φ).

Only e-qerymatches our term, so we can be sure that for anyд2, e2,v2 we choose,д2 = {c,vx }∪д1,
e2 = e1, andv2 = v1. Any qualifying history (L′, L) for (д2, e2,v2)must respect that (eval(L′),vx) |= c ,
and thus we get our goal by substitution (σ ,vx |= c) ⇒ ((д1, e1,v1) |= φ

({c,vx } ∪ д1, e2,v2) |= φ □

Case: t-lam Our premise is that [vx/x]t2 ⇓ д2, e2,v2 ∧ [vx/ρ,ηx/η]φ1 ⇒ (д2, e2,v2 |= [η ◦ ηx]φ2).
Our semantics for dependent function types requires that we show, for any t1 for which t1 ⇓

д, e,v and (д, e,v) |= φ1, that ⊢ [v/x]t2 ∈ { Op D B | JдK ⇒ [η ◦ e/η]φ }. This translates to
[v/x]t2 ⇓ д2, e2,v2 ⇒ д2, e2,v2 |= (JдK ⇒ [η ◦ e/η]φ). Because we substituted v into t2, our premise
states that its products will satisfy [η ◦ e/η]φ as long as [v/ρ, e/η]φ1 holds. And the fact that
t1 ∈ { Op D A | φ1 } ensures that the extra precondition JдK makes [v/ρ, e/η]φ1 always hold. □

Soundness for Carol types means that we can prove an operation will always produce events
that satisfy an event specification. Thus, a D-carrier run only over operations typed to respect
some D-invariant, such as σ ≥ 0 for our bank account, will always preserve that invariant.

Sequential Reasoning. Carol allows us to write and verify programs over a CARD D without
referencing the conflict relationships between effects and guards, isolating the programmer from
such concurrency details and allowing us to use a sequential-style verification system.

A D-carrier must identify these relationships before runtime in order to operationally ensure the
semantics of guards, but the qualified interface of guards and effects provided by D makes this task
finite and reusable between applications. We define and provide an algorithm for this identification
process in the next section.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:16 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

5 INFERRING CONFLICT AVOIDANCE REQUIREMENTS

The semantics defined for CARD carriers in Section 3 require that such a system limit concurrent
activity in accordance with guards as operations are evaluated. This requirement is simple to
define and use for modular verification reasoning, but its implementation depends on a more
complete picture of effect-guard relationships Ð in particular, the impact of particular effects on
guard guarantees. We define several useful relationships between consistency refinements and
effects in Section 5.1 and then give an algorithm for computing the relationships within a given
CARD in Section 5.2.

5.1 Accords Between Guards and Effects

We now work to a definition of the guard-effect accords (hereafter referred to simply as accords)
that a CARD must hold in order to efficiently enforce guards at runtime. Intuitively, an accord
states that a particular effect (or class of effects) cannot invalidate a particular consistency guard’s
permitted effect pre-stores, no matter when or how it is applied to them.

Definition 5.1 (Compliance). For a CARDD andD-guard c , twoD-states (s1,s2) are (D, c)-compliant
iff ∀e : Effect(D). [JeK(s1)/σ]JJeK(s2) : cK.

Note that s1 = s2 trivially ensures (s1, s2) is (D, c)-compliant, and that the definition covers the case
where e = • such that [s1/σ]Js2 : cK is satisfied (i.e. s1 is a permitted effect pre-store for s2 : c).

Definition 5.2 (Accord). A D-guard c and D-effect e are in accord iff for all s1, s2 in D, if s1, s2 are
(D, c)-compliant, then so are e(s1) and s2.

Example 5.3. In our bank account, a pair of states (sд, sr) are (Ctr, Le)-compliant when sr ≤ sд ,
since they satisfy Le and no Ctr effect applied to both can invalidate that. Then, Le and Add n are
in accord, since a deposit would only increase sд . However, Le and Sub n are not in accord, as a
large enough n will result in sд < sr .

Lemma 5.4 (Safe effect insertion). Given a pair of D-states (s1, s2), D-effects e and e ′, and

D-guard c , for which e and c are in accord and (s1, s2) are (D, c)-compliant, then (Je ′ ◦ eK(s1), Je
′K(s2))

is also (D, c)-compliant.

Proof. We apply the definition of accord to show that (JeK(s1), s2) is (D, c)-compliant, and then
use definition of compliance to show that (Je ′ ◦ eK(s1), Je ′K(s2)) is also (D, c)-compliant.

Theorem 5.5 (Arbitrary safe insertion into effect seqences). Given a starting D-state

s0 and sequence of D-effects e
∗, we can expand this sequence to f ∗ by inserting an arbitrary number

of D-effects which are all in accord and with a D-guard c and be sure that (Jf ∗K(s0), Je
∗K(s0)) is

(D, c)-compliant.

Proof. We insert new in-accord effects into e∗ end-first, stepping them to their f ∗ location by
repeated applications of Lemma 5.4. Since the starting state (s0, s0) is (D, c)-compliant by s0 = s0,
we fulfill the first application’s requirement that the current state-pair is (D, c)-compliant, and by
using the lemma, we continually ensure that the next state-pair is (D, c)-compliant, meeting the
requirements of the next application.

