
Soft Threshold Weight Reparameterization for Learnable Sparsity

Aditya Kusupati 1

Vivek Ramanujan * 2 Raghav Somani * 1 Mitchell Wortsman * 1

Prateek Jain 3 Sham Kakade 1 Ali Farhadi 1

Abstract
Sparsity in Deep Neural Networks (DNNs) is
studied extensively with the focus of maximiz-
ing prediction accuracy given an overall param-
eter budget. Existing methods rely on uniform
or heuristic non-uniform sparsity budgets which
have sub-optimal layer-wise parameter allocation
resulting in a) lower prediction accuracy or b)
higher inference cost (FLOPs). This work pro-
poses Soft Threshold Reparameterization (STR),
a novel use of the soft-threshold operator on
DNN weights. STR smoothly induces spar-
sity while learning pruning thresholds thereby
obtaining a non-uniform sparsity budget. Our
method achieves state-of-the-art accuracy for un-
structured sparsity in CNNs (ResNet50 and Mo-
bileNetV1 on ImageNet-1K), and, additionally,
learns non-uniform budgets that empirically re-
duce the FLOPs by up to 50%. Notably, STR
boosts the accuracy over existing results by up
to 10% in the ultra sparse (99%) regime and
can also be used to induce low-rank (structured
sparsity) in RNNs. In short, STR is a simple
mechanism which learns effective sparsity bud-
gets that contrast with popular heuristics. Code,
pretrained models and sparsity budgets are at
https://github.com/RAIVNLab/STR.

1. Introduction
Deep Neural Networks (DNNs) are the state-of-the-art mod-
els for many important tasks in the domains of Computer
Vision, Natural Language Processing, etc. To enable highly
accurate solutions, DNNs require large model sizes resulting
in huge inference costs, which many times become the main

*Equal contribution 1University of Washington, USA
2Allen Institute for Artificial Intelligence, USA 3Microsoft Re-
search, India. Correspondence to: Aditya Kusupati <kusu-
pati@cs.washington.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

bottleneck in the real-world deployment of the solutions.
During inference, a typical DNN model stresses the follow-
ing aspects of the compute environment: 1) RAM - working
memory, 2) Processor compute - Floating Point Operations
(FLOPs1), and 3) Flash - model size. Various techniques are
proposed to make DNNs efficient including model pruning
(sparsity) (Han et al., 2015), knowledge distillation (Bucilu
et al., 2006), model architectures (Howard et al., 2017) and
quantization (Rastegari et al., 2016).

Sparsity of the model, in particular, has potential for impact
across a variety of inference settings as it reduces the model
size and inference cost (FLOPs) without significant change
in training pipelines. Naturally, several interesting projects
address inference speed-ups via sparsity on existing frame-
works (Liu et al., 2015; Elsen et al., 2019) and commodity
hardware (Ashby et al.). On-premise or Edge computing
is another domain where sparse DNNs have potential for
deep impact as it is governed by billions of battery limited
devices with single-core CPUs. These devices, including
mobile phones (Anguita et al., 2012) and IoT sensors (Patil
et al., 2019; Roy et al., 2019), can benefit significantly from
sparsity as it can enable real-time on-device solutions.

Sparsity in DNNs, surveyed extensively in Section 2, has
been the subject of several papers where new algorithms
are designed to obtain models with a given parameter bud-
get. But state-of-the-art DNN models tend to have a large
number of layers with highly non-uniform distribution both
in terms of the number of parameters as well as FLOPs
required per layer. Most existing methods rely either on
uniform sparsity across all parameter tensors (layers) or
on heuristic non-uniform sparsity budgets leading to a sub-
optimal weight allocation across layers and can lead to a
significant loss in accuracy. Furthermore, if the budget is
set at a global level, some of the layers with a small number
of parameters would be fully dense as their contribution to
the budget is insignificant. However, those layers can have
significant FLOPs, e.g., in an initial convolution layer, a
simple tiny 3×3 kernel would be applied to the entire image.
Hence, while such models might decrease the number of
non-zeroes significantly, their FLOPs could still be large.

1One Multiply-Add is counted as one FLOP

ar
X

iv
:2

00
2.

03
23

1v
9

 [
cs

.L
G

]
 2

2
Ju

n
20

20

https://github.com/RAIVNLab/STR

Soft Threshold Weight Reparameterization for Learnable Sparsity

Motivated by the above-mentioned challenges, this works
addresses the following question: “Can we design a method
to learn non-uniform sparsity budget across layers that is
optimized per-layer, is stable, and is accurate?”.

Most existing methods for learning sparse DNNs have their
roots in the long celebrated literature of high-dimension
statistics and, in particular, sparse regression. These meth-
ods are mostly based on well-known Hard and Soft Thresh-
olding techniques, which are essentially projected gradient
methods with explicit projection onto the set of sparse pa-
rameters. However, these methods require a priori knowl-
edge of sparsity, and as mentioned above, mostly heuristic
methods are used to set the sparsity levels per layer.

We propose Soft Threshold Reparameterization (STR) to
address the aforementioned issues. We use the fact that
the projection onto the sparse sets is available in closed
form and propose a novel reparameterization of the problem.
That is, for forward pass of DNN, we use soft-thresholded
version (Donoho, 1995) of a weight tensor Wl of the l-th
layer in the DNN: S(Wl, αl) := sign (Wl)·ReLU(|Wl|−
αl) where αl is the pruning threshold for the l-th layer. As
the DNN loss can be written as a continuous function of
αl’s, we can use backpropagation to learn layer-specific αl

to smoothly induce sparsity. Typically, each layer in a neural
network is distinct unlike the interchangeable weights and
neurons making it interesting to learn layer-wise sparsity.

Due to layer-specific thresholds and sparsity, STR is able
to achieve state-of-the-art accuracy for unstructured sparsity
in CNNs across various sparsity regimes. STR makes even
small-parameter layers sparse resulting in models with sig-
nificantly lower inference FLOPs than the baselines. For ex-
ample, STR for 90% sparse MobileNetV1 on ImageNet-1K
results in a 0.3% boost in accuracy with 50% fewer FLOPs.
Empirically, STR’s learnt non-uniform budget makes it a
very effective choice for ultra (99%) sparse ResNet50 as
well where it is ∼10% more accurate than baselines on
ImageNet-1K. STR can also be trivially modified to induce
structured sparsity, demonstrating its generalizability to a va-
riety of DNN architectures across domains. Finally, STR’s
learnt non-uniform sparsity budget transfers across tasks
thus discovering an efficient sparse backbone of the model.

The 3 major contributions of this paper are:
• Soft Threshold Reparameterization (STR), for the

weights in DNNs, to induce sparsity via learning the
per-layer pruning thresholds thereby obtaining a better
non-uniform sparsity budget across layers.

• Extensive experimentation showing that STR achieves
the state-of-the-art accuracy for sparse CNNs (ResNet50
and MobileNetV1 on ImageNet-1K) along with a signifi-
cant reduction in inference FLOPs.

• Extension of STR to structured sparsity, that is useful for
the direct implementation of fast inference in practice.

2. Related Work
This section covers the spectrum of work on sparsity in
DNNs. The sparsity in the discussion can be characterized
as (a) unstructured and (b) structured while sparsification
techniques can be (i) dense-to-sparse, and (ii) sparse-to-
sparse. Finally, the sparsity budget in DNNs can either be
(a) uniform, or (b) non-uniform across layers. This will be a
key focus of this paper, as different budgets result in differ-
ent inference compute costs as measured by FLOPs. This
section also discusses the recent work on learnable sparsity.

2.1. Unstructured and Structured Sparsity

Unstructured sparsity does not take the structure of the
model (e.g. channels, rank, etc.,) into account. Typically, un-
structured sparsity is induced in DNNs by making the param-
eter tensors sparse directly based on heuristics (e.g. weight
magnitude) thereby creating sparse tensors that might not be
capable of leveraging the speed-ups provided by commod-
ity hardware during training and inference. Unstructured
sparsity has been extensively studied and includes methods
which use gradient, momentum, and Hessian based heuris-
tics (Evci et al., 2020; Lee et al., 2019; LeCun et al., 1990;
Hassibi & Stork, 1993; Dettmers & Zettlemoyer, 2019),
and magnitude-based pruning (Han et al., 2015; Guo et al.,
2016; Zhu & Gupta, 2017; Frankle & Carbin, 2019; Gale
et al., 2019; Mostafa & Wang, 2019; Bellec et al., 2018; Mo-
canu et al., 2018; Narang et al., 2019; Kusupati et al., 2018;
Wortsman et al., 2019). Unstructured sparsity can also be
induced by L0, L1 regularization (Louizos et al., 2018), and
Variational Dropout (VD) (Molchanov et al., 2017).

Gradual Magnitude Pruning (GMP), proposed in (Zhu &
Gupta, 2017), and studied further in (Gale et al., 2019), is a
simple magnitude-based weight pruning applied gradually
over the course of the training. Discovering Neural Wirings
(DNW) (Wortsman et al., 2019) also relies on magnitude-
based pruning while utilizing a straight-through estimator
for the backward pass. GMP and DNW are the state-of-the-
art for unstructured pruning in DNNs (especially in CNNs)
demonstrating the effectiveness of magnitude pruning. VD
gets accuracy comparable to GMP (Gale et al., 2019) for
CNNs but at a cost of 2× memory and 4× compute during
training making it hard to be used ubiquitously.

Structured sparsity takes structure into account making the
models scalable on commodity hardware with the stan-
dard computation techniques/architectures. Structured spar-
sity includes methods which make parameter tensors low-
rank (Jaderberg et al., 2014; Alizadeh et al., 2020; Lu et al.,
2016), prune out channels, filters and induce block/group
sparsity (Liu et al., 2019; Wen et al., 2016; Li et al., 2017;
Luo et al., 2017; Gordon et al., 2018; Yu & Huang, 2019).
Even though structured sparsity can leverage speed-ups pro-
vided by parallelization, the highest levels of model pruning

Soft Threshold Weight Reparameterization for Learnable Sparsity

are only possible with unstructured sparsity techniques.

2.2. Dense-to-sparse and Sparse-to-sparse Training

Until recently, most sparsification methods were dense-to-
sparse i.e., the DNN starts fully dense and is made sparse by
the end of the training. Dense-to-sparse training in DNNs
encompasses the techniques presented in (Han et al., 2015;
Zhu & Gupta, 2017; Molchanov et al., 2017; Frankle &
Carbin, 2019; Renda et al., 2020).

The lottery ticket hypothesis (Frankle & Carbin, 2019)
sparked an interest in training sparse neural networks end-to-
end. This is referred to as sparse-to-sparse training and a lot
of recent work (Mostafa & Wang, 2019; Bellec et al., 2018;
Evci et al., 2020; Lee et al., 2019; Dettmers & Zettlemoyer,
2019) aims to do sparse-to-sparse training using techniques
which include re-allocation of weights to improve accuracy.

