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Abstract—Software development companies are increasingly 
aiming to become data-driven by trying to continuously 
experiment with the products used by their customers. 
Although familiar with the competitive edge that the A/B 
testing technology delivers, they seldom succeed in evolving 
and adopting the methodology. In this paper, and based on an 
exhaustive and collaborative case study research in a large 
software-intense company with highly developed 
experimentation culture, we present the evolution process of 
moving from ad-hoc customer data analysis towards 
continuous controlled experimentation at scale. Our main 
contribution is the “Experimentation Evolution Model” in 
which we detail three phases of evolution: technical, 
organizational and business evolution. With our contribution, 
we aim to provide guidance to practitioners on how to develop 
and scale continuous experimentation in software 
organizations with the purpose of becoming data-driven at 
scale.  

A/B testing; continuous experimentation; data science; 
customer feedback; continuous product innovation; 
Experimentation Evolution Model; product value; Experiment 
Owner 

I. INTRODUCTION 
Software development organizations and their product 

development teams are increasingly using customer and 
product data to support decisions throughout the product 
lifecycle [1], [2]. Data-driven companies acquire, process, 
and leverage data in order to create efficiencies, iterate on 
and develop new products, and navigate the competitive 
landscape [1]. Digitally adept and technology driven 
companies are as much as 26 percent more profitable than 
their competitors [3]. Recent software engineering research 
reflects this situation with a number of publications on how 
to change and efficiently conduct controlled experiments to 
become data-driven [4], [5], [6], [7], [8], [27]. The role of 
data scientists is increasingly gaining momentum in large 
software companies [9]. However, despite having data,  the 
number of companies that efficiently use it and that 
successfully transform into data-driven organizations stays 
low and how this transformation is done in practice is little 
studied [10], [11].  

In this paper, we present the phases that teams at 
Microsoft evolved through in order to become data-driven at 

scale by establishing a controlled experimentation platform 
and a data-driven mindset. The impact of scaling out the 
experimentation platform across Microsoft is in hundreds of 
millions of dollars of additional revenue annually. The 
journey from a company with data to a data-driven company, 
however, was not a jump but rather an evolution over a 
period of years. This development occurs through phases and 
we illustrate this process by creating the “Experimentation 
Evolution Model”. With this model, we describe the steps to 
take while evolving data-driven development practices 
towards continuous experimentation at scale. With our 
contribution, we aim to provide guidance to practitioners on 
how to develop and scale continuous experimentation in 
software organizations and thus become truly data-driven.  

The paper is organized as follows. In Section II we 
present the background and the motivation for this study. In 
section III, we describe our research method, the data 
collection and analysis practices and our case company. Our 
empirical findings are in section IV. In section V, we present 
our main contribution - the “Experimentation Evolution 
Model”. Finally, we conclude the paper in section VI.  

II. BACKGROUND 
Rapid delivery of value to customers is one of the core 

priorities of software companies [8]. With this goal in mind, 
companies typically evolve their development practices. At 
first, they inherit the Agile principles within the development 
part of the organization [12] and expand them to other 
departments [13]. Next, companies focus on various lean 
concepts such as eliminating waste [14], removing 
constraints in the development pipeline [15] and advancing 
towards continuous integration [16] and continuous 
deployment of software functionality [10]. Continuous 
deployment, however, is characterized by a bidirectional 
channel that enables companies not only to send data to their 
customers to rapidly prototype with them [17], but also to 
receive feedback data from products in the field. The 
intuition of software development companies on customer 
preferences can be wrong as much as 90% of the time [18], 
[19], [20]. The actual product usage data has the potential to 
make the prioritization process in product development more 
accurate as it focuses on what customers do rather than what 
they say [21], [22]. Controlled experimentation is becoming 
the norm in advanced software companies for reliably 
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evaluating ideas with customers in order to correctly 
prioritize product development activities [4] [5], [6], [7], [8].  

A. Controlled Experiments 
In a controlled experiment, users are randomly divided 

between the variants (e.g., the two different designs of a 
product interface) in a persistent manner (a user receives the 
same experience multiple times). Users’ interactions with the 
product are instrumented and key metrics are computed [4], 
[23]. One of the key challenges with metrics is to decide on 
which to include in an Overall Evaluation Criteria (OEC).  
An OEC is a quantitative measure of a controlled 
experiment’s objective [24] and steers the direction of the 
business development. In controlled experimentation, it is 
intuitive to measure the short-term effect, i.e., the impact 
observed during the experiment [25]. Providing more weight 
to advertisement metrics, for example, makes businesses 
more profitable in the short-term. However, the short-term 
effect is not always predictive of the long-term effect and 
consequently should not be the sole component of an OEC 
[26]. Defining an OEC is not trivial and should be conducted 
with great care. Kohavi et al. [4], [26], [27] in their papers 
present common pitfalls in the process of establishing a 
controlled experimentation system and guidance on how to 
reliably define an OEC.  