Theorem 5.5 gives us the main result of this section: a D-carrier system that requires accords for
effects in events concurrent to a current operation evaluation with respect to its queries’ guards
will fulfill its consistency obligations. We provide a detailed carrier model that uses accords in this
way in Section 6.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:17

S (PostSolver) := (A : Σ∗, B : Σ∗, sol : {⊤, ⊥}) Jx : ⊤K := ⊤

E(PostSolver) := Append {1, 2, · · · , n } Jx : SOLEQVK := solx = solσ

C(PostSolver) := ⊤ | SOLEQV | EQV Jx : EQVK := (Ax , Bx , solx) = (Aσ , Bσ , solσ)

JAppend iK := λ(A, B, sol). (Aai , Bbi , sol ∨ Aai = Bbi)

Fig. 9. The CARD for our Post Correspondence Problem solver. The state is a tuple (A,B, sol) representing the
concatenation ai1 · · ·aik , the concatenation bi1 · · ·bik , and whether a solution has been found. The subscripts
r and д stand for replica and global state respectively.

Intuitively, the more accords aD-carrier system has, the less contention is needed to run correctly.
An accord set AS(c) for a guard c is a set of effects which are in accord with c . The following theorem
states that finding the largest such accord set is undecidable.

Theorem 5.6. Given a CARD D and D-guard c , finding the largest cardinality accord set for c is

undecidable.

Proof. We show that if finding the largest cardinality accord set is decidable, the Post Corre-
spondence Problem is decidable. For an alphabet, Σ, given two sets of strings {a1,a2, · · · ,an} and
{b1,b2, · · · ,bn} in Σ∗, the goal of the Post Correspondence Problem is to decide whether or not there
is some list of indices i1, i2, · · · , ik such that ai1ai2 · · ·aik = bi1bi2 · · ·bik , i.e. the concatenations of
the corresponding strings in each set are equal. We now show this can be done by finding the
largest cardinality accord set for the PostSolver CARD in Figure 9.

Consider an arbitrary instance of the Post Correspondence Problem, and its associated PostSolver
CARD. If there is some list of indices i1 · · · ik such that ai1 · · ·aik = bi1 · · ·bik , then we know that
there is a sequence of effects e∗ = Append ik ◦ Append ik−1 ◦ · · · ◦ Append i1, applied to the starting
state s0 = (ε, ε,⊥) such that Je∗K(s0) = JAppend ik ◦ Append ik−1 ◦ · · · ◦ Append i1K((ε, ε,⊥)) =
(ai1 · · ·aik ,bi1 · · ·bik ,⊤). Since ¬[s0/σ]JJe

∗K(s0) : SOLEQVK, we can take the contrapositive of Theo-
rem 5.5 to know that at least one of Append i1, · · · , Append ik must not be in accord with SOLEQV.

On the other hand, if no list of indices is a solution, then we use the fact that two states s1, s2 are
(PostSolver,SOLEQV)-compliant iff their solution status is the same. If s1 has the form (A,B,⊥),
then because no effect Append i reaches a solution, we know all effects produce a state (A′

,B′
,⊥),

maintaining (PostSolver,SOLEQV)-compliance. Likewise, if s1 has the form (A,B,⊤), every effect
will produce (A′

,B′
,⊤) by definition of Append, also maintaining compliance.

Thus, if we can find the largest cardinality accord set for SOLEQV, we can check if all of
Append 1, · · · , Append n are within the set: if some are absent, then there is a solution; while
if all are present, then no solutions exist. This is a contradiction since the Post Correspondence
Problem is undecidable. □

5.2 Finding Accord Sets

Finding accord sets is similar in spirit to verifying specifications in sequential settings. We define
two concepts, 1-accords and consistency-invariants. 1-accords are equivalent to showing a required
property holds over a single line of a program, while consistency invariants are like standard
inductive loop invariants Ð they are a strengthening of the property that is preserved by operations.

Definition 5.7 (1-accord). A guard c and an effect e are in 1-accord iff for all s1, s2 in D, we have
that [s1/σ]Js2 : cK =⇒ [JeK(s1)/σ]Js2 : cK.

Definition 5.8 (Consistency Invariant). Given a CARD D = (S, E,C), a D-guard c is a consistency
invariant in D iff ∀e ∈ E. ∀s1, s2 ∈ D. [s1/σ]Js2 : cK =⇒ [JeK(s1)/σ]JJeK(s2) : cK.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:18 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

Note that if c is a consistency invariant, then all D-effects e which are in 1-accord with c are also
in accord with c . The 1-accord set AS1(c) for a guard c is a set of effects which are in 1-accord with c .
We show that every consistency invariant that implies a given c approximates the accord set for c .

Lemma 5.9. Let D be a CARD and c, c ′ be D-guards. If c ′ is a consistency invariant and Jx : c ′K ⇒
Jx : cK, then AS1(c ′) ⊆ AS(c).

Proof. This is immediate from the definitions of consistency invariant and 1-accord.

The total guard EQV (the identity relation) itself is always a consistency invariant, similar to how
⊥ is always a loop invariant in the sequential setting. However, this invariant leads to an accord
set that rejects all state mutating effects in the CARD. The challenge is to identify the consistency
invariant that leads to the most complete accord set.
In spite of Theorem 5.6, we present a simple semi-procedure that computes an accord set

in practice through consistency invariants. First, let the weakest consistency precondition of a
guard c and effect e , WCP(e, c), be the weakest guard such that (sд, sr) |= WCP(e, c) implies that
(JeK(sд), JeK(sr)) |= JcK. Now, we compute accords for a D-guard c , where D = (S, E,C), with:

PASD (c) := let c ′ =
∧

e ∈E

WCP(e, c) in

if c ⇒ c ′ then AS1D (c) else PASD (c ∧ c ′)

Note that we are checking WCP against D’s base effects (E), not the by-definition-infinite space of
D-effects. We discuss how the size of base effect set to check can be kept small at the end of this
section.
The following theorem states the soundness of the above procedure.

