
This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

The Evolution of Continuous Experimentation in Software Product Development

From Data to a Data-driven Organization at Scale

Aleksander	Fabijan/, Pavel	Dmitriev5, Helena	Holmström	Olsson/, Jan	Bosch>
	/Malmö University

Faculty of Technology and Society
Malmö, Sweden

aleksander.fabijan@mah.se
helena.holmstrom.olsson@mah.se

	5Microsoft
Analysis & Experimentation

Microsoft, One Microsoft Way,
Redmond, WA 98052, USA

padmitri@microsoft.com

	>Chalmers University of
Technology

Dep. of Computer Science & Eng.
Göteborg, Sweden

jan.bosch@chalmers.se

Abstract—Software development companies are increasingly
aiming to become data-driven by trying to continuously
experiment with the products used by their customers.
Although familiar with the competitive edge that the A/B
testing technology delivers, they seldom succeed in evolving
and adopting the methodology. In this paper, and based on an
exhaustive and collaborative case study research in a large
software-intense company with highly developed
experimentation culture, we present the evolution process of
moving from ad-hoc customer data analysis towards
continuous controlled experimentation at scale. Our main
contribution is the “Experimentation Evolution Model” in
which we detail three phases of evolution: technical,
organizational and business evolution. With our contribution,
we aim to provide guidance to practitioners on how to develop
and scale continuous experimentation in software
organizations with the purpose of becoming data-driven at
scale.

A/B testing; continuous experimentation; data science;
customer feedback; continuous product innovation;
Experimentation Evolution Model; product value; Experiment
Owner

I. INTRODUCTION
Software development organizations and their product

development teams are increasingly using customer and
product data to support decisions throughout the product
lifecycle [1], [2]. Data-driven companies acquire, process,
and leverage data in order to create efficiencies, iterate on
and develop new products, and navigate the competitive
landscape [1]. Digitally adept and technology driven
companies are as much as 26 percent more profitable than
their competitors [3]. Recent software engineering research
reflects this situation with a number of publications on how
to change and efficiently conduct controlled experiments to
become data-driven [4], [5], [6], [7], [8], [27]. The role of
data scientists is increasingly gaining momentum in large
software companies [9]. However, despite having data, the
number of companies that efficiently use it and that
successfully transform into data-driven organizations stays
low and how this transformation is done in practice is little
studied [10], [11].

In this paper, we present the phases that teams at
Microsoft evolved through in order to become data-driven at

scale by establishing a controlled experimentation platform
and a data-driven mindset. The impact of scaling out the
experimentation platform across Microsoft is in hundreds of
millions of dollars of additional revenue annually. The
journey from a company with data to a data-driven company,
however, was not a jump but rather an evolution over a
period of years. This development occurs through phases and
we illustrate this process by creating the “Experimentation
Evolution Model”. With this model, we describe the steps to
take while evolving data-driven development practices
towards continuous experimentation at scale. With our
contribution, we aim to provide guidance to practitioners on
how to develop and scale continuous experimentation in
software organizations and thus become truly data-driven.

The paper is organized as follows. In Section II we
present the background and the motivation for this study. In
section III, we describe our research method, the data
collection and analysis practices and our case company. Our
empirical findings are in section IV. In section V, we present
our main contribution - the “Experimentation Evolution
Model”. Finally, we conclude the paper in section VI.

II. BACKGROUND
Rapid delivery of value to customers is one of the core

priorities of software companies [8]. With this goal in mind,
companies typically evolve their development practices. At
first, they inherit the Agile principles within the development
part of the organization [12] and expand them to other
departments [13]. Next, companies focus on various lean
concepts such as eliminating waste [14], removing
constraints in the development pipeline [15] and advancing
towards continuous integration [16] and continuous
deployment of software functionality [10]. Continuous
deployment, however, is characterized by a bidirectional
channel that enables companies not only to send data to their
customers to rapidly prototype with them [17], but also to
receive feedback data from products in the field. The
intuition of software development companies on customer
preferences can be wrong as much as 90% of the time [18],
[19], [20]. The actual product usage data has the potential to
make the prioritization process in product development more
accurate as it focuses on what customers do rather than what
they say [21], [22]. Controlled experimentation is becoming
the norm in advanced software companies for reliably

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

evaluating ideas with customers in order to correctly
prioritize product development activities [4] [5], [6], [7], [8].

A. Controlled Experiments
In a controlled experiment, users are randomly divided

between the variants (e.g., the two different designs of a
product interface) in a persistent manner (a user receives the
same experience multiple times). Users’ interactions with the
product are instrumented and key metrics are computed [4],
[23]. One of the key challenges with metrics is to decide on
which to include in an Overall Evaluation Criteria (OEC).
An OEC is a quantitative measure of a controlled
experiment’s objective [24] and steers the direction of the
business development. In controlled experimentation, it is
intuitive to measure the short-term effect, i.e., the impact
observed during the experiment [25]. Providing more weight
to advertisement metrics, for example, makes businesses
more profitable in the short-term. However, the short-term
effect is not always predictive of the long-term effect and
consequently should not be the sole component of an OEC
[26]. Defining an OEC is not trivial and should be conducted
with great care. Kohavi et al. [4], [26], [27] in their papers
present common pitfalls in the process of establishing a
controlled experimentation system and guidance on how to
reliably define an OEC.

Research contributions with practical guides on how to
develop an experimentation system have previously been
published both by Microsoft [27], [28] and Google [29]. The
Return on Investment (ROI) of controlled experimentation
has been discussed a number of times in the literature [23],
[27]. However, the count of companies that successfully
developed an experimentation culture and became data-
driven remains low and limited to other web service
companies such as Facebook, Google, Booking, Amazon,
LinkedIn, Etsy, Skyscanner [10], [28]. We believe that the
reason for this unsuccessful adoption of continuous
experimentation resides in the lack of knowledge on how the
transition can be done in practice. Companies have the
necessary instrumentation in place [30], are able to gather
and analyze product data, but they fail to efficiently utilize it
and learn from it [11].

