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Abstract
Motivated by high-stakes decision-making do-
mains like personalized medicine where user in-
formation is inherently sensitive, we design pri-
vacy preserving exploration policies for episodic
reinforcement learning (RL). We first provide a
meaningful privacy formulation using the notion
of joint differential privacy (JDP)–a strong vari-
ant of differential privacy for settings where each
user receives their own sets of output (e.g., pol-
icy recommendations). We then develop a private
optimism-based learning algorithm that simulta-
neously achieves strong PAC and regret bounds,
and enjoys a JDP guarantee. Our algorithm only
pays for a moderate privacy cost on exploration:
in comparison to the non-private bounds, the pri-
vacy parameter only appears in lower-order terms.
Finally, we present lower bounds on sample com-
plexity and regret for reinforcement learning sub-
ject to JDP.

1. Introduction
Privacy-preserving machine learning is critical to the deploy-
ment of data-driven solutions in applications involving sen-
sitive data. Differential privacy (DP) (Dwork et al., 2006) is
a de-facto standard for designing algorithms with strong pri-
vacy guarantees for individual data. Large-scale industrial
deployments – e.g. by Apple (Team, 2017), Google (Erlings-
son et al., 2014) and the US Census Bureau (Abowd, 2018) –
and general purpose DP tools for machine learning (Andrew
et al., 2019) and data analysis (Holohan et al., 2019; Wilson
et al., 2019) exemplify that existing methods are well-suited
for simple data analysis tasks (e.g. averages, histograms,
frequent items) and batch learning problems where the train-
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ing data is available beforehand. While these techniques
cover a large number of applications in the central and (non-
interactive) local models, they are often insufficient to tackle
machine learning applications involving other threat mod-
els. This includes federated learning problems (Kairouz
et al., 2019; Li et al., 2019) where devices cooperate to
learn a joint model while preserving their individual privacy,
and, more generally, interactive learning in the spirit of the
reinforcement learning (RL) framework (Sutton & Barto,
2018).

In this paper we contribute to the study of reinforcement
learning from the lens of differential privacy. We consider
sequential decision-making tasks where users interact with
an agent for the duration of a fixed-length episode. At each
time-step the current user reveals a state to the agent, which
responds with an appropriate action and receives a reward
generated by the user. Like in standard RL, the goal of
the agent is to learn a policy that maximizes the rewards
provided by the users. However, our focus is on situations
where the states and rewards that users provide to the agent
might contain sensitive information. While users might be
ready to reveal such information to an agent in order to re-
ceive a service, we assume they want to prevent third parties
from making unintended inferences about their personal
data. This includes external parties who might have access
to the policy learned by the agent, as well as malicious users
who can probe the agent’s behavior to trigger actions in-
formed by its interactions with previous users. For example,
Pan et al. (2019) recently showed how RL policies can be
probed to reveal information about the environment where
the agent was trained.

The question we ask in this paper is: how should the learn-
ings an agent can extract from an episode be balanced
against the potential information leakages arising from the
behaviors of the agent that are informed by such learnings?
We answer the question by making two contributions to
the analysis of the privacy-utility trade-off in reinforcement
learning: (1) we provide the first privacy-preserving RL
algorithm with formal accuracy guarantees, and (2) we pro-
vide lower bounds on the regret and number of sub-optimal
episodes for any differentially private RL algorithm. To
measure the privacy provided by episodic RL algorithms
we introduce a notion of episodic joint differential privacy
(JDP) under continuous observation, a variant of joint differ-
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ential privacy (Kearns et al., 2014) that captures the potential
information leakages discussed above.

Overview of our results. We study reinforcement learn-
ing in a fixed-horizon episodic Markov decision process
with S states, A actions, and episodes of length H . We first
provide a meaningful privacy formulation for this general
learning problem with a strong relaxation of differential
privacy: joint differential privacy (JDP) under continual ob-
servation, controlled by a privacy parameter ε ≥ 0 (larger
ε means less privacy). Under this formulation, we give the
first known RL sample complexity and regret upper and
lower bounds with formal privacy guarantees. First, we
present a new algorithm, PUCB, which satisfies ε-JDP in ad-
dition to two utility guarantees: it finds an α-optimal policy
with a sample complexity of

Õ

(
SAH4

α2
+
S2AH4

εα

)
,

and achieves a regret rate of

Õ

(
H2
√
SAT +

SAH4 + S2AH3

ε

)
over T episodes. In both of these bounds, the first terms
SAH4

α2 and H2
√
SAT are the non-private sample complex-

ity and regret rates, respectively. The privacy parameter ε
only affects the lower order terms – for sufficiently small ap-
proximation α and sufficiently large T , the “cost” of privacy
becomes negligible.

We also provide new lower bounds for ε-JDP reinforcement
learning. Specifically, by incorporating ideas from existing
lower bounds for private learning into constructions of hard
MDPs, we prove a sample complexity bound of

Ω̃

(
SAH2

α2
+
SAH

εα

)
and a regret bound of

Ω̃

(√
HSAT +

SAH

ε

)
.