Theorem 5.10. Given a CARD D, and D-guard c , the procedure PASD (c) ⊆ AS(c).

Proof. The proof follows from the following:

• The guard argument at recursive call i (which we will call ci) is a strengthening of c .
• If, at recursive call i , the condition ci ⇒ c ′ holds, then ci is a consistency invariant in D

because ∀e : E. ci ⇒ WCP(e, ci).
• Therefore, because ci ⇒ c and ci is a consistency invariant, then we conclude by Lemma 5.9.

The procedure PAS is computing the greatest fixed-point c ′L of the equation µc ′ : c ′ =⇒

c ∧ ((sд, sr) |= c
′) =⇒

∧
e :E (JeK(sд), JeK(sr)) |= c

′ as a consistency invariant and using it to decide
accords. However, any fixed-point of the equation is sufficient, and any technique used in standard
sequential program reasoning can be applied to compute this fixed-point (e.g., widening from
abstract interpretation, logical interpolant computation, etc).

Having found such an accord set (or another fixpoint) for a guard c ∈ C , any query guarded by c
can safely proceed so long as it makes sure that any effect e ∈ E not in PASD (c) will not be emitted
while the guard is active. In Section 6, we design such a system, where only effects not in accord
with an active guard are blocked.

Partitioning Effect Types. The PAS algorithm requires a finite set of effects, and becomes more
efficient as effect sets get smaller. In order to aid accord reasoning, we would like to partition an
effect set E, which may be infinite or just very large, into a finite set of equivalence classes E, which
we call accord classes, such that two effects in the same class will be related by accords to the same
set of guards. In general, we will create partitions that as closely overapproximate true accord
equivalence as possible, such that each class holds the greatest common accord set of its effects.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:19

Example 5.11. The obvious partition of an effect type into good accord classes is by constructor.
For our Ctr example, E := {Add∀, Sub∀} where Add∀ and Sub∀ include events of the form Add n

and Sub n, respectively. If 0 is considered a valid parameter for Ctr effects, then a more complete
partitioning would put Add 0 and Sub 0 together in a third łno-opž partition for which all possible
accords exist.

6 REPLICA NETWORKS

In this section, we use the identified accord sets for a CARD D to implement a network of replicas
that safely process concurrent Carol operations, meeting the requirements of a D-carrier. In
Figure 10, we give the small-step semantics by which such a network executes operations using
the accord sets computed using the procedure detailed in Section 5.

6.1 Operational Network Semantics

Definition 6.1 (Network Configurations and Executions). A network configuration is a tuple
(L | C | R), in which L is an abstract execution describing the history of events in the network, C is
a coordination configuration describing lock acquisitions agreed upon by all replicas, and R is a set
of replicas. R is a set of (Li ,wi , e,O) replicas, in whichwi is a unique pending event, Li ⊆ L is the
seen sub-execution of history, ei is a staged store effect, and O is the replica’s queue of operations
to process. The coordination configuration C is a set of mappingsw : c from a pending eventw to
a consistency guard c .
We define an initial network configuration as one with empty locks and history, a final network

configuration as one with empty operation sequences and completely delivered histories on all
replicas, and a terminating network execution as an initial configuration paired with a sequence of
replica rule steps that take it to a (unique) final configuration.

Abstract Execution Updates. The explicit replica execution rules are shown in Figure 10. We
update abstract executions with the following shorthand:
L ::Li (w, e,v) denotes an extension of L, where Li ⊆ L, that adds a new eventw with effect e and
rval v to L such thatw’s vis-execution is Li .
L :: (w, e,v) is short for L ::L (w, e,v), łappendingžw to L.
Li ∪L w addsw and its dependency closure from L to Li , where Li ⊆ L, such that Lvisw ⊆ L′i .

Replica-network Rules. The replica rules are an extension of standard term evaluation, providing:
Querying. TheQuery rule describes the conditions for acquiring a guarantee. A replica may

acquire a given consistency guard if all emitted effects not yet visible to the replica are in accord
with the guard being processed.

Effect staging. A replica can stage changes to the store via the r-issue rule. When it finishes
evaluating the operation, it can emit the combined changes and return.
Operation completion. The r-val rule simulates the completed evaluation of an operation by

consuming the return value and staged changes and adding an event representing them to the
global abstract execution. Importantly, it can only do this if the planned effect is in accord with
all guarantees the emitting-replica has given. If this is not the case, the operation can be trivially
restarted because no effects have been emitted so far (ergo no side-effects).
Effect delivery. The effect delivery rule copies an event from the network history into the local

history of a replica.

