
Mapping Natural-language Problems to Formal-language Solutions Using
Structured Neural Representations

Kezhen Chen 1 2 Qiuyuan Huang 1 Hamid Palangi 1 Paul Smolensky 1 3 Kenneth D. Forbus 2 Jianfeng Gao 1

Abstract

Generating formal-language programs repre-
sented by relational tuples, such as Lisp pro-
grams or mathematical operations, to solve prob-
lems stated in natural language is a challeng-
ing task because it requires explicitly capturing
discrete symbolic structural information implicit
in the input. However, most general neural se-
quence models do not explicitly capture such
structural information, limiting their performance
on these tasks. In this paper, we propose a new
encoder-decoder model based on a structured neu-
ral representation, Tensor Product Representa-
tions (TPRs), for mapping Natural-language prob-
lems to Formal-language solutions, called TP-
N2F. The encoder of TP-N2F employs TPR ‘bind-
ing’ to encode natural-language symbolic struc-
ture in vector space and the decoder uses TPR
‘unbinding’ to generate, in symbolic space, a se-
quential program represented by relational tuples,
each consisting of a relation (or operation) and
a number of arguments. TP-N2F considerably
outperforms LSTM-based seq2seq models on two
benchmarks and creates new state-of-the-art re-
sults. Ablation studies show that improvements
can be attributed to the use of structured TPRs
explicitly in both the encoder and decoder. Anal-
ysis of the learned structures shows how TPRs
enhance the interpretability of TP-N2F.

1. Introduction
When people perform explicit reasoning, they can typically
describe the way to the conclusion step by step via relational

1Microsoft Research, Redmond, USA. 2Department of
Computer Science, Northwestern University, Evanston, USA.
3Department of Cognitive Science, Johns Hopkins Univer-
sity, Baltimore, USA.. Correspondence to: Kezhen Chen
<kzchen@u.northwestern.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

descriptions. There is ample evidence that relational, struc-
tured representations are important for human cognition,
e.g., (Goldin-Meadow & Gentner, 2003; Forbus et al., 2017;
Crouse et al., 2018; Chen & Forbus, 2018; Chen et al., 2019;
Lee et al., 2019). Although a rapidly growing number of
researchers use deep learning to solve complex symbolic
reasoning and language tasks (a recent review is Gao et al.
(2019)), most existing deep learning models, including se-
quence models such as LSTMs, do not explicitly capture
human-like relational structured information.

In this paper we propose a novel neural architecture, TP-
N2F, for mapping a Natural-language (NL) question to a
Formal-language (FL) program represented by a sequence
of relational tuples (N2F). In the tasks we study, math or
programming problems are stated in natural language, and
answers are given as programs: sequences of relational
structured representations, to solve the problems step by
step like a human being, instead of directly generating the f-
nal answer. For example, from one of our datasets, MathQA:
given a natural-language math problem “20 is subtracted
from 60 percent of a number, the result is 88. Find the num-
ber?”, the formal-language solution program is “(add,n0,n2)
(divide,n1,const100) (divide,#0,#1)”, where n1 indicates
the frst number mentioned in the question and #i indicates
the output of the ith previous tuple. TP-N2F encodes the
natural-language symbolic structure of the problem in an
input vector space, maps this to a vector in an intermediate
space, and uses that vector to produce a sequence of output
vectors that are decoded as relational structures. Both input
and output structures are modeled as Tensor Product Rep-
resentations (TPRs) (Smolensky, 1990) and the structured
representations of inputs are mapped to the structured repre-
sentations of outputs. During encoding, NL-input symbolic
structures are encoded as vector space embeddings using
TPR ‘binding’ (following Palangi et al. (2018)); during de-
coding, symbolic constituents are extracted from structure-
embedding output vectors using TPR ‘unbinding’ (following
Huang et al. (2018; 2019)). By employing TPRs, the model
achieves better performance and increased interpretability.

Our contributions in this work are as follows. (i) We intro-
duce the notion of abstract role-level analysis, and propose
such an analysis of N2F tasks. (ii) We present a new TP-N2F

mailto:kzchen@u.northwestern.edu

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

model which gives a neural-network-level implementation
of a model solving the N2F task under the role-level de-
scription proposed in (i). To our knowledge, this is the frst
model to be proposed which combines both the binding
and unbinding operations of TPRs to solve generation tasks
through deep learning. (iii) State-of-the-art performance
on two recently developed N2F tasks shows that the TP-
N2F model has signifcant structure learning ability on tasks
requiring symbolic reasoning through program synthesis.

2. Related Work
N2F tasks include many different subtasks such as symbolic
reasoning or semantic parsing (Kamath & Das, 2019; Cai &
Lam, 2019; Liao et al., 2018; Amini et al., 2019; Polosukhin
& Skidanov, 2018; Bednarek et al., 2019). These tasks re-
quire models with strong structure-learning ability. TPR
is a promising technique for encoding symbolic structural
information and modeling symbolic reasoning in vector
space. TPR binding has been used for encoding and explor-
ing grammatical structural information of natural language
(Palangi et al., 2018; Huang et al., 2019). TPR unbinding
has also been used to generate natural language captions
from images (Huang et al., 2018). Some researchers use
TPRs for modeling deductive reasoning processes both on a
rule-based model and deep learning models in vector space
(Lee et al., 2016; Smolensky et al., 2016; Schlag & Schmid-
huber, 2018). However, none of these previous models takes
advantage of combining TPR binding and TPR unbinding to
learn structure representation mappings explicitly, as done
in our model. Although researchers are paying increasing
attention to N2F tasks, most of the proposed models either
do not encode structural information explicitly or are spe-
cialized to particular tasks. Our proposed TP-N2F neural
model is general and can be applied to many tasks.