Research contributions with practical guides on how to 
develop an experimentation system have previously been 
published both by Microsoft [27], [28] and Google [29]. The 
Return on Investment (ROI) of controlled experimentation 
has been discussed a number of times in the literature [23], 
[27]. However, the count of companies that successfully 
developed an experimentation culture and became data-
driven remains low and limited to other web service 
companies such as Facebook, Google, Booking, Amazon, 
LinkedIn, Etsy, Skyscanner [10], [28]. We believe that the 
reason for this unsuccessful adoption of continuous 
experimentation resides in the lack of knowledge on how the 
transition can be done in practice. Companies have the 
necessary instrumentation in place [30], are able to gather 
and analyze product data, but they fail to efficiently utilize it 
and learn from it [11].  

 The research contributions from Google and Microsoft 
provide guidance on how to start developing the 
experimentation platform. However, they do not provide 
guidance on which R&D activities to prioritize in order to 
incrementally scale the experimentation across the 
organization. This technical research contribution is aiming 
to address this gap and provide guidance on how to evolve 
from a company with data to a data-driven company. We 
focus on technical challenges (e.g. the necessary platform 
features that are required for successful scaling) as well as 
the organizational aspects (e.g. how to integrate data 
scientists in product teams) and business aspects (e.g. how to 
develop an Overall Evaluation Criteria). This leads to the 
following research question: 

 
RQ: “How to evolve controlled experimentation in 

software-intensive companies in order to become 
data-driven at scale?” 

To address this research question, we conducted a mixed 
methods study of how continuous experimentation scaled at 
Microsoft. We describe the research method in detail next. 

III. METHOD 
This research work is an inductive case study and was 

conducted in collaboration with the Analysis and 
Experimentation (A&E) team at Microsoft. The inspiration 
for the study originates from an internal model used at A&E, 
which is used to illustrate and compare progress of different 
product teams on their path towards data-driven development 
at scale. The study is based on historical data points that 
were collected over a period of two years and complemented 
with a series of semi-structured interviews, observations, and 
meeting participations. In principle, it is an in-depth and 
single case study [31], however, our participants are from 
different organizational units and product teams with 
fundamentally different product and service offerings. 
Several of the participants worked in other data-driven 
organizations before joining the Microsoft A&E team. The 
A&E team provides a platform and service for running 
controlled experiments for customers. Its data scientists, 
engineers and program managers are involved with partner 
teams and departments across Microsoft on a daily basis. 
The participants involved in this research work are primarily 
collaborating with the following Microsoft product and 
services teams: Bing, Cortana, Office, MSN.com, Skype and 
Xbox.  

A. Data Collection 
The data collection for this research was conducted in 

two streams. The first stream consisted of collection of 
archival data on past controlled experiments conducted at 
Microsoft. The first author of this paper worked with the 
Microsoft Analysis & Experimentation team for a period of 
10 weeks. During this time, he collected documents, 
presentations, meeting minutes and other notes available to 
Microsoft employees about the past controlled experiments, 
the development of the experimentation platform and 
organizational developments conducted at Microsoft A&E 
over the last 5 years. In cumulative, we collected 
approximately 130 pages of qualitative data (including a 
number of figures and illustrations). 

 The second stream consisted of three parts. The first 
author (1) participated in weekly experimentation meetings, 
(2) attended internal training on controlled experimentation 
and other related topics, and (3) conducted a number of 
semi-structured interviews with Microsoft employees. In all 
three data collection activities, the first author was 
accompanied by one of the other three authors (as schedules 
permitted). At all meetings and training, we took notes that 
were shared between us at the end of each activity. The 
individual interviews were recorded and transcribed by the 
first researcher.  

 The second author of this paper has been working with 
the Analysis & Experimentation team at Microsoft for a 
period of six years. He was the main contact person for the 
other three researchers throughout the data collection and 
analysis period and advised the diverse selection of data 
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scientist, managers and software engineers that we 
interviewed. In total, we conducted 14 semi-structured 
interviews (1 woman, 13 men) using a questionnaire guide 
with 11 open-ended questions. The participants that work 
with different product teams were invited for a half an hour 
interview by the first two authors. The interview format 
started with an introduction and a short explanation of the 
research being conducted. Participants were then asked on 
their experience with conducting controlled experiments, 
how they document learnings from those experiments, and 
how their practices changed over time. We also asked for 
examples of successes, pitfalls, and pain points that they 
experience while conducting controlled experiments.  

We provide a detailed list of our interviewees, their roles 
and their primary product teams in Table 1 below. The ones 
with n/a do not collaborate with product teams directly, but 
are rather focusing on platform development and other 
activities within the A&E team.    

TABLE I.  INTERVIEW PARTICIPANTS 

 
Interview details 

Role Length 
(min) Product 

1 Senior Data Scientist 45 Skype 

2 Data Scientist 45 Skype 

3 Principal Group Engineering Mgr. 30 n/a 

4 Principal Data Scientist 30 Bing 

5 Senior Software Engineer 30 n/a 

6 Senior Data Scientist 45 MSN 

7 Principal Data Scientist Mgr. 30 Office 

8 Principal Data Scientist Mgr. 30 Office 

9 Principal Data Scientist & Architect 30 Bing 

10 GPM Program Manager 30 n/a 

11 Principal Software Engineer 30 Bing 

12 Senior Applied Researcher 30 Ads 

13 Senior Program Manager 30 Bing 

14 Senior Program Manager 30 Cortana 

B. Data Analysis 
We analyzed the collected data in two steps. First, we 
grouped the data that belonged to a certain product. Next, 
we grouped products in 4 buckets based on the number of 
experiments that their product teams are capable of 
executing per annum (i.e. 1-9, 10-99, 100-999, and 1000+). 
Second, and with the goal to model the evolution of 
continuous experimentation, we performed inductive 
category development [32]. In the first step, we emerged 
with three high level definitions of categories that represent 
our research interest (namely technical evolution, 
organizational evolution and business evolution). Next, we 
formulated the categories under each of the three categories 
by reading through the collected data and assigning codes to 
concepts that appeared in it. This approach is similar to the 