 The research contributions from Google and Microsoft
provide guidance on how to start developing the
experimentation platform. However, they do not provide
guidance on which R&D activities to prioritize in order to
incrementally scale the experimentation across the
organization. This technical research contribution is aiming
to address this gap and provide guidance on how to evolve
from a company with data to a data-driven company. We
focus on technical challenges (e.g. the necessary platform
features that are required for successful scaling) as well as
the organizational aspects (e.g. how to integrate data
scientists in product teams) and business aspects (e.g. how to
develop an Overall Evaluation Criteria). This leads to the
following research question:

RQ: “How to evolve controlled experimentation in

software-intensive companies in order to become
data-driven at scale?”

To address this research question, we conducted a mixed
methods study of how continuous experimentation scaled at
Microsoft. We describe the research method in detail next.

III. METHOD
This research work is an inductive case study and was

conducted in collaboration with the Analysis and
Experimentation (A&E) team at Microsoft. The inspiration
for the study originates from an internal model used at A&E,
which is used to illustrate and compare progress of different
product teams on their path towards data-driven development
at scale. The study is based on historical data points that
were collected over a period of two years and complemented
with a series of semi-structured interviews, observations, and
meeting participations. In principle, it is an in-depth and
single case study [31], however, our participants are from
different organizational units and product teams with
fundamentally different product and service offerings.
Several of the participants worked in other data-driven
organizations before joining the Microsoft A&E team. The
A&E team provides a platform and service for running
controlled experiments for customers. Its data scientists,
engineers and program managers are involved with partner
teams and departments across Microsoft on a daily basis.
The participants involved in this research work are primarily
collaborating with the following Microsoft product and
services teams: Bing, Cortana, Office, MSN.com, Skype and
Xbox.

A. Data Collection
The data collection for this research was conducted in

two streams. The first stream consisted of collection of
archival data on past controlled experiments conducted at
Microsoft. The first author of this paper worked with the
Microsoft Analysis & Experimentation team for a period of
10 weeks. During this time, he collected documents,
presentations, meeting minutes and other notes available to
Microsoft employees about the past controlled experiments,
the development of the experimentation platform and
organizational developments conducted at Microsoft A&E
over the last 5 years. In cumulative, we collected
approximately 130 pages of qualitative data (including a
number of figures and illustrations).

 The second stream consisted of three parts. The first
author (1) participated in weekly experimentation meetings,
(2) attended internal training on controlled experimentation
and other related topics, and (3) conducted a number of
semi-structured interviews with Microsoft employees. In all
three data collection activities, the first author was
accompanied by one of the other three authors (as schedules
permitted). At all meetings and training, we took notes that
were shared between us at the end of each activity. The
individual interviews were recorded and transcribed by the
first researcher.

 The second author of this paper has been working with
the Analysis & Experimentation team at Microsoft for a
period of six years. He was the main contact person for the
other three researchers throughout the data collection and
analysis period and advised the diverse selection of data

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

scientist, managers and software engineers that we
interviewed. In total, we conducted 14 semi-structured
interviews (1 woman, 13 men) using a questionnaire guide
with 11 open-ended questions. The participants that work
with different product teams were invited for a half an hour
interview by the first two authors. The interview format
started with an introduction and a short explanation of the
research being conducted. Participants were then asked on
their experience with conducting controlled experiments,
how they document learnings from those experiments, and
how their practices changed over time. We also asked for
examples of successes, pitfalls, and pain points that they
experience while conducting controlled experiments.

We provide a detailed list of our interviewees, their roles
and their primary product teams in Table 1 below. The ones
with n/a do not collaborate with product teams directly, but
are rather focusing on platform development and other
activities within the A&E team.

TABLE I. INTERVIEW PARTICIPANTS

Interview details

Role Length
(min) Product

1 Senior Data Scientist 45 Skype

2 Data Scientist 45 Skype

3 Principal Group Engineering Mgr. 30 n/a

4 Principal Data Scientist 30 Bing

5 Senior Software Engineer 30 n/a

6 Senior Data Scientist 45 MSN

7 Principal Data Scientist Mgr. 30 Office

8 Principal Data Scientist Mgr. 30 Office

9 Principal Data Scientist & Architect 30 Bing

10 GPM Program Manager 30 n/a

11 Principal Software Engineer 30 Bing

12 Senior Applied Researcher 30 Ads

13 Senior Program Manager 30 Bing

14 Senior Program Manager 30 Cortana

B. Data Analysis
We analyzed the collected data in two steps. First, we
grouped the data that belonged to a certain product. Next,
we grouped products in 4 buckets based on the number of
experiments that their product teams are capable of
executing per annum (i.e. 1-9, 10-99, 100-999, and 1000+).
Second, and with the goal to model the evolution of
continuous experimentation, we performed inductive
category development [32]. In the first step, we emerged
with three high level definitions of categories that represent
our research interest (namely technical evolution,
organizational evolution and business evolution). Next, we
formulated the categories under each of the three categories
by reading through the collected data and assigning codes to
concepts that appeared in it. This approach is similar to the

Grounded Theory approach as we didn’t have
preconceptions on which categories to form beforehand
[33]. The final categories are visible in our model in Figure
5. To develop the content of the table, we backtracked the
codes within the buckets. Using a ‘venting’ method, i.e. a
process whereby interpretations are continuously discussed
with professional colleagues, we iteratively verified and
updated our theory on the content for each of the four
phases of our models in Figure 5. The A&E team provided
continuous feedback on the developing theory and helped to
clear any discrepancies in the raw data.