TP-N2F represents inputs and outputs as structures and
learns to map these structures. In cognitive science and psy-
chology, mapping one domain to another is also an impor-
tant feld. For example, Goldin-Meadow & Gentner (2003)
proposed the Structure Mapping Theory to model human
analogy within cognitive science, and Forbus et al. (2017)
introduced the computational implementation, the Structure
Mapping Engine (SME), of the Structure Mapping Theory.
Following these works, Crouse et al. (2018); Chen & Forbus
(2018); Chen et al. (2019) applied SME on language and
vision problems. Researchers also explore the use of con-
cept theory to map structural representations from different
domains (Roads & Love, 2019; Martin, 2020). In this paper,
we propose the structure-to-structure scheme to build neural
models: the TP-N2F model follows this scheme.

3. Structured Representations using TPRs
The Tensor Product Representation (TPR) mechanism is
a method to create a vector space embedding of complex
symbolic structures. The type of a symbol structure is de-
fned by a set of structural positions or roles, such as the
left-child-of-root position in a tree, or the second-argument-
of-R position of a given relation R. In a particular instance
of a structural type, each of these roles may be occupied
by a particular fller, which can be an atomic symbol or a
substructure (e.g., the entire left sub-tree of a binary tree
can serve as the fller of the role left-child-of-root). For now,
we assume the fllers to be atomic symbols.1

The TPR embedding of a symbol structure is the sum of
the embeddings of all its constituents, each constituent com-
prising a role together with its fller. The embedding of a
constituent is constructed from the embedding of a role and
the embedding of the fller of that role: these are joined
together by the TPR ‘binding’ operation, the tensor (or gen-
eralized outer) product ⊗.

Formally, suppose a symbolic type is defned by the roles
{ri}, and suppose that in a particular instance of that type,
S, role ri is bound by fller fi. The TPR embedding of S is
the order-2 tensor X X

>T = fi ⊗ ri = fir (1)i
i i

where {fi} are vector embeddings of the fllers and {ri}
are vector embeddings of the roles. In Eq. 1, and below,
for notational simplicity we confate order-2 tensors and
matrices.

A TPR scheme for embedding a set of symbol structures
is defned by a decomposition of those structures into roles
bound to fllers, an embedding of each role as a role vector,
and an embedding of each fller as a fller vector. Let
the total number of roles and fllers available be nR, nF,
respectively. Defne the matrix of all possible role vectors
to be R ∈ RdR×nR , with column i, [R]:i = ri ∈ RdR ,
comprising the embedding of ri. Similarly let F ∈ RdF ×nF

be the matrix of all possible fller vectors. The TPR T ∈
RdF ×dR . Below, dR, nR, dF, nF will be hyper-parameters,
while R, F will be learned parameter matrices.

Using summation in Eq.1 to combine the vectors embedding
the constituents of a structure risks non-recoverability of
those constituents given the embedding T of the structure
as a whole. The tensor product is chosen as the binding
operation in order to enable recovery of the fller of any role
in a structure S given its TPR T. This can be done with

1When fllers are structures themselves, binding can be used
recursively, giving tensors of order higher than 2. In general,
binding is done with the tensor product, since confation with
matrix algebra is only possible for order-2 tensors. Our unbinding
of relational tuples involves the order-3 TPRs defned in Sec. 4.1.

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

perfect precision if the embeddings of the roles are linearly
independent. In that case the role matrix R has a left inverse
U : UR = I . Now defne the unbinding (or dual) vector
for role rj , uj , to be the jth column of U >: U:

>
j . Then,
>since [I]ji = [UR]ji = Uj:R:i = [U>]>R:i = u = :j j ri

> >r uj , we have r uj = δji. This means that, to recover i i
the fller of rj in the structure with TPR T, we can take its
tensor inner product (or matrix-vector product) with uj :2 " #X X

>Tuj = firi uj = fiδij = fj (2)
i i

In the architecture proposed here, we make use of TPR
‘binding’ for the structured embedding encoding the natural-
language problem statement; we use TPR ‘unbinding’ of the
structured output embedding to decode the formal-language
solution programs represented by relational tuples. Because
natural-language and formal-language pertain to different
representations (natural-language is an order-2 tensor and
formal-language is an order-3 tensor), the NL-binding and
FL-unbinding vectors are not related to one another. The
structured neural Tensor Product Representations of natural-
language and formal-language, and the details of binding
and unbinding process used in the architecture, will be in-
troduced in 4.1.