As expected, these lower bounds match our upper bounds in
the dominant term (ignoringH and polylogarithmic factors).
We also see that necessarily the utility cost for privacy grows
linearly with the state space size, although this does not
match our upper bounds. Closing this gap is an important
direction for future work.

1.1. Related Work

Most previous works on differentially private interactive
learning with partial feedback concentrate on bandit-type
problems, including on-line learning with bandit feedback

(Thakurta & Smith, 2013; Agarwal & Singh, 2017), multi-
armed bandits (Mishra & Thakurta, 2015; Tossou & Dimi-
trakakis, 2016; 2017; 2018), and linear contextual bandits
(Neel & Roth, 2018; Shariff & Sheffet, 2018). These works
generally differ on the assumed reward models under which
utility is measured (e.g. stochastic, oblivious adversarial,
adaptive adversarial) and the concrete privacy definition be-
ing used (e.g. privacy when observing individual actions or
sequences of actions, and privacy of reward or reward and
observation in the contextual setting). Basu et al. (2019)
provides a comprehensive account of different privacy defi-
nitions used in the bandit literature.

Much less work has addressed DP for general RL. For pol-
icy evaluation in the batch case, Balle et al. (2016) propose
regularized least-squares algorithms with output perturba-
tion and bound the excess risk due to the privacy constraints.
For the control problem with private rewards and public
states, Wang & Hegde (2019) give a differentially private
Q-learning algorithm with function approximation.

On the RL side, as we are initiating the study of RL with
differential privacy, we focus on the well-studied tabular
setting. While a number of algorithms with utility guar-
antees and lower bound constructions are known for this
setting (Kakade, 2003; Azar et al., 2017; Dann et al., 2017),
we are not aware of any work addressing the privacy issues
that are fundamental in high-stakes applications.

2. Preliminaries
2.1. Markov Decision Processes

A fixed-horizon Markov decision process (MDP) with time-
dependent dynamics can be formalized as a tuple M =
(S,A,R,P, p0, H). S is the state space with cardinality
S. A is the action space with cardinality A. R(sh, ah, h)
is the reward distribution on the interval [0, 1] with mean
r(sh, ah, h). P is the transition kernel, given time step
h, action ah and, state sh the next state is sampled from
st+1 ∼ P(.|sh, ah, h). Let p0 be the initial state distribution
at the start of each episode, and H be the number of time
steps in an episode.

In our setting, an agent interacts with an MDP by follow-
ing a (deterministic) policy π ∈ Π, which maps states s
and timestamps h to actions, i.e., π(s, h) ∈ A. The value
function in time step h ∈ [H] for a policy π is defined as:

V πh (s) = E

[
H∑
i=h

r(si, ai, i)

∣∣∣∣sh = s

]
= r(s, π(s, h), h) +

∑
s′∈S

V πh+1(s′)P(s′|s, π(s, h), h) .

The expected total reward for policy π during an entire
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episode is:

ρπ = E

[
H∑
i=1

r(si, ai, i)

∣∣∣∣π
]

= p>0 V
π
1 .

The optimal value function is given by V ∗h (s) =
maxπ∈Π V

π
h (s). Any policy π such that V πh (s) = V ∗h (s)

for all s ∈ S and h ∈ [H] is called optimal. It achieves the
optimal expected total reward ρ∗ = maxπ∈Π ρ

π .

The goal of an RL agent is to learn a near-optimal policy
after interacting with an MDP for a finite number of episodes
T . During each episode t ∈ [T ] the agent follows a policy πt
informed by previous interactions, and after the last episode
it outputs a final policy π.

Definition 1. An agent is (α, β)-probably approx-
imately correct (PAC) with sample complexity
f(S,A,H, 1

α , log( 1
β )), if with probability at least 1 − β

it follows an α-optimal policy π such that ρ∗ − ρπ ≤ α
except for at most f(S,A,H, 1

α , log( 1
β )) episodes.

Definition 2. The (expected cumulative) regret of an agent
after T episodes is given by

Regret(T ) =

T∑
t=1

(ρ∗ − ρπt) ,

where π1, . . . πT are the policies followed by the agent on
each episode.

2.2. Privacy in RL

In some RL application domains such as personalized medi-
cal treatments, the sequence of states and rewards received
by a reinforcement learning agent may contain sensitive
information. For example, individual users may interact
with an RL agent for the duration of an episode and reveal
sensitive information in order to obtain a service from the
agent. This information affects the final policy produced
by the agent, as well as the actions taken by the agent in
any subsequent interaction. Our goal is to prevent damaging
inferences about a user’s sensitive information in the context
of the interactive protocol in Algorithm 1 summarizing the
interactions between an RL agentM and T distinct users.