Grounded Theory approach as we didn’t have 
preconceptions on which categories to form beforehand 
[33]. The final categories are visible in our model in Figure 
5. To develop the content of the table, we backtracked the 
codes within the buckets. Using a ‘venting’ method, i.e. a 
process whereby interpretations are continuously discussed 
with professional colleagues, we iteratively verified and 
updated our theory on the content for each of the four 
phases of our models in Figure 5. The A&E team provided 
continuous feedback on the developing theory and helped to 
clear any discrepancies in the raw data. 

C. Validity Considerations 
1) Construct Validity 

To improve the study’s construct validity, we 
complemented the archival data collection activities with 
individual semi-structured interviews, meetings and 
trainings. This enabled us to ask clarifying questions, 
prevent misinterpretations, and study the phenomena from 
different angles. Meeting minutes and interview 
transcriptions were independently assessed by three 
researchers to guarantee inter-rater reliability. Since this 
study has been conducted in a highly data-driven company, 
all the participants were familiar with the research topic and 
expectations between the researchers and participants were 
well aligned. The constructed artifact was continuously 
validated with the A&E team members during the study.  

2) External Validity 
The main result of this paper details an evolution towards 
becoming a data-driven company as experienced at 
Microsoft. The first author conducted this research while 
collaborating with the second author who is permanently 
employed at the case company. This set-up enabled 
continuous access and insight. However, and since this 
approach differs from a traditional case study [31], the 
contributions of this paper risk being biased from this 
extensive inside view. The main contribution can thus not 
directly translate to other companies. However, we believe 
that the phases of our model, especially the dimension 
concerning the technical evolution, are similar to the ones 
that other software companies traverse on their path towards 
becoming data-driven. The ‘Experimentation Evolution 
Model’ can be used to compare other companies and advise 
them on what to focus on next in order to efficiently scale 
their data-driven practices. The embedded systems domain 
is one example area where companies are aiming to become 
data-driven and that we previously studied [34], [11], [35]. 
The phases of our model can be applied to this domain.  

In the next section, we show the empirical data by 
describing four controlled experiments from different 
product teams. 

IV. EMPIRICAL FOUNDATION 
In this section, we briefly present examples of controlled 

experiments conducted at Microsoft. The space limitations 
make it difficult to show all the depth and breadth of our 
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empirical data. Due to this limitation, we select four example 
experiments. With each of them, we aim to illustrate the 
capabilities and limitations that product teams at Microsoft 
experience as they evolve their data-driven practices. We 
start with Office, where data-driven development is 
beginning to gain momentum and where the first controlled 
experiments were recently conducted.  Next, we present an 
example from Xbox and an example from MSN where the 
experimentation is well established. Finally, we conclude the 
section by providing an illustrative experiment from Bing 
where experimentation is indispensable and deeply 
embedded in the teams’ development process.  

A. Office Contextual Bar Experiment  
Microsoft Office is a well-known suite of products 

designed for increasing work productivity. Data-driven 
practices in Office product teams are in the early stages. The 
product team responsible for the edit interface in Office 
mobile apps recently conducted a design experiment on their 
Word, Excel, and PowerPoint apps. They believed that 
introducing a Contextual Command Bar (see Figure 1 below) 
would increase the engagement compared to a version of the 
product without the contextual bar. Their hypothesis was that 
mobile phone users will do more editing on the phone 
because the contextual command bar will improve editing 
efficiency and will result in increased commonality and 
frequency of edits and 2-week retention. 

 

 
Figure 1.  The “Contextual Bar” experiment on Word mobile app. 

During the set-up of the experiment, the team ran into issues 
with measuring the number of edits. The instrumentation was 
still in the early stages, and the telemetry teams did not 
accurately log the edit events. These issues had to be fixed 
prior to the start of the experiment. The results of a two-week 
experiment indicated a substantial increase in engagement 
(counts of edits), but no statistically significant change in 2-
week retention. The experiment provided the team with two 
key learnings: (1) Proper instrumentation of existing features 
and the new feature is essential for computing experiment 
metrics, (2) It is important to define global metrics that are 
good leading indicators and that can change in a reasonable 
timeframe. 

B. Xbox Deals for Gold Members 
Xbox is a well-known platform for video gaming. 

Experimentation is becoming well established with this 
product and their teams have been conducting experiments 
on several different features.  

