
Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 20

Top Challenges from the first Practical Online Controlled

Experiments Summit
Somit Gupta (Microsoft)1, Ronny Kohavi (Microsoft) 2, Diane Tang (Google) 3, Ya Xu (LinkedIn) 4, Reid Andersen (Airbnb),

Eytan Bakshy (Facebook), Niall Cardin (Google), Sumitha Chandran (Lyft), Nanyu Chen (LinkedIn), Dominic Coey

(Facebook), Mike Curtis (Google), Alex Deng (Microsoft), Weitao Duan (LinkedIn), Peter Forbes (Netflix), Brian Frasca

(Microsoft), Tommy Guy (Microsoft), Guido W. Imbens (Stanford), Guillaume Saint Jacques (LinkedIn), Pranav Kantawala

(Google), Ilya Katsev (Yandex), Moshe Katzwer (Uber), Mikael Konutgan (Facebook), Elena Kunakova (Yandex), Minyong

Lee (Airbnb), MJ Lee (Lyft), Joseph Liu (Twitter), James McQueen (Amazon), Amir Najmi (Google), Brent Smith (Amazon),

Vivek Trehan (Uber), Lukas Vermeer (Booking.com), Toby Walker (Microsoft), Jeffrey Wong (Netflix), Igor Yashkov

(Yandex)

ABSTRACT

Online controlled experiments (OCEs), also known as A/B tests,

have become ubiquitous in evaluating the impact of changes made

to software products and services. While the concept of online

controlled experiments is simple, there are many practical

challenges in running OCEs at scale and encourage further

academic and industrial exploration. To understand the top

practical challenges in running OCEs at scale, representatives with

experience in large-scale experimentation from thirteen different

organizations (Airbnb, Amazon, Booking.com, Facebook, Google,

LinkedIn, Lyft, Microsoft, Netflix, Twitter, Uber, Yandex, and

Stanford University) were invited to the first Practical Online

Controlled Experiments Summit. All thirteen organizations sent

representatives. Together these organizations tested more than one

hundred thousand experiment treatments last year. Thirty-four

experts from these organizations participated in the summit in

Sunnyvale, CA, USA on December 13-14, 2018.

While there are papers from individual organizations on some of

the challenges and pitfalls in running OCEs at scale, this is the first

paper to provide the top challenges faced across the industry for

running OCEs at scale and some common solutions.

1. INTRODUCTION
The Internet provides developers of connected software, including

web sites, applications, and devices, an unprecedented opportunity

to accelerate innovation by evaluating ideas quickly and accurately

using OCEs. At companies that run OCEs at scale, the tests have

very low marginal cost and can run with thousands to millions of

users. As a result, OCEs are quite ubiquitous in the technology

industry. From front-end user-interface changes to backend

algorithms, from search engines (e.g., Google, Bing, Yandex) to

retailers (e.g., Amazon, eBay, Etsy) to media service providers (e.g.

Netflix, Amazon) to social networking services (e.g., Facebook,

LinkedIn, Twitter) to travel services (e.g., Lyft, Uber, Airbnb,

Booking.com), OCEs now help make data-driven decisions [7, 10,

12, 27, 30, 40, 41, 44, 51, 58, 61, 76].

1 Organizers email: somit.gupta@microsoft.com

2 ronnyk@microsoft.com

3 diane@google.com

4 yaxu@linkedin.com

1.1 First Practical Online Controlled

Experiments Summit, 2018
To understand the top practical challenges in running OCEs at

scale, representatives with experience in large-scale

experimentation from thirteen different organizations (Airbnb,

Amazon, Booking.com, Facebook, Google, LinkedIn, Lyft,

Microsoft, Netflix, Twitter, Uber, Yandex, and Stanford

University) were invited to the first Practical Online Controlled

Experiments Summit. All thirteen organizations sent

representatives. Together these organizations tested more than one

hundred thousand experiment treatments last year. Thirty-four

experts from these organizations participated in the summit in

Sunnyvale, CA, USA on December 13-14, 2018. The summit was

chaired by Ronny Kohavi (Microsoft), Diane Tang (Google), and

Ya Xu (LinkedIn). During the summit, each company presented an

overview of experimentation operations and the top three

challenges they faced. Before the summit, participants completed a

survey of topics they would like to discuss. Based on the popular

topics, there were nine breakout sessions detailing these issues.

Breakout sessions occurred over two days. Each participant could

participate in at least two breakout sessions. Each breakout group

presented a summary of their session to all summit participants and

further discussed topics with them. This paper highlights top

challenges in the field of OCEs and common solutions based on

discussions leading up to the summit, during the summit, and

afterwards.

1.2 Online Controlled Experiments
Online Controlled Experiments, A/B tests or simply experiments,

are widely used by data-driven companies to evaluate the impact of

software changes (e.g. new features). In the simplest OCE, users

are randomly assigned to one of the two variants: Control (A) or

Treatment (B). Usually, Control is the existing system and

Treatment is the system with the new feature, say, feature X. User

interactions with the system are recorded and from that, metrics

computed. If the experiment was designed and executed correctly,

the only thing consistently different between the two variants is

feature X. External factors such as seasonality, impact of other

feature launches, or moves by the competition, are evenly

distributed between Control and Treatment, which means that we

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 21

can hypothesize that any difference in metrics between the two

groups can be attributed to either feature X or due to chance

resulting from the random assignment to the variants. The latter

hypothesis is ruled out (probabilistically) using statistical tests such

as a t-test [21]. This establishes a causal relationship (with high

probability) between the feature change and changes in user

behavior, which is a key reason for the widespread use of controlled

experiments.

1.3 Contribution
OCEs rely on the same theory as randomized controlled trials

(RCTs). The theory of a controlled experiment dates back to Sir

Ronald A. Fisher’s experiments at the Rothamsted Agricultural

Experimental Station in England in the 1920s. While the theory is

simple, deployment and evaluation of OCEs at scale (100s of

concurrently running experiments) across variety of web sites,

mobile apps, and desktop applications presents many pitfalls and

research challenges. Over the years some of these challenges and

pitfalls have been described by authors from different companies

along with novel methods to address some of those challenges [16,

23, 43, 48, 50, 61]. This is the first time that OCE experts from

thirteen organizations with some of the largest scale

experimentation platforms have come together to identify the top

challenges facing the industry and the common methods for

addressing these challenges. This is the novel contribution of this

paper. We hope that this paper provides researchers a clear set of

problems currently facing the industry and spurs further research in

these areas in academia and industry. It is our wish to continue this

cross-company collaboration to help advance the science of OCEs.

Section 2 presents an overview of top challenges currently faced by

companies across the industry. Later sections discuss specific

problems in more detail, how these problems have an impact on

running OCEs in different products, and common solutions for

dealing with them.

2. TOP CHALLENGES
Software applications and services run at a very large scale and

serve tens to hundreds of millions of users. It is relatively low cost

to update software to try out new ideas. Hundreds of changes are

made in a software product during a short period of time. This

provides OCEs a unique set of opportunities and challenges to help

identify the good changes from the bad to improve products.

Our compiled list of top challenges comes from three sources: the

pre-summit survey to collect the list of topics to discuss, the top

challenges presented by each company at the start of the summit,

and the post-summit survey on top takeaways and list of topics to

discuss in future. The relative order of prevalence remained roughly

the same across these sources. These top challenges reflect the high

level of maturity and scale of OCE operations in these companies.

There is literature out there on the challenges and pitfalls some of

these companies faced and solved during the early years of their

operations [32]. The challenges mentioned here are at the frontier

of research in academia and industry. While there are some

solutions to existing challenges, there is a lot of scope for further

advancement in these areas.

1. Analysis: There are many interesting and challenging

open questions for OCE results analysis. While most

experiments in the industry run for 2 weeks or less, we

are really interested in detecting the long-term effect of a

change. How do long-term effects differ from short-term

outcomes? How can we accurately measure those long-

term factors without having to wait a long time in every

case? What should be the overall evaluation criterion

(OEC) for an experiment? How can we make sure that

the OEC penalizes things like clickbaits that increase user

dissatisfaction? While there are methods to test an OEC

based on a set of labelled experiments [24], how to best

collect such set of experiments for evaluation of the OEC

and other metrics? While, there are models for estimating

the long-term value (LTV) of a customer that may be a

result of a complex machine learning model, can we

leverage such models to create OEC metrics? Once we

have OEC metrics and a Treatment improves or regresses

the OEC metric, how can we best answer why the OEC

metric improved or regressed and uncover the underlying

causal mechanism or root cause for it?

Running experiments at a large scale introduces another

set of issues. It is common for large products serving

millions of users to have 100s of experiments running

concurrently, where each experiment can include

millions of users. For products running so many

experiments, most of the low-hanging fruit get picked

quickly and many Treatments may then cause a very

small change in OEC metrics. It is important to detect

these types of changes. A very small change in a per-user

metric may imply a change of millions of dollars in

product revenue. How can we best increase the

sensitivity of OECs and other experiments metrics

without hurting the accuracy of these metrics to discern

between good and bad Treatments [18, 42, 75]? If we are

running 100s of experiments concurrently how do we

handle the issue of interaction between two treatments?

How can we learn more from analyzing multiple

experiments together and sharing learnings across

experiments? For a product with millions of users, there

are many ways to segment users. Even a small fraction of

users is very significant. Just understanding the average

treatment effect on the entire population is not enough.

How can we best identify heterogenous Treatment effects

in different segments?

2. Engineering and Culture: Culture is the tacit social

order of an organization: It shapes attitudes and behaviors

in wide-ranging and durable ways. Cultural norms define

what is encouraged, discouraged, accepted, or rejected

within a group [35]. How do we build a culture to one

that uses OCEs at scale to ensure we get a trustworthy

estimate of the impact of every change made to a product

and bases ship decisions on the outcome of OCEs [46]?

Engineering systems and tools are critical aspects to

enable OCEs at scale. What are some good development

practices, data logging and data engineering patterns that

aid trustworthy experimentation at scale?

3. Deviations from Traditional A/B Tests: Traditional

A/B tests depend on a stable unit treatment value

assumption(SUTVA) [39], that is, the response of any

experiment unit (user) under treatment is independent of

the response of another experiment unit under treatment.