4. TP-N2F Model
We propose a general TP-N2F neural network architecture
operating over TPRs to solve N2F tasks under a proposed
role-level description of those tasks. In this description,
natural-language input is represented as a straightforward
order-2 tensor role structure, and formal-language relational
representations of outputs are represented with a new order-
3 tensor recursive role structure proposed here. Figure 1
shows an overview diagram of the TP-N2F model. It depicts
the following high-level description.

As shown in Figure 1, while the natural-language input is
a sequence of words, the output is a sequence of multi-
argument relational tuples such as (R A1 A2), a 3-tuple
consisting of a binary relation (or operation) R with its two
arguments. The “TP-N2F encoder” uses two LSTMs to
produce a pair consisting of a fller vector and a role vector,
which are bound together with the tensor product. These
tensor products, concatenated, comprise the “context” over
which attention will operate in the decoder. The sum of
the word-level TPRs, fattened to a vector, is treated as a
representation of the entire problem statement; it is fed to

2When the role vectors are not linearly independent, this oper-
ation performs unbinding approximately, taking U to be the left
pseudo-inverse of R. Because randomly chosen vectors on the unit
sphere in a high-dimensional space are approximately orthogonal,
the approximation is often excellent.

the “Reasoning MLP”, which transforms this encoding of
the problem into a vector encoding the solution. This is
the initial state of the “TP-N2F decoder” attentional LSTM,
which outputs at each time step an order-3 tensor repre-
senting a relational tuple. To generate a correct tuple from
decoder operations, the model must learn to give the order-3
tensor the form of a TPR for a (R A1 A2) tuple (detailed
explanation in Sec. 4.1). In the following sections, we frst
introduce the details of our proposed role-level description
for N2F tasks, and then present how our proposed TP-N2F
model uses TPR binding and unbinding operations to create
a neural network implementation of this description of N2F
tasks.

4.1. Role-level description of N2F tasks

In this section, we propose a role-level description of N2F
tasks, which specifes the fller/role structures of the input
natural-language symbolic expressions and the output rela-
tional representations. As the two structures are different,
we also propose a formal scheme for structure mapping on
TPRs.

Role-Level Description for Natural-Language Input
Instead of encoding each token of a sentence with a non-
compositional embedding vector looked up in a learned
dictionary, we use a learned role-fller decomposition to
compose a tensor representation for each token. Given a sen-

0 1tence S with n word tokens {w , w , ..., wn−1}, each word
token wt is assigned a learned role vector rt, soft-selected
from the learned dictionary R, and a learned fller vector
f t , soft-selected from the learned dictionary F (Sec. 3).
The mechanism closely follows that of Palangi et al. (2018),
and we hypothesize similar results: the role and fller ap-
proximately encode the structural role of the token and its

tlexical semantics, respectively.3 Then each word token w
is represented by the tensor product of the role vector and

tthe fller vector: Tt = f t ⊗ r . In addition to the set of
all its token embeddings {T0 , . . . , Tn−1}, the sentence S
as a whole is assigned a TPR equal to the sum of the TPR Pn−1embeddings of all its word tokens: TS = Tt .t=0

Using TPRs to encode natural language has several advan-
tages. First, natural language TPRs can be interpreted by
exploring the distribution of tokens grouped by the role and
fller vectors they are assigned by a trained model (as in
Palangi et al. (2018)). Second, TPRs avoid the Bag of Word
(BoW) confusion (Huang et al., 2018): the BoW encoding
of Jay saw Kay is the same as the BoW encoding of Kay saw
Jay but the encodings are different with TPR embedding,

3Although the TPR formalism treats fllers and roles symmetri-
cally, in use, hyperparameters are selected so that the number of
available fllers is greater than that of roles. Thus, on average, each
role is assigned to more words, encouraging it to take on a more
general function, such as a grammatical role.

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

Figure 1. Overview diagram of TP-N2F.

because the role flled by a symbol changes with its context.

Role-Level Description for Relational Representations
In this section, we propose a novel recursive role-level de-
scription for representing symbolic relational tuples. Each
relational tuple contains a relation token and multiple ar-
gument tokens. Given a binary relation rel, a relational
tuple can be written as (rel arg1 arg2) where arg1, arg2

indicate two arguments of relation rel. Let us adopt the two
rel positional roles, p = argi-of-rel for i = 1, 2. The fller i

rel of role p is argi. Now let us use role decomposition re-i
rel cursively, noting that the role p can itself be decomposed i

into a sub-role pi = argi-of- which has a sub-fller rel.
Suppose that argi, rel, pi are embedded as vectors ai, r, pi.

rel Then the TPR encoding of p is rrel ⊗ pi, so the TPR i
rel encoding of fller argi bound to role p is ai ⊗ (rrel ⊗ pi).i

The tensor product is associative, so we can omit parenthe-
ses and write the TPR for the formal-language expression,
the relational tuple (rel arg1 arg2), as:

H = a1 ⊗ rrel ⊗ p1 + a2 ⊗ rrel ⊗ p2. (3)

embedded as an order-(n +1) tensor, and unbinding an argu-
ment requires knowing all the other arguments (to use their
unbinding vectors). In the scheme proposed here, an n-ary-
relation tuple is still embedded as an order-3 tensor: there
are just n terms in the sum in Eq. 3, using n positional sub-
role vectors p1, . . . , pn; unbinding simply requires knowing
the unbinding vectors for these fxed position vectors.