In one of the experiments, a product team at Xbox aimed 
to identify whether showing prices (original price and the 
discount) in the weekly deals stripe, and using algorithmic 
as opposed to editorial ordering of the items in the stripe 
impacts engagement and purchases. They experimented 
with two different variants. On Figure 2, we illustrate the 
experiment control (A) and both of the treatments (B, C).  

 
Figure 2.  The “Xbox deals” experiment. 

At Xbox, instrumentation is well established and a reliable 
pipeline for data collection exists. Metrics that measure user 
engagement and purchases are established and consist of a 
combination of different signals from the logs aggregated 
per user, session and other analysis units. In contrast to the 
Office Word experiment above, the Xbox team 
autonomously set-up their experiments, however, they still 
require assistance on the execution and monitoring of the 
experiment and at the analysis stage to interpret results. The 
two-week experiment showed that, compared to control, 
treatment B decreased engagement with the stripe. The 
purchases, however, did not decrease. By showing prices 
upfront treatment B provided better user experience by 
engaging the users who are interested in a purchase and 
sparing a click for those not interested. Treatment C 
provided even greater benefit, increasing both engagement 
with the stripe and purchases made. In this experiment the 
team learned that (1) Showing prices upfront results in 
better user experience, and (2) Algorithmic ordering of deals 
beats manual editorial ordering. 

C. MSN.com News Personalization 
In contrast to Office Word and Xbox where 

experimentation is primarily conducted with features 
focusing on design changes, teams at MSN.com experiment 
with most feature changes. In one of the recent experiments, 
they aimed to test a personalization algorithm developed 
within Microsoft Research for their news page. The 
hypothesis was that user engagement with the version that 
uses the machine learning personalization algorithm would 
increase in comparison to the manually curated articles. In 
contrast to Word and Xbox teams, the MSN product team 
autonomously set-up and execute experiments. A number of 
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Data Scientists were hired in their product team and they 
partner with the central Analysis and Experimentation team 
to interpret and analyze complex experiments. Contrary to 
the expectations, in the initial iteration of the experiment 
machine learning algorithm performed worse than the 
manual ordering. After some investigation, a bug was found 
in the algorithm. The bug was fixed and several subsequent 
iterations of the experiment were run to tune the algorithm. 
At the end, the algorithmic ordering resulted in a substantial 
lift in engagement. In Figure 3 below we show an example 
screenshot from one of the iterations.  

 
Figure 3.  The “MSN.com personalization” experiment. 

D. Bing Bot Detection Experiment 
Bing is a search engine developed by Microsoft. On this 

product, several teams at Microsoft conduct over 10.000 
experiments per year ranging from large design 
modifications to every bug fix or minor improvement.  In 
contrast to the previous examples, teams at Bing set-up, 
execute and analyze experiments autonomously and without 
the help of the Analysis & Experimentation data scientists.  
At any given point in time, almost every user of the product 
is in at least a few of the experiments simultaneously. As 
users are put into more and more concurrent experiments, the 
chance of unexpected interactions between those 
experiments increases, which can lead to bad user experience 
and inaccurate results. Preventing interactions where 
possible, and detecting where not (alerts fire automatically 
when experiments hurt the user experience, or interact with 
other experiments) has been a critical element for delivering 
trustworthy, large-scale experimentation.  

The core purpose of Bing is to provide search results to 
its users. Finding relevant results, however, is a 
computational operation that extensively consumes 
infrastructure capacity. One way to save on resources is to 
prevent computer bots from performing the actual search by 
e.g. returning results from a smaller in-memory index that is 
orders of magnitude cheaper to serve. The experiment that 
we briefly present in this section targeted exactly this 
scenario. The hypothesis was that with an improved and 
more pervasive bot-detection algorithm, human users will 

not be harmed and fewer resources will be used for the 
computation of search results. Conducting such experiments, 
however, involves the use of advanced features that prevent 
potentially harmful variants (see e.g. Figure 4 below) from 
affecting a large population by automatically checking alerts 
and incrementally ramping the number of users assigned to 
the treatment.   
 

 
Figure 4.  An archival experiment with Bing that introduced user harm. 

The results of the particular experiment indicated a ~10% 
saving on infrastructure resources without introducing user 
harm. Screenshot on Figure 4 is, however, a part of another 
experiment with a slightly ‘different’ outcome.  

V. THE EXPERIMENTATION EVOLUTION MODEL 
In this section, and based on the empirical presentation of 

products and related experiments in section IV, we present 
the transition process model of moving from a situation with 
ad-hoc data analysis towards continuous controlled 
experimentation at scale. We name this process the 
“Experimentation Evolution Model” and use this term to 
describe the phases that companies and their product teams 
follow while evolving their data-driven development 
practices towards continuous experimentation at scale. It is 
based on the empirical data collected at Microsoft and 
inspired by a model developed internally at A&E.   

In our model, and after listing a number of prerequisites 
for experimentation, we present three dimensions of 
evolution: technical, organizational and business evolution. 
In the technical evolution part, we focus on the technical 
aspects such as the complexity of the experimentation 
platform, the pervasiveness of experimentation in product 
teams, and the overall focus of the development activities. 
The organizational evolution focuses on the organization of 
the data science teams and their self-sufficiency for 
experimentation. Finally, in the business evolution part, we 
discuss the focus of the Overall Evaluation Criteria.  