C. Validity Considerations
1) Construct Validity

To improve the study’s construct validity, we
complemented the archival data collection activities with
individual semi-structured interviews, meetings and
trainings. This enabled us to ask clarifying questions,
prevent misinterpretations, and study the phenomena from
different angles. Meeting minutes and interview
transcriptions were independently assessed by three
researchers to guarantee inter-rater reliability. Since this
study has been conducted in a highly data-driven company,
all the participants were familiar with the research topic and
expectations between the researchers and participants were
well aligned. The constructed artifact was continuously
validated with the A&E team members during the study.

2) External Validity
The main result of this paper details an evolution towards
becoming a data-driven company as experienced at
Microsoft. The first author conducted this research while
collaborating with the second author who is permanently
employed at the case company. This set-up enabled
continuous access and insight. However, and since this
approach differs from a traditional case study [31], the
contributions of this paper risk being biased from this
extensive inside view. The main contribution can thus not
directly translate to other companies. However, we believe
that the phases of our model, especially the dimension
concerning the technical evolution, are similar to the ones
that other software companies traverse on their path towards
becoming data-driven. The ‘Experimentation Evolution
Model’ can be used to compare other companies and advise
them on what to focus on next in order to efficiently scale
their data-driven practices. The embedded systems domain
is one example area where companies are aiming to become
data-driven and that we previously studied [34], [11], [35].
The phases of our model can be applied to this domain.

In the next section, we show the empirical data by
describing four controlled experiments from different
product teams.

IV. EMPIRICAL FOUNDATION
In this section, we briefly present examples of controlled

experiments conducted at Microsoft. The space limitations
make it difficult to show all the depth and breadth of our

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

empirical data. Due to this limitation, we select four example
experiments. With each of them, we aim to illustrate the
capabilities and limitations that product teams at Microsoft
experience as they evolve their data-driven practices. We
start with Office, where data-driven development is
beginning to gain momentum and where the first controlled
experiments were recently conducted. Next, we present an
example from Xbox and an example from MSN where the
experimentation is well established. Finally, we conclude the
section by providing an illustrative experiment from Bing
where experimentation is indispensable and deeply
embedded in the teams’ development process.

A. Office Contextual Bar Experiment
Microsoft Office is a well-known suite of products

designed for increasing work productivity. Data-driven
practices in Office product teams are in the early stages. The
product team responsible for the edit interface in Office
mobile apps recently conducted a design experiment on their
Word, Excel, and PowerPoint apps. They believed that
introducing a Contextual Command Bar (see Figure 1 below)
would increase the engagement compared to a version of the
product without the contextual bar. Their hypothesis was that
mobile phone users will do more editing on the phone
because the contextual command bar will improve editing
efficiency and will result in increased commonality and
frequency of edits and 2-week retention.

Figure 1. The “Contextual Bar” experiment on Word mobile app.

During the set-up of the experiment, the team ran into issues
with measuring the number of edits. The instrumentation was
still in the early stages, and the telemetry teams did not
accurately log the edit events. These issues had to be fixed
prior to the start of the experiment. The results of a two-week
experiment indicated a substantial increase in engagement
(counts of edits), but no statistically significant change in 2-
week retention. The experiment provided the team with two
key learnings: (1) Proper instrumentation of existing features
and the new feature is essential for computing experiment
metrics, (2) It is important to define global metrics that are
good leading indicators and that can change in a reasonable
timeframe.

B. Xbox Deals for Gold Members
Xbox is a well-known platform for video gaming.

Experimentation is becoming well established with this
product and their teams have been conducting experiments
on several different features.

In one of the experiments, a product team at Xbox aimed
to identify whether showing prices (original price and the
discount) in the weekly deals stripe, and using algorithmic
as opposed to editorial ordering of the items in the stripe
impacts engagement and purchases. They experimented
with two different variants. On Figure 2, we illustrate the
experiment control (A) and both of the treatments (B, C).

Figure 2. The “Xbox deals” experiment.

At Xbox, instrumentation is well established and a reliable
pipeline for data collection exists. Metrics that measure user
engagement and purchases are established and consist of a
combination of different signals from the logs aggregated
per user, session and other analysis units. In contrast to the
Office Word experiment above, the Xbox team
autonomously set-up their experiments, however, they still
require assistance on the execution and monitoring of the
experiment and at the analysis stage to interpret results. The
two-week experiment showed that, compared to control,
treatment B decreased engagement with the stripe. The
purchases, however, did not decrease. By showing prices
upfront treatment B provided better user experience by
engaging the users who are interested in a purchase and
sparing a click for those not interested. Treatment C
provided even greater benefit, increasing both engagement
with the stripe and purchases made. In this experiment the
team learned that (1) Showing prices upfront results in
better user experience, and (2) Algorithmic ordering of deals
beats manual editorial ordering.

C. MSN.com News Personalization
In contrast to Office Word and Xbox where

experimentation is primarily conducted with features
focusing on design changes, teams at MSN.com experiment
with most feature changes. In one of the recent experiments,
they aimed to test a personalization algorithm developed
within Microsoft Research for their news page. The
hypothesis was that user engagement with the version that
uses the machine learning personalization algorithm would
increase in comparison to the manually curated articles. In
contrast to Word and Xbox teams, the MSN product team
autonomously set-up and execute experiments. A number of

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

Data Scientists were hired in their product team and they
partner with the central Analysis and Experimentation team
to interpret and analyze complex experiments. Contrary to
the expectations, in the initial iteration of the experiment
machine learning algorithm performed worse than the
manual ordering. After some investigation, a bug was found
in the algorithm. The bug was fixed and several subsequent
iterations of the experiment were run to tune the algorithm.
At the end, the algorithmic ordering resulted in a substantial
lift in engagement. In Figure 3 below we show an example
screenshot from one of the iterations.

Figure 3. The “MSN.com personalization” experiment.