Throughout the execution of this protocol the agent observes
a collection of T state-reward trajectories of length H . Each
user ut gets to observe the actions chosen by the agent
during the t-th episode, as well as the final policy π. To
preserve the privacy of individual users we enforce a (joint)
differential privacy criterion: upon changing one of the users
in the protocol, the information observed by the other T − 1
participants will not change substantially. This criterion
must hold even if the T−1 participants collude adversarially,
by e.g., crafting their states and rewards to induce the agent
to reveal information about the remaining user.

Algorithm 1 Episodic RL Protocol
input AgentM and users u1, . . . , un

for all t ∈ [n] do
for all h ∈ [H] do
ut sends state s(t)

h toM
M sends action a(t)

h to ut
ut sends reward r(t)

h toM
end for

end for
M releases policy π

Formally, we write U = (u1, . . . , uT ) to denote a sequence
of T users participating in the RL protocol. Technically
speaking a user can be identified with a tree of depth H en-
coding the state and reward responses they would give to all
the AH possible sequences of actions the agent can choose.
During the protocol the agent only gets to observe the infor-
mation along a single root-to-leaf path in each user’s tree.
For any t ∈ [T ], we writeM−t(U) to denote all the outputs
excluding the output for episode t during the interaction
betweenM and U .M−t(U) captures all the outputs which
might leak information about the tth user in interactions
after the tth episode, as well as all the outputs from earlier
episodes where other users could be submitting information
to the agent adversarially to condition its interaction with
the tth users. We also say that two user sequences U and U ′

are t-neighbors if they only differ in their tth user.

Definition 3. A randomized RL agentM is ε-jointly dif-
ferentially private under continual observation (JDP) if for
all t ∈ [T ], all t-neighboring user sequences U , U ′, and all
events E ⊆ AH×[T−1] ×Π we have

Pr [M−t(U) ∈ E] ≤ eεPr [M−t(U ′) ∈ E] .

This definition extends to the RL setting the one used in
(Shariff & Sheffet, 2018) for designing privacy-preserving
algorithms for linear contextual bandits. The key distinc-
tions is that in our definition each user interacts with the
agent for H time-steps (in bandit problems one usually has
H = 1), and we also allow the agent to release the learned
policy at the end of the learning process.

2.3. Counting Mechanism

The algorithm we describe in the next section maintains a
set of counters to keep track of events that occur when
interacting with the MDP. We denote by n̂t(s, a, h) the
count of visits to state tuple (s, a, h) right before episode t,
where a ∈ A is the action taken on state s ∈ S and time-step
h ∈ [H]. Likewise m̂t(s, a, s

′, h) is the count of going from
state s to s′ after taking actions a before episode t. Finally,
we have the counter r̂t(s, a, h) for the total reward received
by taking action a on state s and time h before episode t.
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Then, on episode t, the counters are sufficient to create an
estimate of the MDP dynamics to construct a policy for
episode t. The challenge is that the counters depend on the
sequence of states and actions, which is considered sensitive
data in this work. Therefore the algorithm must release
the counts in a privacy-preserving way, and we do this the
private counters proposed by (Chan et al., 2011) and (Dwork
et al., 2010).

A private counter mechanism takes as input a stream σ =
(σ1 . . . , σT ) ∈ [0, 1]T and on any round t releases and ap-
proximation of the prefix count c(σ)(t) =

∑t
i=1 σi. In this

work we will denote PC as the binary mechanism of (Chan
et al., 2011) and (Dwork et al., 2010) with parameters ε and
T . This mechanism produces a monotonically increasing
count and satisfies the following accuracy guarantee: Let
M := PC (T, ε) be a private counter and c(σ)(t) be the true
count on episode t, then given a stream σ, with probability
at least 1− β, simultaneously for all 1 ≤ t ≤ T , we have

|M(σ)(t)− c(σ)(t)| ≤ 4

ε
ln(1/β) log(T )5/2 .

While the stated bound above holds for a single ε-DP
counter, our algorithm needs to maintain more than S2AH
many counters. A naive allocation of the privacy budget
across all these counters will require noise with scale poly-
nomially with S,A, and H . However, we will leverage the
fact that the total change across all counters a user can have
scales with the length of the episode H , which allows us to
add a much smaller amount of noise that scales linearly in
H .

3. The PUCB Algorithm
In this section we introduce the Private Upper Confidence
Bound (PUCB) algorithm which is a JDP algorithm with
both PAC and regret guarantees. The pseudo-code for PUCB
is given in algorithm 2. At a high level, the algorithm is a
private version of the UBEV algorithm (Dann et al., 2017).
UBEV keeps track of three types of statistics about the his-
tory, including (a) the empirical average reward for taking
action a in state s at time h, denoted r̂(s, a, h), (b) the num-
ber of times the agent has taken action a in state s at time
h, denoted n̂(s, a, h), and (c) the number of times the agent
has taken action a in state s at time h and transitioned to
s′, denoted m̂(s, a, s′, h). In each episode t, UBEV uses
these statistics to compute a policy via dynamic program-
ming, executes the policy, and updates the statistics with the
observed trajectory. Dann et al. (2017) compute the policy
using an optimistic strategy and establish both PAC and
regret guarantees for this algorithm.