The four phases of the “Experimentation Evolution 
Model”, namely “crawl”, “walk”, “run” and “fly”, are 
summarized on Figure 5 below and described in detail in the 
remainder of this section. 
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Figure 5.  The “Experimentation Evolution Model”. 

A. Prerequisites 
Although most of the requirements for successful 
experimentation arise while we scale the number of 
experiments and teams, a few need to be fulfilled 
beforehand. To evaluate the product statistics, skills that are 
typically possessed by data scientists [9] are required within 
the company. Here, we specifically emphasize the 
understanding of hypothesis testing, randomization, sample 
size determination, and confidence interval calculation with 
multiple testing. For companies that lack these skills and 
wish to train their engineers on these topics, online 
resources and kits are available [36]. Combining these skills 
with domain knowledge about the product will enable 
companies to generate the first set of hypotheses for 
evaluation. The second major prerequisite is the availability 
of accessing the product instrumentation data. We discuss 
how to implement the instrumentation in the following 
sections, however, companies first need to have policies in 
place that allow them to provide experimenters access to the 
data. In some domains, this is a serious concern and needs to 
be addressed both on legal and technical levels. 

B. Crawl Phase 
As the starting point on the path towards continuous 
experimentation at scale, product teams start by configuring 
the first experiment.  

1) Technical Aspect 
a) Focus: The technical focus of this phase is twofold. 

First, and the main focus of this phase is the implementation 
of the logging system. In non-data driven companies, 
logging exists for the purpose of debugging product features 
[30], [37], [38]. This is usually very limited and not useful 
for analyzing how users interact with the products. Logging 
procedures in the organization need to be updated by 
creating a centralized catalog of events in the form of class 
and enumeration, and implemented in the product telemetry. 
The goal of such systematic logging is that a data scientist, 
analyst, or anyone else in the organization who is not 
familiar with the feature or the product itself, can 
understand what action or event was triggered and logged 
by simply looking at the name of the event. Names for 
events should be consistent across products and platforms so 
that it is easy to search for them and link them with tangible 
actions in the product. We name the data collected or sent 
from a product or feature for the purpose of data-driven 
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development signals. Examples of signals are clicks, swipes 
over an image, interactions with a product, time spent 
loading a feature, files touched, etc. Based on the complete 
set of signals, an analyst should be able to reconstruct the 
interactions that a user had with the product. 
Second, any quality issues with writing and collecting 
signals need to be solved. The goal is to have a reliable 
system where events are consistently logged and repetitive 
actions result in identical results.   

b) Experimentation platform complexity: In this initial 
phase, an experimentation platform is not required. With 
signals systematically collected, a product team can perform 
the first controlled experiment manually. They can do this 
by splitting the users between two versions of the same 
product and measuring how the distribution of signals 
differs between the versions, for example. Practitioners can 
use the guidance on how to calculate the statistics behind a 
controlled experiment in [27]. In summary, if the difference 
between the values for the Treatment group and the Control 
group is statistically significant, we conclude with high 
probability that the change introduced in the treatment 
group caused the observed effect. Conventionally, a 95% 
confidence interval is used.   

c) Experimentation pervasiveness: Experiments in this 
phase are for targeted components of a product and are not 
pervasive. Typically, product teams should start to 
experiment with a feature where multiple versions are 
available. The main purpose of the first experiments is to 
gain traction and evangelize the results to obtain the 
necessary funding needed to develop an experimentation 
platform and culture within the company. As an example, 
product teams can start with a design experiment for which 
it is not a priori clear which of the variants is better. The 
results of the first experiment should not be trusted without 
assuring that the data quality issues have been addressed.  

d) Engineering team self-sufficiency: In this initial 
phase, experiment set-up, execution and analysis is 
conducted by a data scientist team. Product teams typically 
do not possess the necessary skills to conduct trustworthy 
controlled experiments and correctly analyze the results on 
their own.  We use the term Experiment Owner (EO) to 
refer to one or more individuals from the product team 
involved with the experiment. Experiment Owners are the 
individuals that understand both the product and the 
experiment, and are used as the main contact between the 
data science team and the product teams for set up and 
interpretation of the experiments and their results.   

e) Experimentation team organization: In this phase, 
product teams require training and help from a standalone 
data scientist team.  This organization of data scientists 
allows freedom for generating ideas and long-term thinking 
that are needed for development of the experimentation 
platform.  

 
 

2) Business Aspect 
a) Overall Evaluation Criteria: The aim of the 

“Crawl” phase is to define an OEC for the first set of 
experiments that will help ground expectations and 
evaluation of the experiment results. In concept, an OEC 
stands for Overall (in view of all circumstances or 
conditions), Evaluation (the process determining the 
significance, worth, or condition of something by careful 
appraisal and study) and Criteria (a standard on which a 
judgment or decision may be based). In practice, and for the 
first experiments, data scientists and Experiment Owners 
should collaborate on defining the OEC from a few key 
signals. An OEC should typically be closely related to long-
term business goals and teams should be informed upfront 
that it will develop over time. 

C. Walk Phase 
After the initial logging and instrumentation have been 
configured, the focus of the R&D activities transitions 
towards defining metrics and an experimentation platform.  