There are cases where this assumption does not hold true,

such as network interactions or interactions between

multiple experiments. If this issue is ignored, we may get

a biased estimate of the treatment effect. How can we

detect such deviation? Where deviations are unavoidable,

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 22

what is the best method to obtain a good estimate of the

treatment effect?

4. Data quality: Trustworthiness of the results of an OCE

depend on good data quality. What are some best

practices to ensure good data quality? While the sample

Ratio Mismatch test is a standard industry test to indicate

data quality issues in OCEs [13, 22, 23, 45], what are

other critical data quality tests to perform during OCE

results analysis?

3. ESTIMATING THE LONG-TERM

EFFECT

3.1 Problem
Though it only takes a few days to change a part of a software

product or service, the impact of that change may take a long time

to materialize in terms of key product indicators (KPIs) and can

vary across products and scenarios. This makes it challenging to

estimate the long-term impact of a change. For instance, the impact

of a change of ranking results in an online travel service on

customer satisfaction may not be fully understood until customers

stay in a vacation rental or hotel room months after booking.

Increasing the number of ads and hence decreasing their quality on

a search results page may bring in more revenue in the first few

weeks, but might have the opposite impact months later due to user

attrition and users learning that ad results are less useful and

ignoring them [38]. Investing in user retention and satisfaction

through better user experience can be more beneficial over the long

term than what short term measurements indicate. Introduction of

clickbaits on a content provider service may cause increase in clicks

due to the novelty effect but may induce larger dissatisfaction in the

long term as users learn about poor content quality. Further, in two-

sided markets [71], some changes like pricing in ads, ride-sharing

services, or home-sharing services may introduce a market effect

with a shift in either demand or supply in the eco-system and it may

take a long time before the market finds a new equilibrium.

3.2 Common Solutions and Challenges

3.2.1 Long-term Experiments or Holdouts
Running experiments for a long duration is not usually a good

answer. Most software companies have very short development

cycles for planning, developing, testing, ultimately shipping new

features. Short development cycles enable companies to be agile

and quickly adapt to customer needs and the market. Long testing

phases for understanding the impact of changes could harm a

company’s agility and are not usually desirable.

Another option is a long-term holdout group consisting of a random

sample of users who do not get updates. This holdout group acts as

the Control against the set of features shipping to everyone else.

This option usually incurs a lot of engineering cost. The product

development team must maintain a code fork that is not updated for

a long time. All upstream and downstream components to this code

must support this fork as well. This still does not solve the

challenges of non-persistent user tracking and network interactions

described below.

In many products and services, the first visit and subsequent visits

of users is tracked using a non-persistent user identifier, like a

random GUID [72] stored in a browser cookie. This way of tracking

users is not very durable over a long time as users churn their

cookies and we are left with tracking a biased sample of all users

exposed to the variants [23]. Further, a user may access the same

service from multiple devices, and the user’s friends and family

may access the same service. As time goes on, a user or their friends

or family may be exposed to both the treatment and control

experience during an experiment, which dilutes the impact of the

treatment being measured in the experiment.

There is some value in running experiments a little longer when we

suspect that there is a short-term novelty or user learning effect. At

Microsoft, while most experiments do not run for more than two

weeks, it is recommended to run an experiment longer if novelty

effects are suspected and use data from the last week to estimate

the long-term treatment effect [23]. At Twitter, a similar practice is

followed. An experiment at Twitter may run for 4 weeks and data

from last two weeks is analyzed. If a user exposed in the first two

weeks does not appear in the last two weeks, values are imputed for

that user when possible (like imputing 0 clicks). However, it may

not be possible to impute values for metrics, like ratio or

performance metrics.

3.2.2 Proxies
Good proxies that are predictive of the long-term outcome of

interest are commonly used to estimate the long-term impact. For

instance, Netflix has used logistic regression to find good predictors

for user retention. Netflix also used survival analysis to take

censoring of user data into account. LinkedIn created metrics based

on a lifetime value model. For treatments that effect the overall

market, Uber found some macro-economic models to be useful in

finding good proxies. There can be downsides to this approach as

correlation may not imply causation, and such proxies could be

susceptible to misuse, where a treatment may cause an increase in

the proxy metric, but ends up having no effect or regression in the

long-term outcome. It may be better to develop a mental causal

structure model to find good proxies. Bing and Google have found

proxies for user satisfaction and retention by having a mental causal

structure model that estimates the utility of an experience to users.

3.2.3 Modeling User Learning
Another approach followed by Google is to explicitly model the

user learning effects using some long duration experiments [38]. In

long duration experiments, there are multiple and exclusive random

samples of users exposed to the treatment. One group is exposed to

the treatment from the start of the experiment. A second group has

a lagged start, being exposed to the treatment at some point after

the start, and so on. Comparing these groups a day after the second

group is exposed to the treatment provides an estimate of user

learning from the treatment. Google also used cookie-cookie day

randomization to get an estimate of user learning for any duration

(in days) since the experiment started. In these experiments and in

the subsequent analysis, the authors carefully designed the

experiments and did careful analysis to ensure that they were not

seeing many confounding effects (e.g., other system changes,

system learning, concept drift, as well as selection bias issues due

to cookie churn/short cookie lifetimes). They took this information

and modeled user learning as an exponential curve, which allowed

them to predict the long-term outcome of a treatment using the

short-term impact of the treatment directly measured in the

experiment and the prediction of the impact of the treatment on user

learning.

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 23

3.2.4 Surrogates
Surrogate modeling is another way to find good estimates of long-

term outcome. A statistical surrogate lies on the causal path

between the treatment and the long-term outcome. It satisfies the

condition that treatment and outcome are independent conditional

on the statistical surrogate. You can use observational data and

experiment data to find good surrogates. Even if no individual

proxy satisfies the statistical surrogacy criterion, a high-

dimensional vector of proxies may collectively satisfy the

surrogacy assumption [8]. Having a rich set of surrogates reduces

the risk of affecting only a few surrogates and not the long-term

outcome. Facebook used this approach with some success to find

good surrogates of the 7-day outcome of an experiment by just

using 2-3-day experiment results. They used quantile regression

and a gradient-boosted regression tree to rank feature importance.

Note that there is still a risk that having too many surrogates for the

long term may make this approach less interpretable.

4. OEC: OVERALL EVALUATION

CRITERION METRIC

4.1 Problem
One key benefit of evaluating new ideas through OCEs is that we

can streamline the decision-making process and make it more

objective. Without understanding the causal impact of an idea on

customers, the decision-making process requires a lot of debate.

The proponents and opponents of the idea advance their arguments

regarding the change only relying on their own experience, recall,

and interpretation of certain business reports and user comments.

Eventually the team leader makes a call on whether to ship the idea.

This style of decision making is based on the HiPPO (Highest Paid

Person’s Opinion) [37] and is fraught with many cognitive biases

[2]. To help change HiPPO decisions to more objective, data-driven

decisions based on the causal impact of an idea from customer

response [5], we recommend establishing the OEC for all

experiments on your product.

Not all metrics computed to analyze the results of an experiment

are part of the OEC. To analyze experiment results, we require

different types of metrics [22]. First, we need to know if the results

of an experiment are trustworthy. A set of data quality metrics, like

a sample ratio, help raise red flags on critical data quality issues.

After checking the data quality metrics, we want to know the

outcome of the experiment. Was the treatment successful and what

was its impact? This set of metrics comprise the OEC. In addition

to OEC metrics, we have found that there is a set of guardrail

metrics which are not clearly indicative of success of the feature

being tested, but metrics that we do not want to harm. The

remaining bulk of the metrics for an experiment are diagnostic,

feature or local metrics. These metrics help you understand the

source of OEC movement (or the lack of).

It is hard to find a good OEC. Here are a few key properties [19,

24, 55] to consider. First, a good OEC must be indicative of the

long-term gain in key product indicators (KPIs). At the very least

make it directionally accurate in estimating the impact on the long-

term outcome. Second, OEC must be hard to game and it should

incentivize the right set of actions in the product team. It should not

be easy to satisfy the OEC by doing the wrong thing. For instance,

if the OEC is limited to a part or feature of the product, you may be

able to satisfy the OEC by cannibalizing other parts or features.

Third, OEC metrics must be sensitive. Most changes that impact

the long-term outcome should also have a statistically significant

movement in OEC metrics so it is practical to use the OEC to

distinguish between good and bad changes to the product. Fourth,

the cost of computing OEC metrics cannot be too expensive. OEC

metrics must be computed for 100s of the experiments and be run

on millions of users each and every week. Methods that involve

costly computation or costly procedures like human surveys or

human judges may not scale well. Fifth, OEC metrics must account

for a diverse set of scenarios that may drive the key product goals.

Finally, OEC should be able to accommodate new scenarios. For

instance, direct answers to queries like current time would provide

a good user experience in a search engine, but if you only base the

OEC metrics on clicks, those metrics will miss this scenario.

4.2 Common Solutions and Challenges

4.2.1 Search vs. Discovery
Measuring the success of a search experience in search engines has

been a research subject for a long time in academia and for many

products including Bing, Google and Yandex. It is well established

that metrics, like queries per user, cannot be a good OEC because

queries per user may go up when search ranking degrades. Sessions

per user or visits per user are considered better OEC metrics [49].

In general there is an appreciation of focusing on HEART

(Happiness, Engagement, Adoption, Retention, and Task success)

metrics for the OEC and use PULSE (Page views, Uptime, Latency,

Seven-day active users [i.e., the number of unique users who used

the product at least once in the last week], and Earnings) metrics as

your guardrail metrics [62]. Over time, different methods have been

proposed to measure HEART metrics in search engines and other

goal-directed activities [36, 54].

It is still challenging to find metrics similar to HEART metrics to

work for discovery- or browsing-related scenarios, like news

articles shown on the Edge browser homepage, or Google mobile

homepage, or Yandex homepage. The challenge is to understand

user intent. Sometimes users will come with a goal-oriented intent

and would like to quickly find what they are looking for. Other

times users may have a more browsing or discovering-new-

information intent where they are not looking for something

specific but just exploring a topic. In this case it is not clear if lack

of a click on an article link with a summary snippet can be viewed

as a negative experience or positive because users got the gist of

the article and did not have to click further. Further the two intents

(goal-oriented and browsing) can compete. If a user came with a

goal-oriented intent but got distracted and ended up browsing more,

it may cause dissatisfaction in the long term.