Of course, as the policy depends on the statistics from the
previous episodes, UBEV as is does not satisfy JDP. On
the other hand, the policy executed only depends on the

Algorithm 2 Private Upper Confidence Bound (PUCB)
Require: Privacy parameter ε, target failure probability β
input Maximum number of episodes T , horizon H , state

space S, action space A
ε′ := ε/(3H)
for all s, a, s′, h ∈ S ×A× S × [H] do

Initialize private counters:
r̃(s, a, h), ñ(s, a, h), m̃(s, a, s′, h) := PC (T, ε′)

end for
for t← 1 to T do

Private planning: Q̃+
t := PrivQ(r̃, ñ, m̃, ε)

for h← 1 to H do
Let s denote the state during step h and episode t
Execute a := arg maxa′ Q̃

+
t (s, a′, h)

Observe r ∼ R(s, a, h) and s′ ∼ P(.|s, a, h)
Feed r to r̃(s, a, h)
Feed 1 to ñ(s, a, h) and m̃(s, a, s′, h) and 0 to all
other counters ñ(·, ·, h) and m̃(·, ·, ·, h)

end for
end for

previous episodes only through the statistics r̂, n̂, m̂. If we
maintain and use private versions of this statistics and we
set the privacy level appropriately, we can ensure JDP.

To do so PUCB initializes one private counter mechanism for
each r̂, n̂, m̂ (2SAH+S2AH counters in total). At episode
t, we compute the policy using optimism as in UBEV, but we
use only the private counts r̃, ñ, m̃ released from the counter
mechanisms. We require that each set of counters is ε/3
JDP, and so withEε := 3

εH log
(

2SAH+HAS2

β

)
log (T )

5/2,
we can ensure that with probability at least 1− β:

∀t ∈ [T ] : |ñt(s, a, h)− n̂t(s, a, h)| < Eε ,

where n̂t, ñt are the count and release at the beginning of
the tth episode. The guarantee is uniform in (s, a, h) and
also holds simultaneously for r̃ and m̃.

To compute the policy, we define a bonus function
c̃onf(s, a, h) for each s, a, h tuple, which can be decom-
posed into two parts φ̃t(s, a, h) and ψ̃t(s, a, h), where

φ̃t(s, a, h) :=

√√√√2 ln (ñt(s, a, h) + Eε) + 2 ln
(
SAH
β

)
max(ñt(s, a, h)− Eε, 1)

,

ψ̃t(s, a, h) := (1 + SH)

(
3Eε

ñt(s, a, h)
+

2E2
ε

ñt(s, a, h)2

)
.

The term φ̃t(·) roughly corresponds to the sampling error,
while ψ̃t(·) corresponds to errors introduced by the private
counters. Using this bonus function, we use dynamic pro-
gramming to compute an optimistic private Q-function in
Algorithm 3. The algorithm here is a standard batch Q-
learning update, with c̃onf(·) serving as an optimism bonus.
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Algorithm 3 PrivQ(r̃, ñ, m̃, ε)

input Private counters r̃, ñ, m̃ and privacy parameter ε
Eε := 3

εH log
(

2SAH+HAS2

β

)
log (T )

5/2

ṼH+1(s) := 0 ∀s ∈ S
for h← H to 1 do

for all s, a ∈ S ×A do
if ñt(s, a, h) ≥ 2Eε then

c̃onft(s, a, h) := (H+1)φ̃t(s, a, h)+ ψ̃t(s, a, h)
else

c̃onft(s, a, h) := H
end if
Q̃t :=

r̃t(s,a,h)+
∑
s′∈S Ṽh+1(s′)m̃t(s,a,s

′,h)

ñt(s,a,h)

Q̃+
t (s, a, h) := min

{
H, Q̃t + c̃onft(s, a, h)

}
end for
Ṽh(s) := maxa Q̃

+
t (s, a, h) ∀s ∈ S

end for
output Q̃+

t

The resulting Q-function, called Q̃U encodes a greedy pol-
icy, which we use for the tth episode.

4. Privacy Analysis of PUCB
We show that releasing the sequence of actions by algorithm
PUCB satisfies JDP. Formally,

Theorem 1. Algorithm (2) PUCB is ε-JDP.

To prove theorem 1, we use the billboard lemma due to (Hsu
et al., 2016) which says that an algorithm is JDP if the output
sent to each user is a function of the user’s private data and a
common signal computed with standard differential privacy.
We state the formal lemma:

Lemma 2 (Billboard lemma (Hsu et al., 2016)). Suppose
M : U → R is ε-differentially private. Consider any set
of functions fi : Ui ×R → R′ where Ui is the portion of
the database containing the i’s user data. The composition
{fi(ΠiU,M(U))} is ε-joint differentially private, where
Πi : U → Ui is the projection to i’s data.