1) Technical Aspect 
a) Focus: In contrast to the “crawl” phase where 

experiments were evaluated by comparing the volume and 
distribution of signals such as clicks and page views, the 
focus in this phase is on defining a set of metrics combined 
from those signals.  Metrics are functions that take signals 
as an input and output a number per unit. Signals should 
first be categorized into classes and combined into metrics 
by being aggregated over analysis units. Microsoft 
recognizes three classes of signals for their products: action 
signals (e.g. clicks, page views, visits, etc.), time signals 
(minutes per session, total time on site, page load time, etc.), 
and value signals (revenue, units purchased, ads clicked, 
etc.). The units of analysis vary depending on the context 
and product. The following apply at Microsoft for web 
products: per user (e.g. clicks per user), per session (e.g. 
minutes per session), per user-day (e.g. page views per 
day), and per experiment (e.g. clicks per page view).   

For other types of products, units of analysis might be 
different. For a well-known video-conferencing Microsoft 
product, “per call” is a useful unit of analysis. And by 
combining signals with units of analysis, simple metrics are 
created. Microsoft typically aims to construct four types of 
metrics: success metrics (the ones that we will intend to 
improve), guardrail metrics (constraints that are not allowed 
to be changed), data quality metrics (the metrics that ensure 
that the experiments will be set-up correctly), and debug 
metrics (the ones that help deeper understanding and drill 
down into success and guardrail metrics). A popular 
research contribution from Google provides practical 
guidance on the creation of these metrics for measuring user 
experience on a large scale [39].  

b) Experimentation platform complexity: With more 
experiments being run, a need for an experimentation 
platform arises. Software development organizations can 
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decide to either start developing their own experimentation 
platform or utilize one of the commercial products designed 
for this purpose. Several third party experimentation 
platforms are available to software companies  out of the 
box [40], [41], [42]. Regardless of the decision, the 
experimentation platform should have two essential features 
integrated in this phase. (1) Power Analysis and  (2) pre-
experiment A/A testing.  
• Power analysis. This is a feature that is used to 

determine the minimal sample size for detecting the 
change in an experiment and it should be implemented 
early in order to automate decisions on the duration of 
the experiments. This will prevent some of the 
common pitfalls (e.g. running experiments longer than 
required in order to find the change or having an 
under-powered experiment). See [36] for details.  

• Pre-experiment A/A testing. An A/A feature assigns to 
the treatment group the same experience as the control 
group is being exposed to. Data is collected and its 
variability is assed for power calculations and to test 
the experimentation system (the null hypothesis should 
be rejected about 5% of the time when a 95% 
confidence level is used). After ensuring that there is 
no imbalance on key OEC metrics, one of the A’s is 
reconfigured into B – the A/B test is started on the 
same population. 

The number of experiments in this phase is relatively low. 
This allows for central planning and scheduling of 
experiments to avoid interactions. Each experiment is still 
closely monitored to detect user harm or data quality issues.   

c) Experimentation pervasiveness: 
In contrast to the “crawl” phase where experiments were 
mostly with design variants or features with alternative 
implementations, product teams in this phase move on to 
different types of experiments with the same product. From 
design focused experiments (testing a set of design 
alternatives) the teams advance to performance experiments 
(testing performance between different variants of the same 
feature). Infrastructure experiments (testing resource 
alternatives) are another example of advancing the 
experimentation within the product domain.  

2) Organizational Aspect 
a) Engineering team self-sufficiency: In this phase, 

EO’s responsibility for creating the experiments (scheduling 
the experiment, performing the power analysis etc.) is 
transitioning from a data science expert to a 
product/program manager employed in the product team. 
However, the execution, monitoring, and analysis of the 
experiments is still the responsibility of the data scientists.  

b) Experimentation team organization: The results 
should be evangelized across the team and bad practices 
should be disputed (e.g. experimenting only on preview 
audience). We recommend embedded organization of data 
scientists that support product teams with increasing data 
quality, metrics creation and developing an Overall 

Evaluation Criteria. Embedded data scientists in the product 
teams can hold the role of Experiment Owners or work 
closely with other product team members that have this role. 
They communicate and work with the central platform team. 
The products within organizations will typically share 
certain characteristics. With this organization, a bridge in 
transferring learnings from one embedded data science 
product team to another is established. 

3) Business Aspect 
a) Overall Evaluation Criteria: Most investments by 

feature and product teams in this phase are to address data 
quality issues and instrumentation to build an initial set of 
metrics. It is important to understand and document metric 
movements, validate findings, and build experimentation 
muscle within the product and feature team. The initial 
Overall Evaluation Criteria should be improved with the 
findings from multiple experiments and supported by 
multiple metrics. In contrast to the “crawl” phase, the OEC 
will evolve from a few key signals to a structured set of 
metrics consisting of success metrics (the ones we intend to 
improve), guardrail metrics (constraints that are not allowed 
to be changed) and data quality metrics (the metrics that 
ensure that the experiments were set-up correctly and results 
can be trusted).  It is very important to work close with 
many product team members and reach agreement on the 
OEC. When disagreements occur, the OEC should be 
backtracked and concerns addressed.  