4.2.2 Product Goals and Tradeoffs
OEC metrics usually indicate improvement in product KPIs or

goals in the long term. This assumes that product goals are clear.

This is not a trivial problem. It takes a lot of effort and energy to

have clarity on product goals and strategy alignment across the

entire team. This includes decisions like defining who the customer

is and how best to serve them. Further, your team must also create

a monetization strategy for the product. In absence of such clarity,

each sub team in the product group may set their own goals that

may not align with other teams’ or corporate goals.

Even after the product goals are clear, in most companies you end

up with a handful of key metrics of interest. It is challenging how

to weigh these metrics relative to each other. For instance, a product

may have goals around revenue and user happiness. If a feature

increases user happiness but losses revenue, in what case is it

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 24

desirable to ship this feature? This decision is often made on a case-

by-case basis by leadership. Such an approach is susceptible to a

lot of cognitive biases, and also may result in an incoherent

application of the overall strategy. Some product teams like at Bing,

tried to come up with weights on different goals to make this

tradeoff align with the overall product strategy and help ensure that

consistent decision-making processes are used across multiple

experiments.

4.2.3 Evaluating Methods
We mentioned that OEC metrics help decision making more

objective. For it to be widely adopted, it is important to establish a

process to evaluate any changes to the OEC metrics. In some cases,

there may be an expert review team that examines changes to the

OEC and ensure that it retains the properties of a good OEC. To

make this process even more objective, we can have a corpus of

past experiments widely seen to have a positive, negative or neutral

impact. Changes to the OEC were evaluated on this corpus to

ensure sensitivity and directional correctness [24]. Microsoft and

Yandex successfully used this approach to update OEC metrics.

The challenge here is to create a scalable corpus of experiments

with trustworthy labels.

Other approaches include doing degradation experiments, where

you intentionally degrade the product in a treatment and evaluate if

the OEC metrics can detect this degradation. One well known

example are experiments that slow down the user experience

performed at Microsoft and Google [63, 64]. This is also a good

thought exercise to go through while designing and evaluating OEC

metrics to ensure that they are not gameable.

4.2.4 Using Machine Learning in Metrics
Some product teams tried to incorporate machine learning models

(MLMs) to create a metric. For instance, using sequences of user

actions to create a score metric based on the likelihood of user

satisfaction [36, 54, 57] or creating more sensitive OEC metrics by

combining different metrics [25, 42, 59]. Also, good proxies for

long-term outcomes are often used to find good OEC metrics. This

area of experimentation is relatively new. Many product teams are

carefully trying to test these methods in limited areas. These

methods are more commonly used in mature product areas, like

search, where most of the low-hanging fruit is picked and we need

more complex models to detect smaller changes. For new products,

it is usually better to use simple metrics as the OEC.

There are some concerns with using machine learning models to

create metrics. MLM based metrics can be harder to interpret and

can appear as a blackbox, which reduces trustworthiness and makes

it hard to understand why a metric may have moved. Refreshing

MLMs by training them on most recent data may lead to an abrupt

change in the metric that would hard to account for. If the MLM is

being refreshed while an experiment is running, it can create bias

in the metric. Further, there are concerns these metrics are easily

gamed by optimizing for the underlying model that created these

metrics, which may or may not lead to improvement in the long-

term outcome of interest.

5. HETEROGENIETY IN TREATMENT

EFFECTS (HTE)

5.1 Problem
Without loss of generality, we consider the case that there is only

one treatment and one control. Under the potential outcome

framework, (𝑌(1), 𝑌(0)) is the potential outcome pairs and 𝜏 =

𝑌(1) − 𝑌(0) is the individual treatment effect.

The primary goal of an A/B test is to understand the average

treatment effect (ATE), 𝐸(𝜏). Although it is obvious that knowing

individual effect is ideal, it is also impossible as we cannot observe

the counterfactual. The closest thing is the conditional average

treatment effect (CATE) [74], 𝐸(𝜏|𝑋), where 𝑋 is some attribute

or side information about each individual that is not affected by the

treatment. This makes CATE the best regression prediction of

individual treatment effect 𝜏 based on 𝑋.

Attributes 𝑋 can be either discrete/categorical or continuous.

Categorical 𝑋 segments the whole population into subpopulations,

or segments. In practice, the industry almost entirely uses

categorical attributes. Even continuous attributes are made discrete

and considered ordered categorical segments.

Perhaps the most interesting cases are when treatment moves the

same metric in different directions, or when the same metric has

statistically significant movement in one segment but not in another

segment. Assume, for a given segment, say market, a metric moves

positively for some markets but negatively for another, both highly

statistically significant. Making the same ship decision for all

segments would be sub-optimal. Such cases uncover key insights

about the differences between segments. Further investigation is

needed to understand why the treatment was not appreciated in

some markets and identify opportunities for improvement. In some

cases adaptive models can be used to fit different treatments on

different types of users [6, 52, 53, 77].

However, most common cases of HTE only show difference in

magnitude, not direction. Knowledge of these differences can be

valuable for detecting outlier segments that may be indicative of

bugs affecting a segment, or for encouraging further investment

into different segments based on results.

5.2 Common Solutions and Challenges

5.2.1 Common Segments
It is a very common practice to define key segments based on

product and user knowledge. Where possible, it is preferred to

define segments so that the treatment does not interact with the

segment definition to avoid bias.

Here are some of commonly defined segments for many software

products and services:

1. Market/country: Market is commonly used by all

companies with global presence who are running

experiments and shipping features across different

markets. When there are too many markets, it is useful to

put them into larger categories or buckets like markets

already with high penetration and growing markets or

markets clustered by language.

2. User activity level: Classifying users based on their

activity level into heavy, light and new users can show

interesting HTE. It is important to have this classification

based on data before the experiment started to avoid any

bias.

3. Device and platform: Today most products have both

desktop and mobile application. We can test most

backend server-side features across devices and

platforms. With device and platform fragmentation, it is

getting harder to eliminate bugs for all devices and

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 25

platforms. Using device and platform segments in A/B

testing is essential to flag potential bugs using live traffic.

For example, in a recent experiment, a feature of the

Outlook mobile app was moving key metrics on all

Android devices except a few versions, which indicated

further investigation was needed. Device and platforms

also represent different demographics. Many studies

show a difference between iOS users and Android users.

4. Time and day of week: Another common segment used

is time. Plotting the effects delta or percent delta by day

can show interesting patterns, such as the weekday and

weekend effect, reveal a novelty effect [13], and help flag

data quality issues.

5. Product specific segments: LinkedIn segmented users

by normal user and recruiter. On Twitter, some handles

can belong to a single user, so it is useful to segment

Twitter handles by primary or secondary account. For

Netflix, network speed and device types have proved to

be good segments. Airbnb has found that segments of

customers based on whether they have booked before and

based on from where they first arrived on Airbnb site are

useful.

5.2.2 Methodology and Computation
Our community recognizes a lot of recent work from both academia

and industry. The most common mental model is the linear model

with a first-order interaction term between treatment assignment

and covariates 𝑋: 𝑌 = 𝜃 + 𝛿𝑇 + 𝛽 × 𝑇 × 𝑋 + 𝜖 .

Most useful segments used by the community are categorical, so

the linear model suffices. There is consensus that the first-order

treatment effect adjustment by a single covariate, such as a segment

of one categorical variable, is the most actionable. One active area

of research is adapting more MLMs for identifying HTE [74].

Nevertheless, there are a lot of outstanding challenges:

1. Computation scale: Because A/B tests routinely analyze

hundreds or thousands of metrics on millions of

experiment units (users), the resources and time spent on

an automatically scheduled analysis cannot be too much

to ensure that results are not delayed and are not too

expensive to generate. There is a desire to use a simple

algorithm directly formulated using sufficient statistics,

instead of using individual-unit level data.

2. Low Signal Noise Ratio (SNR): A/B testing is already

dealing with low power to estimate the average treatment

effect. Learning HTE is even harder than learning ATE

because of the reduced sample sizes in each

subpopulation.

3. Multiple Testing Problem [66]: There is a severe

multiple testing problem when looking at many metrics,

and many possible ways to segment the population. This

issue, along with low SNR further complicates HTE

estimations.

4. Interpretable and memorable results: Most

experimenters are not experts in statistics or machine

learning. You must have concise and memorable result

summaries to facilitate experimenters to act.

5. Absolute vs. Relative: While determining the HTE, you

must decide whether you will use absolute CATE or

relative CATE (as a percentage of average value of the

metric in control). In many cases it makes sense to use

the relative CATE as the baseline or the average value of

a control metric can be very different for different

segments, like different countries. Use a relative CATE

to normalize the treatment effect in different segments.

To tackle these challenges, there are common approaches

companies take.

1. Separate on-demand and scheduled analysis. For on-

demand analysis, people are willing to spend more

resources and wait longer to get results. For this kind of

one-off analysis, linear regression with sparsity (L1 and

elastic net) and tree-based algorithms, like causal tree, are

very popular. Double ML also gained a lot of attention

recently [14].

2. Because of the challenge of low SNR and multiple

testing, sparse modeling is a must. Even if the ground

truth is not sparse, there are limited resources that

experimenters can spend on learning and taking actions

based on HTE. Sparse modeling forces concise results.

3. To make results memorable, when certain segment has

many values, markets might have a lot of values, it is

desired to merge those values based on a common effect.

For instance, the effect might be different for Asian

markets compared to rest of the world. Instead of

reporting market HTE and list treatment effect estimates

for individual markets, it is better to merge Asian markets

and the rest of the world, and report only two different

effect estimates. Algorithms that can perform regression

and clustering is preferred in these cases, including Fused

Lasso [69] and Total Variation Regularization.

5.2.3 Correlation is not Causation
Another difficulty in acting based on HTE results is more

fundamental: HTE results are not causal, only correlational. HTE

is a regression to predict individual treatment effect based on

covariates 𝑋. There is no guarantee that predictor 𝑋 explains the

root cause of the HTE. In fact, when covariates 𝑋 are correlated,

there might be even issues like collinearity. For example, we may

find HTE in devices showing iOS users and Android users have

different effect. Do we know if device is the reason why the

treatment effects are different? Of course not. iOS and Android

users are different in many ways. To help experimenters investigate

the difference, an HTE model that can adjust the contribution of

devices by other factors would be more useful. Historical patterns

and knowledge about whether investigating a segment 𝑋 helped to

understand HTE of a metric 𝑀 could provide extra side

information.