In the model, the order-3 tensor H of Eq. 3 has a differ-
ent status than the order-2 tensor TS of Sec. 4.1. TS is a
TPR by construction, whereas H is a TPR as a result of
successful learning. To generate the output relational tuples,
the decoder assumes each tuple has the form of Eq. 3, and
performs the unbinding operations which that structure calls
for. In section 4.4, it is shown that, if unbinding each of a
set of roles from some unknown tensor T gives a target set
of fllers, then T must equal the TPR generated by those
role/fller pairs, plus some tensor that is irrelevant because
unbinding from it produces the zero vector. In other words,
if the decoder succeeds in producing fller vectors that corre-
spond to output relational tuples that match the target, then,
as far as what the decoder can see, the tensor that it operates

Given the unbinding vectors p0 i for positional sub-role vec- on is the TPR of Eq. 3.
tors pi and the unbinding relational vector r0 rel for the rela-
tional vector rrel that embeds relation rel, each argument TP-N2F Scheme for Learning Input-Output Mapping
can be unbound in two steps as shown in Eqs. 4–5. To generate formal relational tuples from natural-language

descriptions, a learning strategy for the mapping between
(4)H · p 0 i = ai ⊗ rrel the two structures is particularly important. As shown in (6),

0 = airel (5)[ai ⊗ rrel] · r we formalize the learning scheme as learning a mapping
function fmapping(·), which, given a structural representa-

Here · denotes the tensor inner product, which for the tion of the natural-language input, TS , outputs a tensor TF
order-3 tensor H and order-1 pP

0
i in Eq. 4 can be defned from which the structural representation of the output can be

generated. At the role level of description, there’s nothing
0
i]jk

the matrix-vector product.

0[H]jkl[pi]l; in Eq. 5, · is equivalent to as [H · p = l

more to be said about this mapping; how it is modeled at
the neural network level is discussed in Sec. 4.2.Our proposed scheme can be contrasted with the TPR

scheme in which (rel arg1 arg2) is embedded as rrel ⊗
a1 ⊗ a2, e.g., (Smolensky et al., 2016; Schlag & Schmid-
huber, 2018). In that scheme, an n-ary-relation tuple is

TF = fmapping(TS) (6)

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

Figure 2. Implementation of the TP-N2F encoder.

4.2. TP-N2F Model for N2F Generation

In this section, we introduce the TP-N2F model. The en-
coder and decoder are described frst. Then, the inference
and learning strategy are presented. Finally, we prove that
the tensor that is input to the decoder’s unbinding module is
a TPR.

Natural-Language Encoder in TP-N2F As shown in
Figure 1, the TP-N2F model is implemented with three
steps: encoding, mapping, and decoding. The encoding step
is implemented by the TP-N2F natural-language encoder
(TP-N2F Encoder), which takes the sequence of word to-
kens as inputs, and encodes them via TPR binding according
to the TP-N2F role scheme for natural-language input given
in Sec. 4.1. The mapping step is implemented by an MLP
called the Reasoning Module, which takes the encoding pro-
duced by the TP-N2F Encoder as input. It learns to map the
natural-language-structure encoding of the input to a repre-
sentation that will be processed under the assumption that it
follows the role scheme for output relational-tuples speci-
fed in Sec. 4.1: the model needs to learn to produce TPRs
such that this processing generates correct output programs.
The decoding step is implemented by the TP-N2F relational
tuples decoder (TP-N2F Decoder), which takes the output
from the Reasoning Module (Sec. 4.1) and decodes the tar-
get sequence of relational tuples via TPR unbinding. The
TP-N2F Decoder utilizes an attention mechanism over the
individual-word TPRs Tt produced by the TP-N2F Encoder.
The detailed implementations are introduced below.

The TP-N2F encoder follows the role scheme in Sec. 4.1
to encode each word token wt by soft-selecting one of nF

fllers and one of nR roles. The fllers and roles are embed-
ded as vectors. These embedding vectors, and the functions

for selecting fllers and roles, are learned by two LSTMs,
the Filler-LSTM and the Role-LSTM. (See Figure 2.) At
each time-step t, the Filler-LSTM and the Role-LSTM take

ta learned word-token embedding w as input. The hidden
state of the Filler-LSTM, ht

F, is used to compute softmax
Fscores u over nF fller slots, and a fller vector f t = FuF
k

is computed from the softmax scores (recall from Sec. 3 that
F is the learned matrix of fller vectors). Similarly, a role
vector is computed from the hidden state of the Role-LSTM,
ht t
R. fF and fR denote the functions that generate f t and r

from the hidden states of the two LSTMs. The token wt is
tencoded as Tt, the tensor product of f t and r . Tt replaces

the hidden vector in each LSTM and is passed to the next
time step, together with the LSTM cell-state vector ct: see
(7)–(9). After encoding the whole sequence, the TP-N2FP
encoder outputs the sum of all tensor products Tt to the t
next module. We use an MLP, called the Reasoning MLP,
for TPR mapping; it takes an order-2 TPR from the encoder
and maps it to the initial state of the decoder. Detailed
equations and implementation are provided in Appendix.