D. Run Phase 
In the Run Phase, product teams ramp up the number of 
experiments and iterate quickly with the purpose of 
identifying the effect of the experiments on the business.  

1) Technical Aspect 
a) Focus: In the “walk” phase, product teams started to 

merge signals into metrics. In the “Run” phase, however, 
these metrics should evolve and become comprehensive. 
Metrics should evolve from counting signals to capturing 
more abstract concepts such as “loyalty” and “success”, 
closely related to long-term company goals [43]. To 
evaluate the metrics product teams should start running 
learning experiments where a small degradation in user 
experience is intentionally introduced for learning purposes 
(e.g. degradation of results, slow down of a feature). With 
such learning experiments, teams will have a better 
understanding of the importance of certain features and the 
effect that changes have on the metrics. Knowingly hurting 
users slightly in the short-term (e.g., in a 2- week 
experiment) enables teams at Microsoft to understand 
fundamental issues and thereby improve the experience in 
the long-term [28]. 

b) Experimentation platform complexity: To scale 
above 100 data-driven experiments per year, the power 
analysis and pre-experiment A/A features that were 
implemented in the “Walk” phase will not be sufficient. The 
experimentation platform needs to be extended with 
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additional features that will both (1) prevent incidents and 
(2) increase the efficiency of product teams by automating 
certain aspects of the workflow. We describe the new 
features next: 
• Alerting. With an increasing number of experiments, 

having a manual overview review of metric movements 
will become a resource-demanding task for Experiment 
Owners. Automated alerting should be introduced 
together with the ability to divert traffic to control if an 
emergency situation occurs (e.g. a decrease of an 
important metric). The naïve approach to alerting on any 
statistically significant negative metric changes will lead 
to an unacceptable number of false alerts and make the 
entire alerting system overloaded and hard to interpret. 
Detailed guidance on how to avoid this situation and 
develop alerting that works is available in [28].  

• Control of carry-over effects. Harmful experiments 
have an effect on the population that may carry over 
into the follow-up experiments and cause biased 
results. A feature that re-randomizes the population 
between experiments should be implemented in order 
to prevent a high concentration of biased users in 
either treatment or control.  

• Experiment iteration support. This is a feature that 
enables re-iteration of an experiment. Initially, 
experiments in this phase should start on a small 
percentage of traffic (e.g. 0.5% of users assigned to 
treatment). The reason is that, as it gets easier to 
configure and start an experiment, the risk of user 
harm also increases (changes to production software 
risk the introduction of degradations). Over time, the 
percentage should automatically increase (by e.g. 
running a new iteration of the experiment with a higher 
setting) if no alerts on guardrail metrics were triggered 
beforehand. The benefit of this feature is twofold. 
First, it offers assurance that the impact of a harmful 
experience will be limited to a low number of users. 
Second, it optimizes the time to ramp to full power, 
which minimizes the time to analysis of 
experimentation results. 

c) Experimentation pervasiveness: 
In contrast to the “Walk” phase where experiments were 
conducted on a single product, in the “Run” phase 
companies aim to expand the scope of controlled 
experimentation. They can achieve this by expanding (1) to 
more features within the products and more importantly, (2) 
to other product teams. Product teams should be 
experimenting with every increment to their products (e.g. 
introductions of new features, algorithm changes, etc.). 
Experimenting should be the norm for identifying the value 
of new features as well as for identifying the impact of 
smaller changes to existing features. Past experiment data 
can be used to understand the correlation and relationship 
between movements in different business goals.  

2) Organizational Aspect 

a) Engineering team self-sufficiency: Experiment 
Owners that were introduced in the “Crawl” phase and the 
ones that were responsible for the creation of experiments in 
the “Walk” phase now receive the complete responsibility to 
execute their experiments. The execution of experiments 
includes running power analysis to determine treatment 
allocation, monitoring for bad experiments (e.g. the ones 
with triggered alerts), making shut-down and ramp-up 
decisions, and resolution of errors. However, the analysis of 
results should still be supervised by the data scientists.  

b) Experimentation team organization: We recommend 
to keep a partnership approach to the arrangement of data 
scientist teams by assigning a fixed number of data 
scientists to work with product teams (they are employed in 
the product teams directly). They review experiments, 
decide on the evaluation criteria, and are trained by the 
central platform data science team to become local 
operational data scientists capable of setting-up the 
experiments, executing them, and resolving basic alerts.  

3) Business Aspect 
a) Overall Evaluation Criteria: The purpose of this 

phase is to tailor OEC using the knowledge obtained from 
the learning experiments. Typically, and as presented in the 
“Walk” phase, OEC will be a combination of success, 
guardrail and data quality metrics. In the “Run” phase, 
however, it will be evolved to capture concepts such as 
“loyalty” and “success”, and corrected with the findings 
from learning experiments. Selecting a single metric, 
possibly as a weighted combination of objectives is highly 
desired. The reason for that is that (1) single metric forces 
inherent tradeoffs to be made once for multiple experiments 
and (2) it aligns the organization behind a clear objective. A 
good practice in this phase is to also start accumulating a 
corpus of experiments with known outcomes and re-run the 
evaluation every time changes are introduced to an OEC. A 
good OEC will correctly determine the outcome. 