Let U<t denote the data of all users before episode t
and ut denote the user’s data during episode t. Algo-
rithm PUCB keeps track of all events on users U<t in a
differentially-private way with private counters r̃t, ñt, m̃t.
These counters are given to the procedure PrivQ which
computes a Q-function Q̃+

t , and induces the policy
πt(s, h) := maxa Q̃

+
t (s, a, h) to be used by the agent dur-

ing episode t.

Then the output during episode t is generated the pol-
icy πt and the private data of the user ut according
to the protocol 1, the output on a single episode is:

(
πt

(
s

(t)
1 , 1

)
, . . . , πt

(
s

(t)
H , H

))
. By the billboard lemma

2, the composition of the output of all T episodes, and the

final policy
({(

πt(s
(t)
1 , 1), . . . , πt(s

(t)
H , H)

)}
t∈[T ]

, πT

)
satisfies ε-JDP if the policies {πt}t∈[T ] are computed with
a ε-DP mechanism.

Then it only remains to show that the noisy counts satisfy
ε-DP. First, consider the counters for the number of visited
states. The algorithm PUCB runs SAH parallel private
counters, one for each state tuple (s, a, h). Each counter is
instantiated with a ε/(3H)-differentially private mechanism
which takes an input an event stream n̂(s, a, h) = {0, 1}T
where the ith bit is set to 1 if a user visited the state tuple
(s, a, h) during episode i and 0 otherwise. Hence each
stream n̂(s, a, h) is the data for a private counter. The next
claim says that the total `1 sensitivity over all streams is
bounded by H:

Claim 1. Let U,U ′ be two t-neighboring user sequences, in
the sense that they are only different in the data for episode t.
For each (s, a, h) ∈ S×A× [H], let n̂(s, a, h) be the event
stream corresponding to user sequence U and n̂′(s, a, h)
be the event stream corresponding to U ′. Then the total `1
distance of all stream is given by the following claim:∑

(s,a,h)∈S×A×[H]

‖n̂(s, a, h)− n̂′(s, a, h)‖1≤ H

Proof. The proof follows from the fact that on any episode
t a user visits at most H states.

Finally we use a result from (Hsu et al., 2016, Lemma 34)
which states that the composition of the SAH (ε/3H)-DP
counters for n̂(·) satisfy (ε/3)-DP as long as the `1 sensitiv-
ity of the counters is H as shown in claim 1. We can apply
the same analysis to show that the counters corresponding
to the empirical reward r̂(·) and the transitions m̂(·) are
both also ε/3-differentially private. Putting it all together
releasing the noisy counters is ε-differentially private.

5. PAC and Regret Analysis
Now that we have established PUCB is JDP, we turn to utility
guarantees. We establish two forms of utility guarantee
namely a PAC sample complexity bound, and a regret bound.
In both cases, comparing to UBEV, we show that the price
for JDP is quite mild. In both bounds the privacy parameter
interacts quite favorably with the “error parameter.”

We first state the PAC guarantee.

Theorem 3 (PAC guarantee for PUCB). Let T be the max-
imum number of episodes and ε the JDP parameter. Then
for any α ∈ (0, H] and β ∈ (0, 1), algorithm PUCB with
parameters (ε, β) follows a policy that with probability at
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least 1− β is α-optimal on all but

O

((
SAH4

α2
+
S2AH4

εα

)
polylog

(
T, S,A,H, 1

α ,
1
β ,

1
ε

))
episodes.

The theorem states that if we run PUCB for many episodes,
it will act near-optimally in a large fraction of them. The
number of episodes where the algorithm acts suboptimally
scales polynomially with all the relevant parameters. In
particular, notice that in terms of the utility parameter α, the
bound scales as 1/α2. In fact the first term here matches
the guarantee for the non-private algorithm UBEV up to
polylogarithmic factors. On the other hand, the privacy
parameter ε appears only in the term scaling as 1/α. In
the common case where α is relatively small, this term is
typically of a lower order, and so the price for privacy here
is relatively low.

Analogous to the PAC bound, we also have a regret guaran-
tee.
Theorem 4 (Regret bound for PUCB). With probability at
least 1− β, the regret of PUCB is at most

O
((
H2
√
SAT + S2AH4

ε

)
polylog

(
T, S,A,H, 1

β ,
1
ε

))
.

A similar remark to the PAC bound applies here: the privacy
parameter only appears in the polylog(T ) terms, while the
leading order term scales as

√
T . In this guarantee it is clear

that as T gets large, the utility price for privacy is essentially
negligible.

We also remark that both bounds have “lower order” terms
that scale with S2. This is quite common for tabular rein-
forcement algorithms (Dann et al., 2017; Azar et al., 2017).
We find it quite interesting to observe that the privacy pa-
rameter ε interacts with this term, but not with the so-called
“leading” term in these guarantees.

Proof Sketch. The proofs for both results parallel the ar-
guments in (Dann et al., 2017) for the analysis of UBEV. The
main differences arises from the fact that we have adjusted
the confidence interval c̃onf to account for the noise in the
releases of r̃, ñ, m̃. In (Dann et al., 2017) the bonus is cru-
cially used to establish optimism, and the final guarantees
are related to the over-estimation incurred by these bonuses.
We focus on these two steps in this sketch, with a full proof
deferred to the appendix.