Dynamic Sparse Reparameterization (DSR) (Mostafa &
Wang, 2019) heuristically obtains a global magnitude thresh-
old along with the re-allocation of the weights based on the
non-zero weights present at every step. Sparse Networks
From Scratch (SNFS) (Dettmers & Zettlemoyer, 2019) uti-
lizes momentum of the weights to re-allocate weights across
layers and the Rigged Lottery (RigL) (Evci et al., 2020)
uses the magnitude to drop and the periodic dense gradi-
ents to regrow weights. SNFS and RigL are state-of-the-art
in sparse-to-sparse training but fall short of GMP for the
same experimental settings. It should be noted that, even
though sparse-to-sparse can reduce the training cost, the
existing frameworks (Paszke et al., 2019; Abadi et al., 2016)
consider the models as dense resulting in minimal gains.

DNW (Wortsman et al., 2019) and Dynamic Pruning with
Feedback (DPF) (Lin et al., 2020) fall between both as
DNW uses a fully dense gradient in the backward pass and
DPF maintains a copy of the dense model in parallel to
optimize the sparse model through feedback. Note that DPF
is complementary to most of the techniques discussed here.

2.3. Uniform and Non-uniform Sparsity

Uniform sparsity implies that all the layers in the DNN have
the same amount of sparsity in proportion. Quite a few
works have used uniform sparsity (Gale et al., 2019), given
its ease and lack of hyperparameters. However, some works
keep parts of the model dense, including the first or the
last layers (Lin et al., 2020; Mostafa & Wang, 2019; Zhu &
Gupta, 2017). In general, making the first or the last layers
dense benefits all the methods. GMP typically uses uniform
sparsity and achieves state-of-the-art results.

Non-uniform sparsity permits different layers to have differ-
ent sparsity budgets. Weight re-allocation heuristics have
been used for non-uniform sparsity in DSR and SNFS. It can
be a fixed budget like the ERK (Erdos-Renyi-Kernel) heuris-

tic described in RigL (Evci et al., 2020). A global pruning
threshold (Han et al., 2015) can also induce non-uniform
sparsity and has been leveraged in Iterative Magnitude Prun-
ing (IMP) (Frankle & Carbin, 2019; Renda et al., 2020). A
good non-uniform sparsity budget can help in maintaining
accuracy while also reducing the FLOPs due to a better
parameter distribution. The aforementioned methods with
non-uniform sparsity do not reduce the FLOPs compared
to uniform sparsity in practice. Very few techniques like
AMC (He et al., 2018), using expensive reinforcement learn-
ing, minimize FLOPs with non-uniform sparsity.

Most of the discussed techniques rely on intelligent heuris-
tics to obtain non-uniform sparsity. Learning the pruning
thresholds and in-turn learning the non-uniform sparsity
budget is the main contribution of this paper.

2.4. Learnable Sparsity

Concurrent to our work, (Savarese et al., 2019; Liu et al.,
2020; Lee, 2019; Xiao et al., 2019; Azarian et al., 2020) have
proposed learnable sparsity methods through training of the
sparse masks and weights simultaneously with minimal
heuristics. The reader is urged to review these works for a
more complete picture of the field. Note that, while STR
is proposed to induce layer-wise unstructured sparsity, it
can be easily adapted for global, filter-wise, or per-weight
sparsity as discussed in Appendix A.5.

3. Method - STR
Optimization under sparsity constraint on the parameter set
is a well studied area spanning more than three decades
(Donoho, 1995; Candes et al., 2007; Jain et al., 2014), and
is modeled as:

min
W
L(W;D), s.t. ‖W‖0 ≤ k,

whereD :=
{
xi ∈ Rd, yi ∈ R

}
i∈[n] is the observed data, L

is the loss function,W are the parameters to be learned and
‖ · ‖0 denotes the L0-norm or the number of non-zeros, and
k is the parameter budget. Due to non-convexity and com-
binatorial structure of the L0 norm constraint, it’s convex
relaxation L1 norm has been studied for long time and has
been at the center of a large literature on high-dimensional
learning. In particular, several methods have been proposed
to solve the two problems including projected gradient de-
scent, forward/backward pruning etc.

Projected Gradient Descent (PGD) in particular has been
popular for both the problems as the projection onto both
L0 as well as the L1 ball is computable in almost closed
form (Beck & Teboulle, 2009; Jain et al., 2014); L0 ball
projection is called Hard Thresholding while L1 ball projec-
tion is known as Soft Thresholding. Further, these methods
have been the guiding principle for many modern DNN

Soft Threshold Weight Reparameterization for Learnable Sparsity

model pruning (sparsity) techniques (Han et al., 2015; Zhu
& Gupta, 2017; Narang et al., 2019).

However, projection-based methods suffer from the problem
of dense gradient and intermediate parameter structure, as
the gradient descent iterate can be arbitrarily out of the set
and is then projected back onto L0 or L1 ball. At a scale
of billions of parameters, computing such dense gradients
and updates can be daunting. More critically, the budget
parameter k is set at the global level, so it is not clear how
to partition the budget for each layer, as the importance of
each layer can be significantly different.

In this work, we propose a reparameterization, Soft Thresh-
old Reparameterization (STR) based on the soft threshold
operator (Donoho, 1995), to alleviate both the above men-
tioned concerns. That is, instead of first updating W via
gradient descent and then computing its projection, we di-
rectly optimize over projected W . Let Sg(W; s) be the
projection of W parameterized by s and function g. S is
applied to each element ofW and is defined as:

Sg(w, s) := sign (w) · ReLU(|w| − g(s)), (1)

where s is a learnable parameter, g : R→ R, and α = g(s)
is the pruning threshold. ReLU(a) = max(a, 0). That is, if
|w| ≤ g(s), then Sg(w, s) sets it to 0.

Reparameterizing the optimization problem with S modifies
(note that it is not equivalent) it to:

min
W
L(Sg(W, s),D). (2)

For L-layer DNN architectures, we divide W into: W =
[Wl]

L
l=1 where Wl is the parameter tensor for the l-th layer.

As mentioned earlier, different layers of DNNs are unique
can have significantly different number of parameters. Simi-
larly, different layers might need different sparsity budget
for the best accuracy. So, we set the trainable pruning pa-
rameter for each layer as sl. That is, s = [s1, . . . , sL].

Now, using the above mentioned reparameterization for each
Wl and adding a standard L2 regularization per layer, we
get the following Gradient Descent (GD) update equation at
the t-th step for Wl, ∀ l ∈ [L]:

W
(t+1)
l ← (1− ηt · λ)W(t)

l

− ηt∇Sg(Wl,sl)L(Sg(W
(t), s),D)�∇Wl

Sg(Wl, sl),

(3)

where ηt is the learning rate at the t-th step, and λ
is the L2 regularization (weight-decay) hyper-parameter.
∇Wl

Sg(Wl, sl) is the gradient of Sg(Wl, sl) w.r.t. Wl.

Now, S is non-differentiable, so we use sub-gradient which

leads to the following update equation:

W
(t+1)
l ← (1− ηt · λ)W(t)

l

− ηt∇Sg(Wl,sl)L(Sg(W
(t), s),D)� 1

{
Sg(W(t)

l , sl) 6= 0
}
,

(4)

where 1 {·} is the indicator function and A � B denotes
element-wise (Hadamard) product of tensors A and B.

Now, if g is a continuous function, then using the STR
(2) and (1), it is clear that L(Sg(W, s),D) is a continuous
function of s. Further, sub-gradient of L w.r.t. s, can be
computed and uses for gradient descent on s as well; see
Appendix A.2. Algorithm 1 in the Appendix shows the
implementation of STR on 2D convolution along with ex-
tensions to global, per-filter & per-weight sparsity. STR can
be modified and applied on the eigenvalues of a parameter
tensor, instead of individual entries mentioned above, result-
ing in low-rank tensors; see Section 4.2.1 for further details.
Note that s also has the same weight-decay parameter λ.

Naturally, g plays a critical role here, as a sharp g can lead
to an arbitrary increase in threshold leading to poor accuracy
while a flat g can lead to slow learning. Practical considera-
tions for choice of g are discussed in Appendix A.1. For the
experiments, g is set as the Sigmoid function for unstruc-
tured sparsity and the exponential function for structured
sparsity. Typically, {sl}l∈[L] are initialized with sinit to
ensure that the thresholds {αl = g(sl)}l∈[L] start close to
0. Figure 1 shows that the thresholds’ dynamics are guided
by a combination of gradients from L and the weight-decay
on s. Further, the overall sparsity budget for STR is not
set explicitly. Instead, it is controlled by the weight-decay
parameter (λ), and can be further fine-tuned using sinit. In-
terestingly, this curve is similar to the handcrafted heuristic
for thresholds defined in (Narang et al., 2019). Figure 2
shows the overall learnt sparsity budget for ResNet50 dur-
ing training. The curve looks similar to GMP (Zhu & Gupta,
2017) sparsification heuristic, however, STR learns it via
backpropagation and SGD.

Figure 1. The learnt threshold parameter, α = g(s), for layer 10 in
90% sparse ResNet50 on ImageNet-1K over the course of training.

Finally, each parameter tensor learns a different threshold
value, {αl}l∈[L], resulting in unique final thresholds across

Soft Threshold Weight Reparameterization for Learnable Sparsity

Figure 2. The progression of the learnt overall budget for 90%
sparse ResNet50 on ImageNet-1K over the course of training.

Figure 3. The final learnt threshold values, [αl]
54
l=1 = [g(sl)]

54
l=1,

for all the layers in 90% sparse ResNet50 on ImageNet-1K.

the layers, as shown in Figure 3 for ResNet50. This, in turn,
results in the non-uniform sparsity budget (see Figure 6)
which is empirically shown to be effective in increasing
prediction accuracy while reducing FLOPs. Moreover, (4)
shows that the gradient update itself is sparse as gradient of
L is multiplied with an indicator function of Sg(Wl) 6= 0
which gets sparser over iterations (Figure 2). So STR ad-
dresses both the issues with standard PGD methods (Hard/-
Soft Thresholding) that we mentioned above.

3.1. Analysis

The reparameterization trick using the projection operator’s
functional form can be used for standard constrained opti-
mization problems as well (assuming the projection operator
has a closed-form). However, it is easy to show that in gen-
eral, such a method need not converge to the optimal solu-
tion even for convex functions over convex sets. This raises
a natural question about the effectiveness of the technique
for sparse weights learning problem. It turns out that for
sparsity constrained problems, STR is very similar to back-
ward pruning (Hastie et al., 2009) which is a well-known
technique for sparse regression. Note that, similar to Hard/-
Soft Thresholding, standard backward pruning also does
not support differentiable tuning thresholds which makes it
challenging to apply it to DNNs.

To further establish this connection, let’s consider a stan-
dard sparse regression problem where y = Xw∗, Xij ∼
N (0, 1), and X ∈ Rn×d. w∗ ∈ {0, 1}d has r � d non-

zeros, and d � n � r log d. Due to the initialization,
g(s) ≈ 0 in initial few iterations. So, gradient descent
converges to the least `2-norm regression solution. That is,
w = UUTw∗ where U ∈ Rd×n is the right singular vector
matrix of X and is a random n-dimensional subspace. As U
is a random subspace. Since n � r log d, USU

T
S ≈ r

d · I
where S = supp(w∗), and US indexes rows of U corre-
sponding to S. That is, minj∈S

∣∣Uj ·UTw∗
∣∣ ≥ 1− o(1).