6. DEVELOPING EXPERIMENTATION

CULTURE

6.1 Problem
Culture is the tacit social order of an organization. It shapes

attitudes and behaviors in wide-ranging and durable ways. Cultural

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 26

norms define what is encouraged, discouraged, accepted, or

rejected within a group [35]. There is a big challenge in creating

an experiment-driven product development culture in an

organization.

Cultural change involves transformation of an organization through

multiple phases. There may be hubris at first, where every idea of

the team is considered a winner. Then there may be introduction of

some skepticism as the team begins experimentation and its

intuition gets challenged. Finally, a culture develops where there is

humility about our value judgement of different ideas, and better

understanding of the product and customers [3].

It is well known that our intuition is a poor judge for the value of

ideas. Case studies at Microsoft showed a third of all ideas tested

through an OCE succeed in showing statistically significant

improvements in key metrics of interest, and a third showed

statistically significant regressions. Similar results have been noted

by many major software companies [3, 17, 28, 47, 56, 60]. Yet it

can be hard to subject your idea to an OCE and receive negative

feedback, especially when you have spent a lot of time working on

implementing it and selling it to your team. This phenomenon is not

unique to the software industry. It is generally referred to as

Semmelweis Reflex, based on the story of the long and hard

transition of mindset among doctors about the importance of

hygiene and having clean hands and scrubs before visiting a patient

[65]. It takes a while to transition from a point where negative

experiment results feel like someone telling you that your baby is

ugly. You must enact a paradigm shift to put your customers and

business in focus and listen to customer responses. At that point,

negative experiment results are celebrated as saving customers and

your business from harm. Note that not only bad ideas (including

bloodletting [11]) appear as great ideas to a human mind, we are

also likely to discount the value of great ideas (including good hand

hygiene for doctors [65]). There are cases where an idea that

languished in the product backlog for months as no one thought it

was valuable turns out to be one of the best ideas for the product in

its history [51].

A culture of working together towards the common goal of

improving products through OCEs amplifies the benefits of

controlled experimentation at scale [32]. This paves the way for

frictionless integration of OCEs into the development process, and

makes it easy to run an OCE to test an idea, get automated and

trustworthy analysis of this experiment quickly, and interpret the

results to take the next step: ship the feature, iterate, or discard the

idea. A strong experimentation culture ensures that all changes to

the product are tested using OCEs and teams benefit from OCEs

discovering valuable improvements while not degrading product

quality. It allows you to streamline product development

discussions so everyone understands the OEC for the product and

can take an objective decision to ship a feature based on the impact

on the OEC metric. This gives developers freedom to build and test

different ideas with minimum viable improvements without having

to sell the entire team on the idea beforehand. And allows the team

to make future decisions to invest in a product area based on

changes to the OEC metric due to features seen in that area.

6.2 Common Solutions and Challenges
There are many cultural aspects to adoption of OCEs at scale to

have a trustworthy estimate of the impact of every change made to

a product.

6.2.1 Experimentation Platform and Tools
First, we need to make sure that the experimentation platform has

the right set of capabilities to support the team. It must be able to

test the hypothesis of interest to the product team. To do that one of

the of the most important things required is a set of trustworthy and

easily interpretable metrics to evaluate a change made to the

product. In addition, it’s useful if there are easy tools to manage

multiple experiments and clearly communicate results from these

experiments.

6.2.2 Practices, Policies and Capabilities
The second aspect deals with creating right set of practices,

policies, and capabilities to encourage teams to test every change

made to their product using OCEs. The following are strategies that

different companies use to achieve this goal.

High Touch: Once per quarter, the LinkedIn experimentation team

handpicks a few business-critical teams, prioritizes these teams,

and then works closely with them on their needs. At the end of the

quarter the team agrees they’ll use that experiment platform going

forward, and the experimentation team continues to monitor them.

Over several years a data-driven culture is built. Managers and

directors now rely on development teams running experiments

before features launch.

The Microsoft experimentation team selects product teams to

onboard based on factors indicative of the impact experimentation

has on the product. The experimentation team works very closely

with product teams over multiple years to advance the adoption of

experimentation and its maturity over time.

The downside of the High Touch approach is the large overhead in

having a deep engagement with every team, and it may become a

bottleneck for scaling.

Top down buy in: It can help if there is a buy-in into

experimentation by leadership and they expect every change tested

in a controlled experiment. Further they can set team goals based

on moving a metric in controlled experiments. This creates a culture

where all ship decisions are talked about in terms of their impact on

key metrics. The product teams celebrate shipping changes that

improve key metrics, and equally importantly, celebrate not

shipping changes that would cause a regression in key metrics. It is

important that the team’s key metrics are determined beforehand

and agreed upon by the team. It is prudent to be cautious about

preventing the gaming of metrics or over fitting metric flaws, where

the metrics of interest move but are not indicative of improvement

in the product. At Netflix a long-standing culture of peer review of

experiment results is organized around frequent “Product Strategy”

forums where results are summarized and debated amongst

experimenters, product managers, and leadership teams before an

experiment is “rolled out”.

Negative and positive case studies: Stories about surprising

negative results where a feature that is widely acclaimed as a

positive causes a large regression in key metrics, or a surprising

positive incident where a small change no one believed would be

of consequence causes a large improvement in a metric were great

drivers for cultural change. These cases drive home a humbling

point that our intuition is not a good judge of the value of ideas.

There are some documented examples the best OCEs with

surprising outcomes [4]. For instance, an engineer at Bing had the

idea to make ad titles longer for ads with very short titles. The

change was a simple and cheap, but it was not developed for many

months as neither the developer nor the team had much confidence

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 27

in the idea. When it was finally tested, it caused one of the biggest

increases in Bing revenue in history [51].

Safe Rollout: It is easier to get a team to adopt experimentation

when it fits into their existing processes and makes them better.

Some teams at Microsoft and Google began using experimentation

as a way to do safe feature rollouts to all users, where an A/B test

runs automatically during deployment as the feature is gradually

turned on for a portion of users (Treatment) and others (Control)

don’t have the feature turned on. During this controlled feature

rollout, the feature’s impact estimate on key reliability and user-

behavior metrics helped find bugs.

This method helps gain a toe hold in the feature team’s

development process. Over time, as the feature team started seeing

value in experimentation, they looked forward to using

experimentation to test more hypotheses.

Report cards and Gamification: Microsoft found that they

encourage the adoption of OCEs in a set of teams by having a report

card for each team that assesses their experimentation maturity

level [31]. This report card gives the team a way to think about the

potential of using experiments to improve the product. It gives the

team a measure of its status and relative status among other teams

and helps highlight key areas where they can invest to further

improve.

Booking.com is experimenting with gamification in their

experimentation platform where users of the platform can receive

badges to encourage the adoption of good practices.

Twitter and Microsoft also use mascots, like duck [70] and HiPPO

[37] to spread awareness about experimentation in their companies.

Education and support: When a company tests thousands of

experiments a year, it is impossible for experimentation teams to

monitor each experiment to ensure that experiment analysis is

trustworthy. It is important that each team has subject matter

experts to help them run experiments and ensure that they obtain

reliable and trustworthy results. Educating team members on how

to use OCEs to test hypotheses and how to avoid common pitfalls

is critical in scaling experimentation adoption. We will discuss this

important point in detail in section 7.

7. TRAINING OTHERS IN THE

ORGANISATION TO SCALE

EXPERIMENTATION

7.1 Problem
While the concept of an A/B test is simple, there can be complex

practical issues in designing an experiment to test a particular

feature and analyzing the results of the experiment. Product teams

need custom support when running experiments, because they often

have very specific questions that cannot be answered with a simple

set of frequently answered questions.

A centralized support function does not scale very well. Central

teams end up spending too much time on support and not enough

on other things. Additionally, specific product domain knowledge

is often required to provide support. A centralized support function

requires deep knowledge of all supported products, which is often

not feasible. Conversely, anyone providing support needs

fundamental experimentation knowledge, which might be easier to

scale. Such democratization of knowledge and expertise enables a

better experimentation culture.

7.2 Common Solutions and Challenges
Across different companies, there are a few key practical

challenges in spreading the expertise about OCEs that enable

experimentation at scale.

• How do we set up a community to support

experimenters?

• How do we incorporate them in the experiment lifecycle?

• How do we incentivize these people?

• How do we quantify their impact?

• How do we train them?

• How do we maintain quality standards?

Here are examples from several companies on how they tried to

solve these challenges.

7.2.1 Yandex: “Experts on Experiment”
At Yandex, a program called “Experts on Experiment” exists to

scale support. These Experts are handpicked from product teams by

the central experimentation group. Any experiments must be

approved by an Expert before they are allowed to ship. Experts are

motivated because their product needs approval before shipping, so

they voluntarily sign up to be an Expert. Their application is then

reviewed by the central experimentation group. Experts are

motivated by the status provided by being an Expert. They get a

digital badge in internal staff systems, so their status is visible to

others. There are no clear KPIs for the program. There is a checklist

of minimum experience and an informal interview process involved

in becoming an expert.

7.2.2 Amazon: “Weblab Bar Raisers”
Weblab is Amazon’s experimentation platform. In 2013, Amazon’s

Personalization team piloted a “Weblab Bar Raisers” program in

their local organization with the intention of raising the overall

quality of experimental design, analysis, and decision making. The

initial Bar Raisers were selected to be high-judgment, experienced

experimenters, with an ability to teach and influence. Expectations

for the role were clearly defined and documented and, after a few

iterations, the program was expanded company wide. Bar Raiser

review is not mandatory for all organizations; often because not

enough Bar Raisers are available. Bar Raisers spend about 2–4

hours per week providing OCE support. Incentives rely on Bar

Raisers buying into the mission of the program, which contributes

to their personal growth and status within the company. A

mentorship program, where existing Bar Raisers train new ones,

exists to ensure that new Bar Raisers are brought up to speed

quickly.