E. Fly Phase 
In the “Fly” phase, controlled experiments are the norm for 
every change to any product in the company’s portfolio. 
Such changes include not only obvious and visual changes 
such as improvements of a user interface, but also subtler 
changes such as different machine learning and prediction 
algorithms that might affect ranking or content selection. 
However, with such pervasiveness, a number of new 
features are needed in the experimentation platform and new 
responsibilities are assigned to experiment owners. 

1) Technical Aspect 
a) Focus: I: In the previous phases, technical activities 

focused on implementing reliable instrumentation, creating 
comprehensive metrics and conducting learning 
experiments.  In the “Fly” phase, however, we recommend 
to focus on standardizing the process for the evaluation and 
improvement of the Overall Evaluation Criteria. An OEC 
should be used as a foundation to define the direction for 
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teams developing the product. At the same time, and since 
customers’ preferences change over time [43], a product 
team should invest in standardizing metric design and 
evaluation practices and scheduling the activities for 
updating the existing OEC. See [43] for details.  

b) Experimentation platform complexity: In addition to 
the features introduced in the previous phases, advanced 
features such as interaction control and detection, auto-
detection and shut-down of harmful experiments, and 
institutional memory collection are needed. These features 
will enable experiment owners to conduct a larger number 
of experiments and protect users from harm. We describe 
them briefly below:  
• Interaction control and detection. A statistical 

interaction between two treatments A and B exists if 
their combined effect is not the same as the sum of two 
individual treatment effects [27]. This is a feature that 
prevents such experiments with conflicting outcomes 
to run on the same sets of users (e.g. one experiment is 
changing the background color to black, another the 
text to gray). Control for such interactions should be 
established and handled automatically. After detecting 
an interaction, the platform should send an alert to the 
experiment owners. Detailed guidance on how to 
implement this feature is available in [28].  

• Near real-time detection and automatic shutdown 
of harmful experiments. In the “Run” phase alerting 
was configured by periodically (e.g. bi-hourly) 
calculating scorecards on critical guardrail metrics. In 
the “Fly” phase, and with thousands of experiments 
simultaneously active, the detection of harmful 
experiments should be near real-time and automatic 
emergency shutdown functionality should be 
implemented (the time to exclude users minimized). 

• Institutional Memory. To prevent an experiment 
owner from repeating an experiment that someone else 
previously conducted, an institutional memory of 
experimentation should be kept. It should be 
searchable and include all the essential metadata of the 
experiment (e.g. hypothesis, experiment outcome, 
selected markets and execution date). 

c) Experimentation pervasiveness: In contrast to the 
previous phases where controlled experiments were 
primarily used to support decisions on new feature 
introductions and deletions, in the “Fly” phase every small 
change to any product in the portfolio (e.g. a minor bug fix) 
should be supported by data from a controlled experiment. 
Advanced features described above enable product teams to 
experiment at this scale and expand their experimentation 
capabilities to cover the complete portfolio.  

2) Organizational Aspect 
a) Engineering team self-sufficiency: In contrast to the 

previous phase where the analysis of experiment results was 
supported by a data science team, Experiment Owners in 
this phase work autonomously. They create, execute and 

analyze the results of the experiments. The central data 
science team reviews experiments only on demand. 

b) Experimentation team organization: The partnership 
approach to the arrangement of data scientist teams will be 
efficient at this scale. Local product teams with their 
operational data science teams are empowered to run 
experiments on their own. A central data science team 
should be in charge of the experimentation platform and 
leasing its individual data scientists to cooperate with 
product teams to resolve issues and share experience. 

3) Business Aspect 
a) Overall Evaluation Criteria: The OEC at this phase 

should be rather stable and well defined. The OEC is used 
for setting the performance goals for teams within the 
organization. In contrast to the previous phases where the 
OEC was evolving, changes to the overall evaluation criteria 
in the “Fly” phase should occur only periodically (e.g. once 
per year) and follow and standardized process. This gives 
independent teams across the product portfolio a chance to 
focus their work on understanding how the features they 
own affect the key metrics, prioritizing their work to 
improve the OEC.  

VI. CONCLUSIONS 
Controlled Experimentation is becoming the norm in the 

software industry for reliably evaluating ideas with 
customers and correctly prioritizing product development 
activities [4] [5], [6], [7], [8], [21]. Previous research 
publications by Microsoft [27], [28], Google [29] and 
academia [5]–[8] reveal the essential building blocks for an 
experimentation platform; however, they leave out the details 
on how to incrementally scale (e.g. which technical and 
organizational activities to focus on at what phase). With our 
research contribution, which is based on an extensive case 
study at Microsoft, we aim to provide guidance on this topic 
and enable other companies to establish or scale their 
experimentation practices. Our main contribution is the 
“Experimentation Evolution Model”. In the model, we 
summarize the four phases of evolution and describe the 
focus of technical, organizational and business activities for 
each of them.  Researchers and practitioners can use this 
model to position other case companies and guide them to 
the next phase by suggesting the necessary features.  

In future research, we plan to (1) research the impact of 
controlled experimentation with respect to the four phases 
from the “Experimentation Evolution Model” and (2), 
validate our model in other companies.  
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