Definition 6.2 (Execution products). The execution product of an an operation t in an initial replica
configuration for a terminating network execution that defines a final history L is the event w
which was was added to L in the unique R_VAL step completing t ’s evaluation.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:20 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

r-qery

L = (eff, . . .) ∀w ∈ L. eff(w) ∈ ASD (c) ∨w ∈ Li v = eval(Li)

L | C,wi : c1 | R, (Li ,wi , e, query x : c2 in t :: O) 7−→ L | C,wi : c1 ∧ c2 | R, (Li ,wi , e, [v/x]t :: O)

r-issue

L | C | R, (Li ,wi , e1, issue e2 in t :: O) 7−→ L | C | R, (Li ,wi , e2 ◦ e1, t :: O)

r-val

∀(wr : cr) ∈ C . e ∈ ASD (cr) ∨wr ∈ (Li ∪ {wi }) w ′
i < (L ∪ {wi })

L | C | R, (Li ,wi , e,v :: O) 7−→ L ::Li (wi , e,v) | C, (w
′
i : •) | R, (Li :: (wi , e,v),w

′
i , •,O)

r-deliver

w ∈ L

L | C | R, (Li ,wi , e,O) 7−→ L | C | R, (Li ∪L w,wi , e,O)

Fig. 10. Core replica execution rules. Rules which only update a subterm and pass through context modifica-
tions to the parent term are omitted. ASD (cr), as used in r-val, refers to an accord set statically inferred for
cr . When we use abstract executions as sets, as inw ′ ∈ (L ∪ {w}), we mean the contained event setW .

j, t,д, e
rep_rule
7−→ j ′, t ′,д′, e ′

j, ti ,дi , e,
r-qery
7−→ j, ti ,дi ∪ {c2 ▷ v}, ei

j, ti ,дi , e,
r-issue
7−→ j, ti ,дi , e2 ◦ ei

j, ti ,дi , ei
r-val
7−→ j ∪ {(дi , ei ,v) → ti }, ti+1, ∅, •

j, ti ,дi , ei
r-deliver
7−→ j, ti ,дi , ei

Fig. 11. Replica-driven operation evaluation rules. These rules give an algorithm that consumes a terminating
network execution to evaluate the operations of one replica into guarded events.

Execution products allow us to link systems implementing the replica rules to D-carriers.

Lemma 6.3 (Execution products are event models). For an initial network configuration with

term t and terminating network execution producing t ’s execution productw in L, there exists a guarded

event d such that t ⇓ d , and also (L,w) |= d .

Proof. The proof is given in three parts. First, we derive a unique d result for each t in a given
network execution. Second, we show that for these derived guarded events, t ⇓ d . Third, we show
that for a t with execution productw in an execution ending with L, (L,w) |= d .

Identifying Guarded Events. To identify guarded events for operations, we define an algorithm
in Figure 11 that runs over a terminating network execution with rules of the form j, t,д, e 7−→

j ′, t ′,д′, e ′, where j is a one-to-one map between guarded events and operations and t is the full
form of the currently evaluating operation. Free variables on the right side of each rule refer to
their values in the replica rule step that has been matched. These rules consider the operations of a
single replica; the full j is derived by running this algorithm for each replica and combining the
results.

Showing Guarded Event Correctness. To show that the above algorithm follows the Carol evalua-
tion rules in constructing guarded events, we abstract each non-r-val rule into a simpler rule of

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:21

the form

д, e, t 7−→ д′, e ′, t ′

(in which t and t ′ are the pre- and post-term in the matched replica rule) such that the rules serve
as a small-step semantics for operations. We then show by case analysis that the small-step rules
are equivalent to the rules for t ⇓ d , proving that

д1, e1, t1 7−→ д2 ∪ д1, e2 ◦ e1, t2 t2 ⇓ д3, e3,v

t1 ⇓ д3 ∪ д2, e3 ◦ e2,v

The cases for the core rules follow.

Query Given the term query x : c in t , the small-step rule adds {c ▷ v} (where v is the
evaluation of the replica-local history) to д. The big-step rule makes the same addition but
with any v ; thus the small-step rule’s choice makes one of multiple valid steps.

Issue Given the term issue e in t , both big and small-step rules add e to the effect such that it
is run before any effect issued by t .

Showing Event Models. We first note that, trivially, the e andv values of the guarded event (д, e,v)
constructed for a term t by our algorithm are the same as those assigned to t ’s event productw in
the network execution. The remaining requirement to show for (L,w) |= (д, e,v) is that

∀Lr . L
vis
w ⊆ Lr ⊆ L

pre
w ⇒ eval(Lr) |= д.

Using Theorem 5.5, we can prove this by showing that allw ′ ∈ L
pre
w are either visible tow or have

effects in accord with each guard in д.
The premises of the r-qery rule require this to be the case for L when a guard c is added to

д. This rule also adds c to C for the event w , putting an important restriction on all r-val steps
that follow. Each following r-val step that adds anotherw ′ with effect e ′ to L requires that either
e ′ ∈ ASD (c), or thatw ∈ Lvisw ′ (meaning thatw ′

< L
pre
w). Thus д is guaranteed to be protected in the

final L.
This completes our proof that for any t with execution product w in a terminating network

execution ending with L, there exists a d for which t ⇓ d and (L,w) |= d . □

Theorem 6.4 (Replica Rules Implement a CARD Carrier). Given a set (O, <) of D-operations

and an initial network configuration in which replicas hold disjoint subsets of O and any o1,o2 on a

single replica are related by <, the L of any reachable final configuration is a valid D-carrier output

for input (O, <).

Proof. The definition of a valid carrier output requires the existence of two one-to-one corre-
spondences, j and h, with some conditions. If we choose the guarded event construction algorithm
defined for Lemma 6.3 for j and compose j−1 with the definition of execution product for h, we can
show that these conditions are met:

(1) ∀d ∈ H . j(d) ⇓ d , given by Lemma 6.3.
(2) ∀d ∈ H . (L,h(d)) |= d , given by Lemma 6.3.
(3) ∀d1,d2 ∈ H . j(d1) < j(d2) ⇒ vis(h(d1),h(d2)), given by the fact that replicas always add

an emitted effect wi to their local Li history before adding the next wi+1 to any history,
guaranteeing that vis(wi ,wi+1).