7.2.3 Twitter: “Experiment Shepherds”
At Twitter, the “Experiment Shepherds” program, founded three

years ago by a product group including the current CTO, now has

approximately 50 shepherds. Most of these are engineers with

experience running experiments. There are strict entry

requirements. Experiment owners implicitly opt-in for review:

either pre-test or pre-launch. Shepherds have on-call duty one week

a year to triage incoming requests. Incentives include feelings of

responsibility for the product and acknowledgement of contribution

during performance review. There are no clear impact KPIs, but

qualitatively impact seems to exist. There is a structured training

program consisting of one hour of classroom training per week for

two months. These classes cover seven topics (e.g. dev cycle,

ethics, metrics, stats 101). There are also case study-based

discussions.

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 28

7.2.4 Booking.com: “Experimentation

Ambassadors”
At Booking.com, the “Experimentation Ambassadors” program

started about six months ago. The central experimentation

organization handpicked people (~15) with experimentation

experience and interest in providing support in product

organizations that seemed to need the most support. Ambassadors

form the first line of support with a clear escalation path and

priority support from the central organization. Ambassadors are

hooked into the central support ticketing system so that they are

aware of other open support questions and can pick up tickets as

they see fit. They are included in the experimentation

organization’s internal communications, to keep them aware of

current developments or issues. There is a monthly meeting to

discuss product needs and concerns. Incentives for Ambassadors

include feeling responsible for the product, getting priority support

from the central organization, and acknowledgement on their

performance review. There are no clear impact or quality KPIs, but

there are plans to include these as the program scales. There is no

specific training for Ambassadors, but there is extensive general

experiment training for all experimenters, including Ambassadors.

7.2.5 Booking.com: “Peer-Review Program”
Booking.com also has a separate “Peer-Review Program” aimed

at getting people involved in providing pro-active feedback to

experimenters. Anyone in the company can opt-in to the program.

Every week participants are paired with a random counterpart.

Currently approximately 80 people participate. Each pair picks a

random experiment to review. The experiment platform includes a

“give me a random experiment” button for this purpose. The

platform also supports built-in commenting and threading as part

of the reporting interface. Incentives to participate include making

new friends, learning new things, and reward badges displayed on

the platform interface. There are KPIs defined around reviews and

comments. Newcomers are paired with experienced users the first

few times to ensure that they are brought up to speed. A one-page

guide for writing good reviews is also available [33].

7.2.6 Microsoft: Center of Excellence Model
At Microsoft, a data scientist or two from the central

experimentation platform team (Analysis & Experimentation) work

very closely with a product team. At first, the data scientists from

the experimentation platform handle almost all support needs for

the product and gain good insight into the product, business,

customers, technology, and data. At the same time, the data

scientists work on transferring knowledge and expertise to

champions in the product team. The expectation is that over time,

as more experiments are run, the product team will become more

self-sufficient in running trustworthy experiments, and the person

from the central experimentation platform team helps with a

smaller and smaller percentage of experiments—those that are

unique or have issues. The data scientists from the central team and

champions from the product team usually conduct further training

to educate the entire product team on best practices and processes

for running experiments. The experimentation team maintains a

monthly scorecard to measure the goals of each product onboarding

for running trustworthy experiments at scale. These goals are set at

the beginning of every year. Every six weeks, the data scientists

and champions review the experimentation operations in the

product where successes and failures from the past are highlighted

along with a plan to address gaps and opportunities. The incentives

for data scientists and champions are partially tied to the success of

experimentation in their respective products.

The central experimentation team holds a weekly experiment

review, where any experiment owner can share their experiment

and request feedback from the data scientists. The central

experimentation team also conducts a monthly Introduction to

Experimentation class and Experiment Analysis lab open to

everyone at Microsoft. In addition, twice a year the team hosts a

meeting focused on experiments and discusses the best controlled

experiments. This provides product teams an opportunity to

showcase their strengths in experimentation and learn from other

teams.

7.2.7 Google: Just-in-time Education Model
Google has used a variety of approaches, but one of the most

successful relies heavily on just-in-time education [67]. For

example, for experiment design, they have a checklist that asks

experimenters a series of questions, ranging from “what is your

hypothesis?” to “how will you measure success?” and “how big of

a change do you need to detect?” Google has an “experiment

council” of experts who review the checklists, and have found

consistently that the first time through, an experimenter needs

handholding. But on subsequent experiments, less handholding is

needed, and the experimenter starts teaching their team members.

As they become more experienced, some experimenters can

become experts and perform reviews. Some teams have sufficient

expertise that they can retire the entire checklist process.

For analysis, Google has an experiment review similar to

Microsoft. The advantage is both just-in-time education to

experimenters about interpreting experiment results and meta-

analysis by experts to find the larger patterns.

8. COMPUTATION OF EXPERIMENT

ANALYSIS AND METRICS

8.1 Problem
When 100s of experiments are running simultaneously on millions

of users each, having an automated, reliable and efficient way to

compute metrics for these experiments at scale is crucial to create

a culture where OCEs are the norm. The system to compute

experiment results can be viewed as a pipeline. It starts with the

product collecting telemetry data points instrumented to measure

user response, like clicks on a particular part of the product. The

product uploads telemetry to a cloud store. This telemetry is seldom

used in raw form for any analysis. Further data processing,

commonly called cooking, joins this data with other data logs, like

experiment assignment logs, and organizes it in a set of logs in

standard format, called a cooked log. Most reporting and

experiment analysis occur on top of the cooked log. For running

experiments at scale, it is important to have a system for defining

metrics of interest on top of these logs and actually computing

metrics for each experiment running over millions of users. In

addition, the system must support further ad hoc analysis of

experiments so that data scientists can try different metrics and

methods to find better ways of analyzing results.

There are a few key properties of a good system that help in running

experiments at scale. Each part of the system must be efficient and

fast to scale to 100s of experiments over millions of users each. It

must be decentralized so that many people in the organization can

configure and use the system to fulfill their needs. It must also have

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 29

some level of quality control to ensure that the results are

trustworthy. Finally, it must be flexible enough to support the

diverse needs of feature teams who are constantly working on

adding new features and new telemetry, and data scientists working

on new metrics and methodologies to extract insights from these

experiments.

This system forms the core of experimentation analysis for any

product. If done well, it empowers feature teams to run 100s of

experiments smoothly and get trustworthy insights in an automated

and timely manner. It helps them understand if the treatment

succeeded or failed in moving the key OEC metric and gives insight

into why it happened. These insights are crucial in taking next steps

on an experiment: investigating a failure or investing further in

successful areas. Conversely, if this system does not have the

desired properties mentioned above, it often becomes a bottleneck

for scaling experimentation operations and getting value from

experiments.

8.2 Common Solutions and Challenges

8.2.1 Data Management and Schema
The structure and schema of cooked logs affect how data is

processed in downstream data pipelines, such as metric definitions

and experiment analysis. There is a clear tradeoff between

reliability and flexibility. If the rules and constraints are strict, the

data will be reliable and can be consumed consistently across

different use cases. At the same time, having too strict constraints

can slow down the implementation of the logging, and thus

decelerate experimentation and product development.

Different companies have different ways of solving this issue. At

Netflix, there is a single cooked log where each row is a JSON array

containing all data collected. JSON structure allows flexibility and

extensibility. There is a risk that the log may keep quickly

changing. This must be managed by development practices to

ensure that key telemetry is not lost due to a code change. A similar

approach is used by MSN and Bing at Microsoft.

The bring-your-own-data approach is followed at LinkedIn,

Airbnb, and Facebook. Each product team is responsible for

creating data streams and metrics for each experiment unit every

day. These streams follow certain guidelines that enable any

experiment to use these streams to compute metrics for that

experiment.

Products, like Microsoft Office, have an event-view schema, where

each event is on a separate row. This format is also extensible with

a more structured schema.

Another approach followed by some products is to have a fixed-set

of key columns required to compute key metrics, and a property-

bag column that contains all other information. This allows stability

for key columns and flexibility to add new telemetry to the log.

8.2.2 Timely and Trustworthy Experiment Analysis
Many companies track hundreds of metrics in experiments to

understand the impact of a new feature across multiple business

units, and new metrics are added all the time. Computing metrics

and providing analysis of an experiment on time is a big challenge

for experimentation platforms.

As previously mentioned, in many companies, like LinkedIn,

Facebook and Airbnb, the metrics framework and experimentation

platform are separate, so that each product team or business unit

own their metrics and is responsible for them. The experimentation

platform is only responsible for the computation of metrics for

experiment analysis. In other companies, like Microsoft, Google,

Booking.com and Lyft, the metric computation is usually done by

the experimentation team right from telemetry or cooked logs.

Individual metrics and segments can have data quality issues,

delays or be computationally expensive. To resolve these issues,

companies segment metrics in various ways. Having ‘tiers’ or

metrics so that high-tier metrics are prioritized and thoroughly

tested is a way to consume reliable experiment results. Also, if not

all metrics have to be pre-computed, experimentation platforms can

offer an on-demand calculation of the metrics to save computation

resources.

Telemetry data from apps may have large delay getting uploaded

from a section of devices. It is important to incorporate this late-

arriving data in experiment analysis to avoid selection bias. Some

companies like Facebook leave a placeholder for these metric

values and fill it in once enough data arrives. In other companies,

like LinkedIn and Microsoft, these metric values are computed with

the data received at the time and then recomputed later to update

the results. Usually there is a definite waiting period after which the

metric value is no longer updated.

A few companies put additional steps to ensure that metrics are

good quality. Some companies like LinkedIn have a committee to

approve adding new metrics or modifying existing metrics to

ensure metric quality. At a few companies, the metrics must be

tested to ensure that they are sensitive enough to detect a

meaningful difference between treatment groups. To save

computational resources, the experimentation platform can require

a minimum statistical power on the metrics or place metrics in

specific formats. Booking.com has an automated process to detect

data and metric quality issues which includes having two separate

data and metric computation pipelines and process to compare the

final results from both [41].

8.2.3 Metric ownership
Metrics often have an implicit or explicit owner who cares about

the impact on that metric. In a large organization running 100s of

experiments every day, scalable solutions ensure that these metric

owners know about the experiments that move their metric, and that

experiment owners know who to talk with when a particular metric

moves. In many cases, it is easy to view the results of any

experiment, and metric owners look for experiments that impact

their metrics. Team organization structure also helps in this case. If

there is a special performance team in the organization, it becomes

clear to experiment owners to talk with that team when

performance metrics start degrading. Some companies like

Microsoft built automated systems for informing both experiment

owners and metric owners when large movements are seen in a

particular metric. Some teams, like performance teams, may have

additional tools to search through multiple experiments to find ones

that impact their metrics.