t t−1hF
t = fFiller−LSTM(w , Tt−1 , c) (7)F

t t−1ht
R = fRole−LSTM(w , Tt−1 , c) (8)R

tTt = f t ⊗ r = fF(h
t
F) ⊗ fR(h

t
R) (9)

Relational-Tuple Decoder in TP-N2F The TP-N2F De-
coder is an RNN that takes the output from the reasoning
MLP as its initial hidden state for generating a sequence
of relational tuples (Figure 3). This decoder contains an
attentional LSTM called the Tuple-LSTM which feeds an
unbinding module: attention operates on the context vector
of the encoder, consisting of all individual encoder outputs
{Tt}. The hidden-state H of the Tuple-LSTM is treated as
a TPR of a relational tuple and is unbound to a relation and

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

Figure 3. Implementation of the TP-N2F decoder.

arguments. During training, the Tuple-LSTM needs to learn
a way to make H suitably approximate a TPR. At each time
step t, the hidden state Ht of the Tuple-LSTM with attention
(the version in Luong et al. (2015)) (11) is fed as input to the
unbinding module, which regards Ht as if it were the TPR
of a relational tuple with m arguments possessing the rolePm t tstructure described in Sec. 4.1: Ht ≈ ⊗ r ⊗ pi.i=1 ai rel
(In Figure 3, the assumed hypothetical form of Ht, as well as
that of Bt below, is shown in a bubble with dashed border.) i
To decode a binary relational tuple, the unbinding module
decodes it from Ht using the two steps of TPR unbinding

0given in (4)–(5). The positional unbinding vectors pi are
learned during training and shared across all time steps. Af-
ter the frst unbinding step (4), i.e., the inner product of Ht

0with pi, we get tensors Bt (12 and 13). These are treatedi
t tas the TPRs of two arguments a bound to a relation ri rel.
0tA relational unbinding vector r is computed by a linear rel

function from the sum of the Bt
i (14) and used to compute

tthe inner product with each Bt to yield a , which are treated i i
as the embedding of argument vectors (15 and 16). Based on

0t tthe TPR theory, r is passed to a linear function to get rrel rel
as the embedding of a relation vector. Finally, the softmax
probability distribution over symbolic outputs is computed
for relations and arguments separately. In generation, the
most probable symbol is selected. (Detailed equations are
in Appendix A.2.3 of supplementary)

t t t−1)ht = fTuple−LSTM(relt , arg1, arg2, H
t−1 , c (10)

Ht = Atten(ht , [T0 , ..., Tn−1]) (11)
0Bt = Ht · p (12)1 1

Bt 0 = Ht · p (13)2 2

0t r = flinear(B1
t + Bt

2) (14)rel

t = Bt 0t a · r (15)1 1 rel

t 0t a = Bt · r (16)2 2 rel

4.3. Inference and Learning Strategy

During inference time, natural language questions are en-
coded via the encoder and the Reasoning MLP maps the
output of the encoder to the input of the decoder. We use
greedy decoding (selecting the most likely class) to decode
one relation and its arguments. The relation and argument
vectors are concatenated to construct a new vector as the
input for the Tuple-LSTM in the next step.

TP-N2F is trained using back-propagation (Rumelhart et al.,
1986) with the Adam optimizer (Kingma & Ba, 2017) and
teacher-forcing. At each time step, the ground-truth rela-
tional tuple is provided as the input for the next time step.
As the TP-N2F decoder decodes a relational tuple at each
time step, the relation token is selected only from the rela-
tion vocabulary and the argument tokens from the argument
vocabulary. For an input I that generates N output rela-
tional tuples, the loss is the sum of the cross entropy loss L
between the true labels L and predicted tokens for relations
and arguments as shown in (17).

N −1 N−1 2X X X
iLI = L(reli, Lreli) + L(argj , Largi)

j

i=0 i=0 j=1

(17)

4.4. Input of Decoder’s Unbinding Module is a TPR

Here we show that, if learning is successful, the order-3
tensor H that each iteration of the decoder’s Tuple LSTM
feeds to the decoder’s Unbinding Module (Figure 3) will be
a TPR of the form assumed in Eq. 3 above, repeated here:

X
H = aj ⊗ rrel ⊗ pj . (18)

j

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

The operations performed by the decoder are given in Eqs.4–
5, and Eqs.12–13, rewritten here:

0H · p = qi (19)i
0 qi · r = ai (20)rel

This is the standard TPR unbinding operation, used recur-
0sively: frst with the unbinding vectors for positions, pi,

0then with the unbinding vector for the operator, r Itrel.
therefore suffces to analyze a single unbinding; the result
can then be used recursively. This in effect reduces the
problem to the order-2 case. What we will show is: given a

0set of unbinding vectors {ri} which are dual to a set of role
vectors {ri}, with i ranging over some index set I , if H is
an order-2 tensor such that

0H · r = fi, ∀i ∈ I (21)i

then X
>H = firi + Z ≡ HTPR + Z (22)

i∈I

for some tensor Z that annihilates all the unbinding vectors:

0Z · r = 0, ∀i ∈ I. (23)i

If learning is successful, the processing in the decoder
will generate the target relational tuple (R, A1, A2) by
obeying Eq. 19 in the frst unbinding, where we have
0 0r = pi, fi = qi, I = {1, 2}, and obeying Eq. 20 in the i

0 0second unbinding, where we have ri = rrel, fi
0 = ai, with

I = the set containing only the null index.