First we verify optimism. Fix episode t and (s, a, h), and
let us abbreviate the latter simply by x. Assume that Ṽh+1 is
private and optimistic in the sense that Ṽh+1(s) ≥ V ∗h+1(s),
for all s ∈ S. First define the empirical Q-value

Q̂t(x) :=
r̂t(x) +

∑
s′∈S Ṽh+1(s′)m̂t(x, s′)

n̂t(x)
.

The optimistic Q-function, which is similar to the one used
by Dann et al. (2017), is given by

Q̂+
t (x) := Q̂t(x) + (H + 1)φ̂t(x) ,

where φ̂t(x) :=

√
2 ln n̂t(x)+2 ln (SAHβ )

n̂t(x) . A standard con-

centration argument shows that Q̂+
t ≥ Q?, assuming that

Ṽh+1 ≥ V ?h+1.

Of course, both Q̂t and Q̂+
t involve the non-private counters

r̂, n̂, m̂, so they are not available to our algorithm. Instead,
we construct a surrogate for the empirical Q-value using the
private releases:

Q̃t(x) :=
r̃t(x) +

∑
s′∈S Ṽh+1(s′)m̃t(x, s′)

ñt(x)
.

Our analysis involves relating Q̃t which the algorithm has
access to, with the non-private Q̂t. To do this, note that by
the guarantee for the counting mechanism, we have

Q̂t(x) ≤
r̃t(x) + Eε +

∑
s′∈S Ṽh+1(s′)(m̃t(x, s′) + Eε)

ñt(x)− Eε
.

(1)

Next, we use the following elementary fact.

Claim 2. Let y ∈ R be any positive real number. Then for
all x ∈ R with x ≥ 2y it holds that 1

x−y ≤
1
x + 2y

x2 .

If ñt(x) ≥ 2Eε, then we can use claim 2 in (1), along with
the facts that Ṽh+1(s′) ≤ H and r̃t(x) ≤ ñt(x) + 2Eε ≤
2ñt(x), to upper bound Q̂t by Q̃t. This gives:

Q̂t(x) ≤ Q̃t(x) +

(
1

ñt(x)
+

2Eε
ñt(x)2

)
· (1 + SH)Eε

= Q̃t(x) + ψ̃t(x) .

Therefore, we see that Q̃t(x) + ψ̃t(x) dominates Q̂t(x). Ac-
cordingly, if we inflate by φ̃t(x) – which is clearly an upper
bound on φ̂t(x) – we account for the statistical fluctuations
and can verify optimism. In the event that ñt(x) ≤ 2Eε, we
simply upper bound Q∗ ≤ H .

For the over-estimation, the bonus we have added is
φ̃t(x) + ψ̃t(x), which is closely related to the original bonus
φ̂t(x). The essential property for our bonus is that it is
not significantly larger than the original one φ̂t(x). Indeed,
φ̂t(x) scales as 1/

√
n̂t(x) while ψ̃t(x) scales roughly as

Eε/n̂t(x) + E2
ε/n̂t(x)2, which is lower order in the depen-

dence on n̂t(x). Similarly, the other sources of error here
only have lower order effects on the over-estimation.

In detail, there are three sources of error. First, φ̃t(x) is
within a constant factor of φ̂t(x) since we are focusing on
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rounds where ñt(x) ≥ 2Eε. Second, as the policy subop-
timality is related to the bonuses on the states and actions
we are likely to visit, we cannot have many rounds where
ñt(x) ≤ 2Eε, since all of the private counters are increasing.
A similar argument applies for ψ̃t(x): we can ignore states
that we visit infrequently, and the private counters ñt(x)
for states that we visit frequently increase rapidly enough
to introduce minimal additional error. Importantly, in the
latter two arguments, we have terms of the form Eε/ñt(x),
while φ̂t(x) itself scales as

√
1/n̂t(x), which dominates in

terms of the accuracy parameter α or the number of episodes
T . As such we obtain PAC and regret guarantees where the
privacy parameter ε does not appear in the dominant terms.

6. Lower Bounds
In this section we prove the following lower bounds on
the sample complexity and regret for any PAC RL agent
providing joint differential privacy.

Theorem 5 (PAC Lower Bound). LetM be an RL agent
satisfying ε-JDP. Suppose thatM is (α, β)-PAC for some
β ∈ (0, 1/8). Then, there exists a fixed-horizon episodic
MDP where the number of episodes until the algorithm’s
policy is α-optimal with probability at least 1− β satisfies

E [nM] ≥ Ω

(
SAH2

α2
+
SAH

αε
ln

(
1

β

))
.

Theorem 6 (Private Regret Lower Bound). For any ε JDP-
algorithmM there exist an MDPM with S statesA actions
over H time steps per episode such that the expected regret
after T steps is

Regret(T ) = Ω

(√
HSAT +

SAH log(T )

ε

)
Due to space constraint, we will present the proof steps for
the sample complexity lower bound in Theorem 5. The
proof for the regret lower bound in Theorem 6 follows from
a similar argument and is deferred to the appendix.