8.2.4 Supporting Exploratory and Advanced

Experiment Analysis Pipelines
Very often, an experiment requires additional ad hoc analysis that

cannot be supported by the regular computation pipeline. It is

important that data scientists can easily conduct ad hoc analysis for

experiments. Some ad hoc analyses may quickly find application in

many more experiments. It is a challenge for experimentation

platforms to keep up with supporting new ways of analyzing

experiments while maintaining reliability and trustworthiness.

While there was no common solution to solving this problem across

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 30

different companies, there are some common considerations for

supporting a new analysis method:

• Is the new analysis method reliable and generalizable for all

metrics and experiments?

• Is the benefit from the new method worth the additional

complexity and computation?

• Which result should we rely on if the results of the

experiment are different between various methods?

• How can we share the guideline so that the results are

interpreted correctly?

9. DEALING WITH CLIENT BLOAT

9.1 Problem
Many experiments are run on client software (e.g., desktop and

mobile). In these experiments, a new feature is coded behind a flag

switched off by default. During an experiment, the client

downloads a configuration, that may turn the feature flag on for that

device. As more and more experiments are run over time, the

configuration files that need to be sent keep growing larger and

increase client bloat. This eventually starts to affect the

performance of the client.

9.2 Common Solution
While it may seem that if feature F is successful it will need the flag

set to ON forever, that’s not the case if the experimentation system

is aware of versions and which versions expect a setting for F. A

key observation is that at some point when feature F is successful,

it is integrated into the codebase, and from that point on, the

configuration of F is NOT needed.

Here is a description of this scenario:

V10.1: Feature F is in code but not finished.

- Default (in code) = Off.

- Config: No F

V10.2 (experiment): Feature F is done.

- Default (in code) = Off

- Config: F is on/off at 50/50

If the idea fails, stop sending config for F. If the idea succeeds,

Config: F=On. The key observation is that the config system must

send F=On for every release that needs F as config by default, 10.2

and higher

V10.3 – Other features are evaluated.

- Config: F=On, G=On…

V10.4 – Code is cleaned.

- F=On in code. No need for F in config

Config system should stop sending F for V10.4 and higher. Every

feature then has [Min version] and after cleanup [Min Version, Max

version]. If we assume every release has 100 new features driven

by config and 1/3 of these features are successful, the number of

configuration features on the server grows at 100/3 ~ 33 per release,

but only successful features should be maintained.

The number of features sent to the client is bounded by those that

must be experimented and those not cleaned. Assuming three

releases are needed to experiment and clean, there are 100 features

in config for experiments and 100 (33 * 3 releases) maintained

waiting for cleanup. This means that the total configurations are

about 200, and that does not grow.

10. NETWORK INTERACTIONS

10.1 Problem
Network interactions are a significant concern in A/B testing.

Traditional A/B test assume a stable user treatment value (SUTVA)

to accurately analyze the treatment effect. SUTVA implies that the

response of an experiment unit (user) is independent of the response

of another experiment unit under treatment [73]. A network

interaction can occur when a user’s behavior is influenced by

another user’s, so that users in the control group are influenced by

actions taken by members in the treatment group. As a result, the

control group is only a control group in name and no longer reflect

outcomes that would be observed if the treatment did not exist. If

you ignore network interactions, you get a biased estimate of the

treatment effect.

10.2 Common Solutions and Challenges
These network interactions are an inherent outcome of the products

and scenarios where changes are being tested. There does not seem

to be one single method that can mitigate the impact of network

interactions on the accuracy of the estimated treatment effect. Here

are some common cases and the methods to deal with them.

10.2.1 Producer and Consumer Model
At LinkedIn, there is a meaningful producer/consumer distinction

between user roles for a feature. For instance, there are producers

and consumers of the hashtags feature for the main feed on

LinkedIn. In these cases, LinkedIn typically uses two-sided

randomization. Two orthogonal experiments are run together: one

controlling the production experience and one controlling the

consumption experience. For the hashtags example, this implies

that the production experiment allows users in treatment to add

hashtags to their posts, and the consumption experiment allows

users in treatment to see hashtags on their feed. The production

experience starts at a low ramp percentage with consumption one

at a high percentage, and then gradually ramping the production

experience.

If we do a simple A/B test lumping both features together, then

things go wrong: The producer effect is underestimated because

there are too few potential consumers. For our example, if a user in

treatment in the production experiment can post hashtags but not

everybody can see them, then the user is likely to engage less with

the platform. The consumer effect is underestimated because there

are too few potential producers. Being able to see hashtags may

make users more engaged, but not if too few people (i.e. only

treated members) use them. Using two sided randomization helps:

when 95% of consumers can see the produced content, then the

effect of producers (say at 50% ramp) is more accurate; when 95%

of producers are “enabled,” then the consumer test (say 50% ramp)

is more accurate.

This method may not account for competition effects between

producers, in which case we typically use a 95% ramp over 50%

ramp if enough power is available. Further, it may not be possible

to disentangle consumption from production in a feature. For

instance, if a user mentions another user using ‘@ mention’ feature,

then the consumer of the feature must be notified about being

mentioned.

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 31

10.2.2 Known Influence Network Model
In many products at LinkedIn and Facebook, the network over

which users can influence each other is known. This information is

helpful for designing better controlled experiments.

LinkedIn typically uses its egoClusters method, creating about

200,000 ego-networks, comprised of an “ego” (the individual

whose metrics are measured) and “alters,” who receive treatments

but whose metrics are not of interest. Clusters are designed to have

egos representative of LinkedIn users and their networks, and

treatment is allocated as follows: in all clusters, egos are treated. In

“treated” clusters, all alters are treated. In control clusters, all alters

remain in control. A simple two-sample t-test between egos of

treated clusters and egos of control clusters gives the approximate

first-order effect of having all their connections treated versus none.

Facebook and Google employ similar cluster based randomization

techniques [20, 26]. These designs are the subject of recent

academic papers [9].

10.2.3 One-to-One Communication
When the feature being tested is one-to-one communication,

LinkedIn typically uses model-based approaches when analyzing

one-to-one messaging experiments, counting messages explicitly

according to four categories: those that stay within the treatment

group, those that stay within the control group, and those that cross

(one way or the other). The total number of messages of these

categories are contrasted with the help of a model and permutation

testing to measure the impact of network interactions.

At Skype, some experiments related to call quality are randomized

at the call level, where each call has an equal probability of being

treatment or control. Note that a single user may make multiple

calls during the experiment. This approach does not account for

within-user effect from a treatment but tends to have much greater

statistical power for detecting the treatment effect on the call

metrics.

10.2.4 Market Effects
In a two-sided marketplace, different users’ behavior is correlated

with each other due to a demand-and-supply curve. If we look at a

ride service, when a driver is matched to a passenger, it lowers the

probability that other drivers in vicinity are matched. Simple

randomization of passengers or drivers into Treatment and Control

groups causes changes in market conditions, therefore biases the

estimated Treatment effect. To reduce the network interactions

between users, Lyft conducts cluster sampling by randomizing

across spatial regions or time intervals of varying size, ensuring

similarity in market conditions between variants. The coarser the

experimental units are, the less interference bias persists, although

it comes with the cost of increased variance in the estimate [29].

Uber has tried introducing the treatment to a random set of markets

and have a synthetic control to predict the counterfactual [1, 34].

Similar market effects also affect online ads. In this hypothetical

example, assume that all budget for a set of advertisers is being

spent. For the experiment, the treatment increases ad load from

these advertisers therefore increasing ad consumption. In this

experiment, you would observe that revenue in the treatment group

goes up. But the treatment group is stealing budget from the control

group, and there will be no increase in revenue when the treatment

ships to all users.

One way to prevent budget stealing is to split the ad budget of all

ad providers in proportion to the percentage of user traffic exposed

to the treatment and control groups. While this addresses the

problem of budget stealing, it does not help us understand if the

treatment will cause an increase in revenue. Higher use of budgets

not being entirely spent or an increase in budget from advertisers

spending their entire budget may be a better indicator of increase in

revenue.

10.2.5 Multiple Identities for the Same Person
Similar statistical issues arise when the same user has several

accounts or cookies. Instead of spillover occurring from one user to

another, it may occur from one account to another, within the same

user. A natural level of randomization is user. However, this

requires knowing which accounts belong to the same user. If this is

unknown or imperfectly known, randomization at the account-level

may be the only alternative. Account-level randomization generally

tends to suffer from attenuation bias. Studies in Facebook have

indicated that cookie level randomization can underestimate person

level effects by a factor of 2 or 3 [15]. Attenuation bias is also one

of the main pitfalls in running long-term experiments because the

chances of within-user spillover increases with time [23].

11. INTERACTIONS BETWEEN

MULTIPLE EXPERIMENTS

11.1 Problem
If there are non-independent treatment effects in two experiments,

then those experiments are said to be interacting:

𝐴𝑇𝐸(𝑇1) + 𝐴𝑇𝐸(𝑇2) ≠ 𝐴𝑇𝐸(𝑇1𝑇2)

 A textbook example of interaction between two experiments is

where the treatment in the first experiment changes the foreground

color to blue and the treatment in the second experiment changes

the background color to blue. In this example let us assume that

there are positives for each experiment in isolation, but the impact

of both treatments is catastrophic. A user who experiences both

treatments at the same time sees a blue screen.

In products where 100s of experiments run concurrently this can be

a serious issue. Ideally you want to prevent contamination where

the treatment effect measured in one experiment may become

biased because that experiment interacts with another experiment.

At the same time, you need to make a joint ship decision for

interacting experiments. As in the case of the text book example

above, individually both treatments are good ship candidates but

jointly you can only ship one.

11.2 Common Solutions and Challenges
From our experience, it is rare that two interacting experiments

cause enough contamination that it changes the ship decision. Most

products are well architected and small teams work independently

of most other teams working on different areas of the product. The

chances of interaction between two experiments are highest when

both experiments are being run by the same sub team who are

changing the same part of the product. To prevent interaction

between these types of experiments, the Microsoft and Google

experimentation platforms have the concept of numberlines or

layers [46, 68]. Experiments that run on the same numberline or

layer are guaranteed to get an exclusive random sample of the user

population, so no user is exposed to two experiments being run

concurrently in the same layer or numberline. This limits the

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 32

number of users who can be part of an experiment. If the first

experiment is exposed to half of all users, then the second

experiment cannot be exposed to more than remaining half of the

user base. Small teams manage a group of numberlines or layers.