Treat rank-2 tensors as matrices; then unbinding is simply
matrix-vector multiplication. Assume the set of unbind-
ing vectors is linearly independent (otherwise there would
not be a general way to satisfy Eq. 21 exactly, contrary to
assumption). Then expand the set of unbinding vectors, if

0necessary, into a basis {r }k∈K⊇I . Find the dual basis, with k
0 > 0 0rk dual to r (so that r r = δlj). Because {r }k∈K is a k l j k

basis, so is {rk}k∈K , so any matrix H can be expanded asP > 0H = k∈K vkrk . Since Hr = fi, ∀i ∈ I are the unbind-i
ing conditions (Eq. 21), we must have vi = fi, i ∈ I . LetP >HTPR ≡ i∈I firi . This is the desired TPR, with fllers
fi bound to the role vectors ri which are the duals of the

0unbinding vectors r (i ∈ I). Then we have H = HTPR +Zi P > 0(Eq. 22) where Z ≡ ; so Zr = 0, i ∈ Ij∈K,j 6∈I vj rj i
(Eq. 23). Thus, if training is successful, the model must
have learned how to feed the decoder with order-3 TPRs
with the structure posited in Eq. 18.

The argument so far addresses the case where the unbind-
ing vectors are linearly independent, making it possible to
satisfy Eq. 21 exactly. In relatively high-dimensional vector
spaces, it will often happen that even when the number of
unbinding vectors exceeds the dimension of their space by

a factor of 2 or 3 (which applies to the TP-N2F models pre-
sented here), there is a set of role vectors {rk}k∈K approx-

0 > 0imately dual to {r }k∈K , such that r r = δlj ∀l, j ∈ Kk l j
holds to a good approximation. (If the distribution of normal-
ized unbinding vectors is approximately uniform on the unit
sphere, then choosing the approximate dual vectors to equal
the unbinding vectors themselves will do, since they will

0be nearly orthonormal. If the {r }k∈K are not normalized, k
0 0we just rescale the role vectors, choosing rk = r /kr k2.)k k

When the number of such role vectors exceeds the dimen-
sion of the embedding space, they will be overcomplete, so
while it is still true that any matrix H can be expanded asP
above (H =), this expansion will no longerk∈K vkrk

>

be unique. So while it remains true that H a TPR, it is no
longer uniquely decomposable into fller/role pairs. The
claim above does not claim uniqueness in this sense, and
remains true.)

5. Experiments
The proposed TP-N2F model is evaluated on two N2F tasks,
generating operation sequences to solve math problems and
generating Lisp programs. In both tasks, TP-N2F achieves
state-of-the-art performance. We further analyze the behav-
ior of the unbinding relation vectors in the proposed model.
Results of each task and the analysis of the unbinding rela-
tion vectors are introduced in turn. Details of experiments
and datasets are described in Appendix A.1 of the supple-
mentary materials.

5.1. Generating Operations to Solve Math Problems

Given a natural-language math problem, we need to gener-
ate a sequence of operations (operators and corresponding
arguments) from a set of operators and arguments to solve
the given problem. Each operation is regarded as a relational
tuple by viewing the operator as relation, e.g., (add, n1, n2).
We test TP-N2F for this task on the MathQA dataset (Amini
et al., 2019). The MathQA dataset consists of about 37k
math word problems, each with a corresponding list of multi-
choice options and the corresponding operation sequence.
In this task, TP-N2F is deployed to generate the operation
sequence given the question. The generated operations are
executed with the execution script from Amini et al. (2019)
to select a multi-choice answer. As there are about 30%
noisy data (where the execution script returns the wrong
answer when given the ground-truth program; see Appendix
A.1 in the supplementary materials), we report both execu-
tion accuracy (of the fnal multi-choice answer after run-
ning the execution engine) and operation sequence accuracy
(where the generated operation sequence must match the
ground truth sequence exactly).

TP-N2F is compared to a baseline provided by the seq2prog
model in Amini et al. (2019), an LSTM-based seq2seq

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

Table 1. Results on MathQA dataset testing set
MODEL Operation Accuracy (%) Execution Accuracy (%)

SEQ2PROG-orig
SEQ2PROG-best
LSTM2TP (ours)
TP2LSTM (ours)
TP-N2F (ours)

59.4
66.97
68.21
68.84
71.89

51.9
54.0

54.61
54.61
55.95

model with attention. Our model outperforms both the orig-
inal seq2prog, designated SEQ2PROG-orig, and the best
reimplemented seq2prog after an extensive hyperparameter
search, designated SEQ2PROG-best. Table 1 presents the
results. To verify the importance of the TP-N2F encoder
and decoder, we conducted experiments to replace either
the encoder with a standard LSTM (denoted LSTM2TP)
or the decoder with a standard attentional LSTM (denoted
TP2LSTM). We observe that both the TPR components of
TP-N2F are important for achieving the observed perfor-
mance gain relative to the baseline.