The replica rules assume a correct accord set for a CARD D, and thus they correctly implement a
D-carrier. □

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:22 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

6.2 Arbitration Total Order

In order to support non-commutable effects, our replica network design uses a total arbitration
order. In our setting, the arbitration order is achieved without distributed coordination; it is locally
computed at each replica as events are received. Our system already maintains a causal order on
events (which itself does not need any blocking coordination, except where forced by the use of
guards). Events incomparable in the causal order can be simply compared by their replica ID to
achieve deterministic ordering, the same at each replica. This is a standard technique for deciding
total orders on distributed system events [Lamport 1978]. This mechanism works for our system
because we allow events newly received by a replica to be inserted into the replica’s history before
the end, if arbitrated so. This requires the tail of its history to be recomputed. Local recomputation is
preferable over network coordination in the majority of settings. Unlike other consistency models,
consistency guards enable a programmer to work safely even in the presence of recomputation
anomalies.

6.3 Consistency Coordination Protocol

The replica rules we present here are declarative; they specify when a replica is allowed to proceed
with querying and issuing but do not give instructions for actively getting to that state. In particular,
the r-qery rule requires that all not-in-accord events have been seen by the querying replica at the
time of evaluation, and both r-qery and r-val modify/read a global coordination configuration.
We now briefly describe how this global coordination can be performed, see Section 7 for more
details and an evaluation.

r-query. First consider a replica with id i seeking to update the coordination configuration from
i : c1 to i : c1 ∧ c (i.e. acquire the guard c) for the r-qery rule. In our implementation, the replica
requests all other replicas to guarantee that they won’t invalidate c , and each replica j , i responds
with an acknowledgment and an update of its abstract execution Lj . After receiving all of these
responses, the requesting replica knows the other replicas will only emit effects that are in accord
with c , and by merging its abstract execution with the ones it has received (a series of r-delivers),
it has met the requirements of r-qery and can proceed with the evaluation.

r-val. Now consider a replica seeking return and emit the combined staged effects e via the
r-val rule. If e is in accord with all guards, it would be safe to simply emit it, but it could be the
case that e conflicts with some guard c that the replica has guaranteed to respect. In order to keep
track of such guarantees, the replica keeps a local record of guards it has promised not to violate,
and simply cycles through the record to make sure it can emit. Depending on whether e is in accord
with every such guard, the replica either emits the corresponding event or restarts the operation.
Either way, the replica releases all the guards it has acquired so that the other replicas can emit in
the meantime.

7 EVALUATION

We performed our evaluation to answer two key research questions concerning the performance of
Carol implementations. First, (Section 7.1) is the inference of guard-effect accord sets via the PAS
algorithm efficient for a variety of CARDs? Second, (Section 7.2) is the runtime performance of a
Carol carrier implementation scalable to real geo-distributed applications?

7.1 Static Accord Identification (DSV)

We empirically evaluated whether our algorithm for the core computational task of defining
CARDsÐinferring accord setsÐis efficient and complete. We implemented the PAS algorithm, using

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:23

Table 1. Accord set inference evaluation results.

Application Guards Effect Classes Time (ms) Complete?

Bank account 4 3 35 Yes
Bank account with reset 4 4 33 Yes
Conspiring booleans (2) 4 3 31 Yes
Joint bank account 6 8 59 Yes
KV bank accounts (10) 11 9 175 Yes
State machine (3 states) 3 3 46 Yes

the Z3 SMT solver [De Moura and Bjùrner 2008] for logical reasoning, as a Haskell library called
DSV 1. We modeled CARDs of varying complexity, using SMT-representable integers, booleans, and
arrays, and computed accord sets for their consistency guards and effects. Each CARD’s consistency
guards included the empty guard, the total guard (the identity relation), and interesting non-trivial
guards that may provide useful information to an operation. The results of our evaluation are
given in Figure 1. For all tested CARDs, our solver found accord sets in less than 175ms. The times
are favorably comparable with the evaluation results of previous systems such as Indigo (ranging
19ms to 320ms) [Balegas et al. 2015] and the verifier of Gotsman et al. (ranging 385ms to 5297ms)
[Gotsman et al. 2016], with an important caveat: our PAS algorithm analyzes only the concurrent
interaction of a CARD’s guards and effects, leaving sequential operation code to a refinement type
checker. These previous systems analyze full applications, including the sequential code, all at once.
The data types we used for the CARDs in our experiment are comparable in complexity to

those on which previous verification systems have been evaluated. While they may appear toy-like
in comparison to data structures used by practical production systems, we note that complex
real-world structures tend to be compositions of smaller łprimitivež datatypes; we believe that
encountering an indivisible structure with 9+ effect classes is unlikely (indeed, our stretched-out
KV bank accounts example could be broken down in this way). The complete analysis of such
compound structures could mostly reuse the analysis results of their parts; a flexible framework for
such łecologicalž accord set analyses is an interesting line of future work.

Manual examination proved that the inferred accord sets were complete, i.e. that they contained
all guard-effect pairs that were semantically in accord. We detail three cases.

Bank Account with Reset. We extended the Ctr CARD backing the bank account with a Reset
effect which sets the store value to 0. Reset never drops the value below 0 by itself, and thus an
operation can safely (with respect to the bank account invariant) emit a Reset without looking at
the store. Our technique automatically inferred this: the AS set for LE contains Reset, but the AS
set for the trivial guard of a safe resetting operation is empty.