To obtain Theorem 5, we go through two intermediate lower
bounds: one for private best-arm identification in multi-
armed bandits problems (Lemma 8), and one for private RL
in a relaxed scenario where the initial state of each episode is
considered public information (Lemma 10). At first glance
our arguments look similar to other techniques that provide
lower bounds for RL in the non-private setting by leveraging
lower bounds for bandits problems, e.g. (Strehl et al., 2009;
Dann & Brunskill, 2015). However, getting this strategy to
work in the private case is significantly more challenging
because one needs to ensure the notions of privacy used in
each of the lower bounds are compatible with each other.
Since this is the main challenge to prove Theorem 5, we
focus our presentation on the aspects that make the private

lower bound argument different from the non-private one,
and defer the rest of details to the appendix.

6.1. Lower Bound for Best-Arm Identification

The first step is a lower bound for best-arm identification
for differentially private multi-armed bandits algorithms.
This considers mechanismsM interacting with users via
the MAB protocol described in Algorithm 4, where we
assume arms a(t) come from some finite space A and re-
wards are binary, r(t) ∈ {0, 1}. Our lower bound applies
to mechanisms for this protocol that satisfy standard DP in
the sense that the adversary has access to all the outputs
M(U) = (a(1), . . . , a(T ), â) produced by the mechanism.

Definition 4. A MAB mechanism M is ε-DP if for any
neighboring user sequences U and U ′ differing in a single
user, and all events E ⊆ AT+1 we have

Pr[M(U) ∈ E] ≤ eε Pr[M(U ′) ∈ E] .

To measure the utility of a mechanism for performing best-
arm identification in MABs we consider a stochastic setting
with independent arms. In this setting each arm a ∈ A
produces rewards following a Bernoulli distribution with
expectation P̄a and the goal is to identify high probability an
optimal arm a∗ with expected reward P̄a∗ = maxa∈A P̄a.
A problem instance can be identified with the vector of
expected rewards P̄ = (P̄a)a∈A.

Algorithm 4 MAB Protocol for Best-Arm Identification
input AgentM and users u1, . . . , uT

for all t ∈ [T ] do
M sends arm a(t) to ut
ut sends reward r(t) toM

end for
M releases arm â

The lower bound result relies on the following adaptation of
the coupling lemma from (Karwa & Vadhan, 2017, Lemma
6.2).

Lemma 7. Fix any arm a ∈ [k]. Now consider any pair
of MAB instances µ, ν ∈ [0, 1]k both with k arms and time
horizon T , such that ‖µa−νa‖tv< α and ‖µa′−νa′‖tv= 0
for all a′ 6= a. Let R ∼ B(µ)T and Q ∼ B(ν)T be the
sequence of T rounds of rewards sampled under µ and ν
respectively, and letM be any ε-DP multi-armed bandit
algorithm. Then, for any event E such that under event E
arm a is pulled less than t times,

PrM,R [E] ≤ e6εtαPrM,Q [E]

Lemma 8 (Private MAB Lower Bound). LetM be a MAB
best-arm identification algorithm satisfying ε-DP that suc-
ceeds with probability at least 1− β, for some β ∈ (0, 1/4).
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For any MAB instance P̄ and any α-suboptimal arm a with
α > 0 (i.e. P̄a = P̄a∗ − α), the number of times thatM
pulls arm a during the protocol satisfies

E [na] >
1

24εα
ln

(
1

4β

)
.

6.2. Lower Bound for RL with Public Initial State

To leverage the lower bound for private best-arm identifi-
cation in the RL setting we first consider a simpler setting
where the initial state of each episode is public informa-
tion. This means that we consider agents M interacting
with a variant of the protocol in Algorithm 1 where each
user t releases their first state s(t)

1 in addition to sending it
to the agent. We model this scenario by considering agents
whose inputs (U, S1) include the sequence of initial states
S1 = (s

(1)
1 , . . . , s

(T )
1 ), and define the privacy requirements

in terms of a different notion of neighboring inputs: two
sequences of inputs (U, S1) and (U ′, S′1) are t-neighboring
if ut′ = u′t′ for all t 6= t′ and S1 = S′1. That is, we do not
expect to provide privacy in the case where the user that
changes between U and U ′ also changes their initial state,
since in this case making the initial state public already pro-
vides evidence that the user changed. Note, however, that
ut and u′t can provide different rewards for actions taken by
the agent on state s(t)

1 .

Definition 5. A randomized RL agentM is ε-JDP under
continual observation in the public initial state setting if for
all t ∈ [T ], all t-neighboring user-state sequences (U, S1),
(U ′, S′1), and all events E ⊆ AH×[T−1] ×Π we have

Pr [M−t(U, S1) ∈ E] ≤ eεPr [M−t(U ′, S′1) ∈ E] .