D. Bing Bot Detection Experiment
Bing is a search engine developed by Microsoft. On this

product, several teams at Microsoft conduct over 10.000
experiments per year ranging from large design
modifications to every bug fix or minor improvement. In
contrast to the previous examples, teams at Bing set-up,
execute and analyze experiments autonomously and without
the help of the Analysis & Experimentation data scientists.
At any given point in time, almost every user of the product
is in at least a few of the experiments simultaneously. As
users are put into more and more concurrent experiments, the
chance of unexpected interactions between those
experiments increases, which can lead to bad user experience
and inaccurate results. Preventing interactions where
possible, and detecting where not (alerts fire automatically
when experiments hurt the user experience, or interact with
other experiments) has been a critical element for delivering
trustworthy, large-scale experimentation.

The core purpose of Bing is to provide search results to
its users. Finding relevant results, however, is a
computational operation that extensively consumes
infrastructure capacity. One way to save on resources is to
prevent computer bots from performing the actual search by
e.g. returning results from a smaller in-memory index that is
orders of magnitude cheaper to serve. The experiment that
we briefly present in this section targeted exactly this
scenario. The hypothesis was that with an improved and
more pervasive bot-detection algorithm, human users will

not be harmed and fewer resources will be used for the
computation of search results. Conducting such experiments,
however, involves the use of advanced features that prevent
potentially harmful variants (see e.g. Figure 4 below) from
affecting a large population by automatically checking alerts
and incrementally ramping the number of users assigned to
the treatment.

Figure 4. An archival experiment with Bing that introduced user harm.

The results of the particular experiment indicated a ~10%
saving on infrastructure resources without introducing user
harm. Screenshot on Figure 4 is, however, a part of another
experiment with a slightly ‘different’ outcome.

V. THE EXPERIMENTATION EVOLUTION MODEL
In this section, and based on the empirical presentation of

products and related experiments in section IV, we present
the transition process model of moving from a situation with
ad-hoc data analysis towards continuous controlled
experimentation at scale. We name this process the
“Experimentation Evolution Model” and use this term to
describe the phases that companies and their product teams
follow while evolving their data-driven development
practices towards continuous experimentation at scale. It is
based on the empirical data collected at Microsoft and
inspired by a model developed internally at A&E.

In our model, and after listing a number of prerequisites
for experimentation, we present three dimensions of
evolution: technical, organizational and business evolution.
In the technical evolution part, we focus on the technical
aspects such as the complexity of the experimentation
platform, the pervasiveness of experimentation in product
teams, and the overall focus of the development activities.
The organizational evolution focuses on the organization of
the data science teams and their self-sufficiency for
experimentation. Finally, in the business evolution part, we
discuss the focus of the Overall Evaluation Criteria.

The four phases of the “Experimentation Evolution
Model”, namely “crawl”, “walk”, “run” and “fly”, are
summarized on Figure 5 below and described in detail in the
remainder of this section.

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

Figure 5. The “Experimentation Evolution Model”.

A. Prerequisites
Although most of the requirements for successful
experimentation arise while we scale the number of
experiments and teams, a few need to be fulfilled
beforehand. To evaluate the product statistics, skills that are
typically possessed by data scientists [9] are required within
the company. Here, we specifically emphasize the
understanding of hypothesis testing, randomization, sample
size determination, and confidence interval calculation with
multiple testing. For companies that lack these skills and
wish to train their engineers on these topics, online
resources and kits are available [36]. Combining these skills
with domain knowledge about the product will enable
companies to generate the first set of hypotheses for
evaluation. The second major prerequisite is the availability
of accessing the product instrumentation data. We discuss
how to implement the instrumentation in the following
sections, however, companies first need to have policies in
place that allow them to provide experimenters access to the
data. In some domains, this is a serious concern and needs to
be addressed both on legal and technical levels.

B. Crawl Phase
As the starting point on the path towards continuous
experimentation at scale, product teams start by configuring
the first experiment.

1) Technical Aspect
a) Focus: The technical focus of this phase is twofold.

First, and the main focus of this phase is the implementation
of the logging system. In non-data driven companies,
logging exists for the purpose of debugging product features
[30], [37], [38]. This is usually very limited and not useful
for analyzing how users interact with the products. Logging
procedures in the organization need to be updated by
creating a centralized catalog of events in the form of class
and enumeration, and implemented in the product telemetry.
The goal of such systematic logging is that a data scientist,
analyst, or anyone else in the organization who is not
familiar with the feature or the product itself, can
understand what action or event was triggered and logged
by simply looking at the name of the event. Names for
events should be consistent across products and platforms so
that it is easy to search for them and link them with tangible
actions in the product. We name the data collected or sent
from a product or feature for the purpose of data-driven

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

development signals. Examples of signals are clicks, swipes
over an image, interactions with a product, time spent
loading a feature, files touched, etc. Based on the complete
set of signals, an analyst should be able to reconstruct the
interactions that a user had with the product.
Second, any quality issues with writing and collecting
signals need to be solved. The goal is to have a reliable
system where events are consistently logged and repetitive
actions result in identical results.

b) Experimentation platform complexity: In this initial
phase, an experimentation platform is not required. With
signals systematically collected, a product team can perform
the first controlled experiment manually. They can do this
by splitting the users between two versions of the same
product and measuring how the distribution of signals
differs between the versions, for example. Practitioners can
use the guidance on how to calculate the statistics behind a
controlled experiment in [27]. In summary, if the difference
between the values for the Treatment group and the Control
group is statistically significant, we conclude with high
probability that the change introduced in the treatment
group caused the observed effect. Conventionally, a 95%
confidence interval is used.

c) Experimentation pervasiveness: Experiments in this
phase are for targeted components of a product and are not
pervasive. Typically, product teams should start to
experiment with a feature where multiple versions are
available. The main purpose of the first experiments is to
gain traction and evangelize the results to obtain the
necessary funding needed to develop an experimentation
platform and culture within the company. As an example,
product teams can start with a design experiment for which
it is not a priori clear which of the variants is better. The
results of the first experiment should not be trusted without
assuring that the data quality issues have been addressed.

d) Engineering team self-sufficiency: In this initial
phase, experiment set-up, execution and analysis is
conducted by a data scientist team. Product teams typically
do not possess the necessary skills to conduct trustworthy
controlled experiments and correctly analyze the results on
their own. We use the term Experiment Owner (EO) to
refer to one or more individuals from the product team
involved with the experiment. Experiment Owners are the
individuals that understand both the product and the
experiment, and are used as the main contact between the
data science team and the product teams for set up and
interpretation of the experiments and their results.

e) Experimentation team organization: In this phase,
product teams require training and help from a standalone
data scientist team. This organization of data scientists
allows freedom for generating ideas and long-term thinking
that are needed for development of the experimentation
platform.