Finite State Machine. We modeled a finite state machine CARD for which the store values were
the set of {sa, sb , sc } states and the effects were a set of (non-commutable) transition labels between
them. This served to further test our algorithm’s sensitivity to the impact of non-commutability
anomalies on accords. We defined a guard Jx : InState(sc)K := x = sc ⇔ σ = sc for each state sc
which provides precise knowledge of whether any replica is in the critical state sc . The accord set
for this guard included not only łoffendersžÐthose effects leading directly into and out of scÐbut
also any that enabled the offenders by taking the system closer to sc in some way.

Key-Value Bank Accounts. This example modeled an array of ten indexed bank accounts, support-
ing the same effect classes as the regular bank account but with an additional index parameter. The

1https://github.com/cuplv/dsv

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

https://github.com/cuplv/dsv

106:24 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

Fig. 12. Runtime evaluation results, comparing contention-management techniques for differing workloads.
CC refers to the congestion control technique and TP to token passing. Causal refers to workloads including
no guards, mixed to mixed-consistency workloads, and strong to workloads in which all operations conflict.

logical reasoning for this example involved using the array SMT theory. We inferred accord sets
both for guards on individual accounts, and new guards concerning the summation of the accounts.
The accord set for the summation LEQ guard included the Sub ∗ effects for all bank accounts, while
the accord sets for the individual account LEQ guards included only the Sub ∗ effects for that
bank account. This illustrates that our algorithm automatically discovers boundaries to an effect’s
interference on complex states.

7.2 Runtime Design and Performance (Discard)

In this section we explain the design of our concrete Carol runtime and then discuss its measured
performance. Our implementation is a Haskell library called Discard 2, which realizes the language
as a monadic DSL (structured to provide the proper CBV semantics) and provides a replica system
that correctly evaluates the embedded Carol operations according to the model given in Section 6.
Guard-preserving coordination, based on the CARDs’ accord sets, is managed using a state-based
CvRDT [Shapiro et al. 2011] (a state with a monotonic merge function) similar to the abstract
coordination configuration used in the Figure 10 replica rules. This shared CvRDT maps replicas to
their active guard holdings, listing the other replicas that have granted each request. A replica can
proceed to evaluate the body of its query when all others have granted its current holdings.

Managing Lock/Emit Contention. The last step of evaluating an operation is to emit any generated
effect into the store. If the evaluating replica has granted guard holdings that block this effect, it
must defer the emission. In fact, the operation must be backed-out of any non-trivial queries it has
made so that the evaluating can release the guards to avoid deadlock. At high load, some order
must be imposed on the requesting of locks so that there are not effects which retry continually,
never making it into the store. We have implemented two forms of this contention management,
and compared their performance in our experiment.

2https://github.com/cuplv/discard

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

https://github.com/cuplv/discard

Sequential Programming for Replicated Data Stores 106:25

Congestion Control (CC) Similar to TCP congestion control, replicas track their rate of failure
for effects blocked by a particular guard, and accordingly adjust the rate at which they retry
those operations and grant requests for that guard.

Token Passing (TP) Instead of requesting and granting a guard ad-hoc, replicas pass it in a
circle such that only one replica holds it at a time. This reduces wasted time from retries and
timeouts, but disallows some safe concurrency; read-only operations which use the guard
but emit nothing cannot be run simultaneously on multiple replicas.

Store History as Distributed DAG. The CARD state is stored as a second CvRDT Ð a Merkle-DAG
of events stored and distributed by an off-the-shelf distributed object store (IPFS [Teixeira 2017]
v0.4.17), headed by a vector clock for efficient merges. This model of history is required to maintain
the arbitration total-order that allows applications to use non-commutable effects. In our evaluation,
we looked to confirm that this method of store distribution scales to a non-trivial workload.

Experiment. We ran replicas on two machines, geo-separated such that their round-trip-time was
on average 176ms. We chose operation workloads requiring mixed (some using a non-trivial query
and some not), causal-only, and strong-only consistency (each with 15% issuing updates and 85%

query-only). The replicas were continuously given operation requests from these workloads at rates
from 200/s to 1000/s , and we measured the average latency at which the operations completed.

Discussion. Our results in Figure 12 show that Carol can be implemented without unreasonable
latency cost. Both contention-management techniques were functional, though the token-passing
technique was the clear winner in both mixed and strong consistency cases. Our distributed history
merging system ran underneath in all experiment cases, including the very fast and very concurrent
causal-consistency case, indicating that maintaining the coordination-free arbitrary total order is
not a significant runtime bottleneck.

This implementation and its basic evaluation is only a preliminary step in the study of runtime
execution strategies that follow Carol’s novel consistency model. The purpose of this small
experiment has been to validate the modelÐto show that the unique requirements of our language’s
semantics are not basically intractable. Though the token-passing strategy won in our experimental
setup, we believe the congestion-control approach should not be ignored in future exploration; it
may prove more suitable as network size increases or latency decreases.