5.2. Generating Lisp Programs from NL Descriptions

Generating Lisp programs requires sensitivity to structural
information because Lisp code and data can be regarded as
tree-structured. Given a natural-language query, we need
to generate code containing function calls with parameters.
Each function call is a relational tuple, which has a function
as the relation and parameters as arguments. We evaluate our
model on the AlgoLisp dataset for this task and achieve state-
of-the-art performance. The AlgoLisp dataset (Polosukhin
& Skidanov, 2018) is a program synthesis dataset. Each
sample contains a problem description, a corresponding
Lisp program tree, and 10 input-output testing pairs. We
parse the program tree into a straight-line sequence of tuples
(same style as in MathQA). AlgoLisp provides an execution
script to run the generated program and has three evaluation
metrics: the accuracy of passing all test cases (Acc), the
accuracy of passing 50% of test cases (50p-Acc), and the
accuracy of generating an exactly matching program (M-
Acc). AlgoLisp has about 10% noisy data (details in the
Appendix), so we report results both on the full test set and
the cleaned test set (in which all noisy testing samples are
removed).

TP-N2F is compared with an LSTM seq2seq with atten-
tion model, the Seq2Tree model in Polosukhin & Skidanov
(2018), and a seq2seq model with a pre-trained tree de-
coder from the Tree2Tree autoencoder (SAPS) reported in
Bednarek et al. (2019). As shown in Table 2, TP-N2F out-
performs all existing models on both the full test set and
the cleaned test set. Ablation experiments with TP2LSTM
and LSTM2TP show that, for this task, the TP-N2F De-
coder is more helpful than TP-N2F Encoder. This may be

because Lisp code relies more heavily on structured repre-
sentations. Comparing the generated programs, TP-N2F can
generate longer programs than the LSTM-based Seq2Seq,
e.g. TP-N2F correctly generates a program with 55 tuples
but the LSTM-based Seq2Seq fails. Generated examples
are presented in the Appendix.

6. Interpretation of Learned Structure
To interpret the structure learned by the model, we explore
both the TP-N2F Encoder and the Decoder. For TP-N2F
Encoder, the Softmax scores for roles and fllers of natural-
language are analyzed on selected questions. We explore
the signifcant fllers and roles of natural-language questions
with large Softmax scores. Analysis shows that fllers tend
to represent the semantic information and words or phrases
with the same meaning tend to be assigned the same fller.
For example, in the AlgoLisp dataset, “consider”, “you are
given” and “given” are assigned to fller 146. “decrement”,
“difference of” and “decremented by” are assigned to fller
43. “increment” and “add” are assigned to fller 105. In the
MathQA dataset, “positive integer”, “positive number” and
“positive digits” are assigned to fller 27. We also fnd that
roles tend to represent the structured schemes of sentences.
For example, Figure 4 shows the visualization of assigned
roles for two different questions from the Algolisp dataset.
Words with role 12 indicate the target of the questions to
compute. Words with role 3 indicate required information
to solve the questions. One interesting fnding is that the
second example from Figure 4 has two occurrences of “a”
with different meanings. Therefore, although they are as-
signed the same role, they have different fllers. The detailed
visualization of fllers is shown in Appendix.

For the the TP-N2F Decoder, we extract the trained unbind-
ing relation vectors and reduce the dimension of vectors via
Principal Components Analysis. K-means clustering results
on the average vectors are presented in Appendix A.6 of
the supplementary material. Results show that unbinding
vectors for operators or functions with similar semantics
tend to be close to each other. For example, with 5 clus-
ters in the MathQA dataset, arithmetic operators such as
add, subtract, multiply, divide are clustered together, and
operators related to square or volume of geometry are clus-
tered together. With 4 clusters in the AlgoLisp dataset, par-

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

Table 2. Results of AlgoLisp dataset
Full Testing Set Cleaned Testing Set

MODEL Acc (%) 50p-Acc (%) M-Acc (%) Acc (%) 50p-Acc(%) M-Acc (%)
Seq2Tree

LSTM2LSTM+atten
TP2LSTM (ours)

LSTM2TPR (ours)
SAPSpre-VH-Att-256

TP-N2F (ours)

61.0
67.54
72.28
75.31
83.80
84.02

—— ——
70.89 75.12
77.62 79.92
79.26 83.05
87.45 ——
88.01 93.06

—— —— ——
76.83 78.86 75.42
77.67 80.51 76.75
84.44 86.13 83.43
92.98 94.15 ——
93.48 94.64 92.78

Figure 4. Visualizations of selected roles in TP-N2F encoder for two questions in the AlgoLisp Dataset.

tial/lambda functions and sort functions are in one cluster,
and string processing functions are clustered together. Note
that there is no direct supervision to inform the model about
the nature of the operations, and the TP-N2F decoder has
induced this role structure using weak supervision signals
from question/operation-sequence-answer pairs.