On the other hand,
∣∣Uj ·UT

Sw
∗
∣∣ . √

nr
d

√
log d with high

probability for j 6∈ S. As n � r log d, almost all the el-
ements of supp(w∗) will be in top O (n) elements of w.
Furthermore, XSg(w, s) = y, so |s| would decrease sig-
nificantly via weight-decay and hence g(s) becomes large
enough to prune all but say O (n) elements. Using a similar
argument as above, leads to further pruning of w, while
ensuring recovery of almost all elements in supp(w∗).

4. Experiments
This section showcases the experimentation followed by
the observations from applying STR for (a) unstructured
sparsity in CNNs and (b) structured sparsity in RNNs.

4.1. Unstructured Sparsity in CNNs

4.1.1. EXPERIMENTAL SETUP

ImageNet-1K (Deng et al., 2009) is a widely used large-
scale image classification dataset with 1K classes. All
the CNN experiments presented are on ImageNet-1K.
ResNet50 (He et al., 2016) and MobileNetV1 (Howard
et al., 2017) are two popular CNN architectures. ResNet50
is extensively used in literature to show the effectiveness
of sparsity in CNNs. Experiments on MobileNetV1 argue
for the generalizability of the proposed technique (STR).
Dataset and models’ details can be found in Appendix A.7.

STR was compared against strong state-of-the-art base-
lines in various sparsity regimes including GMP (Gale
et al., 2019), DSR (Mostafa & Wang, 2019), DNW (Worts-
man et al., 2019), SNFS (Dettmers & Zettlemoyer, 2019),
RigL (Evci et al., 2020) and DPF (Lin et al., 2020). GMP
and DNW always use a uniform sparsity budget. RigL,
SNFS, DSR, and DPF were compared in their original form.
Exceptions for the uniform sparsity are marked in Table 1.
The “+ ERK” suffix implies the usage of ERK budget (Evci
et al., 2020) instead of the original sparsity budget. Even
though VD (Molchanov et al., 2017) achieves state-of-the-
art results, it is omitted due to the 2× memory and 4× com-
pute footprint during training. Typically VD and IMP use a
global threshold for global sparsity (GS) (Han et al., 2015)
which can also be learnt using STR. The unstructured spar-
sity experiments presented compare the techniques which
induce layer-wise sparsity. Note that STR is generalizable
to other scenarios as well. Open-source implementations,

Soft Threshold Weight Reparameterization for Learnable Sparsity

pre-trained models, and reported numbers of the available
techniques were used as the baselines. Experiments were
run on a machine with 4 NVIDIA Titan X (Pascal) GPUs.

All baselines use the hyperparameter settings defined in
their implementations/papers. The experiments for STR
use a batch size of 256, cosine learning rate routine and
are trained for 100 epochs following the hyperparameter
settings in (Wortsman et al., 2019) using SGD + momentum.
STR has weight-decay (λ) and sinit hyperparameters to
control the overall sparsity in CNNs and can be found in Ap-
pendix A.6. GMP1.5× (Gale et al., 2019) and RigL5× (Evci
et al., 2020) show that training the networks longer increases
accuracy. However, due to the limited compute and environ-
mental concerns (Schwartz et al., 2019), all the experiments
were run only for around 100 epochs (∼3 days each). Un-
structured sparsity in CNNs with STR is enforced by learn-
ing one threshold per-layer as shown in Figure 3. PyTorch
STRConv code can be found in Algorithm 1 of Appendix.

4.1.2. RESNET50 ON IMAGENET-1K

A fully dense ResNet50 trained on ImageNet-1K has 77.01%
top-1 validation accuracy. STR is compared extensively to
other baselines on ResNet50 in the sparsity ranges of 80%,
90%, 95%, 96.5%, 98%, and 99%. Table 1 shows that DNW
and GMP are state-of-the-art among the baselines across all
the aforementioned sparsity regimes. As STR might not
be able to get exactly to the sparsity budget, numbers are
reported for the models which nearby. Note that the 90.23%
sparse ResNet50 on ImageNet-1K with STR is referred to
as the 90% sparse ResNet50 model learnt with STR.

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0
Sparsity (%)

45

50

55

60

65

70

75

To
p-

1
Ac

cu
ra

cy
 (%

)

STR
GMP
DNW
SNFS
SNFS + ERK
RigL
RigL + ERK
DPF

Figure 4. STR forms a frontier curve over all the baselines in all
sparsity regimes showing that it is the state-of-the-art for unstruc-
tured sparsity in ResNet50 on ImageNet-1K.

STR comfortably beats all the baselines across all the spar-
sity regimes as seen in Table 1 and is the state-of-the-art
for unstructured sparsity. Figure 4 shows that STR forms
a frontier curve encompassing all the baselines at all the

levels of sparsity. Very few methods are stable in the ultra
sparse regime of 98-99% sparsity and GMP can achieve

Table 1. STR is the state-of-the-art for unstructured sparsity in
ResNet50 on ImageNet-1K while having lesser inference cost
(FLOPs) than the baselines across all the sparsity regimes. ∗ and
imply that the first and last layer are dense respectively. Base-
line numbers reported from their respective papers/open-source
implementations and models. FLOPs do not include batch-norm.

Method
Top-1 Acc

(%) Params
Sparsity

(%) FLOPs

ResNet-50 77.01 25.6M 0.00 4.09G

GMP 75.60 5.12M 80.00 818M
DSR∗# 71.60 5.12M 80.00 1.23G
DNW 76.00 5.12M 80.00 818M
SNFS 74.90 5.12M 80.00 -
SNFS + ERK 75.20 5.12M 80.00 1.68G
RigL∗ 74.60 5.12M 80.00 920M
RigL + ERK 75.10 5.12M 80.00 1.68G
DPF 75.13 5.12M 80.00 818M
STR 76.19 5.22M 79.55 766M
STR 76.12 4.47M 81.27 705M

GMP 73.91 2.56M 90.00 409M
DNW 74.00 2.56M 90.00 409M
SNFS 72.90 2.56M 90.00 1.63G
SNFS + ERK 72.90 2.56M 90.00 960M
RigL∗ 72.00 2.56M 90.00 515M
RigL + ERK 73.00 2.56M 90.00 960M
DPF# 74.55 4.45M 82.60 411M
STR 74.73 3.14M 87.70 402M
STR 74.31 2.49M 90.23 343M
STR 74.01 2.41M 90.55 341M

GMP 70.59 1.28M 95.00 204M
DNW 68.30 1.28M 95.00 204M
RigL∗ 67.50 1.28M 95.00 317M
RigL + ERK 70.00 1.28M 95.00 ∼600M
STR 70.97 1.33M 94.80 182M
STR 70.40 1.27M 95.03 159M
STR 70.23 1.24M 95.15 162M

RigL∗ 64.50 0.90M 96.50 257M
RigL + ERK 67.20 0.90M 96.50 ∼500M
STR 67.78 0.99M 96.11 127M
STR 67.22 0.88M 96.53 117M

GMP 57.90 0.51M 98.00 82M
DNW 58.20 0.51M 98.00 82M
STR 62.84 0.57M 97.78 80M
STR 61.46 0.50M 98.05 73M
STR 59.76 0.45M 98.22 68M

GMP 44.78 0.26M 99.00 41M
STR 54.79 0.31M 98.79 54M
STR 51.82 0.26M 98.98 47M
STR 50.35 0.23M 99.10 44M

Soft Threshold Weight Reparameterization for Learnable Sparsity

0 200 400 600 800 1000 1200 1400 1600
FLOPs (millions)

45

50

55

60

65

70

75

To
p-

1
Ac

cu
ra

cy
 (%

)

STR
GMP
DNW
SNFS
SNFS + ERK
RigL
RigL + ERK
DPF

Figure 5. STR results in ResNet50 models on ImageNet-1K which
have the lowest inference cost (FLOPs) for any given accuracy.

99% sparsity. STR is very stable even in the ultra sparse
regime, as shown in Table 1 and Figure 4, while being up to
10% higher in accuracy than GMP at 99% sparsity.

STR induces non-uniform sparsity across layers, Table 1
and Figure 5 show that STR produces models which have
lower or similar inference FLOPs compared to the baselines
while having better prediction accuracy in all the sparsity
regimes. This hints at the fact that STR could be redis-
tributing the parameters thereby reducing the FLOPs. In the
80% sparse models, STR is at least 0.19% better in accu-
racy than the baselines while having at least 60M (6.5%)
lesser FLOPs. Similarly, STR has state-of-the-art accuracy
in 90%, 95%, and 96.5% sparse regimes while having at
least 68M (16.5%), 45M (22%) and 140M (54%) lesser
FLOPs than the best baselines respectively. In the ultra
sparse regime of 98% and 99% sparsity, STR has similar
or slightly higher FLOPs compared to the baselines but is
up to 4.6% and 10% better in accuracy respectively. Ta-
ble 1 summarizes that the non-uniform sparsity baselines
like SNFS, SNFS+ERK, and RigL+ERK can have up to
2-4× higher inference cost (FLOPs) due to non-optimal
layer-wise distribution of the parameter weights.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53Layer
0

20

40

60

80

100

Sp
ar

sit
y

(%
)

STR
Uniform
ERK
SNFS
VD
GS

Figure 6. Layer-wise sparsity budget for the 90% sparse ResNet50
models on ImageNet-1K using various sparsification techniques.

Observations: STR on ResNet50 shows some interesting

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53Layer

0

20

40

60

80

100

120

FL
OP

S
(M

illi
on

s)

STR
Uniform
ERK
SNFS
VD
GS

Figure 7. Layer-wise FLOPs budget for the 90% sparse ResNet50
models on ImageNet-1K using various sparsification techniques.

observations related to sparsity and inference cost (FLOPs).
These observations will be further discussed in Section 5:

1. STR is state-of-the-art for unstructured sparsity.
2. STR minimizes inference cost (FLOPs) while maintain-

ing accuracy in the 80-95% sparse regime.
3. STR maximizes accuracy while maintaining inference

cost (FLOPs) in 98-99% ultra sparse regime.
4. STR learns a non-uniform layer-wise sparsity, shown

in Figure 6, which shows that the initial layers of the
CNN can be sparser than that of the existing non-uniform
sparsity methods. All the learnt non-uniform budgets
through STR can be found in Appendix A.3.

5. Figure 6 also shows that the last layers through STR are
denser than that of the other methods which is contrary
to the understanding in the literature of non-uniform spar-
sity (Mostafa & Wang, 2019; Dettmers & Zettlemoyer,
2019; Evci et al., 2020; Gale et al., 2019). This leads to
a sparser backbone for transfer learning. The backbone
sparsities can be found in Appendix A.3.

6. Figure 7 shows the layer-wise FLOPs distribution for the
non-uniform sparsity methods. STR adjusts the FLOPs
across layers such that it has lower FLOPs than the base-
lines. Note that the other non-uniform sparsity budgets
lead to heavy compute overhead in the initial layers due
to denser parameter tensors.

STR can also induce global sparsity (GS) (Han et al., 2015)
with similar accuracy at ∼ 2× FLOPs compared to layer-
wise for 90-98% sparsity (details in Appendix A.5.1).

4.1.3. MOBILENETV1 ON IMAGENET-1K

MobileNetV1 was trained on ImageNet-1K for unstructured
sparsity with STR to ensure generalizability. Since GMP is
the state-of-the-art baseline as shown earlier, STR was only
compared to GMP for 75% and 90% sparsity regimes. A
fully dense MobileNetV1 has a top-1 accuracy of 71.95% on
ImageNet-1K. GMP (Zhu & Gupta, 2017) has the first layer
and depthwise convolution layers dense for MobileNetV1
to ensure training stability and maximize accuracy.