8 RELATED WORK

We described how our work builds on CRDTs (Shapiro et al. [Shapiro et al. 2011] provide a compre-
hensive overview). Several frameworks allow both conflict-free, and conflicting operations [Balegas
et al. 2015; Gotsman et al. 2016; Li et al. 2014, 2012; Sivaramakrishnan et al. 2015; Terry et al. 1995],
offering different trade-offs between consistency and availability. Such mixed-consistency systems
are typically built upon key-value databases that offer tunable transaction isolation [Bailis et al.
2013; Lakshman and Malik 2010; Terry et al. 2013].
Our work is closest to that of [Gotsman et al. 2016], which also focuses on reasoning about

data types with conflicting operations. However, our contributions diverge from theirs in three
major ways. First, we contribute a novel mechanism for data-centric consistency control (queries
with consistency guards), in our fully specified programming language Carol. It is data-centric,
as it allows a programmer to control their application’s synchronization in terms of assertions on
operation-local data values. We further implement a runtime engine that uses guards to maintain
consistency. The work of [Gotsman et al. 2016] does not offer a programming language or novel
consistency control engine; their contribution is a proof framework. Second, comparing the proof
frameworks: we define a modular proof system for operations in the user-friendly form of a

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

106:26 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

refinement type system. Our type system allows us to verify safety properties for a Carol operation
in isolation from other operations of the application. In contrast, in the system of [Gotsman et al.
2016], when adding new a operation to an application, a user needs to specify the conflicts with all
existing operations. Third, our type system can verify the behavior of two kinds of useful operations
that are not supported by [Gotsman et al. 2016]: nested-query operations and non-commutable, yet
coordination-free operations. These are explained in full in Section 2.2.
The second closest work is that of [Balegas et al. 2015]. They introduce explicit consistency, in

which concurrent executions are restricted by using an application invariant. Two technically
most important differences are: first, our consistency guards are significantly more expressive than
invariants. The consistency guards relate the global state to the local state, whereas invariants talk
only about one state. Thus only consistency guards can ensure a property like łif the query returns
a value v , then the account balance is at least vž (see the bank account with interest in Section 2.2).
Second, our consistency guards allow verification by checking conditions on sequential programs.
In contrast, application invariants of Balegas et al. require checking conditions on concurrent
programs, a significantly harder task. A more recent work in this line, IPA [Balegas et al. 2018],
follows the identification of invariant violations with suggestions of coordination-free mechanisms
to fix them. These are useful, but limited in the problems that can be fixed; our work is motivated
instead by applications that cannot escape the use of coordination for certain tasks.
A related approach [Li et al. 2012; Sivaramakrishnan et al. 2015] allows manual selection of

consistency levels for operations. Quelea [Sivaramakrishnan et al. 2015] allows specifying contracts
(ordering constraints) on effects. In contrast, our system hides the concept of effect ordering in
history, and allows modular conflict specification. Quelea contracts are also statically assigned to
operations; they do not support dynamic consistency. A recent approach to verification, Q9 [Kaki
et al. 2018], uses bounded symbolic execution to detect invariant violations under static consistency
levels (similar to Quelea contracts). For future work, a similar bounded symbolic execution algorithm
could be useful in the automatic inference of accords for complex CARD store types.
The homeostasis protocol [Roy et al. 2015] addresses conflicts between operations by allowing

bounded inconsistencies as long as other forms of correctness are preserved. For future work, it
may be possible to fruitfully combine consistency guards with relaxed consistency notions.

Bayou [Terry et al. 1995] is an early system for detecting and managing conflicts. The conflicts
are detected (translated to our terminology) by re-running a check on every replica where an effect
is propagated to see if the data has been updated in parallel. This approach to conflict detection is
very different from our consistency guard (which are predicates that link a global and local state).

The axiomatic specification which we used to define CARDs is based on the model presented
in [Attiya et al. 2016; Burckhardt et al. 2014]. We built on the model to define consistency guard
compliance, as well as type checking soundness. The tension between consistency and availability
in distributed systems is captured by the CAP theorem [Brewer 2000; Gilbert and Lynch 2012] Ð
we aim to preserve eventual consistency, while maximizing availability.

9 CONCLUSION AND FUTURE WORK

We have presented Carol, a programming language for replicated data store operations. Carol
features a novel consistency control mechanism, the consistency guard, which allows store opera-
tions to be written and verified in a modular and sequential style not previously available in the
concurrent execution setting. In support of this new programming model, we have described and
implemented representatives of the non-standard engines for static conflict analysis and runtime
conflict avoidance it requires.
We believe these implemented designs are the seeds of two distinct directions for future work.

The first branch is the design of analysis algorithms and proof frameworks for efficient, complete

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

Sequential Programming for Replicated Data Stores 106:27

accord-set generation for more complex store datatypes. The second branch is the design of efficient,
adaptable runtime evaluation strategies and optimizations that implement Carol’s uniquely flexible
dynamic consistency model. In particular, we would like to find environment-specific runtime
designs which optimize for specific network sizes or topologies while implementing the same
language semantics. We intend for our formalization of the Carol language’s semantics and
execution requirements to clearly mark out the boundaries of this interesting new design space.

ACKNOWLEDGMENTS

We thank the ICFP’19 reviewers and those readers of earlier drafts for their time and the feedback
they have provided on this work. This research was supported in part by DARPA under agreement
FA8750-15-2-0096.