1

2

n

+

−...

Figure 1. Class of hard MDP instances used in the lower bound.

We obtain a lower bound on the sample complexity of PAC
RL agents that satisfy JDP in the public initial state setting
by constructing a class of hard MDPs shown in Figure 1.
An MDP in this class has state space S := [n] ∪ {+,−}
and action space A := {0, . . . ,m}. On each episode, the
agent starts on one of the initial states {1, . . . , n} chosen
uniformly at random. On each of the initial states the agent
has m+1 possible actions and transitions can only take it to

one of two possible absorbing states {+,−}. Lastly, if the
current state is either one of {+,−} then the only possible
transition is a self loop, hence the agent will in that state
until the end of the episode. We assume in these absorbing
states the agent can only take a fixed action. Every action
which transitions to state + provides reward 1 while actions
transitioning to state − provide reward 0. In particular, in
each episode the agent either receives reward H or 0.

Such an MDP can be seen as consisting of n parallel MAB
problems. Each MAB problem determines the transition
probabilities between the initial state s ∈ {1, . . . , n} and
the absorbing states {+,−}. We index the possible MAB
problems in each initial state by their optimal arm, which
is always one of {0, . . . ,m}. We write Is ∈ {0, . . . ,m} to
denote the MAB instance in initial state s, and define the
transition probabilities such that Pr [+|s, 0] = 1/2 + α′/2
and Pr [+|s, a′] = 1/2 for a′ 6= Is for all Is, and for Is 6= 0
we also have Pr [+|s, Is] = 1/2 + α′. Here α′ is a free
parameter to be determined later. We succinctly represent
an MDP in the class by identifying the optimal action (i.e.
arm) in each initial state: I := (I1, . . . , In).

To show that our MAB lower bounds imply lower bounds
for an RL agent interacting with MDPs in this class we
prove that collecting the first action taken by the agent in all
episodes t with a fixed initial state s(t)

1 = s ∈ [n] simulates
the execution of an ε-DP MAB algorithm.

Let M be an RL agent and (U, S1) a user-state in-
put sequence with initial states from some set S1. Let
M(U, S1) = (~a(1), . . . ,~a(T ), π) ∈ AH×T × Π be the col-
lection of all outputs produced by the agent on inputs U
and S1. For every s ∈ S1 we writeM1,s(U, S1) to denote
the restriction of the previous trace to contain just the first
action from all episodes starting with s together with the
action predicted by the policy at states s:

M1,s(U, S1) := (a
(ts,1)
1 , . . . , a

(ts,Ts )
1 , π(s)) ,

where Ts is the number of occurrences of s in S1 and
ts,1, . . . , ts,Ts are the indices of these occurrences. Fur-
thermore, given s ∈ S1 we write Us = (uts,1 , . . . , uts,Ts )
to denote the set of users whose initial state equals s.

Lemma 9. Let (U, S1) be a user-state input sequence with
initial states from some set S1. SupposeM is an RL agent
that satisfies ε-JDP in the public initial state setting. Then,
for any s ∈ S1 the traceM1,s(U, S1) is the output of an
(ε)-DP MAB mechanism on input Us.

Using Lemmas 8 and 9 and a reduction from RL lower
bounds to bandits lower bounds yields the second term in
the following result. The first terms follows directly from
the non-private lower bound in (Dann & Brunskill, 2015).

Lemma 10. Let M be an RL agent satisfying ε-JDP in
the public initial state setting. Suppose thatM is (α, β)-
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PAC for some β ∈ (0, 1/8). Then, there exists a fixed-
horizon episodic MDP where the number of episodes until
the algorithm’s policy is α-optimal with probability at least
1− β satisfies

E [nM] ≥ Ω

(
SAH2

α2
+
SAH

αε
ln

(
1

β

))
.

Finally, Theorem 5 follows from Lemma 10 by observing
that any RL agentM satisfying ε-JDP also satisfies ε-JDP in
the public state setting (see appendix for a formal statement).

7. Conclusion
In this paper, we initiate the study of differentially private
algorithms for reinforcement learning. On the conceptual
level, we formalize the privacy desiderata via the notion
of joint differential privacy, where the algorithm cannot
strongly base future decisions off sensitive information from
previous interactions. Under this formalism, we provide a
JDP algorithm and establish both PAC and regret utility
guarantees for episodic tabular MDPs. Our results show that
the utility cost for privacy is asymptotically negligible in
the large accuracy regime. We also establish the first lower
bounds for reinforcement learning with JDP.

A natural direction for future work is to close the gap be-
tween our upper and lower bounds. A similar gap remains
open for tabular RL without privacy considerations, but the
setting is more difficult with privacy, so it may be easier to
establish a lower bound here. We look forward to pursuing
this direction, and hope that progress will yield new insights
into the non-private setting.

Beyond the tabular setup considered in this paper, we be-
lieve that designing RL algorithms providing state and re-
ward privacy in non-tabular settings is a promising direction
for future work with considerable potential for real-world
applications.
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