Table 2 shows the STR is at least 0.65% better than GMP for

Soft Threshold Weight Reparameterization for Learnable Sparsity

Table 2. STR is up to 3% higher in accuracy while having 33%
lesser inference cost (FLOPs) for MobileNetV1 on ImageNet-1K.

Method
Top-1 Acc

(%) Params
Sparsity

(%) FLOPs

MobileNetV1 71.95 4.21M 0.00 569M

GMP 67.70 1.09M 74.11 163M
STR 68.35 1.04M 75.28 101M
STR 66.52 0.88M 79.07 81M

GMP 61.80 0.46M 89.03 82M
STR 64.83 0.60M 85.80 55M
STR 62.10 0.46M 89.01 42M
STR 61.51 0.44M 89.62 40M

75% sparsity, while having at least 62M (38%) lesser FLOPs.
More interestingly, STR has state-of-the-art accuracy while
having up to 50% (40M) lesser FLOPs than GMP in the 90%
sparsity regime. All the observations made for ResNet50
hold for MobileNetV1 as well. The sparsity and FLOPs
distribution across layers can be found in Appendix A.4.

4.2. Structured Sparsity in RNNs

4.2.1. EXPERIMENTAL SETUP

Google-12 is a speech recognition dataset that has 12 classes
made from the Google Speech Commands dataset (Warden,
2018). HAR-2 is a binarized version of the 6-class Hu-
man Activity Recognition dataset (Anguita et al., 2012).
These two datasets stand as compelling cases for on-device
resource-efficient machine learning at the edge. Details
about the datasets can be found in Appendix A.7.

FastGRNN (Kusupati et al., 2018) was proposed to en-
able powerful RNN models on resource-constrained devices.
FastGRNN relies on making the RNN parameter matrices
low-rank, sparse and quantized. As low-rank is a form of
structured sparsity, experiments were done to show the ef-
fectiveness of STR for structured sparsity. The input vector
to the RNN at each timestep and hidden state have D & D̂
dimensionality respectively. FastGRNN has two parameter
matrices, W ∈ RD×D̂, U ∈ RD̂×D̂ which are reparameter-
ized as product of low-rank matrices, W = W1W2, and
U = U1U2 where W1 ∈ RD×rW , W2 ∈ RrW×D̂, and
(U1)

>,U2 ∈ RrU×D̂. rW , rU are the ranks of the respec-
tive matrices. In order to apply STR, the low-rank reparam-
eterization can be changed to W = (W1�1m>W)W2, and
U = (U1 � 1m>U)U2 where mW = 1D, and mU = 1D̂,
W1 ∈ RD×D, W2 ∈ RD×D̂, and U1,U2 ∈ RD̂×D̂. To
learn the low-rank, STR is applied on the mW, and mU

vectors. Learning low-rank with STR on mW, mU can
be thought as inducing unstructured sparsity on the two
trainable vectors aiming for the right rW , and rU .

The baseline is low-rank FastGRNN where the ranks of the
matrices are preset (Kusupati et al., 2018). EdgeML (Dennis
et al.) FastGRNN was used for the experiments with the
hyperparameters suggested in the paper and is referred to
as vanilla training. Hyperparameters for the models can be
found in Appendix A.6.

4.2.2. FASTGRNN ON GOOGLE-12 AND HAR-2

Table 3 presents the results for low-rank FastGRNN with
vanilla training and STR. Full-rank non-reparameterized
FastGRNN has an accuracy of 92.60% and 96.10% on
Google-12 and HAR-2 respectively. STR outperforms

Table 3. STR can induce learnt low-rank in FastGRNN resulting
in up to 2.47% higher accuracy than the vanilla training.

Google-12 HAR-2

(rW , rU) Accuracy (%) (rW , rU) Accuracy (%)

Vanilla
Training STR

Vanilla
Training STR

Full rank (32, 100) 92.30 - Full rank (9, 80) 96.10 -

(12, 40) 92.79 94.45 (9, 8) 94.06 95.76
(11, 35) 92.86 94.42 (9, 7) 93.15 95.62
(10, 31) 92.86 94.25 (8, 7) 94.88 95.59
(9, 24) 93.18 94.45

vanilla training by up to 1.67% in four different model-size
reducing rank settings on Google-12. Similarly, on HAR-2,
STR is better than vanilla training in all the rank settings by
up to 2.47%. Note that the accuracy of the low-rank models
obtained by STR is either better or on-par with the full rank
models while being around 50% and 70% smaller in size
(low-rank) for Google-12 and HAR-2 respectively.

These experiments for structured sparsity in RNNs show that
STR can be applied to obtain low-rank parameter tensors.
Similarly, STR can be extended for filter/channel pruning
and block sparsity (He et al., 2017; Huang & Wang, 2018;
Liu et al., 2019) and details for this adaptation can be found
in Appendix A.5.2.

5. Discussion and Drawbacks
STR’s usage for unstructured sparsity leads to interesting
observations as noted in Section 4.1.2. It is clear from Ta-
ble 1 and Figures 4, 5 that STR achieves state-of-the-art
accuracy for all the sparsity regimes and also reduces the
FLOPs in doing so. STR helps in learning non-uniform
sparsity budgets which are intriguing to study as an opti-
mal non-uniform sparsity budget can ensure minimization
of FLOPs while maintaining accuracy. Although it is not
clear why STR’s learning dynamics result in a non-uniform
budget that minimizes FLOPs, the reduction in FLOPs is
due to the better redistribution of parameters across layers.

Non-uniform sparsity budgets learnt by STR have the ini-

Soft Threshold Weight Reparameterization for Learnable Sparsity

tial and middle layers to be sparser than the other methods
while making the last layers denser. Conventional wisdom
suggests that the initial layers should be denser as the early
loss of information would be hard to recover, this drives
the existing non-uniform sparsity heuristics. As most of
the parameters are present in the deeper layers, the exist-
ing methods tend to make them sparser while not affecting
the FLOPs by much. STR, on the other hand, balances
the FLOPs and sparsity across the layers as shown in Fig-
ures 6, 7 making it a lucrative and efficient choice. The
denser final layers along with sparser initial and middle lay-
ers point to sparser CNN backbones obtained using STR.
These sparse backbones can be viable options for efficient
representation/transfer learning for downstream tasks.

Table 4. Effect of various layer-wise sparsity budgets when used
with DNW for ResNet50 on ImageNet-1K.

Method
Top-1 Acc

(%) Params
Sparsity

(%) FLOPs

Uniform 74.00 2.56M 90.00 409M
ERK 74.10 2.56M 90.00 960M
Budget from STR 74.01 2.49M 90.23 343M

Uniform 68.30 1.28M 95.00 204M
Budget from STR 69.72 1.33M 94.80 182M
Budget from STR 68.01 1.24M 95.15 162M

Table 4 shows the effectiveness/transferability of the learnt
non-uniform budget through STR for 90% sparse ResNet50
on ImageNet-1K using DNW (Wortsman et al., 2019).
DNW typically takes in a uniform sparsity budget and has
an accuracy of 74% for a 90% sparse ResNet50. Using
ERK non-uniform budget for 90% sparsity results in a 0.1%
increase in accuracy at the cost 2.35× inference FLOPs.
Training DNW with the learnt budget from STR results
in a reduction of FLOPs by 66M (16%) while maintaining
accuracy. In the 95% sparsity regime, the learnt budget can
improve the accuracy of DNW by up to 1.42% over uniform
along with a reduction in FLOPs by at least 22M (11%).

Table 5. Effect of various layer-wise sparsity budgets when used
with GMP for ResNet50 on ImageNet-1K.

Method
Top-1 Acc

(%) Params
Sparsity

(%) FLOPs

Uniform 73.91 2.56M 90.00 409M
Budget from STR 74.13 2.49M 90.23 343M

Uniform 57.90 0.51M 98.00 82M
Budget from STR 59.47 0.50M 98.05 73M

Similarly, these budgets can also be used for other meth-
ods like GMP (Zhu & Gupta, 2017). Table 5 shows that the
learnt sparsity budgets can lead to an increase in accuracy by
0.22% and 1.57% in 90% and 98% sparsity regimes respec-

tively when used with GMP. Accuracy gains over uniform
sparsity are also accompanied by a significant reduction in
inference FLOPs. Note that the learnt non-uniform sparsity
budgets can also be obtained using smaller representative
datasets instead of expensive large-scale experiments.

The major drawback of STR is the tuning of the weight-
decay parameter, λ and finer-tuning with sinit to obtain the
targeted overall sparsity. One way to circumvent this issue is
to freeze the non-uniform sparsity distribution in the middle
of training when the overall sparsity constraints are met and
train for the remaining epochs. This might not potentially
give the best results but can give a similar budget which can
be then transferred to methods like GMP or DNW. Another
drawback of STR is the function g for the threshold. The
stability, expressivity, and sparsification capability of STR
depends on g. However, it should be noted that sigmoid and
exponential functions work just fine, as g, for STR.

6. Conclusions
This paper proposed Soft Threshold Reparameterization
(STR), a novel use of the soft-threshold operator, for the
weights in DNN, to smoothly induce sparsity while learn-
ing layer-wise pruning thresholds thereby obtaining a non-
uniform sparsity budget. Extensive experimentation showed
that STR is state-of-the-art for unstructured sparsity in
CNNs for ImageNet-1K while also being effective for struc-
tured sparsity in RNNs. Our method results in sparse models
that have significantly lesser inference costs than the base-
lines. In particular, STR achieves the same accuracy as
the baselines for 90% sparse MobileNetV1 with 50% lesser
FLOPs. STR has ∼10% higher accuracy than the existing
methods in ultra sparse (99%) regime for ResNet50 showing
the effectiveness of the learnt non-uniform sparsity budgets.
STR can also induce low-rank structure in RNNs while
increasing the prediction accuracy showing the generaliz-
ability of the proposed reparameterization. Finally, STR is
easy to adapt and the learnt budgets are transferable.

Acknowledgments
We are grateful to Keivan Alizadeh, Tapan Chugh, Tim
Dettmers, Erich Elsen, Utku Evci, Daniel Gordon, Gabriel
Ilharco, Sarah Pratt, James Park, Mohammad Rastegari
and Matt Wallingford for helpful discussions and feedback.
Mitchell Wortsman is in part supported by AI2 Fellow-
ship in AI. Sham Kakade acknowledges funding from the
Washington Research Foundation for Innovation in Data-
intensive Discovery, and the NSF Awards CCF-1637360,
CCF-1703574, and CCF-1740551. Ali Farhadi acknowl-
edges funding from the NSF Awards IIS 1652052, IIS
17303166, DARPA N66001-19-2-4031, 67102239 and gifts
from Allen Institute for Artificial Intelligence.

Soft Threshold Weight Reparameterization for Learnable Sparsity

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

Alizadeh, K., Farhadi, A., and Rastegari, M. Butterfly trans-
form: An efficient fft based neural architecture design. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and
Reyes-Ortiz, J. L. Human activity recognition on
smartphones using a multiclass hardware-friendly
support vector machine. In International Workshop on
Ambient Assisted Living, pp. 216–223. Springer, 2012.
URL https://archive.ics.uci.edu/ml/
datasets/human+activity+recognition+
using+smartphones.