REFERENCES

Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, and Marek Zawirski. 2016. Specifica-
tion and Complexity of Collaborative Text Editing. In Proceedings of the 2016 ACM Symposium on Principles of Distributed

Computing (PODC ’16). ACM, New York, NY, USA, 259ś268. https://doi.org/10.1145/2933057.2933090
Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on Causal Consistency. In Proceedings of the

2013 ACM SIGMOD International Conference on Management of Data (SIGMOD ’13). ACM, New York, NY, USA, 761ś772.
https://doi.org/10.1145/2463676.2465279

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno Preguiça. 2018. IPA: Invariant-preserving
Applications for Weakly Consistent Replicated Databases. Proc. VLDB Endow. 12, 4 (Dec. 2018), 404ś418. https:
//doi.org/10.14778/3297753.3297760

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa Najafzadeh, and Marc Shapiro.
2015. Putting Consistency Back into Eventual Consistency. In Proceedings of the Tenth European Conference on Computer

Systems (EuroSys ’15). ACM, New York, NY, USA, Article 6, 16 pages. https://doi.org/10.1145/2741948.2741972
E. Brewer. 2000. Towards robust distributed systems (abstract). PODC (2000), 7.
Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Vol. 1. now publishers. 1ś150 pages. https://www.microsoft.

com/en-us/research/publication/principles-of-eventual-consistency/
Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Mooly Sagiv. 2012. Eventually Consistent Transactions, In

Proceedings of the 22n European Symposium on Programming (ESOP). https://www.microsoft.com/en-us/research/
publication/eventually-consistent-transactions/

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated Data Types: Specification,
Verification, Optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’14). ACM, New York, NY, USA, 271ś284. https://doi.org/10.1145/2535838.2535848
Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Prac-

tice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337ś340. http://dl.acm.org/citation.cfm?id=1792734.1792766
Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-tolerant

Web Services. SIGACT News 33, 2 (June 2002), 51ś59. https://doi.org/10.1145/564585.564601
S. Gilbert and N. Lynch. 2012. Perspectives on the CAP Theorem. IEEE Computer 45, 2 (2012), 30ś36.
Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’M Strong Enough:

Reasoning About Consistency Choices in Distributed Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 371ś384. https://doi.org/10.
1145/2837614.2837625

Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan. 2018. Safe Replication Through Bounded
Concurrency Verification. Proc. ACM Program. Lang. 2, OOPSLA, Article 164 (Oct. 2018), 27 pages. https://doi.org/10.
1145/3276534

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Structured Storage System. SIGOPS Oper. Syst.
Rev. 44, 2 (April 2010), 35ś40. https://doi.org/10.1145/1773912.1773922

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (July 1978),
558ś565. https://doi.org/10.1145/359545.359563

Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating the
Choice of Consistency Levels in Replicated Systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual

Technical Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 281ś292. http://dl.acm.org/citation.
cfm?id=2643634.2643664

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.1145/2741948.2741972
https://www.rarnonalumber.com/en-us/research/publication/principles-of-eventual-consistency/
https://www.rarnonalumber.com/en-us/research/publication/principles-of-eventual-consistency/
https://www.rarnonalumber.com/en-us/research/publication/eventually-consistent-transactions/
https://www.rarnonalumber.com/en-us/research/publication/eventually-consistent-transactions/
https://doi.org/10.1145/2535838.2535848
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3276534
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/359545.359563
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2643634.2643664

106:28 Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-
replicated Systems Fast As Possible, Consistent when Necessary. In Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA, 265ś278. http:
//dl.acm.org/citation.cfm?id=2387880.2387906

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’08). ACM, New York, NY, USA, 159ś169.
https://doi.org/10.1145/1375581.1375602

Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate Foster, and Johannes Gehrke. 2015.
The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis. In SIGMOD. 1311ś1326.

John Rushby, Sam Owre, and Natarajan Shankar. 1998. Subtypes for Specifications: Predicate Subtyping in PVS. IEEE Trans.

Softw. Eng. 24, 9 (Sept. 1998), 709ś720. https://doi.org/10.1109/32.713327
Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-free Replicated Data Types. In Proceedings

of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems (SSS’11). Springer-Verlag,
Berlin, Heidelberg, 386ś400. http://dl.acm.org/citation.cfm?id=2050613.2050642

KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative Programming over Eventually Consistent
Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ’15). ACM, New York, NY, USA, 413ś424. https://doi.org/10.1145/2737924.2737981
Pedro Teixeira. 2017. Decentralized Real-Time Collaborative Documents - Conflict-free editing in the browser using js-ipfs

and CRDTs. https://ipfs.io/blog/30-js-ipfs-crdts.md.
Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-

Libdeh. 2013. Consistency-based Service Level Agreements for Cloud Storage. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA, 309ś324. https://doi.org/10.1145/
2517349.2522731

Douglas B. Terry, Marvin Theimer, Karin Petersen, Alan J. Demers, Mike Spreitzer, and Carl Hauser. 1995. Managing Update
Conflicts in Bayou, a Weakly Connected Replicated Storage System. In SOSP. 172ś183.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.
In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM, New York,
NY, USA, 269ś282. https://doi.org/10.1145/2628136.2628161

Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound Checking Through Dependent Types. In Proceedings of the

ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation (PLDI ’98). ACM, New York, NY,
USA, 249ś257. https://doi.org/10.1145/277650.277732

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 106. Publication date: August 2019.

http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1109/32.713327
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1145/2737924.2737981
https://ipfs.io/blog/30-js-ipfs-crdts.md
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 Writing and Verifying Replicated Operations
	2.1 The Replicated Bank Application
	2.2 Extending the Example

	3 The Carol Language
	3.1 Syntax and Intuition
	3.2 Replica-Local Evaluation Semantics
	3.3 Distributed Execution Semantics
	3.4 CARD Carriers

	4 Refinement Types for Carol
	4.1 Event Specifications and Invariants
	4.2 Operation Types

	5 Inferring Conflict Avoidance Requirements
	5.1 Accords Between Guards and Effects
	5.2 Finding Accord Sets

	6 Replica Networks
	6.1 Operational Network Semantics
	6.2 Arbitration Total Order
	6.3 Consistency Coordination Protocol

	7 Evaluation
	7.1 Static Accord Identification (DSV)
	7.2 Runtime Design and Performance (Discard)

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