7. Conclusion and Future Work
In this paper we propose a new scheme for neural-symbolic
relational representations and a new architecture, TP-N2F,
for formal-language generation from natural-language de-
scriptions. To our knowledge, TP-N2F is the frst model that
combines TPR binding and TPR unbinding in the encoder-
decoder fashion. TP-N2F achieves the state-of-the-art on
two instances of N2F tasks, showing signifcant structure

learning ability. The results show that both the TP-N2F en-
coder and the TP-N2F decoder are important for improving
natural- to formal-language generation. By exploring the
learned structures in both encoder and decoder, we show that
TPRs enhance the interpretability of sequence-processing
deep learning models and provide a step towards better
understanding neural models. Next, we will combine large-
scale deep learning models such as BERT with TP-N2F to
take advantage of structure learning for other generation
tasks.

Acknowledgements
We are grateful to Aida Amini from the University of Wash-
ington for providing execution scripts for the MathQA
dataset.

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

References
Amini, A., Gabriel, S., Lin, P., Kedziorski, R. K., Choi, Y.,

and Hajishirzi, H. Mathqa: Towards interpretable math
word problem solving with operation-based formalisms.
In NACCL, 2019.

Bednarek, J., Piaskowski, K., and Krawiec, K. Ain’t nobody
got time for coding: Structure-aware program synthesis
from natural language. In arXiv.org, 2019.

Cai, D. and Lam, W. Core semantic frst: A top-down
approach for amr parsing. In arXiv:1909.04303, 2019.

Chen, K. and Forbus, K. D. Action recognition from skele-
ton data via analogical generalization over qualitative rep-
resentations. In Thirty-Second AAAI Conference, 2018.

Chen, K., Rabkina, I., McLure, M. D., and Forbus, K. D.
Human-like sketch object recognition via analogical
learning. In Thirty-Third AAAI Conference, volume 33,
pp. 1336–1343, 2019.

Crouse, M., McFate, C., and Forbus, K. D. Learning from
unannotated qa pairs to analogically disanbiguate and
answer questions. In Thirty-Second AAAI Conference,
2018.

Forbus, K., Liang, C., and Rabkina, I. Representation and
computation in cognitive models. In Top Cognitive Sys-
tem, 2017.

Gao, J., Galley, M., and Li, L. Neural approaches to con-
versational ai. Foundations and Trends R in Information
Retrieval, 13(2-3):127–298, 2019.

Goldin-Meadow, S. and Gentner, D. Language in mind:
Advances in the study of language and thought. MIT
Press, 2003.

Huang, Q., Smolensky, P., He, X., Wu, O., and Deng, L. Ten-
sor product generation networks for deep nlp modeling.
In NAACL, 2018.

Huang, Q., Deng, L., Wu, D., Liu, c., and He, X. Attentive
tensor product learning. In Thirty-Third AAAI Conference,
volume 33, 2019.

Kamath, A. and Das, R. A survey on semantic parsing. In
AKBC, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2017.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, K., Palangi, H., Chen, X., Hu, H., and Gao, J. Learn-
ing visual relation priors for image-text matching and
image captioning with neural scene graph generators.
abs/1909.09953, 2019. URL http://arxiv.org/
abs/1909.09953.

Lee, M., He, X., Yih, W.-t., Gao, J., Deng, L., and Smolen-
sky, P. Reasoning in vector space: An exploratory study
of question answering. In ICLR, 2016.

Liao, Y., Bing, L., Li, P., Shi, S., Lam, W., and Zhang,
T. Core semantic frst: A top-down approach for amr
parsing. In EMNLP, pp. 3855—-3864, 2018.

Luong, M.-T., Pham, H., and Manning, C. D. Effective
approaches to attention-based neural machine translation.
EMNLP, pp. 533–536, 2015.

Martin, A. E. A compositional neural architecture for lan-
guage. Journal of Cognitive Neuroscience, 2020.

Palangi, H., Smolensky, P., He, X., and Deng, L. Question-
answering with grammatically-interpretable representa-
tions. In AAAI, 2018.

Polosukhin, I. and Skidanov, A. Neural program search:
Solving programming tasks from description and exam-
ples. In ICLR workshop, 2018.

Roads, B. and Love, B. Learning as the unsuper-
vised alignment of conceptual systems. arXiv preprint
arXiv:1906.09012, 2019.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation. In
Rumelhart, D. E., McClelland, J. L., and the PDP Group
(eds.), Parallel distributed processing: Explorations in
the microstructure of cognition, volume 1, pp. 318–362.
MIT press, Cambridge, MA, 1986.

Schlag, I. and Schmidhuber, J. Learning to reason with third
order tensor products. In Neural Information Processing
Systems, 2018.

Smolensky, P. Tensor product variable binding and the
representation of symbolic structures in connectionist
networks. In Artifcial Intelligence, volume 46, pp. 159–
216, 1990.

Smolensky, P., Lee, M., He, X., Yih, W.-t., Gao, J., and
Deng, L. Basic reasoning with tensor product representa-
tions. arXiv preprint arXiv:1601.02745, 2016.

http://arxiv.org/abs/1909.09953
http://arxiv.org/abs/1909.09953
https://arXiv.org