Ashby, M., Baaij, C., Baldwin, P., Bastiaan, M., Bunting,
O., Cairncross, A., Chalmers, C., Corrigan, L., Davis, S.,
van Doorn, N., et al. Exploiting unstructured sparsity on
next-generation datacenter hardware.

Azarian, K., Bhalgat, Y., Lee, J., and Blankevoort,
T. Learned threshold pruning. arXiv preprint
arXiv:2003.00075, 2020.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
rewiring: Training very sparse deep networks. In Interna-
tional Conference on Learning Representations, 2018.

Bucilu, C., Caruana, R., and Niculescu-Mizil, A. Model
compression. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 535–541, 2006.

Candes, E., Tao, T., et al. The dantzig selector: Statistical
estimation when p is much larger than n. The annals of
Statistics, 35(6):2313–2351, 2007.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dennis, D. K., Gaurkar, Y., Gopinath, S., Gupta, C., Jain,
M., Kumar, A., Kusupati, A., Lovett, C., Patil, S. G., and
Simhadri, H. V. EdgeML: Machine Learning for resource-
constrained edge devices. URL https://github.
com/Microsoft/EdgeML.

Dettmers, T. and Zettlemoyer, L. Sparse networks from
scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

Donoho, D. L. De-noising by soft-thresholding. IEEE
transactions on information theory, 41(3):613–627, 1995.

Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. Fast
sparse convnets. arXiv preprint arXiv:1911.09723, 2019.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gordon, A., Eban, E., Nachum, O., Chen, B., Wu, H., Yang,
T.-J., and Choi, E. Morphnet: Fast & simple resource-
constrained structure learning of deep networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1586–1595, 2018.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery
for efficient dnns. In Advances In Neural Information
Processing Systems, pp. 1379–1387, 2016.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in neural information processing systems, pp.
1135–1143, 2015.

Hassibi, B. and Stork, D. G. Second order derivatives for
network pruning: Optimal brain surgeon. In Advances
in neural information processing systems, pp. 164–171,
1993.

Hastie, T., Tibshirani, R., and Friedman, J. The elements of
statistical learning: data mining, inference, and predic-
tion. Springer Science & Business Media, 2009.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for acceler-
ating very deep neural networks. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
1389–1397, 2017.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. Amc:
Automl for model compression and acceleration on mo-
bile devices. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 784–800, 2018.

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://github.com/Microsoft/EdgeML
https://github.com/Microsoft/EdgeML

Soft Threshold Weight Reparameterization for Learnable Sparsity

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Huang, Z. and Wang, N. Data-driven sparse structure se-
lection for deep neural networks. In Proceedings of the
European conference on computer vision (ECCV), pp.
304–320, 2018.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up
convolutional neural networks with low rank expansions.
In Proceedings of the British Machine Vision Conference.
BMVA Press, 2014.

Jain, P., Tewari, A., and Kar, P. On iterative hard thresh-
olding methods for high-dimensional m-estimation. In
Advances in Neural Information Processing Systems, pp.
685–693, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain, P.,
and Varma, M. Fastgrnn: A fast, accurate, stable and
tiny kilobyte sized gated recurrent neural network. In
Advances in Neural Information Processing Systems, pp.
9017–9028, 2018.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing
systems, pp. 598–605, 1990.

Lee, N., Ajanthan, T., and Torr, P. SNIP: Single-shot net-
work pruning based on connection sensitivity. In Interna-
tional Conference on Learning Representations, 2019.

Lee, Y. Differentiable sparsification for deep neural net-
works. arXiv preprint arXiv:1910.03201, 2019.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. In International
Conference on Learning Representations, 2017.

Lin, T., Stich, S. U., Barba, L., Dmitriev, D., and Jaggi, M.
Dynamic model pruning with feedback. In International
Conference on Learning Representations, 2020.

Liu, B., Wang, M., Foroosh, H., Tappen, M., and Pensky, M.
Sparse convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 806–814, 2015.

Liu, J., Xu, Z., Shi, R., Cheung, R. C. C., and So, H. K. Dy-
namic sparse training: Find efficient sparse network from
scratch with trainable masked layers. In International
Conference on Learning Representations, 2020.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. In International
Conference on Learning Representations, 2019.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l0 regularization. In Inter-
national Conference on Learning Representations, 2018.

Lu, Z., Sindhwani, V., and Sainath, T. N. Learning compact
recurrent neural networks. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5960–5964. IEEE, 2016.

Luo, J.-H., Wu, J., and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In Proceed-
ings of the IEEE international conference on computer
vision, pp. 5058–5066, 2017.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9
(1):2383, 2018.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2498–2507. JMLR. org, 2017.

Mostafa, H. and Wang, X. Parameter efficient training of
deep convolutional neural networks by dynamic sparse
reparameterization. In International Conference on Ma-
chine Learning, pp. 4646–4655, 2019.

Narang, S., Elsen, E., Diamos, G., and Sengupta, S. Explor-
ing sparsity in recurrent neural networks. In International
Conference on Learning Representations, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, pp. 8024–8035, 2019.

Patil, S. G., Dennis, D. K., Pabbaraju, C., Shaheer, N.,
Simhadri, H. V., Seshadri, V., Varma, M., and Jain, P.
Gesturepod: Enabling on-device gesture-based interac-
tion for white cane users. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and
Technology, pp. 403–415, 2019.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A.,
and Rastegari, M. What’s hidden in a randomly weighted
neural network? In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
11893–11902, 2020.

Soft Threshold Weight Reparameterization for Learnable Sparsity

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In European conference on
computer vision, pp. 525–542. Springer, 2016.

Renda, A., Frankle, J., and Carbin, M. Comparing fine-
tuning and rewinding in neural network pruning. In Inter-
national Conference on Learning Representations, 2020.

Roy, D., Srivastava, S., Kusupati, A., Jain, P., Varma, M.,
and Arora, A. One size does not fit all: Multi-scale,
cascaded rnns for radar classification. In Proceedings
of the 6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation,
pp. 1–10, 2019.

Savarese, P., Silva, H., and Maire, M. Winning the
lottery with continuous sparsification. arXiv preprint
arXiv:1912.04427, 2019.

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green
AI. arXiv preprint arXiv:1907.10597, 2019.

Warden, P. Speech commands: A dataset for
limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018. URL
http://download.tensorflow.org/data/
speech_commands_v0.01.tar.gz.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. In Advances
in neural information processing systems, pp. 2074–2082,
2016.

Wortsman, M., Farhadi, A., and Rastegari, M. Discover-
ing neural wirings. In Advances In Neural Information
Processing Systems, pp. 2680–2690, 2019.

Xiao, X., Wang, Z., and Rajasekaran, S. Autoprune: Auto-
matic network pruning by regularizing auxiliary param-
eters. In Advances in Neural Information Processing
Systems, pp. 13681–13691, 2019.

Yu, J. and Huang, T. Network slimming by slimmable net-
works: Towards one-shot architecture search for channel
numbers. arXiv preprint arXiv:1903.11728, 2019.

Zhou, H., Lan, J., Liu, R., and Yosinski, J. Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask. In
Advances in Neural Information Processing Systems, pp.
3592–3602, 2019.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz

Soft Threshold Weight Reparameterization for Learnable Sparsity

A. Appendix
A.1. Characterization of g

For the training dynamics of s, we propose some desired properties for choosing g : R→ R++:

• 0 < g(s), lim
s→−∞

g(s) = 0, and lim
s→∞

g(s) =∞.

• ∃ G ∈ R++ 3 0 < g′(s) ≤ G ∀ s ∈ R.

• g′(sinit) < 1 providing us a handle on the dynamics of s.

For simplicity, the choice of g were the logistic sigmoid function, g(s) = k
1+e−s , and the exponential function, g(s) = kes,

for k ∈ Rk, since in most of the experimental scenarios, we almost always have s < 0 throughout the training making
it satisfy all the desired properties in R−. One can choose k as an appropriate scaling factor based on the final weight
distribution of a given DNN. All the CNN experiments in this paper we use the logistic sigmoid function with k = 1, as the
weights’ final learnt values are typically� 1, and low-rank RNN use the exponential function with k = 1. It should be
noted that better functional choices might exist for g and can affect the expressivity and dynamics of STR parameterization
for inducing sparsity.

A.2. Gradient w.r.t. {sl}l∈[L]

The gradient of sl ∀ l ∈ [L] takes an even interesting form

∇slL
(
W̃l(sl)

)
= ∇slL (Sg(Wl, sl))

= −g′(sl)P (Wl, g(sl)) (5)

Where P (Wl, g(sl)) :=
〈
∇

W̃l(sl)
L
(
W̃(sl)

)
, sign (Wl)� 1

{
W̃l(sl) 6= 0

}〉
. Thus the final update equation for sl ∀ l ∈

[L] becomes

s
(t+1)
l ← s

(t)
l + ηtg

′(s
(t)
l)P

(
W

(t)
l , g

(
s
(t)
l

))
− ηtλs(t)l (6)

where λ is its `2 regularization hyperparameter.

A.3. ResNet50 Learnt Budgets and Backbone Sparsities

Table 6 lists the non-uniform sparsity budgets learnt through STR across the sparsity regimes of 80%, 90%, 95%, 96.5%,
98% and 99% for ResNet50 on ImageNet-1K. The table also lists the backbone sparsities of every budget. It is clear that
STR results in a higher than expected sparsity in the backbones of CNNs resulting in efficient backbones for transfer
learning.

Table 7 summarizes all the sparsity budgets for 90% sparse ResNet50 on ImageNet-1K obtained using various methods.
This table also shows that the backbone sparsities learnt through STR are considerably higher than that of the baselines.

One can use these budgets directly for techniques like GMP and DNW for a variety of datasets and have significant accuracy
gains as shown in the Table 4.

A.4. MobileNetV1 Sparsity and FLOPs Budget Distributions

Table 8 summarizes all the sparsity budgets for 90% sparse MobileNetV1 on ImageNet-1K obtained using various methods.
Note that GMP here makes the first and depthwise (dw) convolution layers dense, hence it is not the standard uniform
sparsity. This table also shows that the backbone sparsities learnt through STR are considerably higher than that of GMP.

Figure 8 shows the sparsity distribution across layers when compared to GMP and Figure 9 shows the FLOPs distribution
across layers when compared to GMP for 90% sparse MobileNetV1 models on ImageNet-1K.

It is interesting to notice that STR automatically keeps depthwise separable (the valleys in Figure 8) convolution layers less
sparse than the rest to maximize accuracy which is the reason GMP keeps them fully dense.