2) Business Aspect
a) Overall Evaluation Criteria: The aim of the

“Crawl” phase is to define an OEC for the first set of
experiments that will help ground expectations and
evaluation of the experiment results. In concept, an OEC
stands for Overall (in view of all circumstances or
conditions), Evaluation (the process determining the
significance, worth, or condition of something by careful
appraisal and study) and Criteria (a standard on which a
judgment or decision may be based). In practice, and for the
first experiments, data scientists and Experiment Owners
should collaborate on defining the OEC from a few key
signals. An OEC should typically be closely related to long-
term business goals and teams should be informed upfront
that it will develop over time.

C. Walk Phase
After the initial logging and instrumentation have been
configured, the focus of the R&D activities transitions
towards defining metrics and an experimentation platform.

1) Technical Aspect
a) Focus: In contrast to the “crawl” phase where

experiments were evaluated by comparing the volume and
distribution of signals such as clicks and page views, the
focus in this phase is on defining a set of metrics combined
from those signals. Metrics are functions that take signals
as an input and output a number per unit. Signals should
first be categorized into classes and combined into metrics
by being aggregated over analysis units. Microsoft
recognizes three classes of signals for their products: action
signals (e.g. clicks, page views, visits, etc.), time signals
(minutes per session, total time on site, page load time, etc.),
and value signals (revenue, units purchased, ads clicked,
etc.). The units of analysis vary depending on the context
and product. The following apply at Microsoft for web
products: per user (e.g. clicks per user), per session (e.g.
minutes per session), per user-day (e.g. page views per
day), and per experiment (e.g. clicks per page view).

For other types of products, units of analysis might be
different. For a well-known video-conferencing Microsoft
product, “per call” is a useful unit of analysis. And by
combining signals with units of analysis, simple metrics are
created. Microsoft typically aims to construct four types of
metrics: success metrics (the ones that we will intend to
improve), guardrail metrics (constraints that are not allowed
to be changed), data quality metrics (the metrics that ensure
that the experiments will be set-up correctly), and debug
metrics (the ones that help deeper understanding and drill
down into success and guardrail metrics). A popular
research contribution from Google provides practical
guidance on the creation of these metrics for measuring user
experience on a large scale [39].

b) Experimentation platform complexity: With more
experiments being run, a need for an experimentation
platform arises. Software development organizations can

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

decide to either start developing their own experimentation
platform or utilize one of the commercial products designed
for this purpose. Several third party experimentation
platforms are available to software companies out of the
box [40], [41], [42]. Regardless of the decision, the
experimentation platform should have two essential features
integrated in this phase. (1) Power Analysis and (2) pre-
experiment A/A testing.
• Power analysis. This is a feature that is used to

determine the minimal sample size for detecting the
change in an experiment and it should be implemented
early in order to automate decisions on the duration of
the experiments. This will prevent some of the
common pitfalls (e.g. running experiments longer than
required in order to find the change or having an
under-powered experiment). See [36] for details.

• Pre-experiment A/A testing. An A/A feature assigns to
the treatment group the same experience as the control
group is being exposed to. Data is collected and its
variability is assed for power calculations and to test
the experimentation system (the null hypothesis should
be rejected about 5% of the time when a 95%
confidence level is used). After ensuring that there is
no imbalance on key OEC metrics, one of the A’s is
reconfigured into B – the A/B test is started on the
same population.

The number of experiments in this phase is relatively low.
This allows for central planning and scheduling of
experiments to avoid interactions. Each experiment is still
closely monitored to detect user harm or data quality issues.

c) Experimentation pervasiveness:
In contrast to the “crawl” phase where experiments were
mostly with design variants or features with alternative
implementations, product teams in this phase move on to
different types of experiments with the same product. From
design focused experiments (testing a set of design
alternatives) the teams advance to performance experiments
(testing performance between different variants of the same
feature). Infrastructure experiments (testing resource
alternatives) are another example of advancing the
experimentation within the product domain.

2) Organizational Aspect
a) Engineering team self-sufficiency: In this phase,

EO’s responsibility for creating the experiments (scheduling
the experiment, performing the power analysis etc.) is
transitioning from a data science expert to a
product/program manager employed in the product team.
However, the execution, monitoring, and analysis of the
experiments is still the responsibility of the data scientists.

b) Experimentation team organization: The results
should be evangelized across the team and bad practices
should be disputed (e.g. experimenting only on preview
audience). We recommend embedded organization of data
scientists that support product teams with increasing data
quality, metrics creation and developing an Overall

Evaluation Criteria. Embedded data scientists in the product
teams can hold the role of Experiment Owners or work
closely with other product team members that have this role.
They communicate and work with the central platform team.
The products within organizations will typically share
certain characteristics. With this organization, a bridge in
transferring learnings from one embedded data science
product team to another is established.

3) Business Aspect
a) Overall Evaluation Criteria: Most investments by

feature and product teams in this phase are to address data
quality issues and instrumentation to build an initial set of
metrics. It is important to understand and document metric
movements, validate findings, and build experimentation
muscle within the product and feature team. The initial
Overall Evaluation Criteria should be improved with the
findings from multiple experiments and supported by
multiple metrics. In contrast to the “crawl” phase, the OEC
will evolve from a few key signals to a structured set of
metrics consisting of success metrics (the ones we intend to
improve), guardrail metrics (constraints that are not allowed
to be changed) and data quality metrics (the metrics that
ensure that the experiments were set-up correctly and results
can be trusted). It is very important to work close with
many product team members and reach agreement on the
OEC. When disagreements occur, the OEC should be
backtracked and concerns addressed.