Based on their understanding of the treatments in different

experiments, the teams can decide whether to run the experiments

in the same numberline/layer.

To detect interactions between two experiments running in two

different layers, Microsoft runs a daily job that tests each pair of

experiments for additivity of their treatment effects:

𝜇(𝑇1𝐶2) − 𝜇(𝐶1𝐶2) ≠ 𝜇(𝑇1𝑇2) − 𝜇(𝐶1𝑇2).

It is rare to detect interactions between two experiments as

experiment owners already try to isolate experiments that may

conflict by running them on the same numberline or layer.

To address the problem of joint decision making, you can run both

experiments on different numberlines or layers—if we know that

the combination of two experiments cannot lead to a catastrophic

result. In this case, you can analyze the factorial combination of

both experiments to understand the effect of treatment from each

experiment individually and the effect of treatments from both

experiments.

12. CONCLUSION
This is the first paper that brings together the top practical

challenges in running OCEs at scale from thirty-four experts in

thirteen different organizations with experience in testing more

than one hundred thousand treatments last year alone. These

challenges broadly fall into four categories: analysis of

experiments, culture and engineering, deviations from traditional

A/B tests, and data quality. In Sections 3-5, we discussed the

problem that while most experiments run for a short period of time,

we want to estimate the long term impact of a treatment and define

an overall evaluation criteria (OEC) to make ship decisions for all

experiments in a consistent and objective manner while taking into

account the heterogenous treatment effects across different product

and user segments. In sections 6-9, we discussed the importance of

culture and engineering systems in running OCEs at scale. We

discussed common challenges and approaches in making OCEs the

default method for testing any product change and scaling OCE

expertise across the company. We also discussed some common

challenges and solutions for computation of experiment analysis

and metrics, and client bloat due to configurations from a large

number of OCEs. In Sections 10 and 11, we discussed problems

and challenges arising from some common deviations from

traditional OCEs due to inherent network interactions in different

product scenarios and interactions between experiments. There are

many more issues of great importance like privacy, fairness and

ethics that are handled in each company individually and often form

the underlying subtext of the analysis methods and best practices

including expert supervision and review described in this paper. We

hope to discuss these topics in more detail in future

summits/meetups. We hope this paper sparks further research and

cooperation in academia and industry on these problems.

13. ACKNOWLEDGMENTS
We would like to thank Stacie Vu from LinkedIn and Michele

Zunker from Microsoft for their help in making this summit

possible, and Cherie Woodward from Docforce for helping edit the

paper. We would also like to thank our colleague Widad

Machmouchi and John Langford for their feedback.

14. ADDITIONAL AUTHOR

INFORMATION
Somit Gupta (somit.gupta@microsoft.com), Ronny Kohavi

(ronnyk@microsoft.com), Diane Tang (diane@google.com), Ya

Xu (yaxu@linkedin.com), Reid Andersen

(reid.andersen@airbnb.com), Eytan Bakshy (ebakshy@fb.com),

Niall Cardin (niallc@google.com), Sumitha Chandran

(schandran@lyft.com), Nanyu Chen (nchen@linkedin.com),

Dominic Coey (coey@fb.com), Mike Curtis

(mikecurtis@google.com), Alex Deng (alexdeng@microsoft.com),

Weitao Duan (wduan@linkedin.com), Peter Forbes

(pforbes@netflix.com), Brian Frasca (brianfra@microsoft.com),

Tommy Guy (riguy@microsoft.com), Guido W. Imbens

(imbens@stanford.edu), Guillaume Saint Jacques

(gsaintjacques@linkedin.com), Pranav Kantawala

(pranav@google.com), Ilya Katsev (bromozel@yandex-team.ru),

Moshe Katzwer (mkatzwer@uber.com), Mikael Konutgan

(kmikael@fb.com), Elena Kunakova (ensuetina@yandex-team.ru),

Minyong Lee (minyong.lee@airbnb.com), MJ Lee

(mjlee@lyft.com), Joseph Liu (josephl@twitter.com), James

McQueen (jmcq@amazon.com), Amir Najmi (amir@google.com),

Brent Smith (smithbr@amazon.com), Vivek Trehan

(vivek@uber.com), Lukas Vermeer

(lukas.vermeer@booking.com, Booking.com), Toby Walker

(towalker@microsoft.com), Jeffrey Wong

(jeffreyw@netflix.com), Igor Yashkov (excel@yandex-team.ru)

15. REFERENCES
[1] [Uber Marketplace] Marketplace Experimentation --

Vivek Trehan - YouTube: 2018.

https://www.youtube.com/watch?v=IR000RqN7pw.

Accessed: 2019-02-05.

[2] 25 Cognitive Biases Home Page | 25 Cognitive Biases -

"The Psychology of Human Misjudgment"

http://25cognitivebiases.com/. Accessed: 2019-02-08.

[3] A/B Testing at Scale Tutorial Strata 2018: https://exp-

platform.com/2018StrataABtutorial/. Accessed: 2019-02-

05.

[4] AdvancedTopic_BestControlledExperiments.docx -

Microsoft Word Online:

https://onedrive.live.com/view.aspx?resid=8612090E610

871E4!323967&ithint=file%2Cdocx&app=Word&authk

ey=!APyJuF_t0dOFj_M. Accessed: 2019-02-05.

[5] AdvancedTopic_OEC.docx - Microsoft Word Online:

https://onedrive.live.com/view.aspx?resid=8612090E610

871E4!282179&ithint=file%2Cdocx&app=Word&authk

ey=!ANFGOBrhVt91ODk. Accessed: 2019-02-05.

[6] Agarwal, A. et al. 2016. Making Contextual Decisions

with Low Technical Debt. (Jun. 2016).

[7] Amazon.com case study - 2018 update | Smart Insights:

2018. https://www.smartinsights.com/digital-marketing-

strategy/online-business-revenue-models/amazon-case-

study/. Accessed: 2019-02-04.

[8] Athey, S. et al. 2016. Estimating Treatment Effects using

Multiple Surrogates: The Role of the Surrogate Score and

the Surrogate Index. arXiv. (2016).

DOI:https://doi.org/10.1039/C002690P.

[9] Athey, S. et al. 2018. Exact p -Values for Network

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 33

Interference. Journal of the American Statistical

Association. 113, 521 (Jan. 2018), 230–240.

DOI:https://doi.org/10.1080/01621459.2016.1241178.

[10] Bakshy, E. et al. 2014. Designing and deploying online

field experiments. Proceedings of the 23rd international

conference on World wide web - WWW ’14 (New York,

New York, USA, 2014), 283–292.

[11] Bloodletting – ExP Platform: https://exp-

platform.com/bloodletting/. Accessed: 2019-02-05.

[12] Building an Intelligent Experimentation Platform with

Uber Engineering: https://eng.uber.com/experimentation-

platform/. Accessed: 2019-02-04.

[13] Chen, N. et al. 2018. Automatic Detection and Diagnosis

of Biased Online Experiments. arXiv preprint

arXiv:1808.00114. (2018).

[14] Chernozhukov, V. et al. 2016. Double machine learning

for treatment and causal parameters.

[15] Coey, D. and Bailey, M. 2016. People and Cookies:

Imperfect Treatment Assignment in Online Experiments.

Proceedings of the 25th International Conference on

World Wide Web - WWW ’16 (2016), 1103–1111.

[16] Crook, T. et al. 2009. Seven pitfalls to avoid when running

controlled experiments on the web. Proceedings of the

15th ACM SIGKDD international conference on

Knowledge discovery and data mining - KDD ’09 (New

York, New York, USA, 2009), 1105.

[17] Dan McKinley :: Testing to Cull the Living Flower:

https://mcfunley.com/testing-to-cull-the-living-flower.

Accessed: 2019-02-10.

[18] Deng, A. et al. 2013. Improving the sensitivity of online

controlled experiments by utilizing pre-experiment data.

Proceedings of the sixth ACM international conference on

Web search and data mining - WSDM ’13 (New York,

New York, USA, 2013), 123.

[19] Deng, A. and Shi, X. 2016. Data-Driven Metric

Development for Online Controlled Experiments.

Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining -

KDD ’16 (2016), 77–86.

[20] Designing A/B tests in a collaboration network: 2018.

http://www.unofficialgoogledatascience.com/2018/01/des

igning-ab-tests-in-collaboration.html. Accessed: 2019-

02-12.

[21] Devore, J.L. and Berk, K.N. 2012. Modern Mathematical

Statistics with Applications. Springer.

[22] Dmitriev, P. et al. 2017. A Dirty Dozen: Twelve Common

Metric Interpretation Pitfalls in Online Controlled

Experiments. Proceedings of the 23rd ACM SIGKDD

international conference on Knowledge discovery and

data mining - KDD ’17 (Halifax, Nova Scotia, Canada,

2017).

[23] Dmitriev, P. et al. 2016. Pitfalls of long-term online

controlled experiments. 2016 IEEE International

Conference on Big Data (Big Data) (Washington, DC,

USA, Dec. 2016), 1367–1376.

[24] Dmitriev, P. and Wu, X. 2016. Measuring Metrics.

Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management - CIKM ’16

(2016), 429–437.

[25] Drutsa, A. et al. 2017. Using the Delay in a Treatment

Effect to Improve Sensitivity and Preserve Directionality

of Engagement Metrics in A/B Experiments. Proceedings

of the 26th International Conference on World Wide Web

- WWW ’17. (2017), 1301–1310.

DOI:https://doi.org/10.1145/3038912.3052664.

[26] Eckles, D. et al. 2017. Design and analysis of experiments

in networks: Reducing bias from interference. Journal of

Causal Inference. 5, 1 (2017), 23.

DOI:https://doi.org/10.1515/jci-2015-0021.

[27] Experimentation – Booking.com Data Science:

https://booking.ai/tagged/experimentation. Accessed:

2019-02-04.

[28] Experimentation and Testing: A Primer - Occam’s Razor

by Avinash Kaushik: 2006.

https://www.kaushik.net/avinash/experimentation-and-

testing-a-primer/. Accessed: 2019-02-10.