Soft Threshold Weight Reparameterization for Learnable Sparsity

Algorithm 1 PyTorch code for STRConv with per-layer threshold.

import torch
import torch.nn as nn
import torch.nn.functional as F

from args import args as parser_args

def softThreshold(x, s, g=torch.sigmoid):
STR on a weight x (can be a tensor) with "s" (typically a scalar, but can be a tensor) with function "g".
return torch.sign(x)*torch.relu(torch.abs(x)-g(s))

class STRConv(nn.Conv2d): # Overloaded Conv2d which can replace nn.Conv2d
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
"g" can be chosen appropriately, but torch.sigmoid works fine.
self.g = torch.sigmoid
parser_args gets arguments from command line. sInitValue is the initialization of "s" for all layers. It

can take in different values per-layer as well.
self.s = nn.Parameter(parser_args.sInitValue*torch.ones([1, 1]))
"s" can be per-layer (a scalar), global (a shared scalar across layers), per-channel/filter (a vector)

or per individual weight (a tensor of the size self.weight). All the experiments use per-layer "s" (a
scalar) in the paper.

def forward(self, x):

sparseWeight = softThreshold(self.weight, self.s, self.g)
Parameters except "x" and "sparseWeight" can be chosen appropriately. All the experiments use default

PyTorch arguments.
x = F.conv2d(x, sparseWeight, self.bias, self.stride, self.padding, self.dilation, self.groups)

return x

FC layer is implemented as a 1x1 Conv2d and STRConv is used for FC layer as well.

Soft Threshold Weight Reparameterization for Learnable Sparsity

Table 6. The non-uniform sparsity budgets for various sparsity ranges learnt through STR for ResNet50 on ImageNet-1K. FLOPs
distribution per layer can be computed as 100−si

100
∗ FLOPsi, where si and FLOPsi are the sparsity and FLOPs of the layer i.

Metric
Fully Dense

Params
Fully Dense

FLOPs Sparsity (%)

Overall 25502912 4089284608 79.55 81.27 87.70 90.23 90.55 94.80 95.03 95.15 96.11 96.53 97.78 98.05 98.22 98.79 98.98 99.10
Backbone 23454912 4087136256 82.07 83.79 90.08 92.47 92.77 96.51 96.71 96.84 97.64 97.92 98.82 98.99 99.11 99.46 99.58 99.64

Layer 1 - conv1 9408 118013952 51.46 51.40 63.02 59.80 59.83 64.87 67.36 66.96 72.11 69.46 73.29 73.47 72.05 75.12 76.12 77.75
Layer 2 - layer1.0.conv1 4096 12845056 69.36 73.24 87.57 83.28 85.18 89.60 91.41 91.11 92.38 91.75 94.46 94.51 94.60 95.95 96.53 96.51
Layer 3 - layer1.0.conv2 36864 115605504 77.85 76.26 90.87 89.48 87.31 94.79 94.27 95.04 95.69 96.07 97.36 97.77 98.35 98.51 98.59 98.84
Layer 4 - layer1.0.conv3 16384 51380224 74.81 74.65 86.52 85.80 85.25 91.85 92.78 93.67 94.13 94.69 96.61 97.03 97.37 98.04 98.21 98.47
Layer 5 - layer1.0.downsample.0 16384 51380224 70.95 72.96 83.53 83.34 82.56 89.13 90.62 90.17 91.83 92.69 95.48 94.89 95.68 96.98 97.56 97.72
Layer 6 - layer1.1.conv1 16384 51380224 80.27 79.58 89.82 89.89 88.51 94.56 96.64 95.78 95.81 96.81 98.79 98.90 98.98 99.13 99.62 99.47
Layer 7 - layer1.1.conv2 36864 115605504 81.36 80.95 91.75 90.60 89.61 94.70 95.78 96.18 96.42 97.26 98.65 99.07 99.40 99.11 99.31 99.56
Layer 8 - layer1.1.conv3 16384 51380224 84.45 80.11 91.22 91.70 90.21 95.17 97.05 95.81 96.34 97.23 98.68 98.76 98.90 99.16 99.57 99.46
Layer 9 - layer1.2.conv1 16384 51380224 78.23 79.79 90.12 88.07 89.36 94.62 95.94 94.74 96.23 96.75 97.96 98.41 98.72 99.38 99.35 99.46
Layer 10 - layer1.2.conv2 36864 115605504 76.01 81.53 91.06 87.03 88.27 93.90 95.63 94.26 96.24 96.11 97.54 98.27 98.44 99.32 99.19 99.39
Layer 11 - layer1.2.conv3 16384 51380224 84.47 83.28 94.95 90.99 92.64 95.76 96.95 96.01 96.87 97.31 98.38 98.60 98.72 99.38 99.27 99.51
Layer 12 - layer2.0.conv1 32768 102760448 73.74 73.96 86.78 85.95 85.90 92.32 94.79 93.86 94.62 95.64 97.19 98.22 98.52 98.48 98.84 98.92
Layer 13 - layer2.0.conv2 147456 115605504 82.56 85.70 91.31 93.91 94.03 97.54 97.43 97.65 98.38 98.62 99.24 99.23 99.40 99.61 99.67 99.63
Layer 14 - layer2.0.conv3 65536 51380224 84.70 83.55 93.04 93.13 92.13 96.61 97.37 97.21 97.59 98.14 98.80 98.95 99.18 99.29 99.47 99.43
Layer 15 - layer2.0.downsample.0 131072 102760448 85.10 87.66 92.78 94.96 95.13 98.07 97.97 98.15 98.70 98.88 99.37 99.35 99.40 99.69 99.68 99.71
Layer 16 - layer2.1.conv1 65536 51380224 85.42 85.79 94.04 95.31 94.94 97.92 98.53 98.21 98.84 99.06 99.46 99.53 99.72 99.78 99.81 99.80
Layer 17 - layer2.1.conv2 147456 115605504 76.95 82.75 87.63 91.50 91.76 95.59 97.22 96.07 97.32 97.80 98.24 98.24 98.60 99.24 99.66 99.33
Layer 18 - layer2.1.conv3 65536 51380224 84.76 84.71 93.10 93.66 93.23 97.00 98.18 97.35 98.06 98.41 98.96 99.21 99.32 99.55 99.58 99.59
Layer 19 - layer2.2.conv1 65536 51380224 84.30 85.34 92.70 94.61 94.76 97.72 97.91 98.21 98.54 98.98 99.24 99.35 99.50 99.62 99.63 99.77
Layer 20 - layer2.2.conv2 147456 115605504 84.28 85.43 92.99 94.86 94.90 97.52 97.21 98.11 98.19 99.04 99.28 99.37 99.46 99.63 99.59 99.72
Layer 21 - layer2.2.conv3 65536 51380224 82.19 84.21 91.12 93.38 93.53 96.89 97.14 97.59 97.77 98.66 98.96 99.15 99.25 99.49 99.51 99.57
Layer 22 - layer2.3.conv1 65536 51380224 83.37 84.41 90.46 93.26 93.50 96.71 97.89 96.99 98.14 98.36 99.10 99.23 99.33 99.53 99.75 99.60
Layer 23 - layer2.3.conv2 147456 115605504 82.83 84.03 91.44 93.21 93.25 96.83 98.02 96.96 98.45 98.30 98.97 99.06 99.26 99.31 99.81 99.68
Layer 24 - layer2.3.conv3 65536 51380224 82.93 85.65 91.02 94.14 93.56 97.20 97.97 97.04 98.16 98.36 98.88 98.97 99.20 99.32 99.67 99.62
Layer 25 - layer3.0.conv1 131072 102760448 76.63 77.98 85.99 88.85 88.60 94.26 95.07 94.97 96.21 96.59 97.75 98.04 98.30 98.72 99.11 99.06
Layer 26 - layer3.0.conv2 589824 115605504 87.35 88.68 94.39 96.14 96.19 98.51 98.77 98.72 99.11 99.23 99.53 99.59 99.64 99.73 99.80 99.81
Layer 27 - layer3.0.conv3 262144 51380224 81.22 83.22 90.58 93.19 93.05 96.82 97.38 97.32 97.98 98.28 98.88 99.03 99.16 99.39 99.55 99.53
Layer 28 - layer3.0.downsample.0 524288 102760448 89.75 90.99 96.05 97.20 97.16 98.96 99.21 99.20 99.50 99.58 99.78 99.82 99.86 99.91 99.94 99.93
Layer 29 - layer3.1.conv1 262144 51380224 85.88 87.35 93.43 95.36 96.12 98.64 98.77 98.87 99.22 99.33 99.64 99.67 99.72 99.82 99.88 99.84
Layer 30 - layer3.1.conv2 589824 115605504 85.06 86.24 92.74 95.06 95.30 98.09 98.28 98.36 98.75 99.08 99.46 99.48 99.54 99.69 99.76 99.76
Layer 31 - layer3.1.conv3 262144 51380224 84.34 86.79 92.15 94.84 94.90 97.75 98.15 98.11 98.56 98.94 99.30 99.36 99.45 99.65 99.79 99.70
Layer 32 - layer3.2.conv1 262144 51380224 87.51 89.15 94.15 96.77 96.46 98.81 98.83 98.96 99.19 99.44 99.67 99.71 99.74 99.82 99.85 99.89
Layer 33 - layer3.2.conv2 589824 115605504 87.15 88.67 94.09 95.59 96.14 98.86 98.69 98.91 99.21 99.20 99.64 99.72 99.76 99.85 99.84 99.90
Layer 34 - layer3.2.conv3 262144 51380224 84.86 86.90 92.40 94.99 94.99 98.19 98.19 98.42 98.76 98.97 99.42 99.56 99.62 99.76 99.75 99.88
Layer 35 - layer3.3.conv1 262144 51380224 86.62 89.46 94.06 96.08 95.88 98.70 98.71 98.77 99.01 99.27 99.58 99.66 99.69 99.83 99.87 99.87
Layer 36 - layer3.3.conv2 589824 115605504 86.52 87.97 93.56 96.10 96.11 98.70 98.82 98.89 99.19 99.31 99.68 99.73 99.77 99.88 99.87 99.93
Layer 37 - layer3.3.conv3 262144 51380224 84.19 86.81 92.32 94.94 94.91 98.20 98.37 98.43 98.82 99.00 99.51 99.57 99.64 99.81 99.81 99.87
Layer 38 - layer3.4.conv1 262144 51380224 85.85 88.40 93.55 95.49 95.86 98.35 98.44 98.55 98.79 98.96 99.54 99.59 99.60 99.82 99.86 99.87
Layer 39 - layer3.4.conv2 589824 115605504 85.96 87.38 93.27 95.66 95.63 98.41 98.58 98.56 99.19 99.26 99.64 99.69 99.67 99.87 99.90 99.92
Layer 40 - layer3.4.conv3 262144 51380224 83.45 85.76 91.75 94.49 94.35 97.67 98.09 97.99 98.65 98.94 99.49 99.52 99.48 99.77 99.86 99.85
Layer 41 - layer3.5.conv1 262144 51380224 83.33 85.77 91.79 95.09 94.24 97.46 97.89 97.92 98.71 98.90 99.35 99.52 99.58 99.76 99.79 99.83
Layer 42 - layer3.5.conv2 589824 115605504 84.98 86.67 92.48 94.92 95.13 97.88 98.14 98.32 98.91 99.00 99.44 99.58 99.69 99.80 99.83 99.87
Layer 43 - layer3.5.conv3 262144 51380224 79.78 82.23 89.39 93.14 92.76 96.59 97.04 97.30 98.10 98.41 99.03 99.25 99.44 99.61 99.71 99.75
Layer 44 - layer4.0.conv1 524288 102760448 77.83 79.61 87.11 90.32 90.64 95.39 95.84 95.92 97.17 97.35 98.36 98.60 98.83 99.20 99.37 99.42
Layer 45 - layer4.0.conv2 2359296 115605504 86.18 88.00 93.53 95.66 95.78 98.31 98.47 98.55 99.08 99.16 99.54 99.63 99.69 99.81 99.85 99.86
Layer 46 - layer4.0.conv3 1048576 51380224 78.43 80.48 87.85 91.14 91.27 96.00 96.40 96.47 97.53 97.92 98.81 99.00 99.15 99.45 99.57 99.61
Layer 47 - layer4.0.downsample.0 2097152 102760448 88.49 89.98 95.03 96.79 96.90 98.91 99.06 99.11 99.45 99.51 99.77 99.82 99.85 99.92 99.94 99.94
Layer 48 - layer4.1.conv1 1048576 51380224 82.07 84.02 90.34 93.69 93.72 97.15 97.56 97.76 98.45 98.75 99.27 99.36 99.54 99.67 99.76 99.80
Layer 49 - layer4.1.conv2 2359296 115605504 83.42 85.23 91.16 93.98 93.93 97.26 97.58 97.71 98.36 98.67 99.25 99.34 99.50 99.68 99.76 99.80
Layer 50 - layer4.1.conv3 1048576 51380224 78.08 79.96 86.66 90.48 90.22 95.22 95.76 95.89 96.88 97.65 98.70 98.85 99.13 99.45 99.58 99.66
Layer 51 - layer4.2.conv1 1048576 51380224 76.34 77.93 84.98 87.57 88.47 93.90 93.87 94.16 95.55 95.91 97.66 97.97 98.15 98.88 99.08 99.22
Layer 52 - layer4.2.conv2 2359296 115605504 73.57 74.97 82.32 84.37 86.01 91.92 91.66 92.22 94.02 94.16 96.65 97.13 97.29 98.44 98.74 99.00
Layer 53 - layer4.2.conv3 1048576 51380224 68.78 70.38 78.11 80.29 81.73 89.64 89.43 89.65 91.40 92.65 96.02 96.72 96.93 98.47 98.83 99.15
Layer 54 - fc 2048000 2048000 50.65 52.46 60.48 64.50 65.12 75.20 75.73 75.80 78.57 80.69 85.96 87.26 88.03 91.11 92.15 92.87
AP - adaptive average pool before fc 0 100352 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Soft Threshold Weight Reparameterization for Learnable Sparsity