D. Run Phase
In the Run Phase, product teams ramp up the number of
experiments and iterate quickly with the purpose of
identifying the effect of the experiments on the business.

1) Technical Aspect
a) Focus: In the “walk” phase, product teams started to

merge signals into metrics. In the “Run” phase, however,
these metrics should evolve and become comprehensive.
Metrics should evolve from counting signals to capturing
more abstract concepts such as “loyalty” and “success”,
closely related to long-term company goals [43]. To
evaluate the metrics product teams should start running
learning experiments where a small degradation in user
experience is intentionally introduced for learning purposes
(e.g. degradation of results, slow down of a feature). With
such learning experiments, teams will have a better
understanding of the importance of certain features and the
effect that changes have on the metrics. Knowingly hurting
users slightly in the short-term (e.g., in a 2- week
experiment) enables teams at Microsoft to understand
fundamental issues and thereby improve the experience in
the long-term [28].

b) Experimentation platform complexity: To scale
above 100 data-driven experiments per year, the power
analysis and pre-experiment A/A features that were
implemented in the “Walk” phase will not be sufficient. The
experimentation platform needs to be extended with

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

additional features that will both (1) prevent incidents and
(2) increase the efficiency of product teams by automating
certain aspects of the workflow. We describe the new
features next:
• Alerting. With an increasing number of experiments,

having a manual overview review of metric movements
will become a resource-demanding task for Experiment
Owners. Automated alerting should be introduced
together with the ability to divert traffic to control if an
emergency situation occurs (e.g. a decrease of an
important metric). The naïve approach to alerting on any
statistically significant negative metric changes will lead
to an unacceptable number of false alerts and make the
entire alerting system overloaded and hard to interpret.
Detailed guidance on how to avoid this situation and
develop alerting that works is available in [28].

• Control of carry-over effects. Harmful experiments
have an effect on the population that may carry over
into the follow-up experiments and cause biased
results. A feature that re-randomizes the population
between experiments should be implemented in order
to prevent a high concentration of biased users in
either treatment or control.

• Experiment iteration support. This is a feature that
enables re-iteration of an experiment. Initially,
experiments in this phase should start on a small
percentage of traffic (e.g. 0.5% of users assigned to
treatment). The reason is that, as it gets easier to
configure and start an experiment, the risk of user
harm also increases (changes to production software
risk the introduction of degradations). Over time, the
percentage should automatically increase (by e.g.
running a new iteration of the experiment with a higher
setting) if no alerts on guardrail metrics were triggered
beforehand. The benefit of this feature is twofold.
First, it offers assurance that the impact of a harmful
experience will be limited to a low number of users.
Second, it optimizes the time to ramp to full power,
which minimizes the time to analysis of
experimentation results.

c) Experimentation pervasiveness:
In contrast to the “Walk” phase where experiments were
conducted on a single product, in the “Run” phase
companies aim to expand the scope of controlled
experimentation. They can achieve this by expanding (1) to
more features within the products and more importantly, (2)
to other product teams. Product teams should be
experimenting with every increment to their products (e.g.
introductions of new features, algorithm changes, etc.).
Experimenting should be the norm for identifying the value
of new features as well as for identifying the impact of
smaller changes to existing features. Past experiment data
can be used to understand the correlation and relationship
between movements in different business goals.

2) Organizational Aspect

a) Engineering team self-sufficiency: Experiment
Owners that were introduced in the “Crawl” phase and the
ones that were responsible for the creation of experiments in
the “Walk” phase now receive the complete responsibility to
execute their experiments. The execution of experiments
includes running power analysis to determine treatment
allocation, monitoring for bad experiments (e.g. the ones
with triggered alerts), making shut-down and ramp-up
decisions, and resolution of errors. However, the analysis of
results should still be supervised by the data scientists.

b) Experimentation team organization: We recommend
to keep a partnership approach to the arrangement of data
scientist teams by assigning a fixed number of data
scientists to work with product teams (they are employed in
the product teams directly). They review experiments,
decide on the evaluation criteria, and are trained by the
central platform data science team to become local
operational data scientists capable of setting-up the
experiments, executing them, and resolving basic alerts.

3) Business Aspect
a) Overall Evaluation Criteria: The purpose of this

phase is to tailor OEC using the knowledge obtained from
the learning experiments. Typically, and as presented in the
“Walk” phase, OEC will be a combination of success,
guardrail and data quality metrics. In the “Run” phase,
however, it will be evolved to capture concepts such as
“loyalty” and “success”, and corrected with the findings
from learning experiments. Selecting a single metric,
possibly as a weighted combination of objectives is highly
desired. The reason for that is that (1) single metric forces
inherent tradeoffs to be made once for multiple experiments
and (2) it aligns the organization behind a clear objective. A
good practice in this phase is to also start accumulating a
corpus of experiments with known outcomes and re-run the
evaluation every time changes are introduced to an OEC. A
good OEC will correctly determine the outcome.

E. Fly Phase
In the “Fly” phase, controlled experiments are the norm for
every change to any product in the company’s portfolio.
Such changes include not only obvious and visual changes
such as improvements of a user interface, but also subtler
changes such as different machine learning and prediction
algorithms that might affect ranking or content selection.
However, with such pervasiveness, a number of new
features are needed in the experimentation platform and new
responsibilities are assigned to experiment owners.