[29] Experimentation in a Ridesharing Marketplace - Lyft

Engineering: https://eng.lyft.com/experimentation-in-a-

ridesharing-marketplace-b39db027a66e. Accessed:

2019-02-04.

[30] Experiments at Airbnb – Airbnb Engineering & Data

Science – Medium: https://medium.com/airbnb-

engineering/experiments-at-airbnb-e2db3abf39e7.

Accessed: 2019-02-04.

[31] Fabijan, A. et al. 2018. Experimentation growth: Evolving

trustworthy A/B testing capabilities in online software

companies. Journal of Software: Evolution and Process.

(Nov. 2018), e2113.

DOI:https://doi.org/10.1002/smr.2113.

[32] Fabijan, A. et al. 2018. Online Controlled

Experimentation at Scale: An Empirical Survey on the

Current State of A/B Testing. Proceedings of the 2018

44rd Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (Prague, Czechia., 2018).

[33] Fabijan, A. et al. 2019. Three Key Checklists and

Remedies for Trustworthy Analysis of Online Controlled

Experiments at Scale. to appear in the proceedings of

2019 IEEE/ACM 39th International Conference on

Software Engineering (ICSE) Software Engineering in

Practice (SEIP) (Montreal, Canada, 2019).

[34] Fosset Jeff, Gilchrist Duncan, L.M. 2018. Using

Experiments to Launch New Products. Harvard Business

Review.

[35] Groysberg, B. et al. 2018. The Leader’s Guide to

Corporate Culture. Harvard Business Review.

[36] Hassan, A. et al. 2013. Beyond clicks. Proceedings of the

22nd ACM international conference on Conference on

information & knowledge management - CIKM ’13 (New

York, New York, USA, 2013), 2019–2028.

[37] HiPPO – ExP Platform: https://exp-platform.com/hippo/.

Accessed: 2019-02-08.

[38] Hohnhold, H. et al. 2015. Focusing on the Long-term.

Proceedings of the 21th ACM SIGKDD International

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 34

Conference on Knowledge Discovery and Data Mining -

KDD ’15 (New York, New York, USA, 2015), 1849–

1858.

[39] Imbens, G.W. and Rubin, D.B. 2015. Causal inference:

For statistics, social, and biomedical sciences an

introduction. Cambridge University Press.

[40] It’s All A/Bout Testing – Netflix TechBlog – Medium:

2016. https://medium.com/netflix-techblog/its-all-a-bout-

testing-the-netflix-experimentation-platform-

4e1ca458c15. Accessed: 2019-02-04.

[41] Kaufman, R.L. et al. 2017. Democratizing online

controlled experiments at Booking. com. arXiv preprint

arXiv:1710.08217. (2017), 1–7.

[42] Kharitonov, E. et al. 2017. Learning Sensitive

Combinations of A/B Test Metrics. Proceedings of the

Tenth ACM International Conference on Web Search and

Data Mining - WSDM ’17. (2017), 651–659.

DOI:https://doi.org/10.1145/3018661.3018708.

[43] Kluck, T. and Vermeer, L. 2017. Leaky Abstraction In

Online Experimentation Platforms: A Conceptual

Framework To Categorize Common Challenges. arXiv.

(Oct. 2017).

[44] Kohavi, R. et al. 2009. Controlled experiments on the web:

survey and practical guide. Data Mining and Knowledge

Discovery. 18, 1 (Feb. 2009), 140–181.

DOI:https://doi.org/10.1007/s10618-008-0114-1.

[45] Kohavi, R. 2014. Lessons from Running Thousands of

A/B Tests. The Conference on Digital Experimentation

(CODE@MIT) 10th - 11th of October 2014 (2014).

[46] Kohavi, R. et al. 2013. Online controlled experiments at

large scale. Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and

data mining - KDD ’13 (Chicago, Illinois, USA, 2013),

1168.

[47] Kohavi, R. et al. 2009. Online experimentation at

Microsoft. Third Workshop on Data Mining Case Studies

and Practice Prize. (2009), 1–11.

DOI:https://doi.org/10.1002/adfm.200801473.

[48] Kohavi, R. et al. 2014. Seven rules of thumb for web site

experimenters. Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and

data mining - KDD ’14 (New York, USA, 2014), 1857–

1866.

[49] Kohavi, R. et al. 2012. Trustworthy online controlled

experiments: Five Puzzling Outcomes Explained.

Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining -

KDD ’12 (New York, New York, USA, 2012), 786.

[50] Kohavi, R. and Longbotham, R. 2011. Unexpected results

in online controlled experiments. ACM SIGKDD

Explorations Newsletter. 12, 2 (Mar. 2011), 31.

DOI:https://doi.org/10.1145/1964897.1964905.

[51] Kohavi, R. and Thomke, S. 2017. The Surprising Power

of Online Experiments. Harvard Business Review.

[52] Letham, B. et al. 2019. Constrained Bayesian

Optimization with Noisy Experiments. Bayesian Analysis.

14, 2 (Jun. 2019), 495–519.

DOI:https://doi.org/10.1214/18-BA1110.

[53] Li, L. et al. 2010. A contextual-bandit approach to

personalized news article recommendation. Proceedings

of the 19th international conference on World wide web -

WWW ’10 (New York, New York, USA, 2010), 661.

[54] Machmouchi, W. et al. 2017. Beyond Success Rate.

Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management - CIKM ’17

(New York, New York, USA, 2017), 757–765.

[55] Machmouchi, W. and Buscher, G. 2016. Principles for the

Design of Online A/B Metrics. Proceedings of the 39th

International ACM SIGIR conference on Research and

Development in Information Retrieval - SIGIR ’16 (New

York, New York, USA, 2016), 589–590.

[56] McFarland, C. 2012. Experiment!: Website conversion

rate optimization with A/B and multivariate testing. New

Riders.

[57] Mehrotra, R. et al. 2017. User Interaction Sequences for

Search Satisfaction Prediction. Proceedings of the 40th

International ACM SIGIR Conference on Research and

Development in Information Retrieval - SIGIR ’17.

(2017), 165–174.

DOI:https://doi.org/10.1145/3077136.3080833.

[58] Microsoft Experimentation Platform: http://exp-

platform.com.

[59] Poyarkov, A. et al. 2016. Boosted Decision Tree

Regression Adjustment for Variance Reduction in Online

Controlled Experiments. Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining - KDD ’16. (2016), 235–244.

DOI:https://doi.org/10.1145/2939672.2939688.

[60] Quicken Loan’s Regis Hadiaris on multivariate testing -

Biznology:

https://biznology.com/2008/12/multivariate_testing_in_a

ction/. Accessed: 2019-02-10.

[61] Ramblings on Experimentation Pitfalls, Part 1. – Lyft

Engineering: https://eng.lyft.com/ramblings-on-

experimentation-pitfalls-dd554ff87c0e. Accessed: 2019-

02-04.

[62] Rodden, K. et al. 2010. Measuring the user experience on

a large scale. Proceedings of the 28th international

conference on Human factors in computing systems - CHI

’10 (New York, New York, USA, 2010), 2395.

[63] Schurman Eric, B.J. 2009. Performance Related Changes

and their User Impact. Velocity (2009).

[64] Schurman Eric, B.J. 2009. The User and Business Impact

of Server Delays, Additional Bytes, and HTTP Chunking

in Web Search: Velocity 2009 - O’Reilly Conferences,

June 22 - 24, 2009 - San Jose, CA. Velocity (2009).

[65] Semmelweis Reflex – ExP Platform: https://exp-

platform.com/semmelweis-reflex/. Accessed: 2019-02-05.

[66] Statistics for Bioinformatics: 2008.

https://www.stat.berkeley.edu/~mgoldman/Section0402.p

df. Accessed: 2019-02-05.

[67] Tang, D. et al. 2010. Overlapping experiment

infrastructure. Proceedings of the 16th ACM SIGKDD

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

Appears in the June 2019 issue of SIGKDD Explorations Volume 21, Issue 1

https://bit.ly/OCESummit1

SIGKDD Explorations Volume 21, Issue 1 Page 35

international conference on Knowledge discovery and

data mining - KDD ’10 (2010), 17.

[68] Tang, D. et al. 2010. Overlapping experiment

infrastructure. Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and

data mining - KDD ’10 (New York, New York, USA,

2010), 17.

[69] Tibshirani, R. et al. Sparsity and smoothness via fused

lasso. Journal of the Royal Statistical Society: Series B

(Statistical Methodology). 67, 1 (Feb.), 91–108.

DOI:https://doi.org/10.1111/j.1467-9868.2005.00490.x.

[70] Twitter experimentation: technical overview: 2015.

https://blog.twitter.com/engineering/en_us/a/2015/twitter

-experimentation-technical-overview.html. Accessed:

2019-04-02.

[71] Two-sided market: https://en.wikipedia.org/wiki/Two-

sided_market. Accessed: 2019-10-02.

[72] Universally unique identifier:

https://en.wikipedia.org/wiki/Universally_unique_identifi

er. Accessed: 2019-08-02.

[73] Violations of SUTVA | Social Science Statistics Blog:

2009. https://blogs.iq.harvard.edu/violations_of_s.

Accessed: 2019-02-04.

[74] Wager, S. and Athey, S. 2018. Estimation and Inference

of Heterogeneous Treatment Effects using Random

Forests. Journal of the American Statistical Association.

113, 523 (Jul. 2018), 1228–1242.

DOI:https://doi.org/10.1080/01621459.2017.1319839.

[75] Xie, H. and Aurisset, J. 2016. Improving the Sensitivity of

Online Controlled Experiments. Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining - KDD ’16. (2016), 645–654.

DOI:https://doi.org/10.1145/2939672.2939733.

[76] Xu, Y. et al. 2015. From Infrastructure to Culture: A/B

Testing Challenges in Large Scale Social Networks.

Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(New York, New York, USA, 2015), 2227–2236.

[77] Zhao, Y. et al. 2012. Estimating Individualized Treatment

Rules Using Outcome Weighted Learning. Journal of the

American Statistical Association. 107, 499 (Sep. 2012),

1106–1118.

DOI:https://doi.org/10.1080/01621459.2012.695674.

https://www.kdd.org/explorations/
https://bit.ly/OCESummit1