Table 7. The non-uniform sparsity budgets learnt multiple methods for 90% sparse ResNet50 on ImageNet-1K. FLOPs distribution per
layer can be computed as 100−si

100
∗ FLOPsi, where si and FLOPsi are the sparsity and FLOPs of the layer i.

Metric Fully Dense
Params

Fully Dense
FLOPs

Sparsity (%)

STR Uniform ERK SNFS VD GS

Overall 25502912 4089284608 90.23 90.00 90.07 90.06 90.27 89.54
Backbone 23454912 4087136256 92.47 90.00 89.82 89.44 91.41 90.95

Layer 1 - conv1 9408 118013952 59.80 90.00 58.00 2.50 31.39 35.11
Layer 2 - layer1.0.conv1 4096 12845056 83.28 90.00 0.00 2.50 39.50 56.05
Layer 3 - layer1.0.conv2 36864 115605504 89.48 90.00 82.00 2.50 67.87 75.04
Layer 4 - layer1.0.conv3 16384 51380224 85.80 90.00 4.00 2.50 64.87 70.31
Layer 5 - layer1.0.downsample.0 16384 51380224 83.34 90.00 4.00 2.50 60.38 66.88
Layer 6 - layer1.1.conv1 16384 51380224 89.89 90.00 4.00 2.50 61.35 75.09
Layer 7 - layer1.1.conv2 36864 115605504 90.60 90.00 82.00 2.50 64.38 80.42
Layer 8 - layer1.1.conv3 16384 51380224 91.70 90.00 4.00 2.50 65.83 80.00
Layer 9 - layer1.2.conv1 16384 51380224 88.07 90.00 4.00 2.50 68.75 75.21
Layer 10 - layer1.2.conv2 36864 115605504 87.03 90.00 82.00 2.50 70.86 74.95
Layer 11 - layer1.2.conv3 16384 51380224 90.99 90.00 4.00 2.50 54.05 79.28
Layer 12 - layer2.0.conv1 32768 102760448 85.95 90.00 43.00 2.50 57.10 70.89
Layer 13 - layer2.0.conv2 147456 115605504 93.91 90.00 91.00 62.90 78.65 85.39
Layer 14 - layer2.0.conv3 65536 51380224 93.13 90.00 52.00 11.00 85.49 83.54
Layer 15 - layer2.0.downsample.0 131072 102760448 94.96 90.00 71.00 66.10 79.96 88.36
Layer 16 - layer2.1.conv1 65536 51380224 95.31 90.00 52.00 32.60 72.07 88.25
Layer 17 - layer2.1.conv2 147456 115605504 91.50 90.00 91.00 61.60 84.41 85.37
Layer 18 - layer2.1.conv3 65536 51380224 93.66 90.00 52.00 20.80 79.19 86.53
Layer 19 - layer2.2.conv1 65536 51380224 94.61 90.00 52.00 29.10 73.94 86.40
Layer 20 - layer2.2.conv2 147456 115605504 94.86 90.00 91.00 63.90 78.48 88.29
Layer 21 - layer2.2.conv3 65536 51380224 93.38 90.00 52.00 22.90 78.09 85.87
Layer 22 - layer2.3.conv1 65536 51380224 93.26 90.00 52.00 27.60 78.66 84.87
Layer 23 - layer2.3.conv2 147456 115605504 93.21 90.00 91.00 65.30 84.38 87.14
Layer 24 - layer2.3.conv3 65536 51380224 94.14 90.00 52.00 25.70 82.07 86.84
Layer 25 - layer3.0.conv1 131072 102760448 88.85 90.00 71.00 48.70 66.56 78.40
Layer 26 - layer3.0.conv2 589824 115605504 96.14 90.00 96.00 90.20 87.92 92.93
Layer 27 - layer3.0.conv3 262144 51380224 93.19 90.00 76.00 73.30 92.19 86.19
Layer 28 - layer3.0.downsample.0 524288 102760448 97.20 90.00 86.00 93.70 88.76 94.66
Layer 29 - layer3.1.conv1 262144 51380224 95.36 90.00 76.00 81.10 91.79 93.60
Layer 30 - layer3.1.conv2 589824 115605504 95.06 90.00 96.00 90.40 92.47 93.07
Layer 31 - layer3.1.conv3 262144 51380224 94.84 90.00 76.00 78.10 88.88 90.54
Layer 32 - layer3.2.conv1 262144 51380224 96.77 90.00 76.00 80.40 84.86 93.44
Layer 33 - layer3.2.conv2 589824 115605504 95.59 90.00 96.00 90.80 91.50 93.73
Layer 34 - layer3.2.conv3 262144 51380224 94.99 90.00 76.00 79.30 81.59 91.13
Layer 35 - layer3.3.conv1 262144 51380224 96.08 90.00 76.00 80.70 76.64 93.18
Layer 36 - layer3.3.conv2 589824 115605504 96.10 90.00 96.00 90.70 91.26 93.63
Layer 37 - layer3.3.conv3 262144 51380224 94.94 90.00 76.00 79.00 85.46 91.63
Layer 38 - layer3.4.conv1 262144 51380224 95.49 90.00 76.00 79.40 85.33 91.98
Layer 39 - layer3.4.conv2 589824 115605504 95.66 90.00 96.00 91.00 91.57 94.21
Layer 40 - layer3.4.conv3 262144 51380224 94.49 90.00 76.00 79.00 86.19 91.63
Layer 41 - layer3.5.conv1 262144 51380224 95.09 90.00 76.00 78.30 84.64 90.72
Layer 42 - layer3.5.conv2 589824 115605504 94.92 90.00 96.00 91.00 91.14 93.43
Layer 43 - layer3.5.conv3 262144 51380224 93.14 90.00 76.00 78.20 84.09 89.56
Layer 44 - layer4.0.conv1 524288 102760448 90.32 90.00 86.00 85.80 77.90 85.35
Layer 45 - layer4.0.conv2 2359296 115605504 95.66 90.00 98.00 97.60 96.53 95.07
Layer 46 - layer4.0.conv3 1048576 51380224 91.14 90.00 88.00 93.20 93.52 89.21
Layer 47 - layer4.0.downsample.0 2097152 102760448 96.79 90.00 93.00 98.80 93.80 96.72
Layer 48 - layer4.1.conv1 1048576 51380224 93.69 90.00 88.00 94.10 94.96 92.69
Layer 49 - layer4.1.conv2 2359296 115605504 93.98 90.00 98.00 97.70 97.76 93.85
Layer 50 - layer4.1.conv3 1048576 51380224 90.48 90.00 88.00 94.20 94.53 89.84
Layer 51 - layer4.2.conv1 1048576 51380224 87.57 90.00 88.00 93.60 94.19 85.91
Layer 52 - layer4.2.conv2 2359296 115605504 84.37 90.00 98.00 97.90 94.92 87.14
Layer 53 - layer4.2.conv3 1048576 51380224 80.29 90.00 88.00 94.50 89.64 80.65
Layer 54 - fc 2048000 2048000 64.50 90.00 93.00 97.10 77.17 73.43
AP - adaptive average pool before fc 0 100352 0.00 0.00 0.00 0.00 0.00 0.00

Soft Threshold Weight Reparameterization for Learnable Sparsity

Figure 8. Layer-wise sparsity budget for the 90% sparse Mo-
bileNetV1 models on ImageNet-1K using various sparsification
techniques.

Figure 9. Layer-wise FLOPs distribution for the 90% sparse Mo-
bileNetV1 models on ImageNet-1K using various sparsification
techniques.

A.5. STR Adaptations

Algorithm 1 has comments suggesting the simple modifica-
tions required for global and per-weight sparsity.

A.5.1. STR FOR GLOBAL SPARSITY

STR can be trivially modified to learn the global threshold
to induce global sparsity like in (Han et al., 2015; Frankle
& Carbin, 2019). Instead of having an sl per layer l, share
all the sl to create one single learnable global threshold
sg. This can be implemented by a simple modification in
Algorithm 1. STR’s capability to induce global sparsity
was evaluated on ResNet50 for ImageNet-1K for 90-98%
sparsity regimes.

Table 9 shows the performance of STR-GS that learns the
global threshold to induce global sparsity. While the ac-
curacies are comparable to the state-of-the-art if not better,
they do come at cost of ∼ 2× inference cost compared to
layer-wise sparsity due to poor non-uniform sparsity distri-
bution which is a result of difference converged values of
weights in each of the layers. STR-GS has numbers similar
to IMP (Frankle & Carbin, 2019) while being able to learn
the threshold stablely.

Table 8. The non-uniform sparsity budgets learnt multiple methods
for 90% sparse MobileNetV1 on ImageNet-1K. FLOPs distribution
per layer can be computed as 100−si

100
∗ FLOPsi, where si and

FLOPsi are the sparsity and FLOPs of the layer i.