1) Technical Aspect
a) Focus: I: In the previous phases, technical activities

focused on implementing reliable instrumentation, creating
comprehensive metrics and conducting learning
experiments. In the “Fly” phase, however, we recommend
to focus on standardizing the process for the evaluation and
improvement of the Overall Evaluation Criteria. An OEC
should be used as a foundation to define the direction for

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

teams developing the product. At the same time, and since
customers’ preferences change over time [43], a product
team should invest in standardizing metric design and
evaluation practices and scheduling the activities for
updating the existing OEC. See [43] for details.

b) Experimentation platform complexity: In addition to
the features introduced in the previous phases, advanced
features such as interaction control and detection, auto-
detection and shut-down of harmful experiments, and
institutional memory collection are needed. These features
will enable experiment owners to conduct a larger number
of experiments and protect users from harm. We describe
them briefly below:
• Interaction control and detection. A statistical

interaction between two treatments A and B exists if
their combined effect is not the same as the sum of two
individual treatment effects [27]. This is a feature that
prevents such experiments with conflicting outcomes
to run on the same sets of users (e.g. one experiment is
changing the background color to black, another the
text to gray). Control for such interactions should be
established and handled automatically. After detecting
an interaction, the platform should send an alert to the
experiment owners. Detailed guidance on how to
implement this feature is available in [28].

• Near real-time detection and automatic shutdown
of harmful experiments. In the “Run” phase alerting
was configured by periodically (e.g. bi-hourly)
calculating scorecards on critical guardrail metrics. In
the “Fly” phase, and with thousands of experiments
simultaneously active, the detection of harmful
experiments should be near real-time and automatic
emergency shutdown functionality should be
implemented (the time to exclude users minimized).

• Institutional Memory. To prevent an experiment
owner from repeating an experiment that someone else
previously conducted, an institutional memory of
experimentation should be kept. It should be
searchable and include all the essential metadata of the
experiment (e.g. hypothesis, experiment outcome,
selected markets and execution date).

c) Experimentation pervasiveness: In contrast to the
previous phases where controlled experiments were
primarily used to support decisions on new feature
introductions and deletions, in the “Fly” phase every small
change to any product in the portfolio (e.g. a minor bug fix)
should be supported by data from a controlled experiment.
Advanced features described above enable product teams to
experiment at this scale and expand their experimentation
capabilities to cover the complete portfolio.

2) Organizational Aspect
a) Engineering team self-sufficiency: In contrast to the

previous phase where the analysis of experiment results was
supported by a data science team, Experiment Owners in
this phase work autonomously. They create, execute and

analyze the results of the experiments. The central data
science team reviews experiments only on demand.

b) Experimentation team organization: The partnership
approach to the arrangement of data scientist teams will be
efficient at this scale. Local product teams with their
operational data science teams are empowered to run
experiments on their own. A central data science team
should be in charge of the experimentation platform and
leasing its individual data scientists to cooperate with
product teams to resolve issues and share experience.

3) Business Aspect
a) Overall Evaluation Criteria: The OEC at this phase

should be rather stable and well defined. The OEC is used
for setting the performance goals for teams within the
organization. In contrast to the previous phases where the
OEC was evolving, changes to the overall evaluation criteria
in the “Fly” phase should occur only periodically (e.g. once
per year) and follow and standardized process. This gives
independent teams across the product portfolio a chance to
focus their work on understanding how the features they
own affect the key metrics, prioritizing their work to
improve the OEC.

VI. CONCLUSIONS
Controlled Experimentation is becoming the norm in the

software industry for reliably evaluating ideas with
customers and correctly prioritizing product development
activities [4] [5], [6], [7], [8], [21]. Previous research
publications by Microsoft [27], [28], Google [29] and
academia [5]–[8] reveal the essential building blocks for an
experimentation platform; however, they leave out the details
on how to incrementally scale (e.g. which technical and
organizational activities to focus on at what phase). With our
research contribution, which is based on an extensive case
study at Microsoft, we aim to provide guidance on this topic
and enable other companies to establish or scale their
experimentation practices. Our main contribution is the
“Experimentation Evolution Model”. In the model, we
summarize the four phases of evolution and describe the
focus of technical, organizational and business activities for
each of them. Researchers and practitioners can use this
model to position other case companies and guide them to
the next phase by suggesting the necessary features.

In future research, we plan to (1) research the impact of
controlled experimentation with respect to the four phases
from the “Experimentation Evolution Model” and (2),
validate our model in other companies.

ACKNOWLEDGMENT
We wish to thank Brian Frasca, Ronny Kohavi and others

at Microsoft that provided the input for and feedback on this
research. Ronny Kohavi was the creator of a similar model
used internally in A&E that was used as inspiration for this
work. The first author of this paper would also like to thank
the A&E team for the invaluable opportunity to work with
them during his research internship at Microsoft.

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

REFERENCES

[1] D. J. Patil, “Building Data Science Teams,” Oreilly Radar, pp. 1–25,
2011.

[2] A. Fabijan, H. H. Olsson, and J. Bosch, “Customer Feedback and Data
Collection Techniques in Software R&D: A Literature Review,” in
Software Business, ICSOB 2015, 2015, vol. 210, pp. 139–153.

[3] G. Westerman, M. Tannou, D. Bonnet, P. Ferraris, and A. McAfee,
“The Digital Advantage: How Digital Leaders Outperform their Peers
in Every Industry,” MIT Sloan Manag. Rev., pp. 1–24, 2012.

[4] R. Kohavi and R. Longbotham, “Online Controlled Experiments and
A/B Tests,” in Encyclopedia of Machine Learning and Data Mining,
no. Ries 2011, 2015, pp. 1–11.

[5] H. H. Olsson and J. Bosch, The HYPEX model: From opinions to data-
driven software development. 2014.

[6] H. H. Olsson and J. Bosch, “Towards continuous customer validation:
A conceptual model for combining qualitative customer feedback with
quantitative customer observation,” in Lecture Notes in Business
Information Processing, 2015, vol. 210, pp. 154–166.

[7] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch, “Building
Blocks for Continuous Experimentation,” Proc. 1st Int. Work. Rapid
Contin. Softw. Eng., pp. 26–35, 2014.

[8] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch, “The RIGHT
model for Continuous Experimentation,” J. Syst. Softw., vol. 0, pp. 1–
14, 2015.

[9] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging
role of data scientists on software development teams,” in Proceedings
of the 38th International Conference on Software Engineering - ICSE
’16, 2016, no. MSR-TR-2015-30, pp. 96–107.

[10] P. Rodríguez et al., “Continuous Deployment of Software Intensive
Products and Services: A Systematic Mapping Study,” J. Syst. Softw.,
2015.

[11] A. Fabijan, H. H. Olsson, and J. Bosch, “The Lack of Sharing of
Customer Data in Large Software Organizations: Challenges and
Implications,” in 17th International Conference on Agile Software
Development XP2016, 2016, pp. 39–52.

[12] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices. 2002.

[13] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ‘Stairway to
heaven’ - A mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software,”
in Proceedings - 38th EUROMICRO Conference on Software
Engineering and Advanced Applications, SEAA 2012, 2012, pp. 392–
399.

[14] S. Mujtaba, R. Feldt, and K. Petersen, “Waste and lead time reduction
in a software product customization process with value stream maps,”
in Proceedings of the Australian Software Engineering Conference,
ASWEC, 2010, pp. 139–148.

[15] E. M. Goldratt and J. Cox, The Goal: A Process of Ongoing
Improvement, vol. 2nd rev. e, no. 337 p. 2004.

[16] D. Ståhl and J. Bosch, “Continuous integration flows,” in Continuous
software engineering, vol. 9783319112, 2014, pp. 107–115.

[17] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use
Continuous Innovation to Create Radically Successful Businesses.
2011.

[18] G. Castellion, “Do It Wrong Quickly: How the Web Changes the Old
Marketing Rules by Mike Moran.,” J. Prod. Innov. Manag., vol. 25,
no. 6, pp. 633–635, 2008.

[19] The Standish Group, “The standish group report,” Chaos, vol. 49, pp.
1–8, 1995.

[20] J. Manzi, Uncontrolled : the surprising payoff of trial-and-error for
business, politics, and society. Basic Books, 2012.

[21] P. Bosch-Sijtsema and J. Bosch, “User Involvement throughout the
Innovation Process in High-Tech Industries,” J. Prod. Innov. Manag.,
vol. 32, no. 5, pp. 1–36, 2014.

[22] H. H. H. H. Olsson and J. Bosch, “From opinions to data-driven
software R&D: A multi-case study on how to close the ‘open loop’
problem,” in Proceedings - 40th Euromicro Conference Series on
Software Engineering and Advanced Applications, SEAA 2014, 2014,
pp. 9–16.

[23] M. L. T. Cossio et al., A/B Testing - The most powerful way to turn
clicks into customers, vol. XXXIII, no. 2. 2012.

[24] R. C. Van Nostrand, “Design of Experiments Using the Taguchi
Approach: 16 Steps to Product and Process Improvement,”
Technometrics, vol. 44, no. 3, pp. 289–289, Aug. 2002.

[25] H. Hohnhold, D. O’Brien, and D. Tang, “Focusing on the Long-term,”
in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’15, 2015, pp. 1849–
1858.

[26] R. Kohavi, A. Deng, and R. Longbotham, “Seven Rules of Thumb for
Web Site Experimenters,” Kdd, pp. 1–11, 2014.

[27] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,
“Controlled experiments on the web: Survey and practical guide,”
Data Min. Knowl. Discov., vol. 18, pp. 140–181, 2009.

[28] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann,
“Online controlled experiments at large scale,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2013, pp. 1168–1176.

[29] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer, “Overlapping
experiment infrastructure,” in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining -
KDD ’10, 2010, p. 17.

[30] T. Barik, R. Deline, S. Drucker, and D. Fisher, “The Bones of the
System: A Case Study of Logging and Telemetry at Microsoft,” 2016.

[31] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empir. Softw. Eng., vol.
14, no. 2, pp. 131–164, 2008.

[32] P. Mayring, “Qualitative content analysis - research instrument or
mode of interpretation,” in The Role of the Researcher in Qualitative
Psychology, 2002, pp. 139–148.

[33] K. M. Eisenhardt, “Building Theories from Case Study Research.,”
Acad. Manag. Rev., vol. 14, no. 4, pp. 532–550, 1989.

[34] J. Bosch and U. Eklund, “Eternal embedded software: Towards
innovation experiment systems,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2012, vol. 7609 LNCS, no. PART 1,
pp. 19–31.

[35] A. Fabijan, H. H. Olsson, and J. Bosch, “Time to Say ‘Good Bye’:
Feature Lifecycle,” in 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Limassol, Cyprus. 31
Aug.-2 Sept. 2016, 2016, pp. 9–16.

[36] “Hypothesis Kit for A/B testing.” [Online]. Available:
http://www.experimentationhub.com/hypothesis-kit.html.

[37] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices in
open-source software,” in Proceedings - International Conference on
Software Engineering, 2012, pp. 102–112.

[38] Q. Fu et al., “Where do developers log? an empirical study on logging
practices in industry,” Companion Proc. 36th Int. Conf. Softw. Eng. -
ICSE Companion 2014, pp. 24–33, 2014.

[39] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the User
Experience on a Large Scale : User-Centered Metrics for Web
Applications,” Proc. SIGCHI Conf. Hum. Factors Comput. Syst., pp.
2395–2398, 2010.

[40] “Optimizely.” [Online]. Available: https://www.optimizely.com/.
[41] “Mixpanel.” [Online]. Available: https://mixpanel.com/.
[42] “Oracle Maxymiser.” [Online]. Available:

https://www.oracle.com/marketingcloud/products/testing-and-
optimization/index.html.

[43] W. Wood, M. G. Witt, and L. Tam, “Changing circumstances,
disrupting habits,” J. Pers. Soc. Psychol., vol. 88, no. 6, pp. 918–33,
2005.