Metric Fully Dense
Params

Fully Dense
FLOPs

Sparsity (%)

STR GMP

Overall 4209088 568740352 89.01 89.03
Backbone 3185088 567716352 92.93 88.71

Layer 1 864 10838016 69.10 0.00
Layer 2 (dw) 288 3612672 69.10 0.00
Layer 3 2048 25690112 93.70 90.00
Layer 4 (dw) 576 1806336 62.50 0.00
Layer 5 8192 25690112 93.25 90.00
Layer 6 (dw) 1152 3612672 63.45 0.00
Layer 7 16384 51380224 92.19 90.00
Layer 8 (dw) 1152 903168 44.36 0.00
Layer 9 32768 25690112 94.65 90.00
Layer 10 (dw) 2304 1806336 63.76 0.00
Layer 11 65536 51380224 94.91 90.00
Layer 12 (dw) 2304 451584 53.43 0.00
Layer 13 131072 25690112 96.86 90.00
Layer 14 (dw) 4608 903168 67.93 0.00
Layer 15 262144 51380224 97.25 90.00
Layer 16 (dw) 4608 903168 78.43 0.00
Layer 17 262144 51380224 96.71 90.00
Layer 18 (dw) 4608 903168 77.00 0.00
Layer 19 262144 51380224 95.40 90.00
Layer 20 (dw) 4608 903168 74.22 0.00
Layer 21 262144 51380224 93.52 90.00
Layer 22 (dw) 4608 903168 62.02 0.00
Layer 23 262144 51380224 90.64 90.00
Layer 24 (dw) 4608 225792 53.78 0.00
Layer 25 524288 25690112 92.23 90.00
Layer 26 (dw) 9216 451584 40.89 0.00
Layer 27 1048576 51380224 91.76 90.00
Layer 28 (fc) 1024000 1024000 76.81 90.00
AP (average pool before fc) 0 50176 0.00 0.00

Table 9. STR can stablely learn the global threshold to induce
global sparsity resulting in models with comparable accuracies as
layer-wise sparsity but with ∼ 2× the inference cost.

Method
Top-1 Acc

(%) Params
Sparsity

(%) FLOPs

STR-GS 74.13 2.42M 89.54 596M
STR-GS 71.61 1.58M 93.84 363M
STR-GS 67.95 1.01M 96.06 232M
STR-GS 62.17 0.54M 97.91 142M

A.5.2. STR FOR FILTER/CHANNEL PRUNING

Let us assume there are nout filters of size k × k × nin in a
given layer. Typically in channel/filter pruning techniques,
each of these nout filters have an importance factor that
represents the utility of the filter and is used to scale the
corresponding filter. For a filter fi there exists a importance
scalar mi learnt or obtained in some fashion and is used
to get the effective filter in use f̂i = mi · fi where mi is
broadcasted to scale fi. In practice,mi is heuristically made

Soft Threshold Weight Reparameterization for Learnable Sparsity

to go to 0 to induce structured sparsity through channel/filter
pruning. Let us stack all the importance scalars of the filters
in the layer, {mi}i∈[nout], as vector ml where l is the layer
index. Now, this reduces to the same problem of inducing
sparsity in a vector as in the learning of low-rank in RNN
presented in Section 4.2.1. STR will be applied to each
of the {ml}l∈[L] where L is the total number of layers in a
deep neural network. The inference will use the importance
scalars through STR ensuring channel/filter pruning due to
the induced sparsity. This is very similar to the work-flow
we used to induce low-rank in RNNs.

A.5.3. STR FOR PER-WEIGHT PRUNING OR MASK
LEARNING

The adaptation of STR for per-weight pruning or mask
learning is simple and is similar to layer-wise or global spar-
sity. Changing sl → Sl ie., changing the layer-wise thresh-
olds from a scalar to a tensor of the size of Wl will hep
STR adapt to do per-weight pruning or mask learning as dis-
cussed in the recent works (Zhou et al., 2019; Savarese et al.,
2019; Ramanujan et al., 2020). We have explored this using
a couple of experiments on CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet-1K. We observed that high amounts of
sparsity were induced and the routine is very aggressive com-
pared to other sparsification methods. For example, we were
able to get 90% accuracy on CIFAR-10 using ResNet18 at
a staggering 99.63% sparsity (270× lesser parameters than
the dense model) which results in 41K parameters pushing
it into very under parameterized regime. We suggest cau-
tion when running per-weight sparsity experiments with any
method due to the high variance in the final accuracy.

A.6. Hyperparameters for Reproducibility

All the ResNet50 experiments use a batchsize of 256, cosine
learning rate with warm-up as in (Wortsman et al., 2019)
and trained for 100 epochs. λ is the weight-decay hyperpa-
rameter. sinit is the initial value of all si where i is the layer
number. The hyper parameter setting for each of the sparse
model can be found in Table 10.

All the MobileNetV1 experiments use a batchsize of 256,
cosine learning rate with warm-up as in (Wortsman et al.,
2019) and trained for 100 epochs. λ is the weight-decay
hyperparameter. sinit is the initial value of all si where i is
the layer number. The hyper parameter setting for each of
the sparse model can be found in Table 11.

All the CNN experiments use g(s) = 1
1+e−s for the STR.

All the FastGRNN experiments use a batchsize of 100, learn-
ing rate and optimizers as suggested in (Kusupati et al.,
2018) and trained for 300 epochs. Weight-decay parameter,
λ is applied to both mW,mU resulting in the rank setting
obtained. Each hyperparamter setting can lead to multi-

Table 10. The hyperparameters for various sparse ResNet50 mod-
els on ImageNet-1K using STR. λ is the weight-decay parameter
and sinit is the initialization of all si for all the layers in ResNet50.

Sparse Model (%) Weight-decay (λ) sinit

79.55 0.00001700000000 -3200
81.27 0.00001751757813 -3200
87.70 0.00002051757813 -3200
90.23 0.00002251757813 -3200
90.55 0.00002051757813 -800
94.80 0.00003051757813 -3200
95.03 0.00003351757813 -12800
95.15 0.00003051757813 -1600
96.11 0.00003051757813 -100
96.53 0.00004051757813 -12800
97.78 0.00005217578125 -12800
98.05 0.00005651757813 -12800
98.22 0.00006051757813 -12800
98.79 0.00007551757813 -12800
98.98 0.00008551757813 -12800
99.10 0.00009051757813 -12800

Table 11. The hyperparameters for various sparse MobileNetV1
models on ImageNet-1K using STR. λ is the weight-decay pa-
rameter and sinit is the initialization of all si for all the layers in
MobileNetV1.

Sparse Model (%) Weight-decay (λ) sinit

75.28 0.00001551757813 -100
79.07 0.00001551757813 -25
85.80 0.00003051757813 -3200
89.01 0.00003751757813 -12800
89.62 0.00003751757813 -3200

Table 12. Hyperparameters for the low-rank FastGRNN with STR.
The same weight-decay parameter λ is applied on both mW,mU.
Multiple rank setting can be acheived during the training course
of the FastGRNN model. g(sinit) ≈ 0 ie., sinit ≤ −10 for all the
experiments.

Google-12 HAR-2

(rW , rU) Weight-decay (λ) (rW , rU) Weight-decay (λ)

(12, 40) 0.001 (9, 8) 0.001
(11, 35) 0.001 (9, 7) 0.001
(10, 31) 0.002 (8, 7) 0.001
(9, 24) 0.005

ple low-rank setting over the course of training. sinit set
such that g(sinit) ≈ 0 for the initialization of soft threshold

Soft Threshold Weight Reparameterization for Learnable Sparsity

pruning scalar for the low-rank vectors.

All the RNN experiments use g(s) = es for the STR.

A.7. Dataset and Model Details

ImageNet-1K: ImageNet-1K has RGB images with
224×224 dimensions. The dataset has 1.3M training im-
ages, 50K validation images and 1000 classes. Images were
transformed and augmented with the standard procedures
as in (Wortsman et al., 2019).

Google-12: Google Speech Commands dataset (Warden,
2018) contains 1 second long utterances of 30 short words
(30 classes) sampled at 16KHz. Standard log Mel-filter-bank
featurization with 32 filters over a window size of 25ms and
stride of 10ms gave 99 timesteps of 32 filter responses for
a 1-second audio clip. For the 12 class version, 10 classes
used in Kaggles Tensorflow Speech Recognition challenge
were used and the remaining two classes were noise and
background sounds (taken randomly from the remaining
20 short word utterances). The datasets were zero mean
- unit variance normalized during training and prediction.
Google-12 has 22,246 training points, 3,081 testing points.
Each datapoint has 99 timesteps with each input being 32
dimensional making the datapoint 3,168 dimensional.

HAR-2: Human Activity Recognition (HAR) dataset was
collected from an accelerometer and gyroscope on a Sam-
sung Galaxy S3 smartphone. The features available on the
repository were directly used for experiments. The 6 activi-
ties were merged to get the binarized version. The classes
{Sitting, Laying, Walking Upstairs} and {Standing, Walk-
ing, Walking Downstairs} were merged to obtain the two
classes. The dataset was zero mean - unit variance nor-
malized during training and prediction. HAR-2 has 7,352
training points and 2,947 test points. Each datapoint has
1,152 dimensions, which will be split into 128 timesteps
leading to dimensional per timestep inputs.

ResNet50: ResNet50 is a very popular CNN architecture
and is widely used to showcase the effectiveness of spar-
sification techniques. ResNet50 has 54 parameter layers
(including fc) and a couple of pooling layers (which con-
tribute minimally to FLOPs). All the batchnorm parameters
are left dense and are learnt during the training. STR can
be applied per-layer, per-channel and even per-weight to
obtain unstructured sparsity and the aggressiveness of spar-
sification increases in the same order. This paper only uses
per-layer STR which makes it have 54 additional learnable
scalars. The layer-wise parameters and FLOPs can be seen
in Tables 7 and 6. All the layers had no bias terms.

MobileNetV1: MobileNetV1 is a popular efficient CNN
architecture. It is used to showcase the generalizability of
sparsification techniques. MobileNetV1 has 28 parameter
layers (including fc) and a couple of pooling layers (which

contribute minimally to FLOPs). All the batchnorm param-
eters are left dense and are learnt during the training. STR
can be applied per-layer, per-channel and even per-weight to
obtain unstructured sparsity and the aggressiveness of spar-
sification increases in the same order. This paper only uses
per-layer STR which makes it have 28 additional learnable
scalars. The layer-wise parameters and FLOPs can be seen
in Tables 8. All the layers had no bias terms.

FastGRNN: FastGRNN’s update equations can be found
in (Kusupati et al., 2018). FastGRNN, in general, benefits a
lot from the low-rank reparameterization and this enables it
to be deployed on tiny devices without losing any accuracy.
FastGRNN’s biases and final classifier are left untouched in
all the experiments and only the input and hidden projection
matrices are made low-rank. All the hyperparameters were
set specific to the datasets as in Kusupati et al. (2018).

A.8. Hard Threshold vs Soft Threshold

Figure 10 shows the difference between hard thresholding
and soft thresholding for the same threshold value of α = 2.
It is clear from Figure 10 that soft-threshold is a continuous
function that is sub-differentiable. The abrupt change in
hard-threshold leads to instability in training sometimes
increasing dependence on fine tuning of the obtained sparse
network. Soft-threshold is robust to such issues.

Figure 10. A visualization of hard-threshold (left) and soft-
threshold (right) functions with the threshold α = 2. x-axis is the
input and y-axis is the output.

